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Uniqueness of blowups and
 Lojasiewicz inequalities

By Tobias Holck Colding and William P. Minicozzi II

We dedicate this article to Leon Simon in recognition

of his fundamental contributions to analysis and geometry.

Abstract

Once one knows that singularities occur, one naturally wonders what the

singularities are like. For minimal varieties the first answer, already known

to Federer-Fleming in 1959, is that they weakly resemble cones. For mean

curvature flow, by the combined work of Huisken, Ilmanen, and White,

singularities weakly resemble shrinkers. Unfortunately, the simple proofs

leave open the possibility that a minimal variety or a mean curvature flow

looked at under a microscope will resemble one blowup, but under higher

magnification, it might (as far as anyone knows) resemble a completely

different blowup. Whether this ever happens is one of the most fundamental

questions about singularities. It is this long standing open question that

we settle here for mean curvature flow at all generic singularities and for

mean convex mean curvature flow at all singularities.

0. Introduction

We show that at each generic singularity of a mean curvature flow the

blowup is unique; that is, it does not depend on the sequence of rescalings. This

settles a major open problem that was open even in the case of mean convex

hypersurfaces where it was known that all singularities are generic. Moreover,

it is the first general uniqueness theorem for blowups to a Geometric PDE at

a noncompact singularity.

Uniqueness of blowups is one of the most fundamental questions that

one can ask about singularities and implies regularity of the singular set; see

[CM14c], [CM15].
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To prove our uniqueness result, we prove two completely new infinite di-

mensional  Lojasiewicz type inequalities. Infinite dimensional  Lojasiewicz in-

equalities were pioneered thirty years ago by Leon Simon. However, unlike

all other infinite dimensional  Lojasiewicz inequalities we know of, ours do not

follow from a reduction to the classical finite-dimensional  Lojasiewicz inequal-

ities from the 1960s from algebraic geometry, rather we prove our inequalities

directly and do not rely on  Lojasiewicz’s arguments or results.

It is well known that to deal with noncompact singularities requires en-

tirely new ideas and techniques as one cannot argue as in Simon’s work, and

all the later work that uses his ideas. Partly because of this, we expect that

the techniques and ideas developed here have applications to other flows. Our

results hold in all dimensions.

This paper focuses on mean curvature flow (or MCF) of hypersurfaces.

This is a nonlinear parabolic evolution equation where a hypersurface evolves

over time by locally moving in the direction of steepest descent for the volume

element. It has been used and studied in material science for almost a century1

to model things like cell, grain, and bubble growth.2 Unlike some of the other

earlier papers in material science both von Neumann’s 1952 paper and Mullins

1956 paper had explicit equations. In his paper von Neumann discussed soap

foams whose interface tend to have constant mean curvature whereas Mullins

is describing coarsening in metals, in which interfaces are not generally of

constant mean curvature. Partly as a consequence, Mullins may have been

the first to write down the MCF equation in general. Mullins also found some

of the basic self-similar solutions like the translating solution now known as

the Grim Reaper. To be precise, suppose that Mt ⊂ Rn+1 is a one-parameter

family of smooth hypersurfaces; then we say that Mt flows by the MCF if

(0.1) xt = −H n,

1See, e.g., the early work in material science from the 1920s, 1940s, and 1950s of T. Sutoki,

[Sut28], D. Harker and E. Parker, [HP45], J. Burke, [Bur49], P.A. Beck, [Bec52], J. von

Neumann, [vN52], and W.W. Mullins, [Mul56].
2For instance, annealing, in metallurgy and materials science, is a heat treatment that

alters a material to increase its ductility and to make it more workable. It involves heating

material above its critical temperature, maintaining a suitable temperature, and then cooling.

Annealing can induce ductility, soften material, relieve internal stresses, refine the structure

by making it homogeneous, and improve cold working properties. The three stages of the

annealing process that proceed as the temperature of the material is increased are: recovery,

recrystallization, and grain growth. Grain growth is the increase in size of grains (crystallites)

in a material at high temperature. This occurs when recovery and recrystallisation are

complete and further reduction in the internal energy can only be achieved by reducing the

total area of grain boundary (by mean curvature flow).
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where H and n are the mean curvature and unit normal, respectively, of Mt

at the point x.

To understand singularities past the first singular time, we need weak

solutions of MCF. The weak solutions that we will use are the Brakke flows

considered by White in [Whi05].3 By Theorem 7.4 in [Whi05], this includes

flows starting from any closed embedded hypersurface.

0.1. Tangent flows. By definition, a tangent flow is the limit of a sequence

of rescalings at a singularity, where the convergence is on compact subsets.4

For instance, a tangent flow to Mt at the origin in space-time is the limit of a

sequence of rescaled flows 1
δi
Mδ2

i t
where δi → 0. A priori, different sequences

δi could give different tangent flows, and the question of the uniqueness of

the blowup — independent of the sequence — is a major question in many

geometric problems. By a monotonicity formula of Huisken, [Hui90], and an

argument of Ilmanen and White, [Ilm95], [Whi05], tangent flows are shrinkers,

i.e., self-similar solutions of MCF that evolve by rescaling. The only generic

shrinkers are round cylinders by [CM12].

We will say that a singular point is cylindrical if at least one tangent flow

is a multiplicity one cylinder Sk×Rn−k. Our main application of our analytical

inequalities is the following theorem that shows that tangent flows at generic

singularities are unique:

Theorem 0.2. Let Mt be an MCF in Rn+1. At each cylindrical singular

point the tangent flow is unique. That is, any other tangent flow is also a

cylinder with the same Rk factor that points in the same direction.

This theorem solves a major open problem; see, e.g., page 534 of [Whi02].

Even in the case of the evolution of mean convex hypersurfaces where all

singularities are cylindrical, uniqueness of the axis was unknown; see [HS99a],

[HS99b], [Whi03], [SS93], [And12], [Bre], and [HK13].5

In recent joint work with Tom Ilmanen, [CIM13], we showed that if one

tangent flow at a singular point of an MCF is a multiplicity one cylinder, then

all are. However, [CIM13] left open the possibility that the direction of the

axis (the Rk factor) depended on the sequence of rescalings. Our proof of

Theorem 0.2 and, in particular, our first  Lojasiewicz type inequality, has its

3That is, Brakke flows in the class S(λ0, n, n+ 1) defined in Section 7 of [Whi05] for some

λ0 > 1.
4This is analogous to a tangent cone at a singularity of a minimal variety; cf. [FF60].
5Our results not only give uniqueness of tangent flows but also a definite rate where the

rescaled MCF converges to the relevant cylinder. The distance to the cylinder is decaying to

zero at a definite rate over balls whose radii are increasing at a definite rate to infinity.
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roots in some ideas and inequalities from [CIM13] and in fact implicitly use

that cylinders are isolated among shrinkers by [CIM13].

Uniqueness is a key question for the regularity of Geometric PDE’s. Two

of the most prominent early works on uniqueness of tangent cones are Leon

Simon’s hugely influential paper [Sim83] from 1983, where he proves uniqueness

for tangent cones of minimal varieties with smooth cross section. The other is

Allard-Almgren’s 1981 paper [AA81], where uniqueness of tangent cones with

smooth cross section is proven under an additional integrability assumption on

the cross section; see also [Sim08], [Har97], [CM14b] for additional references.

Our results are the first general uniqueness theorems for tangent flows to a

geometric flow at a noncompact singularity. (In fact, not only are the singulari-

ties that we deal with here noncompact but they are also nonintegrable; see Sec-

tion 3.) Some special cases of uniqueness of tangent flows for MCF were previ-

ously analyzed assuming either some sort of convexity or that the hypersurface

is a surface of rotation; see [Hui90], [Hui93], [HS99a], [HS99b], [Whi03], [SS93],

[AAG95], Section 3.2 in the book [GGS10], and [GK13], [GKS11], [GS09]. In

contrast, uniqueness for blowups at compact singularities is better understood;

cf. [AA81], [Sim83], [Hui84], [Sch14], [Ses08], [Tay73], and [Whi98].

In fact, using the results of this paper we showed in [CM14c] that, for

a MCF of closed embedded hypersurfaces in Rn+1 with only cylindrical sin-

gularities, the space-time singular set is contained in finitely many compact

embedded (n − 1)-dimensional Lipschitz submanifolds together with a set of

dimension at most n− 2. In particular, if the initial hypersurface is mean con-

vex, then all singularities are generic and the results apply. In fact, in [CM14c]

we showed that the entire stratification of the space-time singular set is rec-

tifiable in a very strong sense; cf., e.g., [Sim95a], [Sim96], [Sim95b], [BCL86],

and [HL89].

One of the significant difficulties that we overcome in this paper, setting it

apart from all other work we know of, is that our singularities are noncompact.

This causes major analytical difficulties, and to address them requires entirely

new techniques and ideas. This is not so much because of the subtleties of anal-

ysis on noncompact domains, though this is an issue, but crucially because the

evolving hypersurface cannot be written as an entire graph over the singularity

no matter how close we get to the singularity. Rather, the geometry of the

situation dictates that only part of the evolving hypersurface can be written

as a graph over a compact piece of the singularity.6

6In the end, what comes out of our analysis is that the domain the evolving hypersurface

is a graph over is expanding in time and at a definite rate, but this is not all all clear from

the outset; see also footnote 5.
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0.2.  Lojasiewicz inequalities. The main technical tools that we prove are

two  Lojasiewicz–type inequalities.

In real algebraic geometry, the  Lojasiewicz inequality, [ Loj65], named after

Stanislaw  Lojasiewicz, gives an upper bound for the distance from a point to

the nearest zero of a given real analytic function. Specifically, let f : U → R

be a real-analytic function on an open set U in Rn, and let Z be the zero locus

of f . Assume that Z is not empty. Then for any compact set K in U , there

exist α ≥ 2 and a positive constant C such that, for all x ∈ K,

inf
z∈Z
|x− z|α ≤ C |f(x)|.(0.3)

Here α can be large.

 Lojasiewicz, [ Loj65], also proved the following inequality:7 With the same

assumptions on f , for every p ∈ U , there is a possibly smaller neighborhood

W of p and constants β ∈ (0, 1) and C > 0 such that for all x ∈W ,

|f(x)− f(p)|β ≤ C |∇xf |.(0.4)

Note that this inequality is trivial unless p is a critical point for f .

An immediate consequence of (0.4) is that every critical point of f has a

neighborhood where every other critical point has the same value.8

0.3.  Lojasiewicz inequalities for noncompact hypersurfaces and MCF. The

infinite dimensional  Lojasiewicz-type inequalities that we prove are for the F

functional on the space of hypersurfaces.

The F -functional is given by integrating the Gaussian over a hypersurface

Σ ⊂ Rn+1. This is also often referred to as the Gaussian surface area and is

defined by

F (Σ) = (4π)−n/2
∫

Σ
e−
|x|2

4 dµ.(0.5)

The entropy λ(Σ) is the supremum of the Gaussian surface areas over all centers

and scales.

It follows from the first variation formula that the gradient of F is

∇ΣF (ψ) =

∫
Σ

Ç
H − 〈x,n〉

2

å
ψ e−

|x|2
4 .(0.6)

Thus, the critical points of F are shrinkers, i.e., hypersurfaces with H = 〈x,n〉
2 .

The most important shrinkers are the generalized cylinders C; these are the

generic ones by [CM12]. The space C is the union of Ck for k ≥ 1, where Ck is

7  Lojasiewicz called this inequality the gradient inequality.
8This consequence of (0.4) for the F functional near a cylinder is implied by the rigidity

result of [CIM13].
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the space of cylinders Sk×Rn−k, where the Sk is centered at 0 and has radius√
2k and we allow all possible rotations by SO(n + 1).

A family of hypersurfaces Σs evolves by the negative gradient flow for the

F -functional if it satisfies the equation

(∂sx)⊥ = −H n + x⊥/2.(0.7)

This flow is called the rescaled MCF since Σs is obtained from an MCF Mt

by setting Σs = 1√
−tMt, s = − log(−t), t < 0. By (0.6), critical points for

the F -functional or, equivalently, stationary points for the rescaled MCF, are

the shrinkers for the MCF that become extinct at the origin in space-time. A

rescaled MCF has a unique asymptotic limit if and only if the corresponding

MCF has a unique tangent flow at that singularity.

We will prove versions of the two  Lojasiewicz inequalities for the F func-

tional on a general hypersurface Σ. Roughly speaking, we will show that

dist(Σ, C)2 ≤ C |∇ΣF | ,(0.8)

(F (Σ)− F (C))
2
3 ≤ C |∇ΣF | .(0.9)

Equation (0.8) will correspond to  Lojasiewicz’s first inequality whereas (0.9)

will correspond to his second inequality. The precise statements of these in-

equalities will be much more complicated than this, but they will be of the

same flavor.

0.4. First  Lojasiewicz with α = 2 implies the second with β = 2
3 . In this

subsection we will explain how the second  Lojasiewicz inequality for a function

f in a neighborhood of an isolated critical point follows from the first when

the first holds for ∇f and with α = 2. (We will later extend this argument to

infinite dimensions.)

Suppose that f : Rn → R is smooth function with f(0)=0 and ∇f(0)=0;

without loss of generality we may assume that at 0 the Hessian is in diagonal

form, and we will write the coordinates as x = (y, z) where y are the coor-

dinates where the Hessian is nondegenerate. By Taylor’s formula in a small

neighborhood of 0, we have that

f(x) =
ai
2
y2
i +O(|x|3),(0.10)

fyi(x) = ai yi +O(|x|2),(0.11)

fzi(x) = O(|x|2).(0.12)

It follows from this that the second of the two  Lojasiewicz inequalities holds

for f and β = 2
3 provided that |z|2 ≤ ε |y| for some sufficiently small ε > 0.

Namely, if |z|2 ≤ ε |y|, then

C |y| ≤ |∇xf | and |f(x)| ≤ C−1 |y|
3
2(0.13)
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for some positive constant C and, hence,

|f(x)|
2
3 ≤ C |∇xf |.(0.14)

Therefore, we only need to prove the second  Lojasiewicz inequality for f in the

region |z|2 ≥ ε |y|. We will do this using the first  Lojasiewicz inequality for

∇f . Since 0 is an isolated critical point for f , the first  Lojasiewicz inequality

for ∇f gives that

|∇xf | ≥ C |x|2.(0.15)

By assumption on the region and the Taylor expansion for f , we get that in

this region

|f(x)| ≤ C |y|2 + C |z|3 ≤ C |z|3 ≤ C |x|3.(0.16)

Combining these two inequalities gives

|f(x)|
2
3 ≤ C |x|2 ≤ |∇xf |.(0.17)

This proves the second  Lojasiewicz inequality for f with β = 2
3 .

In Section 4, we extend the above argument to general Banach spaces.

 Lojasiewicz used his second inequality to show the “ Lojasiewicz theorem”:

If f : Rn → R is an analytic function, x = x(t) : [0,∞)→ Rn is a curve with

x′(t) = −∇f and x(t) has a limit point x∞, then the length of the curve is

finite and limt→∞ x(t) = x∞. Moreover, x∞ is a critical point for f .

Even in R2, it is easy to construct smooth functions where the  Lojasiewicz

theorem does not hold, but instead there are negative gradient flow lines with

multiple limits.

We will discuss the  Lojasiewicz theorem in a slightly more general setting

at the end of the next subsection after briefly discussing infinite dimensional

 Lojasiewicz inequalities.

0.5. Infinite dimensional  Lojasiewicz inequalities and applications. Infi-

nite dimensional versions of  Lojasiewicz inequalities were proven in a celebrated

work of Leon Simon, [Sim83], for the area and related functionals and used,

in particular, to prove a fundamental result about uniqueness of tangent cones

with smooth cross section of minimal surfaces. Simon’s proof of the  Lojasiewicz

inequality is done by reducing the infinite dimensional version to the classical

 Lojasiewicz inequality by a Lyapunov-Schmidt reduction argument. Infinite

dimensional  Lojasiewicz inequalities proven using Lyapunov-Schmidt reduc-

tion, as in the work of Simon, have had a profound impact on various areas

of analysis and geometry and are usually referred to as  Lojasiewicz-Simon

inequalities.
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As already mentioned, we will also prove two infinite dimensional  Lojasiewicz

inequalities and use them to prove uniqueness of blowups for MCF (or, equiv-

alently, convergence of the rescaled flow). However, unlike all other infinite

dimensional  Lojasiewicz inequalities we know of, ours do not follow from a

reduction to the classical  Lojasiewicz inequalities; rather we prove our inequal-

ities directly and do not rely on  Lojasiewicz’s arguments or results. In fact, we

prove our infinite dimensional analog of the first  Lojasiewicz inequality directly

and use this together with an infinite dimensional analog of the argument in

the previous subsection to show our second  Lojasiewicz inequality. The reason

why we cannot argue as in Simon’s work, and all the later work that make use

his ideas, comes from that our singularities are noncompact. In particular, even

near the singularities, the evolving hypersurface cannot be written as an entire

graph over the singularity. Rather, only part of the evolving hypersurface can

be written as a graph over a compact piece of the singularity.

Next we will explain how the second  Lojasiewicz inequality is typically

used to show uniqueness. Before we do that, observe first that in the second

inequality we always work in a small neighborhood of p so that, in particu-

lar, |f(x) − f(p)| ≤ 1 and hence smaller powers on the left-hand side of the

inequality imply the inequality for higher powers. As it turns out, we will see

that any positive power strictly less than 1 would do for uniqueness.

Suppose now that X is a Banach space and f : X → R is a Fréchet

differentiable function. Let x = x(t) be a curve on X parametrized on [0,∞)

whose velocity x′ = −∇f . We would like to show that if the second inequality

of  Lojasiewicz holds for f with a power 1 > β > 1/2, then the  Lojasiewicz

theorem mentioned above holds. That is, if x(t) has a limit point x∞, then the

length of the curve is finite and limt→∞ x(t) = x∞. Since x∞ is a limit point of

x(t) and f is nonincreasing along the curve, x∞ must be a critical point for f .

To see that x(t) converges to x∞, assume that f(x∞) = 0 and note that if

we set f(t) = f(x(t)), then f ′ = −|∇f |2. Moreover, by the second  Lojasiewicz

inequality, we get that f ′ ≤ −f2β if x(t) is sufficiently close to x∞. (Assume for

simplicity below that x(t) stays in a small neighborhood x∞ for t sufficiently

large so that this inequality holds; the general case follows with trivial changes.)

Then this inequality can be rewritten as (f1−2β)′ ≥ (2β−1), which integrates to

f(t) ≤ C t
−1

2β−1 .(0.18)

We need to show that (0.18) implies that
∫∞

0 |∇f | ds is finite. This shows

that x(t) converges to x∞ as t→∞. To see that
∫∞

0 |∇f | ds is finite, observe

by the Cauchy-Schwarz inequality that∫ ∞
1
|∇f | ds =

∫ ∞
1

√
−f ′ ds ≤

Å
−
∫ ∞

1
f ′ s1+ε ds

ã 1
2
Å∫ ∞

1
s−1−ε ds

ã 1
2

.(0.19)
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It suffices therefore to show that

−
∫ T

1
f ′ s1+ε ds(0.20)

is uniformly bounded. Integrating by parts gives∫ T

1
f ′ s1+ε ds = |f s1+ε|T1 − (1 + ε)

∫ T

1
f sε ds.(0.21)

If we choose ε > 0 sufficiently small depending on β, then we see that this is

bounded independent of T and hence
∫∞

0 |∇f | ds is finite.

We will use an extension of this argument where the assumption f2β(t) ≤
−f ′(t) is replaced by the assumption that f2β(t) ≤ f(t − 1) − f(t + 1); see

Lemma 6.9. This assumption is exactly what comes out of our analog for the

rescaled MCF of the gradient  Lojasiewicz inequality, i.e., out of Theorem 0.26.

0.6. The two  Lojasiewicz inequalities. We now state the two  Lojasiewicz-

type inequalities for the F functional on the space of hypersurfaces.

Suppose that Σ ⊂ Rn+1 is a hypersurface, and fix some small ε0 > 0.

(This will be chosen small enough to satisfy Lemmas 2.5 and 4.3.) Given an

integer ` and constant C`, we let r`(Σ) be the maximal radius so that

• Br`(Σ)∩Σ is the graph over a cylinder in Ck of a function u with ‖u‖C2,α ≤ ε0

and |∇`A| ≤ C`.
The parameters ` and C` will be left free until the proof of the main theorem

(Theorem 0.2) and will then be chosen large.

In the next theorem, we will use a Gaussian L2 distance dC(R) to the space

Ck in the ball of radius R. To define this, given Σk ∈ Ck, let wΣk : Rn+1 → R

denote the distance to the axis of Σk (i.e., to the space of translations that

leave Σk invariant). Then we define

d2
C(R) = inf

Σk∈Ck
‖wΣk −

√
2k‖2L2(BR) ≡ inf

Σk∈Ck

∫
BR∩Σ

(wΣk −
√

2k)2 e−
|x|2

4 .

(0.22)

The Gaussian Lp norm on the ball BR is ‖u‖pLp(BR) =
∫
BR
|u|p e−

|x|2
4 .

Given a general hypersurface Σ, it is also convenient to define the function

φ by

φ =
〈x,n〉

2
−H,(0.23)

so that φ is minus the gradient of the functional F .

The main tools that we develop here are the following two analogs for non-

compact hypersurfaces of the well-known  Lojasiewicz’s inequalities for analytic

functions on Rn:
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Theorem 0.24 ( Lojasiewicz inequality for noncompact hypersurfaces).

If Σ ⊂ Rn+1 is a hypersurface with λ(Σ) ≤ λ0 and R ∈ [1, r`(Σ)− 1], then

d2
C(R) ≤ C Rρ

®
‖φ‖b`,nL1(BR) + e−

b`,n R
2

4

´
,(0.25)

where C = C(n, `, C`, λ0), ρ = ρ(n) and b`,n ∈ (0, 1) satisfies lim`→∞ b`,n = 1.

The theorem bounds the L2 distance to Ck by a power of ‖φ‖L1 , with an

error term that comes from a cutoff argument since Σ is noncompact and is not

globally a graph of the cylinder.9 This theorem is essentially sharp. Namely,

the estimate (0.25) does not hold for any exponent b`,n larger than one, but

Theorem 0.24 lets us take b`,n arbitrarily close to one.

We will also see that the above inequality implies the following gradient

type  Lojasiewicz inequality. This inequality bounds the difference of the F

functional near a critical point by two terms. The first is essentially a power

of ∇F , while the second (exponentially decaying) term comes from that Σ is

not a graph over the entire cylinder.

Theorem 0.26. (A gradient  Lojasiewicz inequality for noncompact hy-

persurfaces ). If Σ ⊂ Rn+1 is a hypersurface with λ(Σ) ≤ λ0, β ∈ [0, 1), and

R ∈ [1, r`(Σ)− 1], then

|F (Σ)− F (Ck)| ≤ C Rρ
{
‖φ‖

c`,n
3+β
2+2β

L2(BR) + e
−
c`,n (3+β)R2

8(1+β) + e−
(3+β)(R−1)2

16

}
,

(0.27)

where C = C(n, `, C`, λ0), ρ = ρ(n) and c`,n ∈ (0, 1) satisfies lim`→∞ c`,n = 1.

When we apply the theorem, the parameters β and ` will be chosen to

make the exponent greater than one on the ∇F term, essentially giving that

|F (Σ)− F (Ck)| is bounded by a power greater than one of |∇F |. A separate

argument will be needed to handle the exponentially decaying error terms.

We will show that when Σt are flowing by the rescaled MCF, then both

terms on the right-hand side of (0.27) are bounded by a power greater than

one of ‖φ‖L2 . (The corresponding statement holds for Theorem 0.24.) Thus,

we will essentially get the inequalities

d2
C ≤ C |∇ΣtF | ,(0.28)

(F (Σt)− F (C))
2
3 ≤ C |∇ΣtF | .(0.29)

9This is a  Lojasiewicz inequality for the gradient of the F functional. (φ is the gradient

of F .) This follows since, by [CIM13], cylinders are isolated critical points for F and, thus,

dC locally measures the distance to the nearest critical point.
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These two inequalities can be thought of as analogs for the rescaled MCF of

 Lojasiewicz inequalities from real algebraic geometry; cf. (0.8) and (0.9).

Throughout the paper C will denote a constant that can change from line

to line. Given a hypersurface Σ ⊂ Rn+1, n will be the outward pointing unit

normal and the second fundamental form A is given by A(V,W ) = 〈∇VW,n〉
for tangent vectors V and W . The mean curvature H is then defined by

H = −∑n
i=1A(ei, ei) where {e1, . . . , en} is an orthonormal frame for Σ. With

this convention, H is n
R on the sphere of radius R.

Outline of the paper. The first two sections prove the first  Lojasiewicz

inequality that bounds the distance to the space of cylinders by a power ∇F .

Section 1 proves cylindrical estimates for a general hypersurface, showing that

the tensor A
H is almost parallel if H is positive on a large set and∇F is small. In

Section 2, we prove the first  Lojasiewicz inequality by bounding the distance

to a cylinder in terms of the covariant derivatives of A
H and then using the

estimate in the previous section.

The next two sections show that our first  Lojasiewicz inequality implies a

gradient  Lojasiewicz inequality for F . The idea is essentially the one given in

Section 0.4 for a similar reduction for functions on Rn, but there are analytic

difficulties to deal with coming from the infinite dimensions and from the

noncompactness of the cylinder. Section 3 proves the analytic facts on the

cylinder that we will need, while Section 4 uses this to extend the argument

from Section 0.4.

Section 5 deals with one of the major issues of the paper: the cylinders

are not compact so the “nearby” surfaces cannot be written as graphs over

the entire cylinder. The two  Lojasiewicz inequalities assume a lower bound for

the scale where the hypersurface is a graph over a cylinder. (We call this the

cylindrical scale.) Section 5 gets a lower bound for the cylindrical scale for a

rescaled MCF in terms of the space-time integral of ∇F .

Section 6 combines the previous results to prove the main uniqueness

theorem.

There are two technical appendices. The first computes geometric quanti-

ties on a normal exponential graph and computes ∇F on a graph. The second

proves interpolation inequalities that will allow us to control pointwise bounds

by integral bounds and bounds on higher derivatives.

See [CM14a] for a survey on  Lojasiewicz inequalities and their applica-

tions, and see [CMP15] for a general survey on MCF.

1. Cylindrical estimates for a general hypersurface

In this section, we will prove estimates for a general hypersurface Σ ⊂
Rn+1. The main results are bounds for ∇A

H when the mean curvature H is

positive on a large set.
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1.1. A general Simons equation. In this subsection, we will show that the

second fundamental form A of Σ satisfies an elliptic differential equation similar

to Simons’ equation for minimal surfaces. The elliptic operator will be the L

operator from [CM12] given by

L ≡ L+ |A|2 +
1

2
≡ ∆− 1

2
∇xT + |A|2 +

1

2
.(1.1)

Namely, we will prove the following proposition:

Proposition 1.2. If φ = 1
2〈x,n〉 −H , then

LA = A+ Hessφ + φA2,(1.3)

where the tensor A2 is given in orthonormal frame by
(
A2
)
ij = Aik Akj .

Note that φ vanishes precisely when Σ is a shrinker and, in this case, we

recover the Simons’ equation for A for shrinkers from [CM12].

We will use the following general version of Simons’ equation for the second

fundamental form of a hypersurface:

Lemma 1.4. The second fundamental form A satisfiesÄ
∆ + |A|2

ä
A = −H A2 −HessH .(1.5)

See, e.g., [CM11] for a proof.

The next lemma computes the Hessian of the support function 〈x,n〉.

Lemma 1.6. The Hessian of 〈x,n〉 is given by

Hess〈x,n〉 = −∇xTA−A−A2 〈x,n〉.(1.7)

Proof. Fix a point p ∈ Σ. Let ei be a local orthonormal frame for Σ with

∇Teiej = 0 at p for every i and j. Thus, at p, we have

∇eiej = Aij n.(1.8)

Finally, using this and ∇ein = −Aik ek (which holds at all points), we compute

at p

Hess〈x,n〉(ei, ej) = 〈x,n〉ij = 〈x,∇ein〉j = − (Aik 〈x, ek〉)j
= −Aikj 〈x, ek〉 −Aik δjk −Aik〈x,Ajk n〉(1.9)

= − (∇xTA) (ei, ej)−A(ei, ej)− 〈x,n〉A2(ei, ej),

where the last equality used the Codazzi equation Aikj = Aijk. �

Proof of Proposition 1.2. Since L = L + |A|2 + 1
2 and L = ∆ − 1

2 ∇xT ,

Lemma 1.4 gives

(1.10) LA =
Ä
∆ + |A|2

ä
A+

1

2
A−1

2
∇xTA = −H A2−HessH+

1

2
A−1

2
∇xTA.
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On the other hand, Lemma 1.6 gives

(1.11) Hessφ =
1

2
Hess〈x,n〉 −HessH = −HessH −

1

2
∇xTA−

1

2
A− 1

2
A2 〈x,n〉,

so we have LA−Hessφ = A+ φA2. �

1.2. An integral bound when the mean curvature is positive. We will show

that the tensor τ = A/H is almost parallel when H is positive and φ is small.

This generalizes an estimate from [CIM13] in the case where Σ is a shrinker

(i.e., φ ≡ 0) with H > 0.

Given f > 0, define a weighted divergence operator divf and drift Lapla-

cian Lf by

divf (V ) =
1

f
e|x|

2/4 divΣ

Ä
f e−|x|

2/4 V
ä
,(1.12)

Lf u ≡ divf (∇u) = Lu+ 〈∇ log f,∇u〉.(1.13)

Here u may also be a tensor; in this case the divergence traces only with ∇.

Note that L = L1. We recall the quotient rule (see Lemma 4.3 in [CIM13]):

Lemma 1.14. Given a tensor τ and a function g with g 6= 0, then

Lg2

τ

g
=
gL τ − τ L g

g2
=
g L τ − τ L g

g2
.(1.15)

Proposition 1.16. On the set where H > 0, we have

LH2

A

H
=

Hessφ + φA2

H
+
A
(
∆φ+ φ |A|2

)
H2

,(1.17)

LH2

|A|2

H2
= 2

∣∣∣∣∇AH
∣∣∣∣2 + 2

〈Hessφ + φA2, A〉
H2

+ 2
|A|2

(
∆φ+ φ |A|2

)
H3

.(1.18)

Proof. The trace of Proposition 1.2 (H is minus the trace of A by conven-

tion) gives

LH = H −∆φ− φ |A|2,(1.19)

where we also used that the trace of A2 is |A|2 since A is symmetric. Us-

ing the quotient rule (Lemma 1.14) and the equations for LH and LA (from

Proposition 1.2) gives

LH2

A

H
=
H LA−ALH

H2
=
H
(
A+Hessφ+φA2

)
−A

(
H−∆φ−φ |A|2

)
H2

=
Hessφ+φA2

H
+
A
(
∆φ+φ |A|2

)
H2

,

(1.20)

giving the first claim. The second claim follows from the first since |A|
2

H2 =

〈AH ,
A
H 〉 and

�(1.21)
1

2
LH2

≠
A

H
,
A

H

∑
=

≠
LH2

A

H
,
A

H

∑
+

∣∣∣∣∇AH
∣∣∣∣2 .
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The next proposition gives exponentially decaying integral bounds for

∇(A/H) when H is positive on a large ball. It will be important that these

bounds decay rapidly.

Proposition 1.22. If BR ∩Σ is smooth with H > 0, then for s ∈ (0, R),∫
BR−s∩Σ

∣∣∣∣∇AH
∣∣∣∣2 H2 e−

|x|2
4 ≤ 4

s2
sup
BR∩Σ

|A|2 Vol(BR ∩ Σ) e−
(R−s)2

4

+ 2

∫
BR∩Σ

®∣∣∣∣∣〈Hessφ, A〉+
|A|2

H
∆φ

∣∣∣∣∣+
∣∣∣∣∣〈A2, A〉+

|A|4

H

∣∣∣∣∣ |φ|
´

e−
|x|2

4 .

(1.23)

Proof. Set τ = A/H and u = |τ |2 = |A|2/H2. It will be convenient within

this proof to use square brackets [·] to denote Gaussian integrals over BR ∩Σ,

i.e., [f ] =
∫
BR∩Σ f e−|x|

2/4.

Let ψ be a function with support in BR. Using the divergence theorem,

the formula from Proposition 1.16 for LH2u, and the absorbing inequality

4ab ≤ a2 + 4b2, we get

0 =
î
divH2

Ä
ψ2∇u

ä
H2 ]=[

Ä
ψ2 LH2u+ 2ψ〈∇ψ,∇u〉

ä
H2
ó

=

ñ®
2ψ2 |∇τ |2 + 2ψ2

Ç
〈Hessφ + φA2, A〉

H2
+
|A|2

(
∆φ+ φ |A|2

)
H3

å
+ 4ψ〈∇ψ, τ · ∇τ〉

´
H2

ô
≥
îÄ
ψ2 |∇τ |2 − 4 |τ |2 |∇ψ|2

ä
H2
ó

+ 2
î
ψ2〈Hessφ + φA2, A〉

ó
+ 2

ñ
ψ2 |A|2

(
∆φ+ φ |A|2

)
H

ô
,

from which we obtainî
ψ2 |∇τ |2 H2

ó
≤ 4

î
|∇ψ|2 |A|2

ó
− 2

î
ψ2 〈Hessφ + φA2, A〉

ó
− 2

ñ
ψ2 ∆φ

|A|2

H
+ ψ2 φ

|A|4

H

ô
.

(1.24)

The proposition follows by choosing ψ ≡ 1 on BR−s and going to zero linearly

on ∂BR. �

We record the following corollary:

Corollary 1.25. If BR ∩ Σ is smooth with H > δ > 0 and |A| ≤ C1,

then there exists C2 = C2(n, δ, C1) so that for s ∈ (0, R), we have∫
BR−s∩Σ

∣∣∣∣∇AH
∣∣∣∣2 e−

|x|2
4 ≤ C2

s2
Vol(BR ∩ Σ) e−

(R−s)2
4(1.26)

+ C2

∫
BR∩Σ

{|Hessφ|+ |φ|} e−
|x|2

4 .
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Remark 1.27. Corollary 1.25 essentially bounds the distance squared to

the space of cylinders by ‖φ‖L1 . This is sharp: it is not possible to get the

sharper bound where the powers are the same. This is a general fact when

there is a nonintegrable kernel. Namely, if we perturb in the direction of the

kernel, then φ vanishes quadratically in the distance.

The next corollary combines the Gaussian L2 bound on ∇τ from Corol-

lary 1.25 with standard interpolation inequalities to get pointwise bounds on

∇τ and ∇2τ .

Corollary 1.28. If BR∩Σ is smooth with H>δ>0, |A|+
∣∣∣∇`+1A

∣∣∣≤C1,

and λ(Σ) ≤ λ0, then there exists C3 = C3(n, λ0, δ, `, C1) so that for |y|+ 1
1+|y| <

R− 1, we have∣∣∣∣∇ A

H

∣∣∣∣ (y) +

∣∣∣∣∇2 A

H

∣∣∣∣ (y) ≤ C3R
2n

®
e−d`,n

(R−1)2

8 + ‖φ‖
d`,n

2

L1(BR)

´
e
|y|2

8 ,(1.29)

where the exponent d`,n ∈ (0, 1) has lim`→∞ d`,n = 1.

Proof. Set τ = A/H, and note that
∣∣∣∇`+1τ

∣∣∣ is bounded by a constant

depending on δ, `, and C1. Define the ball By and constant δy by

By = B 1
1+|y|

(y) and δy =

∫
By∩Σ

|∇τ | .(1.30)

Applying Lemma B.1 on By (see also remarks (1) and (2) after the lemma)

gives

|∇τ |(y) ≤ C ′
{
Rn δy + δ

a`,n
y ‖∇`+1τ‖1−a`,nL∞(By)

}
≤ C

¶
Rn δy + δ

a`,n
y

©
,

|∇2τ |(y) ≤ C ′
{
Rn+1 δy + δ

b`,n
y ‖∇`+1τ‖1−b`,nL∞(By)

}
≤ C

{
Rn+1 δy + δ

b`,n
y

}
,

where the powers are given by a`,n= 2`
2`+n and b`,n= 2`−2

2`+n , and C=C(n, δ, `, C1).

To get the bound on δy, observe that

inf
By

e−
|x|2

4 ≥ e−
|y|2

4
−1,(1.31)

so that Cauchy-Schwarz gives

(1 + |y|)n e
−|y|2

4
−1 δ2

y ≤ C e
−|y|2

4
−1
∫
By∩Σ

|∇τ |2(1.32)

≤ C
∫
By∩Σ

|∇τ |2 e−
|x|2

4 ≤ C2 γ,

where the last inequality is Corollary 1.25, C2 = C2(n, λ0, δ, C1), and γ is

γ = Rn e−
(R−1)2

4 +

∫
BR−1/2∩Σ

{|Hessφ|+ |φ|} e−
|x|2

4 .(1.33)

To bound the Hessian term, first choose balls Bi = B 1
1+|zi|

(zi) so that
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• BR−1/2 ∩ Σ is contained in the union of the half-balls 1
2 B

i.

• Each point is in at most c = c(n) of the balls.

To simplify notation, set ri = 1
1+|zi| . Applying Lemma B.1 on Bi gives

sup
1
2
Bi
|Hessφ| ≤ C

ß
r−n−2
i

∫
Bi
|φ|+

Å∫
Bi
|φ|
ãc`,n™

,(1.34)

where c`,n ∈ (0, 1) goes to one as ` → ∞. Note that the Gaussian weight has

bounded oscillation on Bi. (This is why the radius ri was chosen.) It follows

that∫
BR−1/2∩Σ

|Hessφ| e−
|x|2

4 ≤ C
∑ ß

r−2
i

∫
Bi
|φ|+ rni

Å∫
Bi
|φ|
ãc`,n™

e−
|zi|

2

4

≤ C R2 ‖φ‖L1(BR) + C
∑Å∫

Bi
|φ|
ãc`,n

e−
|zi|

2

4(1.35)

≤ C R2 ‖φ‖L1(BR) + C ‖φ‖c`,nL1(BR),

where the last inequality uses the Hölder inequality for sums and the bound

for F (Σ). Since ‖φ‖L1 is bounded (we are interested in the case where it is

much less than one), the lower power is dominant and we conclude that

e
−|y|2

4
−1 δ2

y ≤ C2 γ ≤ C Rn e−
(R−1)2

4 + C R2 ‖φ‖c`,nL1(BR).(1.36)

Arguing similarly and using this in the bounds for ∇τ gives

|∇ τ | (y)≤C Rn δa`,ny ≤ C R
3n
2

ß
e
|y|2−(R−1)2

8 +e
|y|2

8 ‖φ‖
c`,n

2

L1(BR)

™a`,n
,(1.37)

∣∣∣∇2τ
∣∣∣ (y)≤C Rn+1 δ

b`,n
y ≤ C R

3n+2
2

ß
e
|y|2−(R−1)2

8 +e
|y|2

8 ‖φ‖
c`,n

2

L1(BR)

™b`,n
.(1.38)

�

2. Distance to cylinders and the first  Lojasiewicz inequality

In this section, we will prove the first  Lojasiewicz inequality that bounds

the distance squared to the space Ck of all rotations of the cylinder Sk√
2k
×Rn−k

by a power close to one of the gradient of the F functional. This will follow

from the bounds on the tensor τ = A
H in the previous section together with

the following proposition:

Proposition 2.1. Given n, δ > 0 and C1, there exist ε0 > 0, ε1 > 0 and

C so that if Σ ⊂ Rn+1 is a hypersurface (possibly with boundary ) that satisfies

(1) H ≥ δ > 0 and |A|+ |∇A| ≤ C1 on BR ∩ Σ,

(2) B5
√

2n ∩ Σ is ε0 C
2-close to a cylinder in Ck for some k ≥ 1,
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then, for any r ∈ (5
√

2n,R) with

r2 sup
B5
√

2n

(|φ|+ |∇φ|) + r5 sup
Br

Ä
|∇τ |+ |∇2τ |

ä
≤ ε1,(2.2)

we have that B√r2−3k ∩Σ is the graph over (a subset of ) a cylinder in Ck of u

with

(2.3) |u|+ |∇u| ≤ C
{
r2 sup

B5
√

2n

(|φ|+ |∇φ|) + r5 sup
Br

Ä
|∇τ |+ |∇2τ |

ä}
.

This proposition shows that Σ must be close to a cylinder as long as H

is positive, φ is small, τ is almost parallel, and Σ is close to a cylinder on a

fixed small ball. Together with Tom Ilmanen, we proved a similar result in

Proposition 2.2 in [CIM13] in the special case where Σ is a shrinker (i.e., when

φ ≡ 0), and this proposition is inspired by that one.

We will prove the proposition over the next two subsections and then turn

to the proof of the first  Lojasiewicz inequality.

2.1. Ingredients in the proof of Proposition 2.1. This subsection contains

the ingredients for the proof of Proposition 2.1. The first is the following result

from [CIM13] (see Corollary 4.22 in [CIM13]):

Corollary 2.4 ([CIM13]). If Σ ⊂ Rn+1 is a hypersurface (possibly with

boundary) with

• 0 < δ ≤ H on Σ;

• the tensor τ ≡ A/H satisfies |∇τ |+
∣∣∇2τ

∣∣ ≤ ε ≤ 1;

• at the point p ∈ Σ, τp has at least two distinct eigenvalues κ1 6= κ2,

then

|κ1κ2| ≤
2 ε

δ2

Ç
1

|κ1 − κ2|
+

1

|κ1 − κ2|2

å
.

We will use two additional lemmas in the proof of Proposition 2.1. The

next lemma shows that φ controls the distance to the shrinking sphere in a

neighborhood of the sphere. This, of course, implies that the shrinking sphere

is isolated in the space of shrinkers. The proof uses that the linearized operator

is invertible.

Lemma 2.5. Given k and α > 0, there exist ε0 > 0 and C so that if

Σ0 ⊂ Rk+1 is the graph of a C2,α function u over Sk√
2k

with ‖u‖C2 ≤ ε0, then

‖u‖C2,α ≤ C ‖φ‖Cα .(2.6)

Proof. On the sphere, the linearized operator L for φ is given by L = ∆+1

since |A|2 = 1/2 and the drift term vanishes. The eigenvalues for ∆ on the

sphere of radius one occur in clusters with the m-th cluster at m2 + (k− 1)m.



238 TOBIAS HOLCK COLDING and WILLIAM P. MINICOZZI II

Scaling this to the sphere of radius
√

2k, the m-th cluster is now at

m2 + (k − 1)m

2k
(2.7)

and, thus, the first three eigenvalues for L = ∆ + 1 occur at −1, −1
2 , and

1
k . In particular, 0 is not an eigenvalue and, thus, L is invertible and, by the

Schauder estimates, we have

‖u‖C2,α ≤ C ‖Lu‖Cα ,(2.8)

where C depends only on k and α. The lemma follows from this and the fact

that the linearization of φ is L and the error is quadratic (cf. Lemma 4.10

below) so we have

‖φ− Lu‖Cα ≤ C ‖u‖C2 ‖u‖C2,α ,(2.9)

where C again depends only on k and α. Combining the last two inequalities

gives

‖u‖C2,α ≤ C ‖φ‖Cα + C ‖u‖C2 ‖u‖C2,α ≤ C ‖φ‖Cα + C ε0 ‖u‖C2,α ,(2.10)

which gives the claim after choosing ε0 > 0 so that C ε0 = 1
2 . �

The next lemma shows if Σ has an approximate translation and is almost

a shrinker, then slicing Σ orthogonally to the translation gives a submanifold

Σ0 of one dimension less that is also almost a shrinker. We will use this to

repeatedly slice an almost cylinder to get down to the almost sphere. We let

φ0 be the φ of Σ0 (so Σ0 ⊂ Rk is a shrinker when φ0 ≡ 0).

Lemma 2.11. Let Σ ⊂ Rk+1 be a hypersurface, Σ0 = {xk+1 = 0} ∩ Σ,

and x ∈ Σ0 a point where Σ intersects the hyperplane {xk+1 = 0} transversely.

If we have

•
∣∣∣∇Txk+1

∣∣∣ ≥ 1− ε > 1/2;

•
∣∣∣∇T ∇Txk+1

∣∣∣ ≤ ε;
•
∣∣∣A(·,∇Txk+1)

∣∣∣+ ∣∣∣(∇A) (·,∇Txk+1)
∣∣∣ ≤ ε,

then at x,

|φ− φ0|+ |∇Σ0(φ− φ0)| ≤ 24 ε {1 + |φ|+ |∇φ|} .(2.12)

Proof. Set v = ∇Txk+1 = ∂Tk+1. Let e1, . . . , ek−1 be an orthonormal frame

for Σ0, so that

e1, . . . , ek−1,
v

|v|
(2.13)
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gives an orthonormal frame for Σ. If n ∈ Rk+1 and n0 ∈ Rk denote the

normals to Σ and Σ0, respectively, then

n = |v|n0 + 〈∂k+1,n〉 ∂k+1.(2.14)

(To see this, check that this unit vector is orthogonal to the frame (2.13).)

Since 〈∇eiej , ∂k+1〉 = 0, the expression for n gives 〈∇eiej ,n〉 = |v| 〈∇eiej ,n0〉.
It follows that

A(ei, ej) ≡ 〈∇eiej ,n〉 = |v| 〈∇eiej ,n0〉 = |v|A0(ei, ej).

Therefore, since H is minus the trace of A and H0 is minus the trace of A0,

we have

H −H0 ≡ −
®
A(ei, ei)+A

Ç
v

|v|
,
v

|v|

å´
+A0(ei, ei)

=−
®
A(ei, ei) +A

Ç
v

|v|
,
v

|v|

å´
+

1

|v|
A(ei, ei)(2.15)

=
1− |v|
|v|

A(ei, ei)−A
Ç
v

|v|
,
v

|v|

å
=
|v| − 1

|v|
H− 1

|v|
A

Ç
v

|v|
,
v

|v|

å
.

Similarly, given x ∈ Σ0, we have xk+1 = 0 and, thus,

〈x,n〉 − 〈x0,n0〉 = 〈x,n〉 − 〈x,n0〉 =
|v| − 1

|v|
〈x,n〉.(2.16)

Combining the last two equations gives for x ∈ Σ0 that

φ− φ0 =
1

2
(〈x,n〉 − 〈x0,n0〉)− (H −H0)

=
|v| − 1

|v|

ß
1

2
〈x,n〉 −H

™
+

1

|v|
A

Ç
v

|v|
,
v

|v|

å
=
|v| − 1

|v|
φ+

1

|v|
A

Ç
v

|v|
,
v

|v|

å
.

(2.17)

Since |v| ≥ 1/2 and 1− |v| ≤ ε, it follows that

|φ− φ0| ≤ 2ε |φ|+ 8 |A(v, v)| ≤ 2ε |φ|+ 8 ε.(2.18)

Similarly, we bound the derivative by

|∇(φ− φ0)| ≤ 2(1− |v|) |∇φ|+ 2 |∇v| |φ|+ 4 (1− |v|)|∇v| |φ|
+ 16 |∇v| |A(v, v)|+ 8 |∇A(v, v)|+ 16 |A(v,∇v)|(2.19)

≤ 2 ε |∇φ|+ 4 ε |φ|+ 16 ε. �

2.2. The proof of Proposition 2.1.

Proof of Proposition 2.1. Within the proof, it will be convenient to set

ετ (r) = sup
Br

Ä
|∇τ |+ |∇2τ |

ä
and εφ(r) = sup

Br

(|φ|+ |∇φ|) .(2.20)
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Step 1: The approximate translations. Using the C2-closeness in (2), at

every p in Σ ∩B5
√

2n there are n− k orthonormal eigenvectors

v1(p), . . . , vn−k(p)

of A with eigenvalues κ1, . . . κn−k with absolute value less than 1/
√

100n, plus

k ≥ 1 eigenvectors with eigenvalues σ1, . . . σk with absolute value at least

1/
√

4n. By (1), we can apply Corollary 2.4 to obtain

|κj(p)| ≤ C ετ (5
√

2n), j = 1, . . . , n− k,(2.21)

where C depends only on n and δ.

Now fix some p in Σ∩B2
√

2n, and define n−k linear functions fi on Rn+1

and tangential vector fields vi on Σ by

fi(x) = 〈vi(p), x〉 and vi = ∇T fi = vi(p)− 〈vi(p),n〉n.

Step 2: Extending the bounds away from p. For each r > 5
√

2n, let Ωr

denote the set of points in Br ∩ Σ that can be reached from p by a path in

Br∩Σ of length at most 3r. The vi’s have the following three properties on Ωr:

|vi − vi(p)| ≤ C r2 ετ (r) ,(2.22)

|τ(vi)| ≤ C r2 ετ (r) ,(2.23)

|∇viA| ≤ C r2 ετ (r) ,(2.24)

where C depends only on n, δ and C1.

To prove (2.22) and (2.23), suppose that γ : [0, 3r] → Σ is a curve with

γ(0) = p and |γ′| ≤ 1 and that w is a parallel unit vector field along γ with

w(0) = vi(p). Therefore, the bound on ∇τ gives
∣∣∇γ′ τ(w)

∣∣ ≤ ετ (r) and, thus,

|τ(w)| ≤ 3 r ετ (r) + |τp(vi(p))| ≤ (C + 3r) ετ (r) ≤ C r ετ (r).(2.25)

In particular, we also have

|A(w)| = |H| |τ(w)| ≤ C r ετ (r).(2.26)

Therefore, since ∇Rn+1

γ′ w = A(γ′, w) n, the fundamental theorem of calculus

gives

(2.27) |w(t)− vi(p)| = |w(t)− w(0)| ≤
∫ 3r

0
|A(w(s))| ds ≤ C r2 ετ (r).

Since w(t) is tangential, we see that |〈vi(p),n〉| ≤ C r2 ετ (r), giving (2.22).

Similarly, (2.27) gives that

(2.28) |w(t)− vi| =
∣∣∣(w(t)− vi(p))T

∣∣∣ ≤ |w(t)− vi(p)| ≤ C r2 ετ (r).

If we combine this (and the boundedness of τ) with (2.25), the triangle in-

equality gives

(2.29) |τ(vi)| ≤ |τ(w)|+ |τ (w − vi)| ≤ C r2 ετ (r),

where we used the lower bound on r to bound r by r2. This gives (2.23).
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We will see that (2.23) implies (2.24). Namely, given unit vector fields x

and y, the Codazzi equation gives

|(∇viA) (x, y)| = |(∇xA) (vi, y)| = |(∇x(H τ)) (vi, y)|

= |H (∇xτ) (vi, y)|+ |(∇xH) τ(vi, y)| ≤ C ετ (r) + C r2 ετ ,(2.30)

where the last inequality used that |H| and |∇H| are bounded by (1). This

gives (2.24).

Step 3: The sphere. From the ε0 closeness to Ck in B5
√

2n in (2), we know

that

Σ0 ≡ B5
√

2n ∩ Σ ∩ {f1 = · · · = fn−k = 0}

is a compact topological Sk of radius fixed close to
√

2k. Using (2.22)–(2.24),

we can apply Lemma 2.11 (n− k) times to get that Σ0 has

‖φ0‖C1 ≤ C (ετ + εφ) ,(2.31)

where ετ and εφ are evaluated at r = 5
√

2n. We can now apply Lemma 2.5 to

get that Σ0 is a graph over Sk√
2k

of a function u0 with

‖u0‖C2,α ≤ C (ετ + εφ) .(2.32)

Step 4: The translations and extending the bound. Let y1, . . . , yk+1 be an

orthonormal basis of linear functions orthogonal to the fi’s. Define the function

w by

w2 ≡
k+1∑
i=1

y2
i ,(2.33)

so that w would be identically equal to
√

2k if Σ was in Ck. In our case, it

follows from (2.32) that the restriction w0 of w to Σ0 satisfies

‖w0 −
√

2k‖C2,α(Σ0) ≤ C (ετ + εφ) .(2.34)

We will use the vj ’s to extend the bounds away from Σ0 inside Ωr. Namely,

for each yi and vj and any point in Ωr, we have∣∣∣∇vj∇T yi∣∣∣ =
∣∣∣∇vj∇⊥yi∣∣∣ ≤ |A(vj , ·)| ≤ C r2 ετ (r),(2.35)

where the last inequality used (2.23) and the positive lower bound for H.

We will extend the bounds by constructing a “radial flow.” First, define

a function f by

f2 =
n−k∑
i=1

f2
i ,
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and then define the vector field v by

v =
∇T f
|∇T f |2

.

Thus, the flow by v preserves the level sets of f . Note that

∇T f =

∑
fi∇T fi
f

=
∑ fi

f
vi =

∑ fi
f
vi(p) +

∑ fi
f

(vi − vi(p)) .(2.36)

Since the vi(p)’s are orthonormal and
∑ Äfi

f

ä2
= 1, it follows that∣∣∣∣∑ fi

f
vi(p)

∣∣∣∣ = 1.

Combining this with the triangle inequality and (2.22) gives that

sup
Ωr

∣∣∣1− ∣∣∣∇T f ∣∣∣∣∣∣ ≤∑ |vi(p)− vi| ≤ C r2 ετ (r),(2.37)

where C depends only on n, δ, and C1. We will assume from now on that r

satisfies

C r2 ετ (r) ≤ 1

2
,(2.38)

so that
∣∣∣1− ∣∣∣∇T f ∣∣∣∣∣∣ ≤ 1

2 and, thus, that supΩr |v| ≤ 2. Since v is in the span

of the vi’s and |v| ≤ 2, it follows from (2.35) that

sup
Ωr

∣∣∣∇v∇T yi∣∣∣ ≤ C r2 ετ (r).(2.39)

Since 〈∇yi, vj〉 = 0 at p and |vi − vi(p)| ≤ C r2 ετ (r) on Ωr by (2.22), we know

that ∣∣∣∇Tvjyi∣∣∣ ≤ C r2 ετ (r) on Ωr.

Hence, since v is in the span of the vj ’s and |v| ≤ 2, |∇vyi| ≤ C r2 ετ (r) on Ωr.

Combining this and (2.39) gives

sup
Ωr

∣∣∣∇v∇Tw2
∣∣∣ = 2 sup

Ωr

∣∣∣∇v(yi∇T yi)∣∣∣
≤ 2(k + 1) sup

Ωr

{
|∇vyi| |∇T yi|+ |yi|

∣∣∣∇v∇T yi∣∣∣}
≤ C r3 ετ (r).

(2.40)

We will now define a subset Ωr,f of Ωr given by flowing Σ0 outwards along

the vector field v. To do this, let Φ(q, t) to be the flow by v at time t starting

from q and set

Ωr,f =
¶

Φ(q, t) | q ∈ Σ0, t
2 ≤ r2 − 3k and Φ(q, s) ∈ Ωr for all s ≤ t

©
.(2.41)
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By integrating (2.40) up from Σ0, we conclude that

sup
Ωr,f

∣∣∣∇Tw2
∣∣∣ ≤ sup

Σ0

∣∣∣∇Tw2
∣∣∣+ 6 r sup

Ωr

∣∣∣∇v∇Tw2
∣∣∣ ≤ C εφ + C r4 ετ (r).(2.42)

Integrating (2.42) from Σ0 gives that

sup
Ωr,f

∣∣∣w2 − 2k
∣∣∣ ≤ C r εφ + C r5 ετ (r).(2.43)

Observe next that as long as

C r εφ + C r5 ετ (r) ≤ k,(2.44)

then we can conclude that

Ωr,f = {f2 ≤ r2 − 3k} ∩ Σ.(2.45)

This gives a positive lower bound for w on Ωr,f so the bound on ∇Tw2 then

gives

sup
Ωr,f

∣∣∣∇Tw∣∣∣ ≤ C εφ + C r4 ετ (r),(2.46)

so the C1 bound on w, and thus also on u, hold as claimed. �

2.3. Proving the first  Lojasiewicz inequality. In this subsection, we will

prove Theorem 0.24. The proof not only gives the L2 closeness to a cylinder,

but it also gives pointwise closeness on a scale that depends on φ and the initial

graphical scale of Σ.

Proof of Theorem 0.24. We have that BR ∩ Σ is a smooth graph over a

cylinder of a function ū with ‖ū‖C2,α ≤ ε and |∇`ū| ≤ C` and that Σ satisfies

(1) H ≥ δ > 0 and |A|+ |∇A| ≤ C1 on BR ∩ Σ,

(2) B5
√

2n ∩ Σ is ε0 C
2-close to a cylinder in Ck for some k ≥ 1.

The starting point is Proposition 2.1, which gives that for any r∈(5
√

2n,R)

with

r2 sup
B5
√

2n

(|φ|+ |∇φ|) + r5 sup
Br

Ä
|∇τ |+ |∇2τ |

ä
≤ ε1,(2.47)

we have that B√r2−3k ∩Σ is the graph over (a subset of) a cylinder in Ck of u

with

(2.48) |u|+ |∇u| ≤ C
{
r2 sup

B5
√

2n

(|φ|+ |∇φ|) + r5 sup
Br

Ä
|∇τ |+ |∇2τ |

ä}
.
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Using the a priori bounds and assuming that ` is large enough,10 we can use

the interpolation inequalities of Lemma B.1 to get that

sup
B5
√

2n

(|φ|+ |∇φ|) ≤ C4 ‖φ‖
3
4

L1(BR),(2.49)

where C4 = C4(n) and L1(BR) denotes the Gaussian L1 norm on BR.

To get bounds on ∇τ and ∇2τ , we apply Corollary 1.28 to get C3 =

C3(n, λ0, `, C`) so that for r + 1
1+r < R− 1, we have

sup
Br

Ä
|∇τ |+ |∇2τ |

ä
≤ C3R

2n

®
e−d`,n

(R−1)2

8 + ‖φ‖
d`,n

2

L1(BR)

´
e
r2

8 ,(2.50)

where the exponent d`,n ∈ (0, 1) has lim`→∞ d`,n = 1.

Thus, we see that B√r2−3k ∩ Σ is the graph over (a subset of) a cylinder

Σk ∈ Ck of u with

|u|+ |∇u| ≤ C
®
r2 ‖φ‖

3
4

L1 + r5R2n

®
e−d`,n

(R−1)2

8 + ‖φ‖
d`,n

2

L1(BR)

´
e
r2

8

´
≤ C R2n+5

®
e−d`,n

(R−1)2

8 + ‖φ‖
d`,n

2

L1(BR)

´
e
r2

8 ,

(2.51)

where C = C(n, λ0, `, C`), and this holds so long as the right-hand side is at

most ε1 > 0. Define the radius R1 ≤ R − 1 to be the maximal radius where

this holds.

To get the L2 bound, we first use (2.51) on BR1 to get∫
BR1

∣∣∣wΣk −
√

2k
∣∣∣2 e−

|x|2
4 ≤ C R5n+10

ß
e−d`,n

(R−1)2

4 + ‖φ‖d`,nL1(BR)

™
,(2.52)

and we then use that
∣∣∣wΣk −

√
2k
∣∣∣2 (x) ≤ |x|2 to get that∫

BR\BR1

∣∣∣wΣk −
√

2k
∣∣∣2 e−

|x|2
4

≤ C Rn+2 e−
R2

1
4 ≤ C R5n+12

ß
e−d`,n

(R−1)2

4 + ‖φ‖d`,nL1(BR)

™
,

(2.53)

where the last inequality is the definition of R1. Combining these completes

the proof. �

We will later also need a variation on this, where we assume bounds on

A and H on a large scale and conclude that Σ is a graph over a cylinder on a

large set.

10We will take ` large later; we could replace 3/4 by any constant less than one by taking

` larger.
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Theorem 2.54. There exist R0, `0 and δ > 0 so that if Σ ⊂ Rn+1 has

λ(Σ) ≤ λ0 and

(1) for some R > R0, we have on BR ∩ Σ that |A| + |∇`0A| ≤ C0 and H ≥
δ0 > 0;

(2) BR0 ∩ Σ is a C2 graph over some cylinder in Ck with norm at most δ,

then there is a cylinder Σ̃ ∈ Ck so that

(3) BR1−2 ∩ Σ is the graph of u over Σ̃ with ‖u‖C2,α ≤ ε0,

where R1 is given by

(2.55) R1 =max

®
r≤R− 1

∣∣∣R2n+5

Ç
e−b`0,n

(R−1)2

8 +‖φ‖
b`0,n

2

L1(BR)

å
e
r2

8 ≤ C̃
´
,

the exponent b`0,n ∈ (0, 1) satisfies lim`0→∞ b`0,n = 1, and C̃ = C̃(n, λ0, δ0, C0).

Proof. We follow the proof of Theorem 0.24 up through (2.51) to get

Σ̃ ∈ Ck and a function u so that BR1−1 ∩ Σ is the graph of u over Σ̃, R1 is

defined by (2.55), and

|u|+ |∇u| ≤ 2 δ.(2.56)

Finally, we use interpolation and the ∇`0A bound to get the desired C2,α bound

when δ > 0 is sufficiently small. �

3. Analysis on the cylinder

In this section, we will prove estimates for the L and L operators on a

cylinder Σ ∈ Ck with k ∈ {1, . . . , n − 1}. These estimates will be used in the

next section to prove our second  Lojasiewicz inequality. Note that L = L+ 1

on Σ since |A|2 ≡ 1
2 .

We will use the Gaussian L2-norm ‖u‖2L2 =
∫
u2 e−

|x|2
4 , as well as the

associated Gaussian W 1,2 and W 2,2 norms

‖u‖2W 1,2 =

∫ Ä
u2 + |∇u|2

ä
e−
|x|2

4 ,

‖u‖2W 2,2 =

∫ Ä
u2 + |∇u|2 + |Hessu|2

ä
e−
|x|2

4 .

(3.1)

3.1. Symmetry, the spectrum of L and a Poincaré inequality. The starting

point is the following elementary lemma that summarizes the key properties

of the L operator on Σ ∈ Ck:

Lemma 3.2. The operator L on Σ is symmetric on W 2,2 with∫
Σ
uLv e−

|x|2
4 = −

∫
Σ
〈∇u,∇v〉 e−

|x|2
4 .(3.3)
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The space W 1,2 embeds compactly into L2 and L has discrete spectrum with

finite multiplicity on W 2,2 with a complete basis of smooth L2-orthonormal

eigenfunctions.

Proof. The first claim follows from integration by parts. The second fol-

lows from [BÉ85] since Σ has positive Bakry-Émery Ricci curvature and finite

weighted volume. Finally, the last claim is a consequence of the first two (cf.

Theorem 10.20 in [Gri09]). �

We will also use the following Gaussian Poincaré inequality on Σ = Sk√
2k
×

Rn−k. The middle term does not use the full gradient, but only the gradient

in the translation directions.

Lemma 3.4. There exists C = C(k, n) so that if Σ ∈ Ck and u ∈ W 1,2,

then

(3.5) ‖|x|u‖2L2 ≤ C
Ä
‖u‖2L2 + ‖∇Rn−ku‖2L2

ä
≤ C ‖u‖2W 1,2 .

Proof. Let y be coordinates on the Rn−k factor, so that

xT = y and |x|2 = |y|2 + 2k.(3.6)

We compute

e
|x|2

4 divΣ

Å
u2 y e−

|x|2
4

ã
= 2u〈∇u, y〉+ (n− k)u2 − u2 |y|2

2

≤ 4 |∇Rn−ku|2 + (n− k)u2 − u2 |y|2

4
,

(3.7)

where the inequality used the absorbing inequality 2ab ≤ a2

4 + 4 b2.

By approximation, we can assume that u has compact support on Σ and,

thus, Stokes’ theorem gives

1

4

∫
Σ
u2 |y|2 e−

|x|2
4 ≤

∫
Σ

¶
(n− k)u2 + 4 |∇Rn−ku|2

©
e−
|x|2

4 .(3.8)

The lemma follows since u2 |x|2 = u2
(
|y|2 + 2k

)
. �

3.2. Estimates for the projection onto the kernel of L. Let K be the kernel

of L:

K = {v ∈W 2,2 |Lv = 0}.(3.9)

Given any u ∈ W 2,2, we let uK denote the L2-orthogonal projection of u onto

K and

u⊥ = u− uK(3.10)

the projection onto the L2-orthogonal complement of K.

The next lemma shows that L is bounded from W 2,2 to L2, L is uniformly

invertible on K⊥, and the projection onto K is bounded from L2 to W 2,2.
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Lemma 3.11. Given n, there exist C and µ > 0 so that on Ck,

‖Lu‖L2 ≤ C ‖u‖W 2,2 ,(3.12)

µ ‖u⊥‖W 2,2 ≤ ‖Lu‖L2 ,(3.13)

‖uK‖W 2,2 ≤ C ‖u‖L2 .(3.14)

Proof. Since L = ∆− 1
2 ∇xT + 1 on the cylinder, we have

‖Lu‖L2 ≤ ‖∆u‖L2 + ‖u‖L2 +
1

2
‖|x| |∇u|‖L2 .(3.15)

The first claim follows from this and using Lemma 3.4 to get the bound

‖|x| |∇u|‖L2 ≤ C ‖|∇u|‖W 1,2 ≤ C {‖|∇u|‖L2 + ‖Hessu‖L2} .(3.16)

To get the second claim, we will need the “Gaussian elliptic estimate”

‖v‖W 2,2 ≤ C (‖v‖L2 + ‖Lv‖L2) ,(3.17)

where C depends on n and the estimate holds for any v ∈ W 2,2. To prove

(3.17), we first integrate by parts to get

‖∇v‖2L2 = |〈v,Lv〉L2 | ≤ ‖v‖L2 ‖Lv‖L2 ≤
1

2
‖v‖2L2 +

1

2
‖Lv‖2L2 .(3.18)

Thus, we see that ‖v‖W 1,2 is bounded by the right-hand side of (3.17). It

remains to bound the L2 norm of the Hessian of v. This will follow from what

we have done and the divergence theorem since

e
|x|2

4 divΣ

Å
{vijvi − (Lv) vj} e−

|x|2
4

ã
=

1

2
L |∇v|2 − (L v)2 − 〈∇L v,∇v〉

≥ |Hessv|2 − (Lv)2 ,

(3.19)

where the last inequality used the Bochner formula for the drift Laplacian on

the cylinder.11

The second claim now follows by first applying Lemma 3.2 to get µ0 > 0

so that

µ0 ‖u⊥‖L2 ≤ ‖Lu⊥‖L2 = ‖Lu‖L2(3.21)

and then using (3.17) to bound the W 2,2 norm.

The final claim follows from the trivial projection bound ‖uK‖L2 ≤ ‖u‖L2

and the bound

‖uK‖W 2,2 ≤ C ‖uK‖L2 .(3.22)

11The Bochner formula for the drift Laplacian ∆f u = ∆u− 〈∇f,∇u〉 is

1

2
∆f |∇u|2 = |Hessu|2 + 〈∇∆fu,∇u〉+ Ricf (∇u,∇u).(3.20)

Here Ricf = Ric + Hessf is the Bakry-Émery Ricci curvature.
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To see (3.22), first use the equation LuK = −uK to get ‖∇uK‖L2 = ‖uK‖L2 ,

and then use the Bochner formula as in (3.19) to bound the Hessian of uK in

terms of ‖uK‖W 1,2 . �

We will also need the next lemma, which bounds the Gaussian L2 norm of

a quadratic expression in u,∇u,Hessu that bounds the error term in the linear

approximation of the gradient of the F functional. When u ∈ K, the bound is

the square of the Gaussian L2 norm12 while we obtain a weaker bound when

u is orthogonal to K.

Lemma 3.23. There exist CK = CK(n) and C0 = C0(n) so that if u ∈
W 2,2, then∥∥∥∥∥u2

K + |∇uK|2 +
∣∣∣HessuK(·,Rn−k)

∣∣∣2 + (1 + |x|)−1 |HessuK |
2

∥∥∥∥∥
L2

≤ CK ‖uK‖2L2 ,

(3.24)

∥∥∥∥∥(u⊥)2 + |∇u⊥|2 +
∣∣∣Hessu⊥(·,Rn−k)

∣∣∣2 + (1 + |x|)−1 |Hessu⊥ |
2

∥∥∥∥∥
L2

≤ C0 ‖u‖C2 ‖u⊥‖W 2,2 .

(3.25)

The key for proving both claims is an explicit description of K. Namely,

K is generated by multiplying a polynomial eigenfunction of LRn−k times a

spherical eigenfunction of ∆Sk√
2k

. To state this, let yi be coordinates on the

Rn−k factor and let θ be in the Sk factor.

Lemma 3.26. Each v ∈ K can be written as

v(y, θ) = q(y) +
∑
i

yifi(θ) + c,(3.27)

where q is a homogeneous quadratic polynomial on Rn−k, each fi is an eigen-

function on Sk√
2k

with eigenvalue 1
2 , and c is a constant.

Proof. The operator L splits as

L = L+ 1 = ∆θ + Ly + 1,(3.28)

where ∆θ is the Laplacian on Sk√
2k

and Ly is the drift operator on Rn−k.

12This would be obvious if the C2 norm of v were bounded by the L2 norm, but this is

not the case.
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The first observation is that differentiating with respect to yi lowers the

eigenvalue by 1
2 . Thus, if we set vi = ∂v

∂yi
and vij = ∂2v

∂yi∂yj
, then

Lvi = −1

2
vi,(3.29)

Lvij = 0.(3.30)

Since every L2 L-harmonic function must be constant, we conclude that vij is

constant. As a consequence, the function v can be written as

v =
∑
i,j

aij yi yj +
∑
i

fi(θ) yi + g(θ),(3.31)

where aij ∈ R, each fi is a function on Sk√
2k

, and g is a function on Sk√
2k

.

Note that

Lyyi = −1

2
yi,(3.32)

Ly (yiyj) = 2δij − yiyj .(3.33)

Using this and the decomposition of L from (3.28), we get that

0 = Lv =
∑
i,j

aij (2δij) +
∑
i

ï
yi ∆θfi(θ) +

1

2
fi(θ) yi

ò
+ (∆θ + 1) g(θ).(3.34)

Observe first that only the middle terms depend on y. Setting these equal to

zero, we conclude that each fi satisfies

∆θfi = −1

2
fi.(3.35)

It follows that g + 2
∑
aii is an Sk√

2k
eigenfunction with eigenvalue one, i.e.,

∆θ

Ä
g + 2

∑
aii
ä

= −
Ä
g + 2

∑
aii
ä
.(3.36)

However, one is not an eigenvalue of ∆θ (the eigenvalues jump from 1/2 to

(k + 1)/k; see (2.7)), so we have g ≡ −2
∑
aii. �

It is interesting to note that the yi fi part of K corresponds to rotations of

the cylinder and, thus, these infinitesimal variations integrate to one-parameter

families in the space of shrinkers. However, by [CIM13], every shrinker that is

sufficiently close to a cylinder on a large enough set must be a cylinder. Thus,

any one-parameter families of shrinkers through a cylinder consists of cylin-

ders. Therefore, the infinitesimal variations given by a quadratic polynomial

plus a constant (i.e.,
∑
aijyiyj−2

∑
aii) cannot be generated by one-parameter

families of shrinkers. In particular, the kernel K contains nonintegrable func-

tions.

As a corollary of Lemma 3.26, we get C2 pointwise estimates for functions

in the kernel of L that grow at most quadratically in |y|:
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Corollary 3.37. There exists C depending on n so that if v ∈ K, then

sup |v| ≤ C (1 + |y|2) ‖v‖L2 ,(3.38)

sup |∇v| ≤ C (1 + |y|) ‖v‖L2 ,(3.39)

sup
∣∣∣Hessv(·,Rn−k)

∣∣∣ ≤ C ‖v‖L2 ,(3.40)

sup |Hessv| ≤ C (1 + |y|) ‖v‖L2 .(3.41)

Remark 3.42. The point of (3.40) is that, as opposed to (3.41), we get a

better bound, which does not grow in y, if we restrict to the Hessian in the

Euclidean factor. This is useful later.

Proof of Corollary 3.37. Since K is finite dimensional, estimates (3.38)–

(3.41) will follow for all of K from the squared triangle inequality once we

show that there is an orthogonal basis for K where each element in the basis

satisfies (3.38)–(3.41).

The key for this is Lemma 3.26, which shows that K can be written as

K = K1 ⊕K2, where(3.43)

• each v1 ∈ K1 is given by
∑
i yi fi, where fi is an Sk√

2k
eigenfunction with

eigenvalue 1
2 ;

• each v2 ∈ K2 is a constant plus a homogeneous quadratic polynomial in y.

In particular, (3.43) is an L2-orthogonal decomposition.

Case 1. If fi, fj are Sk√
2k

eigenfunctions with eigenvalue 1
2 , then

〈yi fi, yj fj〉L2 = 0 if i 6= j,(3.44)

so we get an orthogonal basis for K1 consisting of a single yi times an f .

Suppose that

v1 = yi f,(3.45)

where f is an Sk√
2k

eigenfunction with eigenvalue 1
2 . Note that

‖v1‖2L2 = e−
k
2 ‖f‖2L2

θ

∫
Rn−k

y2
i e−

|y|2
4 dy ≡ Ck ‖f‖2L2

θ
,(3.46)

where the constant Ck > 0 depends only on k and the sub θ denotes the norms

on Sk√
2k

.

Using elliptic estimates for the compact manifold Sk√
2k

, we have c0 = c0(k)

so that

‖f‖C2
θ
≤ c0 ‖f‖L2

θ
.(3.47)
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Therefore, at each point, we have that

|v1|2 = y2
i f

2 ≤ c2
0 y

2
i ‖f‖2L2

θ
,(3.48)

|∇v1|2 = y2
i |∇θf |2 + f2 ≤ c2

0

Ä
1 + y2

i

ä
‖f‖2L2

θ
,(3.49)

|Hessv1 |2 = y2
i |Hessf |2 ≤ c2

0 y
2
i ‖f‖2L2

θ
,(3.50) ∣∣∣Hessv1(·,Rn−k)

∣∣∣2 ≤ |∇θf |2 ≤ c2
0,(3.51)

giving the desired bounds in this case. (The first bound is even better than

needed.)

Case 2. It is easy to see that an orthogonal basis for K2 is given by

{yiyj − 2δij | i ≤ j}.(3.52)

Therefore, it suffices to show (3.38)–(3.41) when

v2 = yiyj − 2δij .(3.53)

However, this follows immediately since the L2 norms are nonzero and v2 is

a quadratic polynomial in y. (In this case, the Hessian bound is even better

than needed.) �

We will now use the estimates from the corollary to prove Lemma 3.23.

Proof of Lemma 3.23. To simplify notation, set

‖v‖2 ≡
∥∥∥∥v2 + |∇v|2 +

∣∣∣Hessv(·,Rn−k)
∣∣∣2 + (1 + |x|)−1 |Hessv|2

∥∥∥∥
L2
.(3.54)

Given a ∈ R, note that ‖a v‖2 = a2 ‖v‖2.

We will show that there is a constant CK so that

CK ≡ sup
{
‖w‖2

∣∣∣w ∈ K and ‖w‖L2 = 1
}
<∞.(3.55)

Once we have this, then for a general v ∈ K, we set w = v
‖v‖L2

so that

‖v‖2 = ‖ ‖v‖L2 w‖2 = ‖v‖2L2 ‖w‖2 ≤ CK ‖v‖2L2 ,(3.56)

giving the first claim (3.24).

To establish (3.55), apply Corollary 3.37 to get C = C(n) so that

|w|4 + |∇w|4 + |Hessw|4 ≤ C (1 + |y|2)4.(3.57)

Integrating this polynomially growing bound against the exponential decaying

Gaussian weight gives the desired uniform bound on ‖w‖22.

To prove (3.25), we will show that∥∥∥(u⊥)2
∥∥∥
L2
,
∥∥∥|∇u⊥|2∥∥∥

L2
,

∥∥∥∥∣∣∣Hessu⊥(·,Rn−k)
∣∣∣2∥∥∥∥

L2
and∥∥∥(1 + |x|)−1 |Hessu⊥ |

2
∥∥∥
L2

(3.58)
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are each bounded by C0 ‖u‖C2 ‖u⊥‖W 2,2 for a constant C0 depending only on

the dimension n. The key point will be the bounds (3.38)–(3.41) on uK from

Corollary 3.37.

For the first term, we use (3.38) to get

(u⊥)2 = (u− uK)u⊥ ≤
Ä
‖u‖C0 + C (1 + |x|2)‖uK‖L2

ä
|u⊥|

≤ C ‖u‖C0 (1 + |x|2) |u⊥|,
(3.59)

where the last inequality used the projection inequality ‖uK‖L2 ≤ ‖u‖L2 and

the trivial inequality ‖u‖L2 ≤ C ‖u‖C0 that follows since Σ has finite Gaussian

area. Integrating and applying Lemma 3.4 twice gives

‖(u⊥)2‖L2 ≤ C ‖u‖C0 ‖(1 + |x|2)u⊥‖L2 ≤ C ‖u‖C0 ‖u⊥‖W 2,2 .(3.60)

For the second term, we use the triangle inequality and (3.39) to get

|∇u⊥|2 ≤ (|∇u|+ |∇uK|) |∇u⊥|

≤ (‖u‖C1 + C(1 + |x|) ‖uK‖L2) |∇u⊥|

≤ C ‖u‖C1(1 + |x|) |∇u⊥|,

(3.61)

where the last inequality follows as above. Integrating and applying Lemma 3.4

gives

‖|∇u⊥|2‖L2 ≤ C ‖u‖C1 ‖(1 + |x|) |∇u⊥|‖L2 ≤ C ‖u‖C1 ‖u⊥‖W 2,2 .(3.62)

For the third term, we use the triangle inequality and (3.40) to get∣∣∣Hessu⊥(·,Rn−k)
∣∣∣2 ≤ {∣∣∣Hessu(·,Rn−k)

∣∣∣
+
∣∣∣HessuK(·,Rn−k)

∣∣∣} ∣∣∣Hessu⊥(·,Rn−k)
∣∣∣

≤ {‖u‖C2 + C ‖uK‖L2}
∣∣∣Hessu⊥(·,Rn−k)

∣∣∣
≤ C ‖u‖C2

∣∣∣Hessu⊥(·,Rn−k)
∣∣∣ .

(3.63)

Integrating this gives

(3.64)

∥∥∥∥∣∣∣Hessu⊥(·,Rn−k)
∣∣∣2∥∥∥∥

L2
≤ C ‖u‖C2 ‖Hessu⊥‖L2 .

Finally, for the fourth (last) term, we use the triangle inequality and (3.41)

to get

(1 + |x|)−1 |Hessu⊥ |
2 ≤ (1 + |x|)−1 (|Hessu|+ |HessuK |) |Hessu⊥ |

≤ (1 + |x|)−1 {‖u‖C2 + C (1 + |x|) ‖uK‖L2} |Hessu⊥ |(3.65)

≤ C ‖u‖C2 |Hessu⊥ | .

To bound the last term and complete the proof of (3.25), we integrate this to get∥∥∥(1 + |x|)−1 |Hessu⊥ |
2
∥∥∥
L2
≤ C ‖u‖C2 ‖Hessu⊥‖L2 . �
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4. The gradient  Lojasiewicz inequality for F

In this section, we will prove a gradient  Lojasiewicz inequality for F in a

neighborhood of a cylinder Σ ∈ Ck. The inequality will hold for graphs over

part of Σ with small C2 norm. The key technical ingredient is the next propo-

sition, which shows that our first  Lojasiewicz implies our gradient  Lojasiewicz

inequality.

Proposition 4.1. There exist C = C(n, λ0) and ε̄ = ε̄(n) > 0 so that if

λ(Σ) ≤ λ0 and BR̃ ∩Σ is the graph of ũ over a cylinder in Ck with ‖ũ‖C2 ≤ ε̄,
then for any β ∈ [0, 1),

|F (Σ)−F (Ck)| ≤ C‖φ‖
3+β

2

L2(BR̃)+C(1+R̃n−1)e−
(3+β)(R̃−1)2

16 +C‖ũ‖
3+β
1+β

L2(BR̃).(4.2)

The proof of Proposition 4.1 is an infinite dimensional version of the model

argument using Taylor expansion given in Subsection 0.4. The simple model

was done with β = 0 but would have worked with any β ∈ [0, 1). However, the

simple model did not include a cutoff and, to bound the exponential term in

(4.2), we will need to choose β close to one.13

4.1. The linearization of the gradient of the F functional. Given a graph

Σu of a function u over a cylinder Σ ∈ Ck, we let F (u) ≡ F (Σu) and then

let M(u) be the gradient of F . The next lemma gives linear and quadratic

approximations for M and F , respectively.

Lemma 4.3. There exists C1 so that if the C2 norm of u is sufficiently

small and u is defined on the entire cylinder, then

‖M(u)− Lu‖L2

≤ C1

∥∥∥u2 + |∇u|2 + |∇Rn−k |∇u||2 + (1 + |x|)−1 |Hessu|2
∥∥∥
L2
,

(4.4)

∣∣∣∣F (u)− F (Ck)−
1

2
〈u, Lu〉L2

∣∣∣∣
≤ C1 ‖u‖L2

∥∥∥u2 + |∇u|2 + |∇Rn−k |∇u||2 + (1 + |x|)−1 |Hessu|2
∥∥∥
L2
.

(4.5)

The bound in the first inequality in Lemma 4.3 is essentially quadratic

in u. For example, it is bounded by C ‖u‖C2 ‖u‖W 2,2 . Ideally, we would have

liked the bound to be quadratic in ‖u‖W 2,2 , but the exponential decay in the

Gaussian norm makes this impossible and, thus, leads to technical complica-

tions.

We will prove Lemma 4.3 in this subsection. The starting point is the

next lemma computing M(u) in terms of u,∇u and Hessu.

13The ‖φ‖
3+β
2

L2(B
R̃

)
term is fine for any β > 0, and the ‖ũ‖

3+β
1+β

L2(B
R̃

)
term is fine if β < 1.
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Lemma 4.6. If Σ is a cylinder in Ck and p ∈ Σ, then

M(u)(p) = f̂(u(p),∇u(p)) + 〈p, V (u(p),∇u(p))〉

+ Φαβ(u(p),∇u(p))uαβ(p),
(4.7)

where f̂ , V and Φαβ depend smoothly on (s, y) for |s| small.

Lemma 4.6 is proven in Appendix A.

The next lemma shows, for a general map u → M(u) of the form (4.7),

that the linearization gives a good approximation up to quadratic error. To

state this precisely, consider a general map N (u) of the form

N (u)(p) = f(p, u(p),∇u(p)) + Φαβ(p, u(p),∇u(p))uαβ(p),(4.8)

where f and Φαβ are smooth functions of (p, s, y) where p is the point, s ∈ R,

and y is a tangent vector at p. The linearization of N at u is defined to be

(4.9) Lu v=
d

dt

∣∣∣
t=0
N (u+ tv)=fs v+ fyαvα+Φαβ vαβ+uαβ

Ä
Φαβ
s v+Φαβ

yγ vγ
ä
,

where all functions are evaluated at the same point p and we have left out the

obvious dependence of f and Φ on (p, u(p),∇u(p)).

Lemma 4.10. If N (u) is given by (4.8), then we get at each point p that

|N (u+ v)−N (u)− Luv| ≤C1 (|v|+ |∇v|)2 +C2 (|v|+ |∇v|) |Hessv|,(4.11)

where the constants C1 = C1(p) and C2 = C2(p) are given by

C1 = Lipp(fs) + |uαβ | Lipp
Ä
Φαβ
s

ä
+ Lipp(fyγ ) + |uαβ | Lipp

Ä
Φαβ
yγ

ä
,(4.12)

C2 =
∣∣∣Φαβ

s

∣∣∣+ ∣∣∣Φαβ
yγ

∣∣∣+ Lipp
Ä
Φαβ
ä
.(4.13)

Here Lipp denotes the Lipschitz norm at p with respect to the s and y variables.

Proof. Using (4.9), we get at p that for any w,

|Lu+wv − Luv| ≤ |fs(p, u+ w,∇u+∇w)− fs(p, u,∇u)| |v|

+
∣∣∣(uαβ + wαβ) Φαβ

s (p, u+ w,∇u+∇w)− uαβΦαβ
s (p, u,∇u)

∣∣∣ |v|
+ |fyα(p, u+ w,∇u+∇w)− fyα(p, u,∇u)| |vα|

+
∣∣∣(uαβ + wαβ) Φαβ

yγ (p, u+ w,∇u+∇w)− uαβΦαβ
yγ (p, u,∇u)

∣∣∣ |vγ |
+
∣∣∣Φαβ(p, u+ w,∇u+∇w)− Φαβ(p, u,∇u)

∣∣∣ |vαβ | .
(4.14)
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Bounding these terms gives

|Lu+wv − Luv|

≤
{î

Lipp(fs)+ |uαβ |Lipp
Ä
Φαβ
s

äó
(|w|+ |∇w|)+ |wαβ |

∣∣∣Φαβ
s

∣∣∣} |v|
+
{î

Lipp(fyγ )+ |uαβ |Lipp
Ä
Φαβ
yγ

äó
(|w|+ |∇w|)+ |wαβ |

∣∣∣Φαβ
yγ

∣∣∣} |vγ |
+Lipp

Ä
Φαβ
ä

(|w|+ |∇w|) |vαβ | .

(4.15)

The fundamental theorem of calculus in one variable gives

N (u+ v)−N (u) =

∫ 1

0

Å
d

dt

∣∣∣
t=0
N (u+ tv)

ã
dt =

∫ 1

0
Lu+tv v dt.(4.16)

Finally, combining this with (4.15) gives that (again at p)

|N (u+ v)−N (u)− Luv| ≤ sup
t∈[0,1]

|Lu+tv v − Lu v|

≤
{∣∣∣Φαβ

s

∣∣∣+ ∣∣∣Φαβ
yγ

∣∣∣+ Lipp
Ä
Φαβ
ä}

(|v|+ |∇v|) |Hessv|

+
{

Lipp(fs) + |uαβ |Lipp
Ä
Φαβ
s

ä
(4.17)

+ Lipp(fyγ ) + |uαβ | Lipp
Ä
Φαβ
yγ

ä}
(|v|+ |∇v|)2 . �

Proof of Lemma 4.3. By Lemma 4.6, M(u) is of the form (4.8) with

f(p, s, y) = f̂(s, y) + 〈p, V (s, y)〉.(4.18)

Since 0 is a critical point for F , we have M(0) = 0. Therefore, Lemma 4.10

gives

|M(u)− Lu| ≤ C1 (|u|+ |∇u|)2 + C2 (|u|+ |∇u|) |Hessu| ,(4.19)

where the constant C1 = C1(x) is bounded by C (1 + |x|) and C2 is bounded

independent of x ∈ Σ. The bounds on C1 and C2 come from Lipschitz bounds

for f and Φ; the bound for C1 is worse because the Lipschitz norm of the last

term in (4.18) grows linearly.

Integrating in space (against the Gaussian weight) gives

‖M(u)− Lu‖L2 ≤ C
Ä
‖(1 + |x|)u2‖L2 + ‖(1 + |x|) |∇u|2‖L2

ä
+ C2 ‖ (|u|+ |∇u|) |Hessu|‖L2

≤ C
Ä
‖(1 + |x|)u2‖L2 + ‖(1 + |x|) |∇u|2‖L2

ä
+ C ‖(1 + |x|)−1 |Hessu|2‖L2 ,

(4.20)

where the last inequality used the absorbing inequality

2 (|u|+ |∇u|) |Hessu| ≤ (1 + |x|) (|u|+ |∇u|)2 + (1 + |x|)−1 |Hessu|2.(4.21)
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To get rid of the |x|’s in the first two terms, we use Lemma 3.4 to get

‖|x|u2‖L2 ≤ C ‖u2‖W 1,2 ≤ C ‖u2 + |∇u|2‖L2 ,(4.22)

‖|x| |∇u|2‖L2 ≤ C ‖|∇u|2 + |∇Rn−k |∇u||2 ‖L2 .(4.23)

To get the first claim, we substitute these bounds back into (4.20)

‖M(u)− Lu‖L2 ≤ C
∥∥∥u2 + |∇u|2 + |∇Rn−k |∇u||2 + (1 + |x|)−1 |Hessu|2

∥∥∥
L2
.

(4.24)

To get the second claim, we first use the fundamental theorem of calculus

and the definition of the gradient to get

F (u)− F (Ck)−
1

2
〈u, Lu〉L2 =

∫ 1

0

d

dt

ñ
F (tu)− t2

2
〈u, Lu〉L2

ô
dt

=

∫ 1

0
〈u,M(tu)− t Lu〉L2 dt.

(4.25)

The second claim now follows from the first since the Cauchy-Schwarz inequal-

ity bounds the integrand by ‖u‖L2 ‖M(tu)− t Lu‖L2 . �

4.2. The gradient  Lojasiewicz inequality. We will prove Proposition 4.1

and then use it to prove our gradient  Lojasiewicz inequality using our first

 Lojasiewicz inequality.

Proof of Proposition 4.1. Step 1: Cutting off to get a compactly supported

perturbation of the cylinder. Unlike this proposition, both Lemma 4.3 and the

results of the previous section are for entire graphs over a cylinder. Thus, we

fix a cutoff function ψ with 0 ≤ ψ ≤ 1 that is one on BR̃−1 and zero outside of

BR̃ and set

u = ψ ũ.(4.26)

Observe that u has ‖u‖C2 ≤ Cn ‖ũ‖C2 ≤ Cn ε0, where Cn depends on the C2

norm of ψ and, thus, depends only on n. Since ψ is supported in BR̃ and

|ψ| ≤ 1, we have

‖u‖2L2 ≤ ‖ũ‖2L2(BR̃).(4.27)

Finally, using the exponential decay of the Gaussian, we see that

|F (Σ)− F (Graphu)| ≤ C λ0 R̃
n−1 e−

(R̃−1)2

4 ,(4.28)

‖M(u)‖L2 ≤ C ‖φ‖L2(BR̃) + Cn e−
(R̃−1)2

8 ,(4.29)

where φ here is the φ for Σ and C,Cn depend only on n.
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Step 2: The gradient  Lojasiewicz inequality for the compact perturbation.

To simplify notation, define F0(u) by

F0(u) = F (Graphu)− F (Ck)(4.30)

and, given a function v, set

‖v‖2 ≡
∥∥∥∥v2 + |∇v|2 +

∣∣∣Hessv(·,Rn−k)
∣∣∣2 + (1 + |x|)−1 |Hessv|2

∥∥∥∥
L2
.(4.31)

Assuming that ‖u‖C2 is sufficiently small, then Lemma 4.3 gives C1 so that

(L1) |‖M(u)‖L2 − ‖Lu‖L2 | ≤ C1 ‖u‖2,

(L2)
∣∣∣F0(u)− 1

2 〈u, Lu〉L2

∣∣∣ ≤ C1 ‖u‖L2 ‖u‖2.

Here we also used the Kato inequality

|∇Rn−k |∇v||2 ≤
∣∣∣Hessv(·,Rn−k)

∣∣∣2 .(4.32)

We will divide into cases depending on the projection of u to the kernel

K of L. Let C1 be the constant from (L1) and (L2).

Case 1. Suppose first that u satisfies

‖uK‖2 ≤ ε ‖u⊥‖1+β
W 2,2 ,(4.33)

where ε > 0 will be chosen below and β ∈ [0, 1). Using the squared triangle

inequality and then (4.33) plus14 Lemma 3.23 gives

‖u‖2 ≤ 2 ‖uK‖2 + 2 ‖u⊥‖2 ≤ 2 (ε+ C0‖u‖C2) ‖u⊥‖W 2,2 .(4.34)

Using (L1) and (3.13) and then using (4.34) gives

‖M(u)‖L2 ≥ ‖Lu‖L2 − C1 ‖u‖2 ≥ µ ‖u⊥‖W 2,2 − C1 ‖u‖2
≥ (µ− 2C1 [ε+ C0‖u‖C2 ]) ‖u⊥‖W 2,2 .

(4.35)

We now choose ε > 0 and a bound for ‖u‖C2 so that 2C1 [ε+ C0‖u‖C2 ] ≤ µ
2

and, thus,

‖M(u)‖L2 ≥
µ

2
‖u⊥‖W 2,2 .(4.36)

We will show that F0(u) is higher order in ‖u⊥‖W 2,2 . Since L is symmetric

and LuK = 0, Cauchy-Schwarz and the bound on L from W 2,2 to L2 by (3.12)

give

|〈u, Lu〉L2 | =
∣∣∣〈u⊥, Lu⊥〉L2

∣∣∣ ≤ C ‖u⊥‖L2 ‖u⊥‖W 2,2 .(4.37)

14Note that ‖u⊥‖W2,2 is small so ‖u⊥‖1+β

W2,2 ≤ ‖u⊥‖W2,2 .
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Substituting this into (L2), using that ‖u‖2 ≤ C ‖u⊥‖W 2,2 (by (4.34)), and

applying the triangle inequality ‖u‖L2 ≤ ‖uK‖L2 + ‖u⊥‖L2 gives

|F0(u)| ≤ C ‖u⊥‖L2 ‖u⊥‖W 2,2 + C ‖u‖L2 ‖u‖2
≤ C ‖u⊥‖L2 ‖u⊥‖W 2,2 + C ‖uK‖L2 ‖u⊥‖W 2,2 .

(4.38)

The first term on the right side is trivially bounded by C ‖u⊥‖2W 2,2 . To bound

the last term, we use that the cylinder has finite Gaussian area so that

(4.39) ‖uK‖2L2 ≤ C ‖u2
K‖L2 ≤ C ‖uK‖2

to get that

(4.40) ‖uK‖L2 ‖u⊥‖W 2,2 ≤ C ‖uK‖
1
2
2 ‖u

⊥‖W 2,2 ≤ C ‖u⊥‖
3+β

2

W 2,2 ,

where the last inequality used (4.33). Putting all of this together (and noting

that ‖u⊥‖W 2,2 is bounded) gives

(4.41) |F0(u)| ≤ C ‖u⊥‖
3+β

2

W 2,2 ≤ C ‖M(u)‖
3+β

2

L2 ,

where equation last inequality is (4.36). Combining this with the bound on

‖M(u)‖L2 from (4.29) gives

(4.42) |F0(u)| ≤ C‖φ‖
3+β

2

L2(BR̃) + C e−
(3+β)(R̃−1)2

16 .

Case 2. Suppose now that u satisfies

(4.43) ‖uK‖2 > ε ‖u⊥‖1+β
W 2,2 .

Lemma 3.23 gives C0 so that

(4.44) ‖u⊥‖2 ≤ C0 ‖u‖C2 ‖u⊥‖W 2,2 ≤ C ‖uK‖
1

1+β

2 ,

where the last inequality is (4.43). Using the squared triangle inequality and

(4.44) gives

(4.45) ‖u‖2 ≤ 2 ‖uK‖2 + 2 ‖u⊥‖2 ≤ C ‖uK‖
1

1+β

2 ,

where the last inequality uses that ‖uK‖2 is bounded. Using (L2) and (3.12),

then (4.43) and (4.45) (and the projection inequality ‖u⊥‖L2 ≤ ‖u‖L2), we get

(4.46) |F0(u)| ≤ C ‖u⊥‖L2 ‖u⊥‖W 2,2 + C1 ‖u‖L2 ‖u‖2 ≤ 2C ‖u‖L2 ‖uK‖
1

1+β

2 .

However, since Lemma 3.23 and the projection inequality ‖uK‖L2 ≤ ‖u‖L2 give

that

(4.47) ‖uK‖2 ≤ CK ‖uK‖2L2 ≤ CK ‖u‖2L2 ,

we conclude that

(4.48) |F0(u)| ≤ C ‖u‖
3+β
1+β

L2 ≤ C ‖ũ‖
3+β
1+β

L2(BR̃),

where the last inequality is the Gaussian L2 bound on u from (4.27).
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If we now combine the bounds from the two cases, then we see that

|F0(u)| ≤ C‖φ‖
3+β

2

L2(BR̃) + C e−
(3+β)(R̃−1)2

16 + C ‖ũ‖
3+β
1+β

L2(BR̃).(4.49)

Finally, we use the triangle inequality to combine this with the bound (4.28)

on the F functional from Steps 2 and 3 to complete the proof. �

We will use the following elementary lemma to control graphical bounds

when we write a surface as a graph over two nearby cylinders.

Lemma 4.50. There exists ε0 = ε0(n) > 0 so that if Σ1,Σ2 ∈ Ck, 5
√

2n ≤
R1 < R2 and

• BR1 ∩ Σ is the graph of u1 over Σ1 with |u1|+ |∇u1| ≤ ε0,

• BR2 ∩ Σ is the graph of u2 over Σ2 with ‖u2‖C2,α ≤ ε0,

then we get for R = min{2R1, R2} that

• BR ∩ Σ is the graph of u1 over Σ1 with ‖u1‖C2 ≤ ε̄.

Proof. Since BR1∩Σ is ε0 C
1-close to Σ1 and ε0 close to Σ2, we get that the

distance between Σ1 and Σ2 in BR1 is at most 2ε0. Since the distance between

cylinders grows linearly in the radius, we conclude that the distance between

Σ1 and Σ2 in BR is at most 4ε0. The lemma follows easily from this. �

Proof of Theorem 0.26. The result will follow by combining the L2 close-

ness to a cylinder given by the first  Lojasiewicz inequality and Proposition 4.1.

Note that we can assume that R is large and ‖φ‖L2(BR) is small since the

inequality is otherwise trivially true.

Step 1: Fixing the nearby cylinder. The  Lojasiewicz inequality of Theo-

rem 0.24 gives a cylinder Σk ∈ Ck so that BR̃ ∩ Σ is the graph of ũ over Σk

with ‖ũ‖C1 ≤ ε0, where b`,n ∈ (0, 1) satisfies lim`→∞ b`,n = 1, and15

R̃ = max

®
r ≤ R

∣∣∣R2n+5

®
e−b`,n

R2

8 + ‖φ‖
b`,n

2

L2(BR)

´
e
r2

8 ≤ C̃
´
,(4.51)

where C̃ depends on n, λ0, `, C`. Combining this with Lemma 4.50, we extend

ũ out to R̄ = min {2R̃, R} so that

(?1) BR̄ ∩ Σ is the graph of ũ over Σk with ‖ũ‖C2 ≤ ε̄,

(?2) ‖ũ‖2L2(BR̄) ≤ C R
ρ

®
‖φ‖b`,nL2(BR) + e−

b`,n R
2

4

´
,

where C = C(n, `, C`, λ0) and ρ = ρ(n).

15We choose R̃ to make ‖ũ‖C1 small by (2.51).
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Step 2: Using the first  Lojasiewicz to get the second. Proposition 4.1 gives

|F (Σ)− F (Ck)| ≤ C
®
‖φ‖

3+β
2

L2(BR̄) + (1 + R̄n−1) e−
(3+β)(R̄−1)2

16 + ‖ũ‖
3+β
1+β

L2(BR̄)

´
,

(4.52)

where C = C(n, λ0). To bound the last term in (4.52), we use (?2) to get

‖ũ‖
3+β
1+β

L2(BR̄) ≤ C R
3+β
2+2β

ρ

{
‖φ‖

b`,n
3+β
2+2β

L2(BR) + e
−
b`,n (3+β)R2

8(1+β)

}
.(4.53)

To deal with the exponential term in (4.52), we consider two cases. Sup-

pose first that R̄ < R, so that R̄ = 2R̃ and the definition of R̃ gives

(4.54) R2n+5

®
e−b`,n

R2

8 + ‖φ‖
b`,n

2

L2(BR)

´
e
R̃2

8 = C̃.

Since R̄ = 2R̃ in this case, we have

(4.55) e−
R̄2

8 =

ï
e−

R̃2

8

ò4
≤ C R8n+20

ß
e−b`,n

R2

2 + ‖φ‖2b`,nL2(BR)

™
.

We can assume that R̄ > 4 so that
Ä
R̄−1
R̄

ä2
> 1/2. Raising (4.55) to the

3+β
2

Ä
R̄−1
R̄

ä2
> 3+β

4 power, we bound the exponential term in (4.52) by a

constant times a power of R times

(4.56) e−b`,n
(3+β)R2

8 + ‖φ‖b`,n
(3+β)

2

L2(BR) ≤ e−
(3+β)(R−1)2

16 + ‖φ‖b`,n
(3+β)

2

L2(BR) ,

where the last inequality used also that b`,n is close to one and, in particular,

at least 1/2. We proved this inequality in the case where R̄ < R, but it also

obviously holds in the case when R̄ = R (and the φ term is unnecessary).

Putting it all together, |F (Σ)− F (Ck)| is bounded by C Rρ
′

times

‖φ‖
3+β

2

L2(BR̄) +

{
‖φ‖

b`,n
3+β
2+2β

L2(BR) + e
−
b`,n (3+β)R2

8(1+β)

}
+

®
e−

(3+β)(R−1)2

16 + ‖φ‖b`,n
(3+β)

2

L2(BR)

´
,

where we have grouped terms together based on where they came from in

(4.52). Finally, the first and fifth terms can be absorbed in the second term. �

5. Compatibility of the shrinker and cylindrical scales

One of the main difficulties in this paper is that the singularities are not

compact and, thus, surfaces cannot generally be written as entire graphs over

a cylinder. As a result, our estimates include “error terms” coming from cutoff

functions. Thus, a surface is close to the cylinder if a large part of it can be

written as a small graph over the cylinder.

Given a hypersurface Σ ⊂ Rn+1, we will prove a lower bound for the scale

on which it is “roughly cylindrical” in Theorem 5.3 below. This essentially

bounds the error terms in our  Lojasiewicz inequalities by a power greater than

one of |∇ΣF |, which is crucial in the next section when we prove uniqueness of
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tangent flows. It will also imply that the size of the graphical region is growing

at a definite rate under the rescaled MCF.

5.1. The cylindrical scale and the shrinker scale. Recall that the cylindri-

cal scale r`(Σ) is the largest radius where Σ can be written as a small C2,α

graph over a cylinder with a uniform bound on ∇`A. Namely, given a fixed

ε0 > 0, an integer ` and a constant C`, r`(Σ) is the maximal radius where

• Br`(Σ)∩Σ is the graph over a cylinder in Ck of a function u with ‖u‖C2,α ≤ ε0

and |∇`A| ≤ C`.
The constant ε0 is fixed, but we have yet to choose ` and C`. (The constant `

will be chosen large to get good bounds on lower derivatives by interpolation,

and then C` will be chosen.)

The point of this section is to prove that these cylindrical scales are large

enough that the error terms in our  Lojasiewicz inequalities can be absorbed.

The scale R that we have to beat16 is roughly given by e−
R2

4 = |∇ΣF |. Thus,

we define a “shrinker scale” R(Σ) by

e−
R2(Σ)

2 = |∇ΣF |2,(5.1)

with the convention that R(Σ) is infinite when Σ is a complete shrinker. When

Σt flows by the rescaled MCF, we define the shrinker scale (also denoted by

R(Σt)) to be

e−
R2(Σt)

2 =

∫ t+1

t−1
|∇ΣsF |2 ds = F (Σt−1)− F (Σt+1).(5.2)

The main result of this section is the following theorem, which shows that

the cylindrical scale is a fixed factor larger than the shrinker scale:

Theorem 5.3. There exist µ > 0 and C so that if Σt flows by the rescaled

MCF and λ(Σt) ≤ λ0 then, given any `, there exists C` (depending on `) so

that

(1 + µ)R(Σt) ≤ min
t−1/2≤s≤t+1

r`(Σs) + C.(5.4)

To understand this, observe that Theorem 2.54 gives uniform graphical es-

timates on any scale less than R(Σ). To apply Theorem 2.54, we need uniform

curvature bounds and a lower bound for H on this larger scale. We will estab-

lish these uniform bounds on the larger scale by an extension and improvement

argument, where Theorem 2.54 gives uniform bounds on larger scales. (This

is the improvement part.) Roughly speaking, the extension argument will use

16To see this, note that the larger exponentially decaying term on the right in Theorem 0.26

is essentially e−
R2

4 . We need to bound this by a power greater than one of |∇ΣF | = ‖φ‖L2 .
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curvature estimates for MCF to get bounds on a larger scale forward in time,

and then use the bounds on φ to pull these bounds backwards in time under

the rescaled MCF. Repeating this gets us as close as we want to the scale R(Σ)

and gets us uniform curvature bounds on a larger scale than R(Σ). The final

step is to get graphical estimates on a larger scale too; for this, we cannot use

Theorem 2.54. Rather, we get these graphical estimates from estimates for

MCF and a scaling argument to relate MCF and rescaled MCF.17

5.2. Backward curvature estimates. Recall that, when Σ ⊂ Rn+1 is a

hypersurface, φ is defined to be φ = 〈x,n〉
2 −H, so that Σt flows by the rescaled

MCF if ∂tx = φn and

|∇ΣF |2 = ‖φ‖2L2 ≡
∫

Σ
φ2 e−

|x|2
4 .(5.5)

The next proposition proves a curvature estimate backward in time in a

region where the evolving hypersurface is almost a shrinker and has a forward

curvature estimate. The forward curvature estimate gives a bound for the

Gaussian areas on a fixed scale, the fact that it is almost a shrinker extends

these Gaussian bounds backward in time, and finally Brakke’s theorem at

the earlier time (applied to the corresponding MCF) will give the backward

curvature estimate.

Proposition 5.6. Given n, λ0, there exist s ≥ 2 and δ > 0 so that the

following holds : Given 1/2 ≥ τ > 0, there exists µ > 0 such that if Σt flows by

the rescaled MCF, λ0 ≥ λ(Σt), t2 ≥ t1 + τ , x0 ∈ BR−s, and

∫ t2

t1

∫
BR+2∩Σt

φ2 e−
|x|2

4 ≤ µ2 e−
(R+2)2

4

R2 (t2 − t1 + 1)
,(5.7)

sup
Bs
√
τ (x0)∩Σt2

|A|2 ≤ δ τ−1,(5.8)

then for all t ∈ [t1 − log(1− 7τ/8), t1 − log(1− τ)] and any `,

sup

B√τ
3

Ä
e

1
2 (t−t1) x0

ä
∩Σt

ß
|A|2 + τ `

∣∣∣∇`A∣∣∣2™ ≤ C`
τ
,(5.9)

where C` depends on n and `.

We will need the following elementary lemma:

17This final step cannot be iterated since it has a loss in the estimates and we can no

longer apply Theorem 2.54 to get rid of the loss.
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Lemma 5.10. If Σt flows by the rescaled MCF and 0 ≤ η ≤ 1 is a smooth

compactly-supported function on Rn+1, then for t1 ≤ t2 and τ > 0,∫
Σt2

η e−
|x−x0|

2

4τ −
∫

Σt1

η e−
|x−x0|

2

4τ

=

∫ t2

t1

∫
Σt

〈∇η,n〉φ e−
|x−x0|

2

4τ +

∫ t2

t1

∫
Σt

〈x0,n〉
2τ

φ η e−
|x−x0|

2

4τ(5.11)

+

Å
1− 1

τ

ã ∫ t2

t1

∫
Σt

〈x,n〉
2

φ η e−
|x−x0|

2

4τ −
∫ t2

t1

∫
Σt

φ2 e−
|x−x0|

2

4τ .

Proof. If f ∈ Rn+1 → R is a smooth function with compact support, then

d

dt

∫
Σt

f e−
|x|2

4 =

∫
Σt

〈∇f,n〉φ e−
|x|2

4 −
∫

Σt

f φ2 e−
|x|2

4

=

∫
Σt

〈∇ log f,n〉φ f e−
|x|2

4 −
∫

Σt

φ2 f e−
|x|2

4 .

(5.12)

If we set f(x) = η e
|x|2

4 e−
|x−x0|

2

4τ , then

∇ log f = ∇ log η +
x

2
− x− x0

2τ
= ∇ log η +

x0

2τ
+

1

2

Å
1− 1

τ

ã
x.(5.13)

Therefore

d

dt

∫
Σt

η e−
|x−x0|

2

4τ =

∫
Σt

〈∇η,n〉φ e−
|x−x0|

2

4τ +

∫
Σt

〈x0,n〉
2τ

φ η e−
|x−x0|

2

4τ

+

Å
1− 1

τ

ã∫
Σt

〈x,n〉
2

φ η e−
|x−x0|

2

4τ −
∫

Σt

φ2η e−
|x−x0|

2

4τ .

(5.14)

The lemma now follows by integrating from t1 to t2. �

Corollary 5.15. Given ε > 0, 1 ≥ τ > 0, and λ0, there exists µ =

µ(ε, τ, λ0) > 0, s = s(ε, λ0) ≥ 2 such that if Σt flows by the rescaled MCF,

λ0 ≥ λ(Σt), x0 ∈ BR−s, and t2 > t1

∫ t2

t1

∫
BR+2∩Σt

φ2 e−
|x|2

4 ≤ µ2 e−
(R+2)2

4

R2 (t2 − t1 + 1)
,(5.16)

(4πτ)−
n
2

∫
Σt2

e−
|x−x0|

2

4τ ≤ 1 +
ε

2
,(5.17)

then

(4πτ)−
n
2

∫
Σt1

e−
|x−x0|

2

4τ ≤ 1 + ε.(5.18)
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Proof. Observe first that by the entropy bound λ(Σt) ≤ λ0, there exists

s > 0 such that for all y ∈ Rn+1 and all t,

(4πτ)−
n
2

∫
Σt\Bs√τ (y)

e−
|x−y|2

4τ ≤ ε

4
.(5.19)

If we choose a nonnegative function η with η ≤ 1, |∇η| ≤ 1, η = 1 on BR, and

η = 0 outside BR+2, then Lemma 5.10 gives∫
BR∩Σt1

e−
|x−x0|

2

4τ ≤
∫

Σt1

η e−
|x−x0|

2

4τ ≤
∫
BR+2∩Σt2

e−
|x−x0|

2

4τ

+

∫ t2

t1

∫
(BR+2\BR)∩Σt

|φ| e−
|x−x0|

2

4τ

+

Å
1

τ
− 1

ã ∫ t2

t1

∫
BR+2∩Σt

|〈x,n〉|
2

|φ| e−
|x−x0|

2

4τ

+

∫ t2

t1

∫
BR+2∩Σt

|〈x0,n〉|
2τ

|φ| e−
|x−x0|

2

4τ

+

∫ t2

t1

∫
BR+2∩Σt

φ2 e−
|x−x0|

2

4τ .

(5.20)

Combining the terms that are linear in φ gives∫
BR∩Σt1

e−
|x−x0|

2

4τ ≤
∫
BR+2∩Σt2

e−
|x−x0|

2

4τ

+

Ñ
1 +

|x0|
τ +

Ä
1
τ − 1

ä
(R+ 2)

2

é ∫ t2

t1

∫
BR+2∩Σt

|φ| e−
|x−x0|

2

4τ

+

∫ t2

t1

∫
BR+2∩Σt

φ2 ≤
∫
BR+2∩Σt2

e−
|x−x0|

2

4τ

+
R+ 2

τ

∫ t2

t1

∫
BR+2∩Σt

|φ| e−
|x−x0|

2

4τ +

∫ t2

t1

∫
BR+2∩Σt

φ2.

(5.21)

By the entropy bound λ(Σt) ≤ λ0 and the Cauchy-Schwarz inequality, we have∫ t2

t1

∫
BR+2∩Σt

|φ| e−
|x−x0|

2

4τ

≤
Ç∫ t2

t1

∫
BR+2∩Σt

φ2 e−
|x−x0|

2

4τ

å 1
2 »

(4πτ)
n
2 (t2 − t1)λ0

≤
»

(4πτ)
n
2 (t2 − t1)λ0

Ç∫ t2

t1

∫
BR+2∩Σt

φ2

å 1
2

≤
»

(4πτ)
n
2 (t2 − t1)λ0 e

(R+2)2

8

Ç∫ t2

t1

∫
BR+2∩Σt

φ2 e−
|x|2

4

å 1
2

.

(5.22)
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We can therefore bound the two last terms in (5.21) as follows:

R+2

τ

∫ t2

t1

∫
BR+2∩Σt

|φ| e−
|x−x0|

2

4τ +

∫ t2

t1

∫
BR+2∩Σt

φ2

≤ C R+2

τ

»
(4πτ)

n
2 (t2 − t1)e

(R+2)2

8

Ç∫ t2

t1

∫
BR+2∩Σt

φ2 e−
|x|2

4

å 1
2

+ e
(R+2)2

4

∫ t2

t1

∫
BR+2∩Σt

φ2e−
|x|2

4

≤ C (µ/τ + µ2).

(5.23)

Using (5.19), (5.21), and (5.23) we get that

(4πτ)−
n
2

∫
Σt1

e−
|x−x0|

2

4τ = (4πτ)−
n
2

∫
BR∩Σt1

e−
|x−x0|

2

4τ

+ (4πτ)−
n
2

∫
Σt1\BR

e−
|x−x0|

2

4τ

≤ (4πτ)−
n
2

∫
Σt2

e−
|x−x0|

2

4τ + C (µ/τ + µ2) +
ε

4
.

(5.24)

Choosing µ sufficiently small gives the corollary. �

We will apply this corollary in combination with Brakke’s regularity result

to get curvature estimates at an earlier time-slice in terms of curvature esti-

mates at a later time-slice. By White’s [Whi05] version of Brakke’s regularity

result [Bra78], there exist constants ε and CB depending on n and λ0 such

that if Ms ⊂ Rn+1 flow (s < 0) by the MCF, λ(Ms) ≤ λ0, and for some s0 < 0

(−4πs0)−
n
2

∫
Ms0

e
|x−x0|

2

4s0 ≤ 1 + ε,(5.25)

then for all s ∈ [− s0
4 , 0],

sup
Ms∩B 1

2

√
−s0

(x0)
|A|2 ≤ CB

−s0
.(5.26)

We can use the correspondence between MCF and rescaled MCF to translate

this into a similar curvature estimate for rescaled MCF. Namely, if Σt is a

rescaled MCF with entropy at most λ0 and there is some τ ∈ (0, 1/2) so that

(4πτ)−
n
2

∫
Σt0

e−
|x−x0|

2

4τ ≤ 1 + ε,(5.27)

then for all t ∈ [t0 − log(1− 3τ/4), t0 − log(1− τ)], we have

sup

Σt∩B√τ
2

Ä
e

1
2 (t−t0)x0

ä |A|2 ≤ CB
τ
.(5.28)
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This is proven by writing the rescaled flow Σt as e
1
2

(t−t0)Ms where s = 1 −
et0−t − τ and Ms is the MCF with M−τ = Σt0 . (Here we have used that the

result of Brakke/White is uniform in Σ or more precise uniform in the point

x0 where it is centered as for the rescaled MCF when the point x0 is fixed this

mean that the original “fixed” point x0 for the MCF evolves by e
1
2

(t−t0)x0.)

Proof of Proposition 5.6. Combining the above consequence of Brakke’s

theorem with Corollary 5.15 gives the |A| bound in Proposition 5.6 for t in the

time interval

[t1 − log(1− 3τ/4), t1 − log(1− τ)] .(5.29)

The bounds on higher derivatives of A then follow from this and the

interior estimates of Ecker and Huisken, [EH91]. �

5.3. A mean value inequality. In the next lemma, we will use that if Σt

flow by the rescaled MCF, then (see Section 2 of [CIMW13])

(∂t − L)φ = 0 where L = L+ |A|2 +
1

2
.(5.30)

Hence,

(∂t − L)φ2 = 2φ (∂t − L)φ− 2 |∇φ|2 = φ2 (2 |A|2 + 1)− 2 |∇φ|2.(5.31)

Lemma 5.32. There exists a constant C so that if Σt flow by the rescaled

MCF for t ∈ [t1, t2], r + 1 ≤ mint1≤s≤t2 r(Σs), and 0 < β < (t2 − t1)/2, then

max
s∈[t1+β,t2]

|∇ΣsF |
2
Br
≤ (C + 1/β) (F (Σt1)− F (Σt2)) ,(5.33) ∫ t2

t1+β

∫
Br∩Σs

|∇φ|2 e−
|x|2

4 ≤ (C + 1/β) (F (Σt1)− F (Σt2)) .(5.34)

Proof. Fix a compactly supported function η on Rn+1 with 1 ≤ η ≤ 0, η

identically one on Br, η vanishes outside Br+1, and |∇η| ≤ 2. If we restrict η

to Σt, then the flow equation and (5.31) give

∂t
Ä
φ2 η2

ä
= (η2)t φ

2 + η2 ∂tφ
2

= φ3 〈∇η2,n〉+ η2
Ä
Lφ2 + φ2 (2 |A|2 + 1)− 2 |∇φ|2

ä
.

(5.35)
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Using this and the equation for the derivative of the weighted measure, and

integrating by parts to take L off of φ2, we get

∂t

Ç∫
Σt

φ2 η2 e−
|x|2

4

å
= −

∫
Σt

φ4 η2 e−
|x|2

4

+

∫
Σt

Ä
2 |A|2 + 1

ä
φ2 η2 e−

|x|2
4

− 2

∫
Σt

|∇φ|2 η2 e−
|x|2

4 +

∫
Σt

φ3 〈∇η2,n〉 e−
|x|2

4

−
∫

Σt

〈∇φ2,∇η2〉 e−
|x|2

4 .

(5.36)

Using the absorbing inequalities 2φ3η|∇η| ≤ φ4η2+φ2|∇η|2 and 4 η|φ||∇η||∇φ|
≤ η2|∇φ|2 + 4φ2|∇η|2, we get

∂t

Ç∫
Σt

φ2 η2 e−
|x|2

4

å
≤
∫

Σt

¶Ä
2 |A|2 + 1

ä
η2 + 5|∇η|2

©
φ2 e−

|x|2
4

−
∫

Σt

|∇φ|2 η2 e−
|x|2

4

≤ C
∫

Σt

φ2 e−
|x|2

4 −
∫

Σt

|∇φ|2 η2 e−
|x|2

4 .

(5.37)

Suppose that s ∈ [t1 + β, t2]. To prove (5.33), we integrate (5.37) to get∫
Σs

φ2 η2 e−
|x|2

4 ≤ min
[t1,t1+β]

∫
Σt

φ2 η2 e−
|x|2

4 + C

∫ s

t1

∫
Σt

φ2 e−
|x|2

4

≤ (C + 1/β)

∫ s

t1

∫
Σt

φ2 e−
|x|2

4

≤ (C + 1/β) (F (Σt1)− F (Σt2)) .

(5.38)

Finally, to get (5.34), we integrate (5.37) from t1 + β to t2 and use (5.33) to

bound the contributions at the end points. �

5.4. Uniform short time stability of the cylinder. The last result that we

will need for proving Theorem 5.3 is the following elementary short time uni-

form stability of the cylinder under MCF with bounded curvature:

Lemma 5.39. Given R >
√

2n, ε > 0 and C0, there exist δ > 0 and θ > 0

so that if Mt is an MCF with

(1) BR+2 ∩M−1 is a C2,α graph over Σ ∈ Ck with norm at most δ,

(2) |A|+|∇A|+|∇2A|+|∇3A|≤C0 on BR+2∩Mt for t∈ [−1−1/C0,−1+1/C0],

then for each t ∈ [−1− θ, θ − 1], we have that

• BR ∩Mt is a C2,α graph over
√
−tΣ with norm at most ε.
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Proof. Since |A| is bounded, the MCF equation implies that |∂tx| is also

bounded. Likewise, the bound on |∇A| (and thus on |∇H|) and the evolution

equation for the normal (see lemma 7.5 in [HP99]) imply that |∂tn| is also

uniformly bounded. Combining these two bounds, it follows that BR+1 ∩Mt

remains a graph over Σ of a function u with a uniform bound

|∂tu|+ |∂t∇u| ≤ C1 for t ∈ [−1− θ0,−1 + θ0],(5.40)

where θ0 > 0 and C1 depend on C0, ε, n. Similarly, the higher derivative

bounds on A then yield bounds on higher derivatives of u and the lemma

follows immediately. �

5.5. Proof of Theorem 5.3. We are now prepared to prove Theorem 5.3,

which shows that the cylindrical scale is a fixed factor larger than the shrinker

scale.

Proof of Theorem 5.3. The theorem follows by an extension and improve-

ment argument that is inspired by a similar argument for shrinkers in [CIM13].

The extension argument is modeled on Proposition 2.1 in [CIM13]; the im-

provement is modeled on Proposition 2.2 in [CIM13].

(1) Extending the scale. Given `, we will show that there exist δ > 0,

s̄ > 0, θ > 0, R0, C2, and C` so that if

(A1) BR ∩ Σs is a graph of u1 over some Σ1 ∈ Ck with ‖u1‖C2,α ≤ δ for each

s ∈ [t0 − s̄, t0 + s̄] for some R ∈ [R0, R(Σt)] and t0 ∈ [t− 1/2, t+ 1− s̄]
then, for every s ∈ [t0 − s̄, t0 + s̄], we have

(A2) r`(Σs) ≥ (1 + θ)R and |∇ΣsF |
2
B(1+θ)R

≤ C2 (F (Σt−1)− F (Σt+1)).

The key step is to get estimate A and its derivatives on a larger scale without

any loss in time. The starting point is that the local a priori bounds in (A1)

and entropy bound λ ≤ λ0 (which holds by assumption) imply that the local

Gaussian densities on some fixed scale are almost one as in (5.25); cf. the proof

of Proposition 3.5 in [CIM13]. Thus, White’s Brakke estimate [Whi05] gives a

curvature bound for the associated MCF and, thus, for the rescaled flow on a

larger region B(1+κ)R with κ > 0 but at the cost of moving forward in time.

This establishes the curvature bound on the larger scale (1 + κ)R forward

in time, so it remains to pull this estimate backward in time and get higher

derivative estimates. However, Proposition 5.6 does exactly this while only

coming in by a fixed additive amount . As long as R is sufficiently large, the

multiplicative gain beats the additive loss and, thus, the bound on A and its

derivatives extends to a larger scale with no loss in time.

We can now apply Lemma 5.39 on a unit scale but centered at points

out to the extended scale to get the cylindrical estimates on the larger scale.
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Finally, using the curvature bounds, Lemma 5.32 gives the constant C2 so that

|∇ΣsF |
2
B(1+θ)R

≤ C2 (F (Σt−1)− F (Σt+1)).

(2) The improvement below the shrinker scale. The  Lojasiewicz inequality

of Theorem 2.54 will give an improved bound on the larger scale if we are below

the shrinker scale. Namely, by Theorem 2.54, we get

Given τ > 0, δ > 0, C2, `, and C`, there exist `1 and R1 so that if ` ≥ `1 and

R ∈ [R1, R(Σt)] satisfies

(A3) R ≤ r`(Σs) and |∇ΣsF |
2
BR
≤ C2 (F (Σt−1)− F (Σt+1)),

then

(A4) B(1−τ)R ∩ Σs is a graph of u3 over some Σ̃ ∈ Ck with ‖u3‖C2,α ≤ δ.
There are three reasons that we must go from scale R down to scale (1− τ)R.

The first is that Theorem 2.54 comes in by an additive constant and this is

less than τ
3 R as long R is big. The second is that the lower bound for the

cylindrical scale given by Theorem 2.54 has an extra polynomial term in R;

this is lower order compared to the exponential and is also absorbed by τ
3 R.

The third reason is that the bound from Theorem 2.54 has a loss coming from

that b`,n is less than one; this can be made arbitrarily close to one by taking `

large and can thus also be absorbed by τ
3 R.

Combining (1) and (2). The point is to choose τ much smaller than θ, so

that the gain in scale from the extension in (1) beats the loss in scale from the

improvement in (2). We can then apply the two steps iteratively to get a fixed

factor greater than one beyond the shrinker scale, giving the theorem. �

6. The gradient  Lojasiewicz inequality and uniqueness

In this section, we will use the gradient  Lojasiewicz inequality of Theo-

rem 0.26 and the compatibility of the shrinker and cylindrical scales of the

previous section to prove a gradient  Lojasiewicz inequality for rescaled MCF.

We will show that this inequality implies uniqueness of the tangent flow at a

cylindrical singularity, thus completing the proof of Theorem 0.2.

6.1. A discrete gradient  Lojasiewicz inequality for rescaled MCF. The

next theorem gives a discrete version of a gradient  Lojasiewicz inequality for

rescaled MCF.

Theorem 6.1. Given n and λ0, there exist constants K, R̄, ε and τ ∈
(1/3, 1) so that if Σs is a rescaled MCF for s ∈ [t− 1, t+ 1] satisfying

• λ(Σs) ≤ λ0,

• BR̄ ∩Σs is a C2,α graph over some cylinder in Ck with norm at most ε for

each s,
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then we have

(F (Σt)− F (C))1+τ ≤ K (F (Σt−1)− F (Σt+1)) .(6.2)

Proof. Given any β ∈ [0, 1) and R ∈ [1, r`(Σt)− 2], Theorem 0.26 gives

|F (Σt)− F (C)| ≤ C Rρ
®
‖φ‖

c`,n
3+β
2+2β

L2(BR∩Σt )
+ e−

R2

4
c`,n + e−

R2

4 ( 3+β
4 )
´
,(6.3)

where C = C(n, `, C`, λ0), ρ = ρ(n) and c`,n ∈ (0, 1) satisfies lim`→∞ c`,n = 1.

We will bound each term by a power greater than 1/2 of (F (Σt−1)− F (Σt+1)).

We defined the shrinker scale R(Σt) in (5.2) by

e−
R2(Σt)

2 =

∫ t+1

t−1
|∇ΣsF |2 ds = F (Σt−1)− F (Σt+1).(6.4)

If we set R+ 2 ≡ mint−1/2≤s≤t+1 r`(Σs), then Theorem 5.3 gives µ > 0 and C

so that

R ≥ (1 + µ)R(Σt)− C,(6.5)

as long as we are willing to choose C` sufficiently large depending on `. The

crucial point is that µ does not change when we take ` larger, although C`
does depend on `.

Lemma 5.32 gives a constant C so that

‖φ‖2L2(BR∩Σt )
≤ C (F (Σt−1)− F (Σt+1)) .(6.6)

We first choose β ∈ [0, 1) so that

(1 + µ)

Å
3 + β

4

ã
> 1.(6.7)

This takes care of the third term in (6.3). Now we choose ` large so that

c`,n

Å
3 + β

2 + 2β

ã
> 1 and (1 + µ) c`,n > 1.(6.8)

This takes care of the first two terms. Once we choose `, then Theorem 5.3

gives C` and, thus, determines the multiplicative factor K. �

6.2. An extension of the  Lojasiewicz theorem.  Lojasiewicz used the gra-

dient  Lojasiewicz inequality to prove convergence of flow lines for the neg-

ative gradient flow of an analytic function f . We will prove an analogous

convergence result where the differential inequality f2β(t) ≤ −f ′(t) (which

follows from the gradient  Lojasiewicz) is replaced by the discrete inequality

f2β(t) ≤ f(t− 1)− f(t+ 1). This assumption is exactly what comes out of our

analog of the gradient  Lojasiewicz inequality, i.e., out of Theorem 0.26.

The extension will rely on the following elementary lemma:
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Lemma 6.9. If f : [0,∞)→ [0,∞) is a nonincreasing function, ε,K > 0,

and for t ≥ 1,

K f1+ε(t) ≤ f(t− 1)− f(t+ 1),(6.10)

then there exists a constant C such that

f(t) ≤ C t−
1
ε .(6.11)

Moreover, if ε < 1, then

∞∑
j=1

(f(j)− f(j + 1))
1
2 <∞.(6.12)

Proof. After replacing f by f/C0 for some positive constant C0, we can

assume without loss of generality that 0 < f(0) ≤ 1 and K = 1. Set t0 =

4 2ε f−ε(0)/ε+ 2 and C = f(0) t
1
ε
0 , then f(0) = C t

− 1
ε

0 , and hence (6.11) holds

for all t ≤ t0. Next note that by assumption for all t ≥ 2,

f1+ε(t) ≤ f1+ε(t− 1) ≤ f(t− 2)− f(t).(6.13)

Or, equivalently, for all t ≥ 2,

f(t− 2) ≥ f(t) (1 + f ε(t)).(6.14)

We would like to show that (6.11) holds; so suppose not, and let t be a t where

inequality (6.11) fails. After possibly replacing t by t − 2 a finite number of

times, we may assume that (6.11) fails for t but holds for t − 2. From the

choice of C it follows that t > t0 ≥ 2. Moreover,

f(t− 2) ≥ f(t) (1 + f ε(t)) > C t−
1
ε (1 + Cε t−1).(6.15)

Combining this with the elementary inequality that (1+h)−ε ≤ 1−2−1−ε ε h for

all h ≤ 1 and that both Cε t−1
0 = f ε(0) ≤ 1 and 2−1−ε εCε = 2−1−ε ε f ε(0) t0 ≥

2 gives

f−ε(t− 2) < C−ε t (1 + Cε t−1)−ε ≤ C−ε (t− 2−1−ε εCε) ≤ C−ε (t− 2).

(6.16)

This contradicts that (6.11) holds for t − 2 and, thus, completes the proof of

the first claim.

Suppose now that ε < 1, and fix some p ∈ (1, 1/ε). Cauchy-Schwarz gives

that  ∞∑
j=1

(f(j)− f(j + 1))
1
2

2

≤

 ∞∑
j=1

(f(j)− f(j + 1)) jp

  ∞∑
j=1

j−p

 .(6.17)
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The last term is finite since p > 1, so it suffices to prove that (f(j)−f(j+1)) jp

is summable. However, this follows from the summation by parts formula

(6.18)
n∑
j=1

bj (aj+1 − aj) = [bn+1an+1 − b1a1]−
n−1∑
j=1

aj+1 (bj+1 − bj)

with aj = f(j) and bj = jp since the decay (6.11) implies that

(n+ 1)p f(n+ 1) ≤ C (n+ 1)−
1
ε (n+ 1)p → 0,(6.19)

∞∑
j=1

f(j + 1) [(j + 1)p − jp] ≤ C p
∞∑
j=1

(j + 1)−
1
ε

+p−1 <∞.(6.20)

The first inequality in the second line used that [(j+1)p−jp] ≤ p (j+1)p−1. �

6.3. Uniqueness of tangent flows. We are now prepared to prove the unique-

ness of cylindrical tangent flows.

Proof of Theorem 0.2. Let Σt be the rescaled MCF associated to the cylin-

drical singularity. It follows from the uniqueness theorem of [CIM13] that if a

sequence tj → ∞, then there is a subsequence t′j → ∞ so that Σt′j
converges

with multiplicity one to a cylinder Σ ∈ Ck. It follows from White’s Brakke-type

theorem, [Whi05], that this convergence is smooth on compact subsets. A pri-

ori, different sequences could lead to different cylinders (i.e., different rotations

of the same cylinder); the point of this theorem is that this does not occur.

Given any fixed large ρ and small ε > 0, it follows from the previous

paragraph that there must be some T so that

• For each t ≥ T , there is a cylinder in Ck so that, for each s ∈ [t− 1, t+ 1],

Bρ ∩ Σs is a C2,α graph over this cylinder with norm at most ε.

Therefore, we can apply Theorem 6.1 to Σt for t ≥ T to get K and µ ∈ (1/3, 1)

so that

(6.21) (F (Σt)− F (C))1+µ ≤ K (F (Σt−1)− F (Σt+1)) .

This “discrete differential inequality” allows us to apply Lemma 6.9 to conclude

that

(6.22)
∞∑
j=1

(F (Σj)− F (Σj+1))
1
2 <∞.

Using Cauchy-Schwarz and that rescaled MCF is the negative gradient flow

for F , we have∫ ∞
1
‖φ‖L1(Σt) dt ≤

∞∑
j=1

Ç
F (Σj)

∫ j+1

j
‖φ‖2L2(Σt)

dt

å 1
2

≤
»
F (Σ0)

∞∑
j=1

(F (Σj)− F (Σj+1))
1
2 <∞,

(6.23)
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where the last inequality is (6.22) and the L1 and L2 norms are all weighted

Gaussian norms. The uniqueness now follows immediately from Lemma A.48.

�

Appendix A. Geometric quantities on a graph

In this appendix, we will prove some technical results for the geometry of

normal exponential graphs over a hypersurface. As one consequence, we will

prove Lemma 4.6, which computes the gradient of the F functional on graphs

over cylinders.

Throughout this appendix, Σu will denote the graph of a function u over

a fixed hypersurface Σ (in most applications Σ will be a cylinder), where Σu

is given by

(A.1) Σu = {x+ u(x) n(x) |x ∈ Σ}.
We will assume that |u| is small so Σu is contained in a tubular neighborhood

of Σ where the normal exponential map is invertible. Let en+1 be the gradient

of the (signed) distance function to Σ; note that en+1 equals n on Σ.

The geometric quantities that we need to compute on Σu are

• the relative area element νu(p) =
»

det guij(p)/
»

det gij(p), where gij(p) is

the metric for Σ at p and guij(p) is the pull-back metric from the graph of

u at (p+ u(p) n(p));

• the mean curvature Hu(p) of Σu at (p+ u(p) n(p));

• the support function ηu(p) = 〈p + u(p) n(p),nu〉, where nu is the normal

to Σu;

• the speed function wu(p) = 〈en+1,nu〉−1 evaluated at (p+ u(p) n(p)).

The mean curvature and the support function directly appear in the shrinker

equation. The speed function enters indirectly when we rewrite the equation

in graphical form; the speed function adjusts for that the normal direction

and vertical directions may not be the same. The relative area element will

be used to compute the mean curvature and to relate the gradient of F to

φ = 1
2〈x,n〉 −H.

A.1. Calculations. The next lemma gives the expressions for the νu, ηu
and wu on a graph Σu over a general hypersurface Σ. The statement is rather

technical, and it is helpful to keep in mind the special case where Σ is the

hyperplane Rn and the quantities are given by

νu =
»

1 + |∇u|2 = wu and ηu =
u− 〈p,∇u〉»

1 + |∇u|2
.(A.2)

The first part of the lemma gives similar formulas for a general Σ. The second

part uses the formulas to compute Taylor expansions of the quantities. Some

of these computations are used to compute linear approximations here, while
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others are not used in this paper but are recorded for future reference and will

be used elsewhere.

Lemma A.3. There are functions w, ν, η depending on (p, s, y) ∈ Σ×R×
TpΣ that are smooth for |s| less than the normal injectivity radius of Σ so that

wu(p) = w(p, s, y) =
»

1 + |B−1(p, s)(y)|2,(A.4)

νu(p) = ν(p, s, y) = w(p, s, y) det (B(p, s)) ,(A.5)

ηu(p) = η(p, s, y) =
〈p,n(p)〉+ s− 〈p,B−1(p, s)(y)〉

w(p, s, y)
,(A.6)

where the linear operator B(p, s) ≡ Id − sA(p). Finally, the functions w, ν,

and η satisfy

• w(p, s, 0) ≡ 1, ∂sw(p, s, 0) = 0, ∂yαw(p, s, 0) = 0, and ∂yα∂yβw(p, 0, 0) =

δαβ .

• ν(p, 0, 0)=1; the nonzero first and second order terms are

∂sν(p, 0, 0) = H(p), ∂2
sν(p, 0, 0) = H2(p)− |A|2(p),

∂pj∂sν(p, 0, 0) = Hj(p), ∂yα∂yβν(p, 0, 0) = δαβ .

• η(p, 0, 0) = 〈p,n〉, ∂sη(p, 0, 0) = 1, and ∂yαη(p, 0, 0) = −pα.

Proof. Let (p, s) be Fermi coordinates on the normal tubular neighborhood

of Σ, so that s measures the signed distance to Σ. If we fix an s and a path

γ(t) in Σ, then applying the normal exponential map for time s sends γ(t) to

γ(t)+sn(γ(t)). It follows that the differential is given by the symmetric linear

operator

(A.7) B(p, s) ≡ (Id− sA(p)) : TpΣ→ TpΣ,

where we used that −A is the differential of the Gauss map to differentiate n

and the Gauss lemma to identify TpΣ with the tangent space to the level set

of the distance to Σ.

We will use this to compute the relative area element for the graph Σu.

Pushing forward an orthonormal frame ei for Σ at p gives a frame Ei for Σu

at (p, u(p)):

(A.8) Ei ≡ B(p, u)(ei) + ui(p) ∂s.

Thus, the metric on the graph is given in this frame by

guij(p) ≡ 〈Ei, Ej〉 = 〈B(p, u)(ei), B(p, u)(ej)〉+ ui uj .(A.9)

Since the ei’s are orthonormal on Σ, we get

ν2
u(p) = det

Ä
B2(p, u(p)) +∇u⊗∇u(p)

ä
.(A.10)
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Similarly, using the frame (A.8), we see that the vector field

(A.11) ∂s −B−1(p, u(p))(∇u)(p) = en+1 −B−1(p, u(p))(∇u)(p)

is normal to Σu. It follows that the speed function is given by

wu(p) = 〈en+1,nu〉−1 =

∣∣en+1 −B−1(p, u(p))(∇u)(p)
∣∣

〈en+1, en+1 −B−1(p, u(p))(∇u)(p)〉

=
»

1 + |B−1(p, u(p))(∇u(p))|2.
(A.12)

To rewrite the relative area element, we will need two elementary facts. The

first is that for n× n matrices M1 and M2, we have

det(M1M2) = det(M1) det(M2).

The second is that for a vector v ∈ Rn, we have

(A.13) det(Id + v ⊗ v) = 1 + |v|2.

Using these two facts, we now rewrite (A.10) as

ν2
u(p) = det

{
B(p, u(p))

(
Id +B−1(p, u(p))(∇u(p))

⊗B−1(p, u(p))(∇u(p))
)
B(p, u(p))

}
= [det (B(p, u(p))) wu(p)]2 .

(A.14)

To compute the support function ηu, first use the formula (A.11) to get

(A.15) nu =
en+1 −B−1(p, u(p))(∇u)(p)

|en+1 −B−1(p, u(p))(∇u)(p)|
=
en+1 −B−1(p, u(p))(∇u)(p)

wu(p)
,

where nu is evaluated at p+ u(p) n(p). Thus, the support function is given by

wu(p) ηu(p) = 〈p+ u(p) n(p), en+1 −B−1(p, u(p))(∇u)(p)〉

= 〈p,n(p)〉+ u(p)− 〈p,B−1(p, u(p))(∇u(p))〉,
(A.16)

where the last equality used that n(p) is equal to en+1 at the point p+ sn(p)

for any s.

We have now established the formulas (A.4), (A.5), and (A.6) for the

functions w, ν, and η. It is clear from the expressions for w, ν, and η that they

are smooth in the three variables provided that s is sufficiently small.

The next thing is to establish the second set of three claims that give the

second order Taylor expansions for w, ν, and η. The function w appears in

all three expressions, so it is convenient to start there. It follows immediately

that w(p, s, 0) = 1. To compute the partials involving yα’s, we get

(A.17) ∂yα w(p, s, y) =

∑
β

(
B−2

)
αβ (p, s) yβ

w(p, s, y)
.
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It follows that ∂yαw(p, s, 0) = 0. To get the Hessian, we differentiate (A.17)

again:

(A.18) ∂yα∂yβw(p, 0, 0) =

(
B−2

)
αβ (p, 0)

w(p, 0, 0)
= δαβ ,

where the last equality used that B(p, 0) = Id.

Using (A.5), we have ν(p, s, y) = w(p, s, y)B(p, s), where

(A.19) B(p, s) = det (B(p, s)) = det (Id− sA(p)).

We have B(p, 0) ≡ 1 and ∂sB(p, 0) = −Tr(A(p)) = H(p). This also gives

∂s∂pj B(p, 0) = Hj(p). To get the second derivative in s, observe that

(A.20) ∂s logB(p, s)=Tr
î
B−1(p, s) ∂sB(p, s)

ó
=−Tr

î
(Id− sA(p))−1A(p)

ó
.

Thus, we see that

(A.21) ∂2
s B(p, 0) = (∂s B(p, 0)) H(p)− B(p, 0) |A|2(p) = H2(p)− |A|2(p).

Combining the calculations for B with the earlier ones for w, we can compute

the first three Taylor series terms for ν. The constant term is ν(p, 0, 0) = 1.

The first order terms are

∂pj ν(p, 0, 0) = 0,(A.22)

∂s ν(p, 0, 0) = (∂sB(p, 0)) w(p, 0, 0) + (∂sw(p, 0, 0)) B(p, 0) = H(p),(A.23)

∂yα ν(p, 0, 0) = (∂yαw(p, 0, 0)) B(p, 0) = 0.(A.24)

The second order terms involving just s and p derivatives are simplified greatly

since w(p, s, 0) ≡ 1. These are ∂pj∂pk ν(p, 0, 0) = 0 and

∂2
s ν(p, 0, 0) =

¶Ä
∂2
sB
ä
w + 2 (∂sB) ∂sw +

Ä
∂2
sw
ä
B
©

(p, 0, 0)

= ∂2
sB(p, 0) = H2(p)− |A|2(p),

(A.25)

∂pj∂s ν(p, 0, 0) =
{

(∂sB) ∂pjw +
Ä
∂pj∂sw

ä
B

+
Ä
∂pj∂sB

ä
w + (∂sw) ∂pjB

}
(p, 0, 0)

= ∂pj∂sB(p, 0) = Hj(p).

(A.26)

To compute the terms involving y derivatives, it is useful to keep in mind that

B does not depend on y. We get

∂pj∂yα ν(p, 0, 0) =
¶Ä
∂pj∂yαw

ä
B + (∂yαw) ∂pjB

©
(p, 0, 0) = 0,(A.27)

∂s∂yα ν(p, 0, 0) = {(∂s∂yαw) B + (∂yαw) ∂sB} (p, 0, 0) = 0,(A.28)

∂yβ∂yα ν(p, 0, 0) =
Ä
∂yβ∂yαw(p, 0, 0)

ä
B(p, 0) = δαβ .(A.29)

Finally, using (A.6) and the fact that the first derivatives of w vanish at (p, 0, 0),

we get the first order expansion for η. �
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A.2. The mean curvature and its linearization via the first variation. We

will compute the mean curvature Hu using the first variation of the area of Σu.

This gives a divergence form equation in u.

Corollary A.30. The mean curvature Hu of Σu is given by

Hu(p) =
w

ν
[∂sν − divΣ (∂yαν)]

=
w

ν

Ä
∂sν − ∂pα∂yαν − (∂s∂yαν)uα(p)−

Ä
∂yβ∂yαν

ä
uαβ(p)

ä
,

(A.31)

where w, ν and their derivatives are all evaluated at (p, u(p),∇u(p)).

Proof. By Lemma A.3, the area of the graph Σu is

(A.32) Area(Σu) =

∫
Σ
νu dpΣ =

∫
Σ
ν(p, u(p),∇u(p)) dpΣ.

Given a one-parameter family of graphs Σu+tv with v compactly supported,

differentiating the area gives

d

dt

∣∣∣
t=0

Area(Σu+tv) =

∫
Σ

{
∂sν(p, u(p),∇u(p)) v(p)

+ ∂yαν(p, u(p),∇u(p)) vα(p)
}
dpΣ

=

∫
Σ

{
∂sν(p, u(p),∇u(p))

− divΣ (∂yαν(p, u(p),∇u(p)))
}
v(p) dpΣ.

(A.33)

On the other hand, the variation vector field on Σu is given by v en+1 so the

first variation formula (see, e.g., (1.45) in [CM11]) gives

d

dt

∣∣∣
t=0

Area(Σu+tv) =

∫
Σu

Hu 〈v en+1,nu〉 =

∫
Σ
Hu(p)

v(p) νu(p)

wu(p)
dpΣ ,(A.34)

where the second equality used the definition of the speed function wu =

〈en+1,nu〉−1.

Equating these two expressions for the derivative of area, we conclude that

Hu(p)
ν(p, u(p),∇u(p))

w(p, u(p),∇u(p))
=∂sν(p, u(p),∇u(p))−divΣ (∂yαν(p, u,∇u)).(A.35)

This gives the first equality in (A.31); the second equality follows from the

chain rule. �

A.3. The F functional near a cylinder. We now specialize to where Σ is

a cylinder in Ck and F (u) is the F functional of the graph Σu.
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Lemma A.36. If Σ ∈ Ck, then the gradient M(u) of the F functional is

given by

M(u) =
ν

w

Å
Hu −

1

2
η

ã
e−

2
√

2k u+u2

4 ,(A.37)

where ν, w, η are all evaluated at (p, u(p),∇u(p)) and Hu is the mean curvature

of Σu.

Proof. Since we are using the Gaussian L2 inner product,M(u) is defined

by

d

dt

∣∣∣
t=0

F (u+ tv) = (4π)−
n
2

∫
Σ
vM(u) e−

|p|2
4 dµΣ.(A.38)

On the other hand, the first variation formula for the F functional from [CM12]

gives

(A.39)
d

dt

∣∣∣
t=0

F (u+ tv)=(4π)−
n
2

∫
Σu

〈v en+1nu〉
Å
Hu −

1

2
〈nu, x〉

ã
e−
|x|2

4 dµΣu ,

where each quantity is evaluated on Σu. Given p ∈ Σ, we have

|p+ u(p) n(p)|2 = |p|2 + u2 + 2u 〈p,n〉 = |p|2 + u2 + 2
√

2k u,(A.40)

where the last equality used that Σ ∈ Ck. Writing (A.39) as an integral over

Σ gives

(A.41)
d

dt

∣∣∣
t=0

F (u+ tv)=(4π)−
n
2

∫
Σ

v

w

Å
Hu −

1

2
η

ã
e−

2
√

2k u+u2

4 ν e−
|p|2

4 dµΣ.

The lemma follows by equating (A.38) and (A.41) �

Proof of Lemma 4.6. By Lemma A.36 and Corollary A.30, M(u) can be

written as

M(u) e
2
√

2k u+u2

4 = ∂sν − ∂pα∂yαν − (∂s∂yαν)uα(p)

−
Ä
∂yβ∂yαν

ä
uαβ(p)− ν

2w
η .

(A.42)

Since the exponential term depends only on u, we have to show that each of

the five terms on the right side can be expressed as either

(i) f̂(u,∇u), (ii) 〈p, V (u,∇u)〉 or (iii) Φαβ(u,∇u)uαβ .

The proof will repeatedly use the calculations from Lemma A.3.

The key point is that A is parallel on cylinders and, thus, the linear

operator B(p, s) depends only on s (and not p). In particular, the function

ν depends only on s and y (and not p). Thus, the first three terms on the

right side of (A.42) are type (i) and the fourth term is type (iii). Similarly, w
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depends only on s and y; it suffices to show that w η is a sum of terms of the

three allowed types. Lemma A.3 gives

w η = 〈p,n(p)〉+ s− 〈p,B−1(p, s)(y)〉.(A.43)

The first term is constant (so trivially type (i)) and the second is also type (i).

Finally, since B depends only on s, the third term is type (ii). �

A.4. Rescaled MCF near a shrinker. Let Σ ⊂ Rn+1 be an embedded

shrinker and u(p, t) a smooth function on Σ× (−ε, ε), giving a one-parameter

family of hypersurfaces Σu. We next derive the graphical rescaled MCF equa-

tion.

Lemma A.44. The graphs Σu flow by rescaled MCF if and only if u sat-

isfies

∂tu(p, t) = w(p, u(p, t),∇u(p, t))

Å
1

2
η(p, u(p, t),∇u(p, t))−Hu

ã
.(A.45)

Proof. As in [EH91], the rescaled MCF equation xt =
Ä

1
2 〈x,n〉 −H

ä
n is

equivalent (up to tangential diffeomorphisms) to the equation

(A.46) (xt)
⊥ =

1

2
〈x,n〉 −H.

The variation vector field and unit normal for Σu are ∂tu(p, t) n(p) and nu,

respectively, at the point p+ u(p, t) n(p), so we get the equation

〈n(p),nu〉 ∂tu(p, t) = 〈(∂tu(p, t)) n(p),nu〉 =
1

2
ηu −Hu.(A.47)

Finally, multiplying through by wu = 〈n(p),nu〉−1 gives the lemma. �

We will use the following lemma bounding the distance between time slices

of a rescaled MCF by the L1 norm of the gradient of the F functional.

Lemma A.48. Given n, there exist C and δ > 0 so that if Σ ∈ Ck and Σu

is a graphical solution of rescaled MCF on [t1, t2] with ‖u(·, t)‖C1 ≤ δ, then∫
Σ
|u(p, t2)− u(p, t1)| e−

|p|2
4 ≤ C

∫ t2

t1

∫
Σu(t=r)

∣∣∣∣∣〈x,n〉2
−H

∣∣∣∣∣ e−
|x|2

4 dr.(A.49)

Proof. By Lemma A.44, u satisfies

∂tu(p, t) = w(p, u(p, t),∇u(p, t))

Å
1

2
η(p, u(p, t),∇u(p, t))−Hu

ã
.(A.50)

Since |u| and |∇u| are small, Lemma A.3 gives that both w and the relative

area element νu are uniformly bounded and (A.40) relates the Gaussians on Σ
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and Σu, so we get∫
Σ
|∂tu(p, t)| e−

|p|2
4 ≤ C

∫
Σ

∣∣∣∣12 η(p, u(p, t),∇u(p, t))−Hu

∣∣∣∣ e−
|p|2

4

≤ C ′
∫

Σ

∣∣∣∣12 η(p, u(p, t),∇u(p, t))−Hu

∣∣∣∣ νu e−
|p+u(p,t) n|2

4(A.51)

= C ′
∫

Σu

∣∣∣∣∣〈x,n〉2
−H

∣∣∣∣∣ e− |x|24 .

The lemma follows from integrating this with respect to t, using the funda-

mental theorem of calculus and Fubini’s theorem. �

Appendix B. An interpolation inequality

We will use the following interpolation inequality which is well known,

but we are including the short proof since we do not have an exact reference.

Unlike the rest of this paper, the L1 norms below are unweighted.

Lemma B.1. There exists C = C(k, n) so that if u is a Ck function on

B2r ⊂ Rn, then

‖u‖L∞(Br) ≤ C
{
r−n ‖u‖L1(B2r) + ‖u‖ak,nL1(B2r)

‖∇ku‖1−ak,nL∞(B2r)

}
,(B.2)

r ‖∇u‖L∞(Br) ≤ C
{
r−n ‖u‖L1(B2r) + r ‖u‖bk,nL1(B2r)

‖∇ku‖1−bk,nL∞(B2r)

}
,(B.3)

r2 ‖∇2u‖L∞(Br) ≤ C
{
r−n ‖u‖L1(B2r) + r2 ‖u‖ck,nL1(B2r)

‖∇ku‖1−ck,nL∞(B2r)

}
,(B.4)

where ak,n = k
k+n , bk,n = k−1

k+n and ck,n = k−2
k+n .

Proof. By scaling, it suffices to prove the case r = 1. The starting point

is the following standard consequence of the Bernstein/Kellogg inequality for

polynomials, [Kel28]:

(K) Given n and d, there exists Cd,n so that if p is a polynomial of degree at

most d on a ball Bδ ⊂ Rn for some δ > 0, then

‖p‖L∞(Bδ) + δ ‖∇p‖L∞(Bδ) + δ2 ‖∇2p‖L∞(Bδ) ≤ Cd,n δ
−n

∫
Bδ

|p|.(B.5)

Set m = ‖∇ku‖L∞(B2). Choose x ∈ B1 where |u| achieves its maximum, and

let p be the degree (k − 1) polynomial giving the first (k − 1) terms of the

Taylor series of u at x. In particular, given any δ ∈ (0, 1], Taylor expansion

gives ∫
Bδ(x)

|u− p| ≤ Cmδn+k,(B.6)
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where C depends on n and k. Using this in (K) gives

‖u‖L∞(B1) = |p|(x) ≤ C δ−n
∫
Bδ(x)

|p|

≤ C δ−n
®∫

Bδ(x)
|u|+

∫
Bδ(x)

|u− p|
´

≤ C δ−n
¶
‖u‖L1(B2) + Cmδn+k

©
.

(B.7)

We now consider two cases. First, if m ≤ ‖u‖L1(B2), then (B.7) with δ = 1 gives

(B.8) ‖u‖L∞(B1) ≤ C ‖u‖L1(B2).

Next, if m > ‖u‖L1(B2), then we set δn+k =
‖u‖L1(B2)

m (which is less than one)

and (B.7) gives

(B.9) ‖u‖L∞(B1) ≤ C ‖u‖
k

n+k

L1(B2)m
n
n+k .

Thus, we see that (B.2) holds in either case.

We will argue similarly to get the ∇u bound. This time, let x ∈ B1 be a

point where |∇u| achieves its maximum. Given δ ∈ (0, 1], using (K) gives

(B.10) |∇u|(x) = |∇p|(x) ≤ C δ−n−1
¶
‖u‖L1(B2) + Cmδn+k

©
.

In the case where m ≤ ‖u‖L1(B2), we get (B.3) by setting δ = 1. On the other

hand, when m > ‖u‖L1(B2), then we set δn+k =
‖u‖L1(B2)

m (which is less than

one) and (B.10) gives

(B.11) |∇u|(x) ≤ C ‖u‖
k−1
n+k

L1(B2)m
n+1
n+k ,

completing the proof of (B.3). The last bound (B.4) follows similarly. �

We will also need two extensions of this result:

(1) The inequalities hold on a hypersurface in Rn+1 if we have scale-invariant

bounds for A and ∇kA on B2r; the constant C depends on these bounds,

but the exponents remain the same.

(2) The inequalities in (1) also hold when u is replaced by a tensor τ on the

hypersurface.

To prove the extension (1), simply use that the hypersurface is locally a graph

with bounded gradient and use the chain rule to relate the derivatives on the hy-

persurface to those on the projection where we can apply the previous lemma.

Extension (2) follows similarly except that we also need to use that A deter-

mines the Christoffel symbols and, thus, the covariant derivative of the tensor.
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[BÉ85] D. Bakry and M. Émery, Diffusions hypercontractives, in Séminaire
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