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Uniqueness of blowups and
Lojasiewicz inequalities

By ToBias HoLck COLDING and WILLIAM P. MiNicozz1 11

We dedicate this article to Leon Simon in recognition
of his fundamental contributions to analysis and geometry.

Abstract

Once one knows that singularities occur, one naturally wonders what the
singularities are like. For minimal varieties the first answer, already known
to Federer-Fleming in 1959, is that they weakly resemble cones. For mean
curvature flow, by the combined work of Huisken, Ilmanen, and White,
singularities weakly resemble shrinkers. Unfortunately, the simple proofs
leave open the possibility that a minimal variety or a mean curvature flow
looked at under a microscope will resemble one blowup, but under higher
magnification, it might (as far as anyone knows) resemble a completely
different blowup. Whether this ever happens is one of the most fundamental
questions about singularities. It is this long standing open question that
we settle here for mean curvature flow at all generic singularities and for
mean convex mean curvature flow at all singularities.

0. Introduction

We show that at each generic singularity of a mean curvature flow the
blowup is unique; that is, it does not depend on the sequence of rescalings. This
settles a major open problem that was open even in the case of mean convex
hypersurfaces where it was known that all singularities are generic. Moreover,
it is the first general uniqueness theorem for blowups to a Geometric PDE at
a noncompact singularity.

Uniqueness of blowups is one of the most fundamental questions that
one can ask about singularities and implies regularity of the singular set; see
[CM14c], [CM15].
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To prove our uniqueness result, we prove two completely new infinite di-
mensional Lojasiewicz type inequalities. Infinite dimensional Lojasiewicz in-
equalities were pioneered thirty years ago by Leon Simon. However, unlike
all other infinite dimensional Lojasiewicz inequalities we know of, ours do not
follow from a reduction to the classical finite-dimensional Lojasiewicz inequal-
ities from the 1960s from algebraic geometry, rather we prove our inequalities
directly and do not rely on Lojasiewicz’s arguments or results.

It is well known that to deal with noncompact singularities requires en-
tirely new ideas and techniques as one cannot argue as in Simon’s work, and
all the later work that uses his ideas. Partly because of this, we expect that
the techniques and ideas developed here have applications to other flows. Our
results hold in all dimensions.

This paper focuses on mean curvature flow (or MCF) of hypersurfaces.
This is a nonlinear parabolic evolution equation where a hypersurface evolves
over time by locally moving in the direction of steepest descent for the volume
element. It has been used and studied in material science for almost a century'
to model things like cell, grain, and bubble growth.? Unlike some of the other
earlier papers in material science both von Neumann’s 1952 paper and Mullins
1956 paper had explicit equations. In his paper von Neumann discussed soap
foams whose interface tend to have constant mean curvature whereas Mullins
is describing coarsening in metals, in which interfaces are not generally of
constant mean curvature. Partly as a consequence, Mullins may have been
the first to write down the MCF equation in general. Mullins also found some
of the basic self-similar solutions like the translating solution now known as
the Grim Reaper. To be precise, suppose that M; C R"*! is a one-parameter
family of smooth hypersurfaces; then we say that M; flows by the MCF if

(01) Tt = -H n,

1See, e.g., the early work in material science from the 1920s, 1940s, and 1950s of T. Sutoki,
[Sut28], D. Harker and E. Parker, [HP45], J. Burke, [Bur49], P.A. Beck, [Bec52], J. von
Neumann, [vN52], and W.W. Mullins, [Mul56].

2For instance, annealing, in metallurgy and materials science, is a heat treatment that
alters a material to increase its ductility and to make it more workable. It involves heating
material above its critical temperature, maintaining a suitable temperature, and then cooling.
Annealing can induce ductility, soften material, relieve internal stresses, refine the structure
by making it homogeneous, and improve cold working properties. The three stages of the
annealing process that proceed as the temperature of the material is increased are: recovery,
recrystallization, and grain growth. Grain growth is the increase in size of grains (crystallites)
in a material at high temperature. This occurs when recovery and recrystallisation are
complete and further reduction in the internal energy can only be achieved by reducing the
total area of grain boundary (by mean curvature flow).
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where H and n are the mean curvature and unit normal, respectively, of M;
at the point z.

To understand singularities past the first singular time, we need weak
solutions of MCF. The weak solutions that we will use are the Brakke flows
considered by White in [Whi05].> By Theorem 7.4 in [Whi05], this includes
flows starting from any closed embedded hypersurface.

0.1. Tangent flows. By definition, a tangent flow is the limit of a sequence
of rescalings at a singularity, where the convergence is on compact subsets.?
For instance, a tangent flow to M; at the origin in space-time is the limit of a
sequence of rescaled flows 5% M 521 where 0; — 0. A priori, different sequences
0; could give different tangent flows, and the question of the uniqueness of
the blowup — independent of the sequence — is a major question in many
geometric problems. By a monotonicity formula of Huisken, [Hui90], and an
argument of Ilmanen and White, [[lm95], [Whi05], tangent flows are shrinkers,
i.e., self-similar solutions of MCF that evolve by rescaling. The only generic
shrinkers are round cylinders by [CM12].

We will say that a singular point is cylindrical if at least one tangent flow
is a multiplicity one cylinder S¥ x R, Our main application of our analytical
inequalities is the following theorem that shows that tangent flows at generic
singularities are unique:

THEOREM 0.2. Let M; be an MCF in R". At each cylindrical singular
point the tangent flow is unique. That is, any other tangent flow is also a
cylinder with the same RF factor that points in the same direction.

This theorem solves a major open problem; see, e.g., page 534 of [Whi02].
Even in the case of the evolution of mean convex hypersurfaces where all
singularities are cylindrical, uniqueness of the axis was unknown; see [HS99a],
[HS99b], [Whi03], [SS93], [And12], [Bre], and [HK13].

In recent joint work with Tom Ilmanen, [CIM13], we showed that if one
tangent flow at a singular point of an MCF is a multiplicity one cylinder, then
all are. However, [CIM13] left open the possibility that the direction of the
axis (the R¥ factor) depended on the sequence of rescalings. Our proof of
Theorem 0.2 and, in particular, our first Lojasiewicz type inequality, has its

3That is, Brakke flows in the class S(\o,n,n + 1) defined in Section 7 of [Whi05] for some
Ao > 1.

“This is analogous to a tangent cone at a singularity of a minimal variety; cf. [FF60].

5Our results not only give uniqueness of tangent flows but also a definite rate where the
rescaled MCF converges to the relevant cylinder. The distance to the cylinder is decaying to
zero at a definite rate over balls whose radii are increasing at a definite rate to infinity.
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roots in some ideas and inequalities from [CIM13] and in fact implicitly use
that cylinders are isolated among shrinkers by [CIM13].

Uniqueness is a key question for the regularity of Geometric PDE’s. Two
of the most prominent early works on uniqueness of tangent cones are Leon
Simon’s hugely influential paper [Sim83] from 1983, where he proves uniqueness
for tangent cones of minimal varieties with smooth cross section. The other is
Allard-Almgren’s 1981 paper [AA81], where uniqueness of tangent cones with
smooth cross section is proven under an additional integrability assumption on
the cross section; see also [Sim08], [Har97], [CM14b] for additional references.

Our results are the first general uniqueness theorems for tangent flows to a
geometric flow at a noncompact singularity. (In fact, not only are the singulari-
ties that we deal with here noncompact but they are also nonintegrable; see Sec-
tion 3.) Some special cases of uniqueness of tangent flows for MCF were previ-
ously analyzed assuming either some sort of convexity or that the hypersurface
is a surface of rotation; see [Hui90], [Hui93|, [HS99a], [HS99b], [Whi03], [SS93],
[AAGI5], Section 3.2 in the book [GGS10], and [GK13], [GKS11], [GS09]. In
contrast, uniqueness for blowups at compact singularities is better understood;
cf. [AA81], [Sim83], [Hui84], [Sch14], [Ses08], [Tay73], and [Whi98].

In fact, using the results of this paper we showed in [CM14c| that, for
a MCF of closed embedded hypersurfaces in R"*! with only cylindrical sin-
gularities, the space-time singular set is contained in finitely many compact
embedded (n — 1)-dimensional Lipschitz submanifolds together with a set of
dimension at most n — 2. In particular, if the initial hypersurface is mean con-
vex, then all singularities are generic and the results apply. In fact, in [CM14c]
we showed that the entire stratification of the space-time singular set is rec-
tifiable in a very strong sense; cf., e.g., [Sim95a], [Sim96], [Sim95b], [BCL86],
and [HL89].

One of the significant difficulties that we overcome in this paper, setting it
apart from all other work we know of, is that our singularities are noncompact.
This causes major analytical difficulties, and to address them requires entirely
new techniques and ideas. This is not so much because of the subtleties of anal-
ysis on noncompact domains, though this is an issue, but crucially because the
evolving hypersurface cannot be written as an entire graph over the singularity
no matter how close we get to the singularity. Rather, the geometry of the
situation dictates that only part of the evolving hypersurface can be written
as a graph over a compact piece of the singularity.®

5In the end, what comes out of our analysis is that the domain the evolving hypersurface
is a graph over is expanding in time and at a definite rate, but this is not all all clear from
the outset; see also footnote 5.
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0.2. Lojasiewicz inequalities. The main technical tools that we prove are
two Lojasiewicz—type inequalities.

In real algebraic geometry, the Lojasiewicz inequality, [Loj65], named after
Stanislaw Lojasiewicz, gives an upper bound for the distance from a point to
the nearest zero of a given real analytic function. Specifically, let f: U — R
be a real-analytic function on an open set U in R", and let Z be the zero locus
of f. Assume that Z is not empty. Then for any compact set K in U, there
exist o > 2 and a positive constant C' such that, for all x € K,

(0.3) inf o —2[* < C|f(2)].

Here o can be large.

Lojasiewicz, [Loj65], also proved the following inequality:” With the same
assumptions on f, for every p € U, there is a possibly smaller neighborhood
W of p and constants 3 € (0,1) and C > 0 such that for all z € W,

(0.4) 1f(z) = f(p)I° < C|Vefl.

Note that this inequality is trivial unless p is a critical point for f.
An immediate consequence of (0.4) is that every critical point of f has a
neighborhood where every other critical point has the same value.®

0.3. Lojasiewicz inequalities for noncompact hypersurfaces and MCF. The
infinite dimensional Lojasiewicz-type inequalities that we prove are for the F
functional on the space of hypersurfaces.

The F-functional is given by integrating the Gaussian over a hypersurface
¥ C R™!. This is also often referred to as the Gaussian surface area and is
defined by

||

(0.5) F(X) = (4m)~"/? /E e 3 du.

The entropy A(X) is the supremum of the Gaussian surface areas over all centers
and scales.
It follows from the first variation formula that the gradient of F' is

(0.6) Vs F () :/E (H— <x2“>) we 5.
(o,n)

Thus, the critical points of F' are shrinkers, i.e., hypersurfaces with H = =5

The most important shrinkers are the generalized cylinders C; these are the
generic ones by [CM12]. The space C is the union of Cj for k > 1, where Cy, is

"Lojasiewicz called this inequality the gradient inequality.
8This consequence of (0.4) for the F functional near a cylinder is implied by the rigidity
result of [CIM13].
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the space of cylinders S¥ x R"™*, where the S* is centered at 0 and has radius
V/2k and we allow all possible rotations by SO(n + 1).

A family of hypersurfaces ¥ evolves by the negative gradient flow for the
F-functional if it satisfies the equation

(0.7) (Osx) = —Hn 4 2 /2.
This flow is called the rescaled MCF since X is obtained from an MCF M;
by setting 3s = \/%—tMt, s = —log(—t), t < 0. By (0.6), critical points for

the F-functional or, equivalently, stationary points for the rescaled MCF, are
the shrinkers for the MCF that become extinct at the origin in space-time. A
rescaled MCF has a unique asymptotic limit if and only if the corresponding
MCF has a unique tangent flow at that singularity.

We will prove versions of the two Lojasiewicz inequalities for the F' func-
tional on a general hypersurface 3. Roughly speaking, we will show that

(0.8) dist(%,0)* < C |VsF|,
(0.9) (F(2) - F(C))7 < C |VsF|.

Equation (0.8) will correspond to Lojasiewicz’s first inequality whereas (0.9)
will correspond to his second inequality. The precise statements of these in-
equalities will be much more complicated than this, but they will be of the
same flavor.

0.4. First Lojasiewicz with a = 2 implies the second with § = % In this
subsection we will explain how the second Lojasiewicz inequality for a function
f in a neighborhood of an isolated critical point follows from the first when
the first holds for V f and with o = 2. (We will later extend this argument to
infinite dimensions.)

Suppose that f : R™ — R is smooth function with f(0)=0 and V f(0)=0;
without loss of generality we may assume that at 0 the Hessian is in diagonal
form, and we will write the coordinates as = (y, z) where y are the coor-
dinates where the Hessian is nondegenerate. By Taylor’s formula in a small
neighborhood of 0, we have that

(0.10) f(2) = 5 v+ O(laf),
(0.11) fu(@) = aiyi + O(leP),
(0.12) Ji(@) = O(laf?).

It follows from this that the second of the two Lojasiewicz inequalities holds
for f and 8 = % provided that |z|? < e|y| for some sufficiently small £ > 0.
Namely, if |z|? < e |y], then

_ 3
(0.13) Clyl < [Vaf| and |f(2)] < C7 yl?
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for some positive constant C' and, hence,
2
(0.14) [f(@)]5 < CIVafl.

Therefore, we only need to prove the second Lojasiewicz inequality for f in the
region |z|2 > e|y|. We will do this using the first Lojasiewicz inequality for
V f. Since 0 is an isolated critical point for f, the first Lojasiewicz inequality
for Vf gives that

(0.15) Vo f] > Clal.

By assumption on the region and the Taylor expansion for f, we get that in
this region

(0.16) [f(@) < Clyf +C 2> <Oz < Claf’.
Combining these two inequalities gives
(0.17) F@)]5 < Claf® < |Vafl.

This proves the second Lojasiewicz inequality for f with g = %

In Section 4, we extend the above argument to general Banach spaces.

Lojasiewicz used his second inequality to show the “Lojasiewicz theorem”:
If f:R"™ — R is an analytic function, x = z(t) : [0,00) — R™ is a curve with
2'(t) = =V f and x(t) has a limit point =, then the length of the curve is
finite and lim;_,oc (t) = Too. Moreover, x is a critical point for f.

Even in R?, it is easy to construct smooth functions where the Lojasiewicz
theorem does not hold, but instead there are negative gradient flow lines with
multiple limits.

We will discuss the Lojasiewicz theorem in a slightly more general setting
at the end of the next subsection after briefly discussing infinite dimensional
Lojasiewicz inequalities.

0.5. Infinite dimensional Lojasiewicz inequalities and applications. Infi-
nite dimensional versions of Lojasiewicz inequalities were proven in a celebrated
work of Leon Simon, [Sim83], for the area and related functionals and used,
in particular, to prove a fundamental result about uniqueness of tangent cones
with smooth cross section of minimal surfaces. Simon’s proof of the Lojasiewicz
inequality is done by reducing the infinite dimensional version to the classical
Lojasiewicz inequality by a Lyapunov-Schmidt reduction argument. Infinite
dimensional Lojasiewicz inequalities proven using Lyapunov-Schmidt reduc-
tion, as in the work of Simon, have had a profound impact on various areas
of analysis and geometry and are usually referred to as Lojasiewicz-Simon
inequalities.
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As already mentioned, we will also prove two infinite dimensional Lojasiewicz
inequalities and use them to prove uniqueness of blowups for MCF (or, equiv-
alently, convergence of the rescaled flow). However, unlike all other infinite
dimensional Lojasiewicz inequalities we know of, ours do not follow from a
reduction to the classical Lojasiewicz inequalities; rather we prove our inequal-
ities directly and do not rely on Lojasiewicz’s arguments or results. In fact, we
prove our infinite dimensional analog of the first Lojasiewicz inequality directly
and use this together with an infinite dimensional analog of the argument in
the previous subsection to show our second Lojasiewicz inequality. The reason
why we cannot argue as in Simon’s work, and all the later work that make use
his ideas, comes from that our singularities are noncompact. In particular, even
near the singularities, the evolving hypersurface cannot be written as an entire
graph over the singularity. Rather, only part of the evolving hypersurface can
be written as a graph over a compact piece of the singularity.

Next we will explain how the second Lojasiewicz inequality is typically
used to show uniqueness. Before we do that, observe first that in the second
inequality we always work in a small neighborhood of p so that, in particu-
lar, |f(z) — f(p)] < 1 and hence smaller powers on the left-hand side of the
inequality imply the inequality for higher powers. As it turns out, we will see
that any positive power strictly less than 1 would do for uniqueness.

Suppose now that X is a Banach space and f : X — R is a Fréchet
differentiable function. Let x = z(t) be a curve on X parametrized on [0, co)
whose velocity ' = —V f. We would like to show that if the second inequality
of Lojasiewicz holds for f with a power 1 > 8 > 1/2, then the Lojasiewicz
theorem mentioned above holds. That is, if 2(¢) has a limit point ., then the
length of the curve is finite and lim;_,o0 () = Too. Since xo is a limit point of
z(t) and f is nonincreasing along the curve, z~, must be a critical point for f.

To see that x(t) converges to T, assume that f(z~) = 0 and note that if
we set f(t) = f(x(t)), then f’ = —|V f|?. Moreover, by the second Lojasiewicz
inequality, we get that f’ < — f27 if x(t) is sufficiently close to . (Assume for
simplicity below that z(¢) stays in a small neighborhood z., for ¢ sufficiently
large so that this inequality holds; the general case follows with trivial changes.)
Then this inequality can be rewritten as (f1=2%) > (28—1), which integrates to

(0.18) flt) < Cto,

We need to show that (0.18) implies that [;° |V f|ds is finite. This shows
that x(t) converges to o as t — co. To see that [ |V f|ds is finite, observe
by the Cauchy-Schwarz inequality that

1

(0.19) /100]Vf\ds:/100\/—7f’ds§ (—/looflsprsds>é</1oos15als>2
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It suffices therefore to show that

T
(0.20) -—‘/1 f'siteds
1

is uniformly bounded. Integrating by parts gives

T T
(0.21) / f%L“ds:]f§*ﬂ{—(1+5X/ f s ds.
1 1

If we choose € > 0 sufficiently small depending on 3, then we see that this is
bounded independent of T" and hence [;° |V f|ds is finite.

We will use an extension of this argument where the assumption f2°(t) <
—f!(t) is replaced by the assumption that f2°(t) < f(t — 1) — f(t + 1); see
Lemma 6.9. This assumption is exactly what comes out of our analog for the
rescaled MCF of the gradient Lojasiewicz inequality, i.e., out of Theorem 0.26.

0.6. The two Lojasiewicz inequalities. We now state the two Lojasiewicz-
type inequalities for the F' functional on the space of hypersurfaces.

Suppose that ¥ Cc R™! is a hypersurface, and fix some small g9 > 0.
(This will be chosen small enough to satisfy Lemmas 2.5 and 4.3.) Given an
integer ¢ and constant Cy, we let ry(X) be the maximal radius so that

® B, (x)NX is the graph over a cylinder in Cy, of a function u with [[u[|c2.. < &g
and |VYA| < C,.

The parameters £ and C; will be left free until the proof of the main theorem
(Theorem 0.2) and will then be chosen large.

In the next theorem, we will use a Gaussian L? distance d¢(R) to the space
Ci, in the ball of radius R. To define this, given X, € Cy, let wy, : R 5 R
denote the distance to the axis of X (i.e., to the space of translations that
leave Y invariant). Then we define

(0.22)

2 . _ 2 _ _ g _l=IZ
QR(R) = it fws, = VEHEeny = it [ (s, = V2R e

2
=]

The Gaussian LP norm on the ball Bp is Hu||’£p(BR) = [, lulPe” .
Given a general hypersurface ¥, it is also convenient to define the function
¢ by

(z,n)
2
so that ¢ is minus the gradient of the functional F'.

The main tools that we develop here are the following two analogs for non-

(0.23) ¢ = —H,

compact hypersurfaces of the well-known Lojasiewicz’s inequalities for analytic
functions on R™:
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THEOREM 0.24 (Lojasiewicz inequality for noncompact hypersurfaces).
If ¥ C R™ is a hypersurface with A\(X) < Ao and R € [1,1(X) — 1], then

bo.r by R
(0.25) B(R) < O R {Héf?H]fi(BR)+6 ; }

where C = C(n,4,Cy, X\o), p=p(n) and by, € (0,1) satisfies limp_,oo by r, = 1.

The theorem bounds the L? distance to Cy by a power of ||@||z1, with an
error term that comes from a cutoff argument since ¥ is noncompact and is not
globally a graph of the cylinder.” This theorem is essentially sharp. Namely,
the estimate (0.25) does not hold for any exponent by, larger than one, but
Theorem 0.24 lets us take by, arbitrarily close to one.

We will also see that the above inequality implies the following gradient
type Lojasiewicz inequality. This inequality bounds the difference of the F
functional near a critical point by two terms. The first is essentially a power
of VF, while the second (exponentially decaying) term comes from that ¥ is
not a graph over the entire cylinder.

THEOREM 0.26. (A gradient Lojasiewicz inequality for noncompact hy-
persurfaces). If ¥ C R is a hypersurface with \(X) < o, 8 € [0,1), and
R e [1,ry(X) — 1], then

(0.27)

Cn GHOR® (345 (ro1)2

c nM _n s R
F(S) - F(CL)| < C R? {||¢|y;2’(5§ﬁ T I }

where C' = C(n,¢,Cy, A\o), p= p(n) and c¢r, € (0,1) satisfies limy_,o g = 1.

When we apply the theorem, the parameters 8 and ¢ will be chosen to
make the exponent greater than one on the VF' term, essentially giving that
|F'(X) — F(Cg)| is bounded by a power greater than one of |[VF|. A separate
argument will be needed to handle the exponentially decaying error terms.

We will show that when >; are flowing by the rescaled MCF, then both
terms on the right-hand side of (0.27) are bounded by a power greater than
one of ||¢||z2. (The corresponding statement holds for Theorem 0.24.) Thus,
we will essentially get the inequalities

(0.28) d3 < C |Vs,F|,
2
(0.29) (F(3:) = F(C))s < C |Vy, Fl.
9This is a Lojasiewicz inequality for the gradient of the F functional. (¢ is the gradient

of F.) This follows since, by [CIM13], cylinders are isolated critical points for F' and, thus,
dc locally measures the distance to the nearest critical point.
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These two inequalities can be thought of as analogs for the rescaled MCF of
Lojasiewicz inequalities from real algebraic geometry; cf. (0.8) and (0.9).

Throughout the paper C will denote a constant that can change from line
to line. Given a hypersurface ¥ ¢ R™*!, n will be the outward pointing unit
normal and the second fundamental form A is given by A(V,W) = (VyW,n)
for tangent vectors V and W. The mean curvature H is then defined by
H=->",A(e;e;) where {e1,...,e,} is an orthonormal frame for ¥. With
this convention, H is  on the sphere of radius R.

Outline of the paper. The first two sections prove the first Lojasiewicz
inequality that bounds the distance to the space of cylinders by a power VF.
Section 1 proves cylindrical estimates for a general hypersurface, showing that
the tensor % is almost parallel if H is positive on a large set and V F' is small. In
Section 2, we prove the first Lojasiewicz inequality by bounding the distance
to a cylinder in terms of the covariant derivatives of % and then using the
estimate in the previous section.

The next two sections show that our first Lojasiewicz inequality implies a
gradient Lojasiewicz inequality for F. The idea is essentially the one given in
Section 0.4 for a similar reduction for functions on R", but there are analytic
difficulties to deal with coming from the infinite dimensions and from the
noncompactness of the cylinder. Section 3 proves the analytic facts on the
cylinder that we will need, while Section 4 uses this to extend the argument
from Section 0.4.

Section 5 deals with one of the major issues of the paper: the cylinders
are not compact so the “nearby” surfaces cannot be written as graphs over
the entire cylinder. The two Lojasiewicz inequalities assume a lower bound for
the scale where the hypersurface is a graph over a cylinder. (We call this the
cylindrical scale.) Section 5 gets a lower bound for the cylindrical scale for a
rescaled MCF in terms of the space-time integral of VF'.

Section 6 combines the previous results to prove the main uniqueness
theorem.

There are two technical appendices. The first computes geometric quanti-
ties on a normal exponential graph and computes VF' on a graph. The second
proves interpolation inequalities that will allow us to control pointwise bounds
by integral bounds and bounds on higher derivatives.

See [CM14a] for a survey on Lojasiewicz inequalities and their applica-
tions, and see [CMP15] for a general survey on MCF.

1. Cylindrical estimates for a general hypersurface

In this section, we will prove estimates for a general hypersurface ¥ C
R"*!. The main results are bounds for V% when the mean curvature H is
positive on a large set.
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1.1. A general Simons equation. In this subsection, we will show that the
second fundamental form A of ¥ satisfies an elliptic differential equation similar
to Simons’ equation for minimal surfaces. The elliptic operator will be the L
operator from [CM12] given by

(1.1) L=L4 AP+ 5 =0Vt AP+

Namely, we will prove the following proposition:
PROPOSITION 1.2. If ¢ = 2(z,n) — H, then

(1.3) L A=A+ Hessy + ¢ A%,

where the tensor A? is given in orthonormal frame by (Az)ij = Ak Ai;.

Note that ¢ vanishes precisely when 3 is a shrinker and, in this case, we
recover the Simons’ equation for A for shrinkers from [CM12].

We will use the following general version of Simons’ equation for the second
fundamental form of a hypersurface:

LEMMA 1.4. The second fundamental form A satisfies
(1.5) (A+]AP?) A= —H A% — Hessy.

See, e.g., [CM11] for a proof.
The next lemma computes the Hessian of the support function (z,n).

LEMMA 1.6. The Hessian of (x,n) is given by
(1.7) Hess(, ny = —V,rA— A — A% (z,n).

Proof. Fix a point p € X. Let e; be a local orthonormal frame for 3 with
Vgej =0 at p for every i and j. Thus, at p, we have

(18) Veiej = Aij n.

Finally, using this and V.,n = —A;;, e;, (which holds at all points), we compute
at p

Hess(, n) (€i; €5) = (,0)i5 = (2, Ve,n)j = — (Aig (2, ex))
(1.9) = —Aj (z,ex) — Ak O — Air(x, Ajpn)
= — (VyrA) (ei e5) — Ales, ) — (z,m) A% (es, ¢5),
where the last equality used the Codazzi equation A;; = Aj;jx. O

Proof of Proposition 1.2. Since L = L+ |[A? + 3 and £L = A — IV,
Lemma 1.4 gives

1 1 1 1
(1.10) LA = (A+|AP?) A+5 A=o VA= —H A’~Hessy+5 A=2 V,r A,
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On the other hand, Lemma 1.6 gives

1 1 1 1
(1.11) Hessy = §Hess<x7n> — Hessy = —Hessy — ivaA - §A - §A2 (x,m),
so we have L A — Hess, = A + ¢ A>. O

1.2. An integral bound when the mean curvature is positive. We will show
that the tensor 7 = A/H is almost parallel when H is positive and ¢ is small.
This generalizes an estimate from [CIM13] in the case where X is a shrinker
(i.e.,  =0) with H > 0.

Given f > 0, define a weighted divergence operator divy and drift Lapla-
cian Ly by

(1.12) div, (V) = che|I2/4 divs, (fe V),
(1.13) Lyu=divy(Vu) = Lu+ (Viog f, Vu).

Here u may also be a tensor; in this case the divergence traces only with V.
Note that £ = £;. We recall the quotient rule (see Lemma 4.3 in [CIM13]):

LEMMA 1.14. Given a tensor T and a function g with g # 0, then
LT—TL Lt—7L
(115) £g2z:g T 27_ g:g T 2T g
g g g
PROPOSITION 1.16. On the set where H > 0, we have

2 2
117) Ly & = Hesso 047 A (A0 +91AF)

H H H2
AP AP (Hessg + ¢ A% A) AP (A + ¢ AP
(118) £ 0 2o |G APy, B 19404 |, 1A (86 +914P),

Proof. The trace of Proposition 1.2 (H is minus the trace of A by conven-
tion) gives
(1.19) LH=H-A¢—¢|A]?,
where we also used that the trace of A% is |A|? since A is symmetric. Us-

ing the quotient rule (Lemma 1.14) and the equations for LH and LA (from
Proposition 1.2) gives

, A_HLA-ALH H (A+Hesss+¢ A%)— A (H—Ap—p | A|?)
H2 75 — =

(1.20) H H? H?
_ Hessy+¢ A? N A(Ap+9|AP)
H H? ’
giving the first claim. The second claim follows from the first since %—'22 =
<%, %) and
2
(1.21) %ﬁHz <§, %> = <£H2 %, %> + ‘V; U
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The next proposition gives exponentially decaying integral bounds for
V(A/H) when H is positive on a large ball. It will be important that these
bounds decay rapidly.

PROPOSITION 1.22. If BRNY is smooth with H > 0, then for s € (0, R),

AP o =2 _ 4 2
/ H<e § — sup |A]“Vol(BpN¥X)e
Br_sNX

vi
82 BrNX
‘2
2 { |¢|}
BrNE

H
Proof. Set T = A/H and u = ]7\2 |A|2/H?. Tt will be convenient within
this proof to use square brackets [-] to denote Gaussian integrals over Br N%,

e, [f] =[x feTlol/4

Let 9 be a function with support in Br. Using the divergence theorem,
the formula from Proposition 1.16 for Lpy2u, and the absorbing inequality
dab < a® + 4b%, we get

0= [divge (v° Vu) H*|=[ (¢ Lyzu + 2(V), Vu)) H?]

_ sz 72 +2¢2<<Hessq>+¢A2,A> Mt <A¢+¢|A|2>)

_(R- s>2

(1.23) AP |A|4
(Hessg, A) + —— Agf)

(A% A) +

H? H3
+ 4ap(Vh, T - w)} HQ}
> [(¢* V72 =47 [Vy|?) H?]

+2 [ (Hessy + ¢ A%, A)] +2 {W

A2 (A + ¢ |AP?)
H b

from which we obtain
[? [V7? H?] <4 |V |A]?] — 2 [¢? (Hessy + ¢ A%, A)]

(1.24) |AJ2

A
{¢2A¢ + ¢ cb’ * }

The proposition follows by choosing ¥ = 1 on Br_; and going to zero linearly
on 0Bg. O

We record the following corollary:
COROLLARY 1.25. If BR N ¥ is smooth with H > § > 0 and |A| < C1,
then there exists Ca = Ca(n,d, C1) so that for s € (0, R), we have

A 2 =12 _6)?2
(1.26) / Vil e < CQ “2Vol(Bpnx)e i
Br_sNX

H

|z |2
+02/ {[Hessy| + |6} e~
BrNY
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Remark 1.27. Corollary 1.25 essentially bounds the distance squared to
the space of cylinders by ||¢| ;1. This is sharp: it is not possible to get the
sharper bound where the powers are the same. This is a general fact when
there is a nonintegrable kernel. Namely, if we perturb in the direction of the
kernel, then ¢ vanishes quadratically in the distance.

The next corollary combines the Gaussian L? bound on V7 from Corol-
lary 1.25 with standard interpolation inequalities to get pointwise bounds on
V7 and V2.

COROLLARY 1.28. If BN is smooth with H >6>0, |A|+|V+14| <Gy,
and A\(X) < Xo, then there exists C3 = C3(n, Ao, 9, £, C1) so that for ]y|+ﬁ|y| <
R — 1, we have

|y

A 2 on | —dy, 02 Yo L=
(1.29) Vﬁ (y) + |V y) < CsR e den 3 +H¢HL1(BR) e s,

vl
where the exponent dy,, € (0,1) has limy_,oo dgn, = 1.

Proof. Set 7 = A/H, and note that ‘VZ—HT‘ is bounded by a constant
depending on 4, £, and C;. Define the ball BY and constant ¢, by

(1.30) B'=B_: (y) and 5y:/ s
+lyl BYNY

Applying Lemma B.1 on BY (see also remarks (1) and (2) after the lemma)
gives

Vrl(y) < " { B0y + 0y IV 7|l b < © (R 6, + 6,7}
V27l(y) < O { R 8y + 8, IV i b < C {RM 8, + 8,

where the powers are given by ay, =5 E +n and by,
To get the bound on d,, observe that

2M_n,aundC' C(n,d,£,Ch).

(1.31) infe" 2 >e 4 1
BY
so that Cauchy-Schwarz gives
n  —lul? “lwl® 9
(1.32) (I1+|y))" e = y <Ce i V|
BYNY
||
<c V7[> e” 3 < Gy,
BYNY.

where the last inequality is Corollary 1.25, Co = Cy(n, Ao, 6, C1), and 7 is
(R— 1)2

|z|2
+ {|Hessgy| + |p|} e 2.
Br_1/2N%

To bound the Hessian term, first choose balls B = B_ 1 (z;) so that

14z

(1.33) = R'e”
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® Bp_1/2 N X is contained in the union of the half-balls %Bi.
e BEach point is in at most ¢ = c( ) of the balls.

To simplify notation, set r; = Applying Lemma B.1 on B’ gives

1+\z |

(1.34) sup [Hessol < € {72 [ i+ ([ 101) "},
i B

where ¢g,, € (0,1) goes to one as £ — co. Note that the Gaussian weight has
bounded oscillation on B?. (This is why the radius r; was chosen.) It follows
that

|=2 Con 212
Hessyle™ 1 < C { / + (/ ) } e
Jyo s sl S [ el () e

(1.35) <CR ol +C X ([ 161) " e

< C R (6]l (3 + C 101505,

IS

where the last inequality uses the Holder inequality for sums and the bound
for F(X). Since ||¢]|1 is bounded (we are interested in the case where it is
much less than one), the lower power is dominant and we conclude that

(1.36) < Cyy<CR"e + C R? |85

LY(Br)"
Arguing similarly and using this in the bounds for V1 gives

y2—(rR-1)2

2 ln ag,n
(131 Vel <CR s < CRE [ LM g 8 1

2—(r-1)2 |y

b@,n
(139) [V se R s < 0 R (T e ol b

O

2. Distance to cylinders and the first Lojasiewicz inequality

In this section, we will prove the first Lojasiewicz inequality that bounds
the distance squared to the space Cj, of all rotations of the cylinder S’f/ﬁ xRk
by a power close to one of the gradient of the F' functional. This will follow

A

from the bounds on the tensor 7 = 77 in the previous section together with

the following proposition:
ProrOSITION 2.1. Given n, § > 0 and C4, there exist g > 0, &1 > 0 and
C so that if ¥ C R""! is a hypersurface (possibly with boundary) that satisfies

(1) H>06>0 and |A|+|VA| < Cy on BRN3,
(2) By 5, N Y is eo C2-close to a cylinder in Cy, for some k > 1,
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then, for any r € (5v/2n, R) with

(22) r? sup (|9 +|Vg|) +r® sup (|V7| + [V?7]) < e,
Bsx/% Br

we have that B, /z—; N X is the graph over (a subset of) a cylinder in Ci, of u

with

(2.3) lu| + |[Vul| < C {r2 sup (|¢| + |[Vo|) +7° sup (]V7'| + |V27)} .
By B,

This proposition shows that ¥ must be close to a cylinder as long as H
is positive, ¢ is small, 7 is almost parallel, and ¥ is close to a cylinder on a
fixed small ball. Together with Tom Ilmanen, we proved a similar result in
Proposition 2.2 in [CIM13] in the special case where ¥ is a shrinker (i.e., when
¢ =0), and this proposition is inspired by that one.

We will prove the proposition over the next two subsections and then turn
to the proof of the first Lojasiewicz inequality.

2.1. Ingredients in the proof of Proposition 2.1. This subsection contains
the ingredients for the proof of Proposition 2.1. The first is the following result
from [CIM13] (see Corollary 4.22 in [CIM13]):

COROLLARY 2.4 ([CIM13]). If ¥ C R™! is a hypersurface (possibly with
boundary) with
e 0<d<Honyx;
e the tensor T = A/H satisfies |V7|+ |V?7| <e < 1;
e at the point p € X, 7, has at least two distinct eigenvalues k1 # Ka,

then

| < 2¢ < 1 N 1 )
R1R2| &S <+ .
02 \|k1 — k2| |k — ko

We will use two additional lemmas in the proof of Proposition 2.1. The
next lemma shows that ¢ controls the distance to the shrinking sphere in a
neighborhood of the sphere. This, of course, implies that the shrinking sphere
is isolated in the space of shrinkers. The proof uses that the linearized operator
is invertible.

LEMMA 2.5. Given k and o > 0, there exist ¢g > 0 and C so that if
Yo C RFL is the graph of a C* function u over S]f/ﬂ with ||u||c2 < €o, then

(2.6) [ullg2e < Cllglloa -

Proof. On the sphere, the linearized operator L for ¢ is given by L = A+1
since |A|? = 1/2 and the drift term vanishes. The eigenvalues for A on the
sphere of radius one occur in clusters with the m-th cluster at m? + (k — 1) m.
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Scaling this to the sphere of radius v/2k, the m-th cluster is now at

m?2+(k—1)m
2k

(2.7)
and, thus, the first three eigenvalues for L = A 4+ 1 occur at —1, —%,
%. In particular, 0 is not an eigenvalue and, thus, L is invertible and, by the
Schauder estimates, we have

and

(2.8) [ullg2e < O Lullce,

where C depends only on k£ and «. The lemma follows from this and the fact
that the linearization of ¢ is L and the error is quadratic (cf. Lemma 4.10
below) so we have

(2.9) I = Lullca < Cllullc [[ullc2e,

where C' again depends only on k and a. Combining the last two inequalities
gives

(2.10)  ullc2e < Clldllca + Cllullc2 ullc2a < Clldllce + Ceollufc2e,

which gives the claim after choosing €9 > 0 so that C' gy = % O

The next lemma shows if ¥ has an approximate translation and is almost
a shrinker, then slicing ¥ orthogonally to the translation gives a submanifold
Yo of one dimension less that is also almost a shrinker. We will use this to
repeatedly slice an almost cylinder to get down to the almost sphere. We let

$o be the ¢ of £y (so ¥g C R” is a shrinker when ¢g = 0).

LEMMA 2.11. Let ¥ C R*¥* be a hypersurface, ¥g = {xp41 = 0} N X,
and x € X a point where X intersects the hyperplane {xi11 = 0} transversely.
If we have

. ‘vTka] >1-—c>1/2
. ‘VT VTka’ <e

o JA(, VT app0)| +

(VA) (- VTap)| <,

then at x,
(2.12) |0 — do| + [V, (¢ — ¢o)| <24e {1+ 8] +[Vel}.
Proof. Set v =VTz, 1 = 8]?“. Let e1,...,er_1 be an orthonormal frame

for Xg, so that

v
(213) €1y Ch_1,y T
[0]
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gives an orthonormal frame for ¥. If n € R**! and ny € R¥ denote the
normals to ¥ and ¥y, respectively, then

(2.14) n = |v|ng + (Ok+1,0) Opy1.

(To see this, check that this unit vector is orthogonal to the frame (2.13).)
Since (Ve €5, 0k+1) = 0, the expression for n gives (V¢ e;,n) = |[v| (Ve,ej, ng).
It follows that

Alej,ej) = (Ve,e5,n) = |v] (Ve e5,n0) = |[v| Ag(ei, €5).

Therefore, since H is minus the trace of A and Hy is minus the trace of A,
we have

H—Hy=— {A(ei, e)+A (“ |Z‘>}+Ao(ei, &)

|v]”
(2.15) = {A(ei, e;) + A (,5’