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Abstract

In this note we point out some simple sufficient (plausible) conditions for ‘turbulence’ cascades

in suitable limits of damped, stochastically-driven nonlinear Schrödinger equation in a d-dimensional

periodic box. Simple characterizations of dissipation anomalies for the wave action and kinetic energy

in rough analogy with those that arise for fully developed turbulence in the 2D Navier-Stokes equations

are given and sufficient conditions are given which differentiate between a ‘weak’ turbulence regime

and a ‘strong’ turbulence regime. The proofs are relatively straightforward once the statements are

identified, but we hope that it might be useful for thinking about mathematically precise formulations of

the statistically-stationary wave turbulence problem.
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1 Introduction

This note is regarding (weak) wave turbulence in dispersive PDE in the statistically stationary regime sub-

jected to white-in-time stochastic forcing and dissipation. We are interested in precising some simple suf-

ficient conditions to observe the flux balance laws of both inverse and direct cascades that are observed in

wave turbulence; see e.g. [31, 41] and more discussions below. In this section, we consider a torus of side-

length 2πλ, Tdλ with d = 2, 3 and the cubic nonlinear Schrödinger equation (NLS) rescaled in the following

manner for two small parameters σ, ν > 0

−idu =
(
∆u+ σ |u|2 u+ iνD(∇)u

)
dt+ iσ

∑

j

gλj dW
(j)
t , (1.1)
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The choice of splitting the σ between the forcing and the nonlinearity is so that the formal limiting dynamics

in the ν, σ → 0 limit is the linear Schrödinger equation; see Section 6 for more discussion on this point.

Here the
{
W

(j,λ)
t

}
are independent Wiener processes on a common canonical filtered probability space

(Ω,F ,Ft,P). We have allowed force to depend on the side-length of the box, i.e. for each λ > 0, there is

a different set of
{
gλj

}
and Brownian motions W

(j,λ)
t . The exact assumptions on the forcing is given below

in Assumption 1; for now we just remark that the functions gλj are average zero, localized in frequency at

scales ≈ 1, locally uniformly bounded, i.e. supλ,j

∣∣∣
∣∣∣gλj
∣∣∣
∣∣∣
W 1,∞

< ∞, and normalized such that the volume-

averaged wave-action (mass) input per unit time is ≈ σ2, namely the noise is fixed so that the following

parameter is approximately independent of λ:

ǫwa = ǫwa(λ) :=
1

2

∑

j

 

Td
λ

∣∣∣gλj
∣∣∣
2
dx,

where the crossed integral sign denotes average, i.e.
ffl

Td
λ
= 1

(2πλ)d

´

Td
λ
. We also define a corresponding ǫke,

although its interpretation as related to ‘volume-averaged kinetic energy input per unit time’ will only be

precise in a weak turbulence regime

ǫke :=
1

2

∑

j

 

Td
λ

∣∣∣∇gλj
∣∣∣
2
dx.

For simplicity and definiteness we set the dissipation operator D(k) to simply be

D = 1−∆.

With this choice of D, (1.1) is almost-surely globally well-posed in both 2D and 3D and the associated

Markov process has at least one stationary measure supported on smooth functions [29] (see Theorem 2.10

below for precise statement). In what follows, we generally use volume-averaged Lp spaces,

||f ||Lp
λ
:=

(
 

Td
λ

|f(x)|p dx

)1/p

.

The (non-driven, non-damped) conservative initial value problem conserves two basic quantities, the wave

action (here volume-averaged):

WAλ[u] =
1

2
||u||2L2

λ
;

and the Hamiltonian energy:

Hλ[u] =
1

2
||∇u||2L2

λ
+

1

4
σ ||u||4L4

λ
.

Let µ = µλ,ν,σ be an invariant measure of the SPDE (1.1) (see Lemma 2.10). In the sequel we denote

Eφ := Eµφ :=

ˆ

L2

φ(u)µ(du).

The white-in-time forcing implies the following balance law (note that because H is not quadratic, the Itô

correction still depends on u).
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Lemma 1.1 (Balance of wave action and Hamiltonian dissipation [29]). For all λ, σ, ν >, all invariant

measures µ of (1.1) satisfy the balance of wave-action dissipation

νE
∣∣∣
∣∣∣D1/2u

∣∣∣
∣∣∣
2

L2
λ

= σ2ǫwa, (1.2)

and the balance of Hamiltonian energy dissipation

νE
∣∣∣
∣∣∣∇D1/2u

∣∣∣
∣∣∣
2

L2
λ

+ νσE ||u||4L4
λ
+ νσ3E ||u∇u||2L2

λ
= σ2ǫke +

σ3

2

∑

j

E

 

Td
λ

|u|2
∣∣∣gλj
∣∣∣
2
dx. (1.3)

In what follows we use the following terminologies

νE
∣∣∣
∣∣∣D1/2u

∣∣∣
∣∣∣
2

L2
λ

= “wave-action dissipation”

νE
∣∣∣
∣∣∣∇D1/2u

∣∣∣
∣∣∣
2

L2
λ

+ νσE ||u||4L4
λ
+ νσ3E ||u∇u||2L2

λ
= “Hamiltonian energy dissipation”

νE
∣∣∣
∣∣∣∇D1/2u

∣∣∣
∣∣∣
2

L2
λ

= “kinetic energy dissipation”.

The most fundamental concepts in statistical theories of turbulence are the notions of anomalous dissi-

pation and nonlinear cascade, wherein a conserved quantity is injected and then through nonlinear effects,

is sent either to lower frequencies (an inverse cascade) or to higher frequencies (a direct cascade) where it

is eventually dissipated by the damping on the system, regardless of how small the dissipative parameter

ν is (called ‘anomalous dissipation’). The range of scales between the injection scale and the dissipation

scale(s) is/are called the inertial range(s)1, and it is here that we expect statistical universality, i.e. the statis-

tics should be essentially independent of the exact form of the dissipative effects and external forcing. The

statistical theory of hydrodynamic turbulence in the 3D Navier-Stokes equations was founded in earnest by

Kolmogorov in his K41 works [26–28] where he gave a (non-mathematically rigorous) derivation of his 4/5-

law and predicted the power spectrum2 in the inertial range; see for example [21, 22] for more discussion.

The 4/5-law describes the on-average constant flux of kinetic energy from the injection scale down to the

viscous dissipation scale in a statistically stationary flow. It is considered the only ‘exact law’ of turbulence

and an analogous law of constant flux of conserved quantities through the inertial ranges is expected in all

turbulent systems (see discussions in [31, 41]).

Wave turbulence in dispersive PDEs is expected to hold in a weakly nonlinear regime of turbulence,

i.e. when the solution is sufficiently small for the linear wave dynamics to dominate on large time-scales.

The classical wave turbulence theory began in [34] with the derivation of the wave-kinetic equation (WKE)

and was later continued in [24, 25]; see for example [31, 35, 41] for modern expositions on the topic. The

formal derivation assumes the dynamics to be leading order given by the linear dispersive dynamics and

studies the resonant interactions between waves over long-time scales to derive a leading order nonlinear

effect. The derivation is meant to hold for time-scales 1 ≪ t ≈ Tkin, the so-called ‘kinetic time’, which

is a characteristic time-scale for the leading order nonlinear effects. The WKE for the NLS was recently

given a mathematically rigorous proof by Deng and Hani in [12–16] where it was shown to correctly predict

the dynamics of the deterministic nonlinear Schrödinger with suitable small, random initial data (with no

damping or driving) in a certain parameter regime for times t < δTkin, i.e. a small, fixed fraction of the

1This terminology refers to intermediate ranges of scales over which little to no external forcing or dissipative effects are directly

acting on the solution. Note that this can happen in both large and small scales. The terminology originates in fluid mechanics, as

in this range scales, it leaves only the nonlinear/intertial and pressure effects.
2The ‘power spectrum’ regards a prediction of the ν → 0 asymptotics of E |k|d−1 |û(k)|2 (in the case of fluid mechanics, this

is the kinetic energy density in a frequency shell).
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kinetic time-scale (see also [9] for earlier progress) and then finally to arbitrary finite times in their recent

work [16]. A variety of related works have appeared recently, for example [1, 10, 11, 18–20, 36] and the

references therein.

In this paper we are interested in discussing the statistically stationary setting, i.e. we send t → ∞
first, and then send the parameters ν, σ, λ−1 → 0. Specifically, we are interested in identifying the correct

scaling limits of the equations in which one should see wave turbulence (vs fully developed turbulence) and

to identify easy variants of the associated constant flux balance laws. There are several motivations for this.

Firstly, many physical systems of interest are modeled as a damped-driven, statistically stationary system

(note that this setting is out of equilibrium in the statistical mechanics sense). Indeed, most systems in the

physics and engineering literature are considered in exactly this regime (see discussions in e.g. [31, 40,

41]). Secondly, the statistically stationary setting opens up the possibility of using a variety of ideas from

stochastic PDEs, ergodic theory, and random dynamical systems, which may ultimately be very helpful for

making mathematically rigorous studies of wave turbulence beyond the kinetic time-scale.

In Section 2 we discuss necessary and sufficient conditions to characterize a full dissipation anomaly

in the weak turbulence regime, in Section 3 we discuss sufficient conditions to rule out any dissipation

anomaly, and in Section 4 we discuss the possibility of ‘partial’ dissipation anomalies. In Section 5 we

briefly discuss the strong turbulence regime (which would be related to quantum hydrodynamics, rather

than wave turbulence). Finally in Section 6 we discuss the relationship of the results with the physics

literature, such as empirical observations, and end with some mathematical conjectures.

2 Necessary and sufficient conditions for full dissipation anomaly

By Fjørtoft’s argument (see e.g. [31]) suggests we will see wave action being sent by the nonlinearity to

larger and larger scales (before being dissipated at a large-scale dissipation range) while Hamiltonian energy

is sent to smaller and smaller scales (before being dissipated at the small-scale dissipation range). However,

in a weak turbulence regime, we expect a direct cascade of kinetic energy rather than the full Hamiltonian

energy, as the potential energy is expected to be higher order. The (volume-averaged) wave-action flux and

Hamiltonian flux through scale N are defined as the following, where here P≤N (resp. P≥N ) denotes the

Littlewood-Paley projection to frequencies less (resp. greater) than N ,

ΠWA[u](N) = Im

 

Td
λ

P≥NuP≥N (|u|
2 u)dx

ΠH[u](N) = −Im

 

Td
λ

∆P≤Nu
(
P≤N (|u|

2 u)− |P≤Nu|
2 P≤Nu

)
dx

+ σIm

 

Td
λ

P≤N (|u|
2 u) |P≤Nu|

2 P≤Nudx.

For most of the paper we omit the ‘[u]’ as it is always clear from context. We additionally define the kinetic

energy ‘flux’:

ΠKE(N) = −Im

 

Td
λ

∆P≤NuP≤N (|u|
2 u)dx.

In what follows we also denote Littlewood-Paley projections via subscripts

P≤Nu = u≤N , P≥Nu = u≥N .

Let us briefly discuss these definitions. Consider for a moment the conservative nonlinear Schrödinger

equation

−i∂tψ = ∆ψ + σ |ψ|2 ψ. (2.1)
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As described above, the wave action is conserved, i.e. d
dtWAλ[ψ] = 0. The quantity ΠWA[ψ](N), satisfies

d

dt
WAλ[P≥Nψ] = σΠWA[ψ](N),

and it can be interpreted as a ‘wave action flux through scale N ’ (in particular, a transfer of wave-action

from smaller scales to larger scales). Similarly, the Hamiltonian flux satisfies

d

dt
WAλ[P≤Nψ] = σΠH[ψ](N),

and so can be interpted as a ‘Hamiltonian flux through scale N ’ (in particular, a transfer of Hamiltonian

energy from larger scales to smaller scales). The quantity ΠKE satisfies

d

dt
||∇ψ||2L2

λ
= σΠKE [ψ](N),

however, it should not be interpreted as a flux as the kinetic energy is not a conservation law of (2.1).

If wave action is to be transferred to large scales and dissipated, then we expect that in the large-scale

inertial range NF ≪ N ≪ 1 (where NF = NF (ν) is a scale at which the low-frequency damping from D
dominates) the following holds:

1

σ
EΠWA(N) ≈

ν

σ2
E

∣∣∣
∣∣∣D1/2u

∣∣∣
∣∣∣
2

L2
λ

≈ ǫwa,

whereas in the small-scale inertial range 1 ≪ N ≪ ND (where ND = ND(ν) is a scale at which the

high-frequency dissipation from D dominates) that the following holds:

1

σ
EΠH(N) ≈

1

σ
ΠKE(N) ≈

ν

σ2
E

∣∣∣
∣∣∣∇D1/2u

∣∣∣
∣∣∣
2

L2
λ

≈ ǫke.

Basic sufficient conditions for these identities to hold are the main content of Theorems 2.2 and 2.1 below.

Let us briefly discuss our scaling choices before we state the theorem as it is more delicate than the

analogous choices in fully developed hydrodynamic turbulence [7, 8, 17]. If the driving is too weak, then

naturally one would not see turbulence. For this we impose the condition

lim
ν,σ→0

ν

σ2
= 0;

to make this concept precise we take two sequences {νk}k∈N , {σk}k∈N and we impose

lim
k→∞

νk = 0, lim
k→∞

σk = 0, lim
k→0

νk
σ2k

= 0.

The limit σk → 0 is what implies the nonlinearity is weak. This driving ensures that all sufficiently strong

norms are unbounded, see for example (1.2) above – it is expected that sufficiently weak norms remain

uniformly bounded, but this is wide open and is generally much stronger than what is necessary to prove

Theorems 2.1 and 2.2. Note that the fluctuation dissipation regime, ν ≈ σ2 is not included. It is unclear

what should happen in this borderline case; however Sections 3 and 4 do include this case.

Now, let us state theorems that give necessary and sufficient conditions for cascade flux balance laws

corresponding to a “full” dissipation anomaly under a condition of strong driving and weak nonlinearity.

See [7, 17] for analogues of this result for the stochastically-forced 2D Navier-Stokes and [8, 17] for 3D

Navier-Stokes. Note in those equations there is only a strong turbulence regime and so the conditions are

simpler to interpret in that case. Furthemore, note that the case of 2D NSE is more analogous to the case of

(1.1) as it has a dual cascade with two exact quadratic conservation laws.

The first result shows that the most natural condition – the vanishing of wave-action dissipation at finite

scales – is equivalent to the existence of an inertial range over which the nonlinear wave action flux exactly

balances the input wave-action.
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Theorem 2.1 (Inverse cascade). Let µλ,σ,ν be a family of invariant measures of the NLS (1.1) for a sequence

of parameters (λk, σk, νk) → (∞, 0, 0). Suppose that the external forcing satisfies Assumption 1. Suppose

that the strong driving condition holds:

lim
k→∞

νk
σ2k

= 0.

Then the following are equivalent:

(i) ∀N0 > 0 fixed there holds

lim
k→∞

νk
σ2k

E

∣∣∣
∣∣∣D1/2P≥N0

u
∣∣∣
∣∣∣
2

L2
λk

= 0. (2.2)

(ii) For all k ≥ 1, ∃NF = NF (k) with limk→∞NF = 0 such that

lim
N0→0

lim sup
k→∞

sup
N∈(NF ,N0)

∣∣∣∣
1

σk
EΠWA(N)− ǫwa

∣∣∣∣ = 0; (2.3)

The case of the direct cascade of kinetic energy is more interesting, as some weak nonlinearity assump-

tions are required for the flux of the Hamiltonian energy and kinetic energy to be asymptotically equal (and

balance the input ǫke).

Theorem 2.2 (Direct cascade of kinetic energy). Let µλ,σ,ν be a family of invariant measures of the NLS

(1.1) for a sequence of parameters (λk, σk, νk) → (∞, 0, 0). Suppose that the external forcing satisfies

Assumption 1. Suppose that the following conditions hold:

(i) sufficiently strong driving:

lim
k→∞

νk
σ2k

= 0;

(ii) weak nonlinearity and vanishing potential energy dissipation: ∀N0 > 0 fixed, there holds

lim
k→∞

σkE ||u||2L4
λk

= 0 (2.4)

lim
k→∞

νk
σk

E ||P≤N0
u||4L4

λk

= 0. (2.5)

Then, the following are equivalent

(i) ∀N0 > 0 fixed there holds

lim
k→∞

νk
σ2k

E

∣∣∣
∣∣∣∇D1/2P≤N0

u
∣∣∣
∣∣∣
2

L2
λk

= 0. (2.6)

(ii) ∀k ≥ 1, ∃ND(k) such that ND → ∞ as k → ∞ such that

lim
N0→∞

lim sup
k→∞

sup
N∈(N0,ND)

∣∣∣∣
1

σk
EΠKE(N)− ǫke

∣∣∣∣ = 0; (2.7)

and

lim
N0→∞

lim sup
k→∞

sup
N∈(N0,ND)

∣∣∣∣
1

σ
EΠH(N)− ǫke

∣∣∣∣ = 0. (2.8)
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Remark 2.3. That we take N0 → 0 in Theorem 2.1 and N0 → ∞ in Theorem 2.2 is remove any effects of

details of the forcing profies gλj . For example, they are not assumed to be compactly supported in frequency.

Theorem 2.2 does not seem to directly imply the expected balance of kinetic energy dissipation

ν

σ2
E

∣∣∣
∣∣∣∇D1/2u

∣∣∣
∣∣∣
2

L2
λ

≈ ǫke.

However, with a slight strengthening of (2.5) we have the following.

Lemma 2.4. Let µλ,σ,ν be a family of invariant measures of the NLS (1.1) for a sequence of parameters

(λk, σk, νk) → (∞, 0, 0). Suppose that the external forcing satisfies Assumption 1. If we assume (2.4)

together with

lim
k→∞

νk
σk

E ||u||4L4
λk

= 0, (2.9)

lim
k→∞

νk
σk

E ||u||2L4
λk

||∇u||2L4
λk

= 0, (2.10)

then there holds

lim
k→∞

νk
σ2k

E

∣∣∣
∣∣∣∇D1/2u

∣∣∣
∣∣∣
2

L2
λk

= ǫke.

All of the results in this note are some variation of the following basic flux balances, which can be simply

interpreted as saying that the nonlinearity must dissipate whatever the dissipation does not. The proof of

this proposition is evident from the proofs of Theorems 2.1 and 2.2.

Proposition 2.5. Let µλ,σ,ν be a family of invariant measures of the NLS (1.1) for a sequence of parameters

(λk, σk, νk) → (∞, 0, 0). Suppose that the external forcing satisfies Assumption 1. Then ∀N ≤ 1 there

holds

lim sup
k→∞

∣∣∣∣∣
1

σk
ΠWA(N)−

νk
σ2k

E

∣∣∣
∣∣∣D1/2u<N

∣∣∣
∣∣∣
2

L2
λk

∣∣∣∣∣ = oN→0(1).

If we further assume the weak nonlinearity assumptions (2.4), (2.9), and (2.10), then ∀N ≥ 1 there holds

lim sup
k→∞

∣∣∣∣∣
1

σk
ΠKE(N)−

νk
σ2k

E

∣∣∣
∣∣∣∇D1/2u>N

∣∣∣
∣∣∣
2

L2
λk

∣∣∣∣∣ = oN→∞(1),

and

lim sup
k→∞

∣∣∣∣∣
1

σk
ΠH(N)−

νk
σ2k

E

∣∣∣
∣∣∣∇D1/2u>N

∣∣∣
∣∣∣
2

L2
λk

∣∣∣∣∣ = oN→∞(1).

Remark 2.6. Note that the following a priori estimates

lim
k→∞

νk
σ2k

E

∣∣∣
∣∣∣D1/2P≥1u

∣∣∣
∣∣∣
2

L2
λk

= 0 (2.11)

lim
k→∞

νk
σ2k

E

∣∣∣
∣∣∣∇D1/2P≤1u

∣∣∣
∣∣∣
2

L2
λk

= 0, (2.12)

together imply (2.2) and (2.6).

Remark 2.7. Condition (ii) in Theorem 2.2 can be interpreted as the the vanishing potential energy input and

dissipation. The proof will clarify that the latter two conditions are claiming an inertial and integral range

over which the potential energy dissipation vanishes whereas the first condition implies that the potential

energy input will vanish (and hence the Hamiltonian energy is primarily dominated by the kinetic energy).
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2.1 Preliminaries

For the forcing, we make the following frequency localization assumptions.

Assumption 1. We assume that the family of forcing profiles
{
gλj

}
λ≥1,j≥1

satisfy the following:

1

2

∑

j

∣∣∣
∣∣∣gλj
∣∣∣
∣∣∣
2

L2
λ

:= ǫwa ≈ 1 (2.13)

1

2

∑

j

∣∣∣
∣∣∣∇gλj

∣∣∣
∣∣∣
2

L2
λ

:= ǫke ≈ 1 (2.14)

sup
λ∈(1,∞)

∑

j

(∣∣∣
∣∣∣gλj
∣∣∣
∣∣∣
2

L4
λ

+
∣∣∣
∣∣∣∆gλj

∣∣∣
∣∣∣
2

L2
λ

)
<∞ (2.15)

lim
N→0

sup
λ∈(1,∞)

∑

j

∣∣∣
∣∣∣P≤Ng

λ
j

∣∣∣
∣∣∣
2

L2
λ

= 0 (2.16)

lim
N→∞

sup
λ∈(1,∞)

∑

j

∣∣∣
∣∣∣∇P≥Ng

λ
j

∣∣∣
∣∣∣
2

L2
λ

= 0, (2.17)

Roughly speaking, the latter three assumptions ensure that the forcing is concentrated at frequencies

≈ 1. We did not attempt to find the weakest possible conditions.

Example 2.8 (Examples of admissible forcing). It is simpler to construct examples of this forcing if we

restrict to λ ∈ N and parameterize T2 as [0, 2πλ)2. For example one can choose the following frequency-

localized forcing

∑

j∈Zd:1≤|j|≤J0

qje
ij·xdW

(j)
t ,

for some fixed constants qj ∈ C and J0 ≥ 1. In this case, we do not need to index the Brownian motions

by λ. This forcing satisfies Assumption 1, however, it will almost certainly not lead to a unique invariant

measure in general. This is due to the fact that the forcing is 2π-periodic in space while the domain is 2πλ
periodic. It may be possible to prove that there is a unique invariant measure with non-trivial support in all

Fourier modes, however, no result of this type has appeared in the literature for any similar problem at the

time of writing. With this in mind, it would be more natural to choose a forcing which does not have any

long-range correlations. One simple and explicit way to do this is by the following localization method; we

show the construction in d = 2 for simplicity but one can do analogously in any dimension. Denote for

j ∈ Z2 with 0 ≤ jℓ ≤ λ− 1 the cube

Qj = [
j1
2π
,
j1 + 1

2π
)× [

j2
2π
,
j2 + 1

2π
).

Denote xj the center of the cube

xj := (
j1 + 1/2

2π
,
j2 + 1/2

2π
).

Let χ be a radially symmetric, smooth cutoff which satisfies χ ≡ 1 on Q(1,1) and vanishes outside of the

support of ∪Q1±1,1±1. Then, consider forcing of the form:

∑

j∈Z2:0<|j|ℓ∞≤λ−1

∑

ℓ∈Z2:0<|ℓ|≤ℓ0

qℓχ (x− j) eiℓ·(x−xj)dW
(j,ℓ)
t ,
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where note that we are indexing the Brownian motions over both j and ℓ. Here ℓ0 is fixed finite; if one wants

to consider forcing which is rougher in space, one could take ℓ0 = ∞ and impose a decay condition on qℓ
to obtain whichever desired regularity class. The forcing profiles would be gλ(j,ℓ) = qℓχ (x− j) eiℓ·(x−xj).
While the Brownian motions and profiles do not depend on λ per se, the range that the first index, j, runs

over is Z2 with 0 < |j|ℓ∞ ≤ λ−1, and so the form of the forcing does vary in λ. While there are no existing

results of this type in the literature, we believe it might be possible to prove that there is a unique invariant

measure for all λ if one chooses this forcing (assuming ℓ0 > 2) suitably non-degenerate; for example, a

variant of [23] suitably adapted to the energy structure of nonlinear Schrödinger may be able to do this.

It is classical to obtain almost-sure global well-posedness of the SPDE defined by (1.1).

Definition 2.9. We say an Ft-adapted Markov process u(t) ∈ C([0, T ];H1) ∩ L2(0, T ;H2) for some

0 < T <∞ solves (1.1) in the mild form if

u(t) = e−t(νD+i∆)u0 + Γt + iσ

ˆ t

0
e−(t−s)(νD+i∆) |u|2 u(s)ds,

where Γt is given by the stochastic convolution

Γt = σ
∑

j

ˆ t

0
e−(t−τ)(νD+i∆)gλj dW

(j)
τ .

The following theorem is by-now classical (see e.g. [29] and the references therein).

Theorem 2.10 (See e.g. [29]). Suppose λ, ν, σ > 0 are fixed. Let u0 be a F0-measurable random variable

with values in H1 independent from
{
W

(j,λ)
t

}
. Then, for P-almost every ω ∈ Ω, there exists a unique

Ft-adapted Markov process u(t) which satisfies ∀T < ∞, u ∈ C([0, T ];H1) ∩ L2(0, T ;H2) and which

solves (1.1) in the sense of Definition 2.9. Furthermore, the solutions are associated with a Feller Markov

semigroup Pt and there exists at least one stationary measure µ (i.e. P∗
t µ = µ) which is supported on C∞.

2.2 Proof of Theorem 2.1

We begin with the proof of Theorem 2.1, which is rather straightforward after the following lemma of

diagonalization type.

Lemma 2.11. Let {AN,k}(N,k)∈N2 be a non-negative, two-parameter sequence. If ∀N , limk→∞AN,k = 0,

then ∃ a non-decreasing sequence Nk with limk→∞Nk = ∞ such that limk→∞ANk,k = 0.

Proof. By definition, ∀N, ∃kN such that for k ≥ kN , AN,k < 2−N . Without loss of generality we may take

kN to be strictly increasing by replacing kN 7→ max(k1, .., kN−1, kN ) + 1. We now define the sequence

{Nk}k≥1 as

Nk = 1 1 ≤ k ≤ k2

Nk = 2 k2 < k ≤ k3

Nk = 3 k3 < k ≤ k4

. . . . . . .

The desired conclusion follows upon noting that the construction ensures that for all k ≥ k1, there holds,

ANk,k ≤ 2−Nk .

and limk→∞Nk = ∞ as desired.
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Proof of Theorem 2.1. First we prove that (2.2) implies (2.3). By Lemma 2.11 applied to

AN,k = E
νk
σ2k

E

∣∣∣
∣∣∣D1/2P≥N−1u

∣∣∣
∣∣∣
2

L2
λk

= 0,

we see that (2.2) implies ∃NF (k) → 0 such that

lim
k→∞

νk
σ2k

E

∣∣∣
∣∣∣D1/2P≥NF

u
∣∣∣
∣∣∣
2

L2
λk

= 0. (2.18)

In the proof here and in all proofs in the sequel, we omit the k subscripts on ν, σ, and λ for simplicity of

notation.

By projecting (1.1) with P≥N , pairing with u, and applying Itô’s lemma we have for any N > 0,

1

σ
EΠWA(N) = −

ν

σ2
E

∣∣∣
∣∣∣D1/2P≥Nu

∣∣∣
∣∣∣
2

L2
λ

+
1

2

∑

j

 ∣∣∣P≥Ng
λ
j

∣∣∣
2
dx. (2.19)

First consider the external forcing term. By the definition of ǫwa we have

∣∣∣∣∣∣
1

2

∑

j

 ∣∣∣P≥Ng
λ
j

∣∣∣
2
dx− ǫwa

∣∣∣∣∣∣
.
∑

j

∣∣∣∣P.Ng
L
j

∣∣∣∣2
L2
λ

.

Therefore, the contribution of the forcing converges to ǫwa as N → 0 uniformly in λ by the low-frequency

assumption (2.16) on the noise. Putting this together with (2.18) implies the desired result (2.3).

Next, we prove that (2.3) implies (2.2). By the above argument we have

1

σ
EΠWA(N)− ǫwa = −

ν

σ2
E

∣∣∣
∣∣∣D1/2P≥Nu

∣∣∣
∣∣∣
2

L2
λ

+ oN→0(1).

Hence, by the assumption (2.3), ∃NF → 0 such that

lim sup
k→∞

ν

σ2
E

∣∣∣
∣∣∣D1/2P≥NF

u
∣∣∣
∣∣∣
2

L2
λ

= lim
N0→0

lim sup
k→∞

sup
N∈(NF ,N0)

ν

σ2
E

∣∣∣
∣∣∣D1/2P≥Nu

∣∣∣
∣∣∣
2

L2
λ

= 0,

which in particular implies (2.2) (by the monotonicity with respect to N0). This completes the proof.

2.3 Proof of Theorem 2.2

Next we consider the more interesting case of the direct cascade.

Proof of Theorem 2.2. As above, we first prove that (2.6) implies (2.7) and (2.8).

By Lemma 2.11, (2.6) implies ∃ND(k) → ∞ such that

lim
ν,σ→0

ν

σ2
E

∣∣∣
∣∣∣∇D1/2P≤ND

u
∣∣∣
∣∣∣
2

L2
λ

= 0.

First note the ‘balance’ of kinetic energy that arises from Itô’s lemma applied to the quantity 1
2 ||∇u≤N ||

2
L2 ,

1

σ
EΠKE(N) = −

ν

σ2
E

∣∣∣
∣∣∣∇D1/2P≤Nu

∣∣∣
∣∣∣
2

L2
λ

+
1

2

∑

j

 ∣∣∣P≤N∇g
λ
ℓ

∣∣∣
2
dx.
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First consider the forcing term. We have

∣∣∣∣∣∣
1

2

∑

j

 ∣∣∣P≤N∇g
λ
j

∣∣∣
2
dx− ǫke

∣∣∣∣∣∣
.
∑

j

∣∣∣∣P&N∇g
L
j

∣∣∣∣2
L2
λ

.

Therefore, the contribution of the forcing converges to ǫke as N → ∞ uniformly in λ by the uniform

regularity assumption (2.17) on the noise. By Lemma 2.11, ∃ND = ND(k) with limk→∞ND = ∞ such

that

lim
k→∞

νk
σ2k

E

∣∣∣
∣∣∣∇D1/2P≤ND

u
∣∣∣
∣∣∣
2

L2
λk

= 0.

Hence we obtain (2.7).

Turn next to the Hamiltonian energy flux (2.8). Consider the balance of Hamiltonian energy arising

from applying Itô’s lemma to H[P≤Nu], yielding

1

σ
EΠH(N) = −

ν

σ2
E

∣∣∣
∣∣∣∇D1/2P≤Nu

∣∣∣
∣∣∣
2

L2
λ

−
ν

σ
E ||P≤Nu||

4
L4
λ
− 3

ν

σ
E ||P≤Nu∇P≤Nu||

2
L2
λ

+
1

2

∑

j

 

Td
λ

∣∣∣P≤Ng
λ
j

∣∣∣
2
dx+

σ

2

∑

j

 

Td
λ

|P≤Nu|
2
∣∣∣P≤Ng

λ
j

∣∣∣
2
dx. (2.20)

We have already seen that the assumptions on the noise imply

1

2

∑

j

 

Td
λ

∣∣∣P≤Ng
λ
j

∣∣∣
2
dx = ǫke + oN→∞(1).

Furthermore we have (by Hölder’s inequality and Bernstein’s inequality (Lemma A.1)),

σ

2

∑

j

 

Td
λ

|P≤Nu|
2
∣∣∣P≤Ng

λ
j

∣∣∣
2
dx . σE ||P≤Nu||

2
L4
λ

∑

j

∣∣∣
∣∣∣P≤Ng

λ
j

∣∣∣
∣∣∣
2

L4
λ

. σE ||u||2L4
λ

∑

j

∣∣∣
∣∣∣gλj
∣∣∣
∣∣∣
2

L4
λ

,

which then vanishes in the limit by (2.4) and the assumption (2.15) on the forcing. Turn next to the dissi-

pation terms. By Lemma 2.11, ∀k, ∃ND(k) with limk→∞ND = ∞ such that the following holds by (2.4)

and (2.5) respectively,

lim
k→∞

ν

σ2
E ||∇P≤ND

u||2L2
λ
= 0

lim
k→∞

ν

σ
E ||P≤ND

u||4L4
λ
= 0.

Furthermore, by Bernstein’s inequality,

ν

σ
E ||P≤Nu∇P≤Nu||

2
L2
λ
.
ν

σ
E ||P≤Nu||

2
L4 ||∇P≤Nu||

2
L4
λ

. N2 ν

σ
E ||P≤Nu||

4
L4
λ
,

and therefore, by applying Lemma 2.11 again and adjusting ND further, we can also impose

lim
k→∞

ν

σ
E ||P≤ND

u∇P≤ND
u||2L2

λ
= 0,
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while still having ND → ∞. Putting everything together we have,

sup
N∈(N0,ND)

∣∣∣∣
1

σ
EΠH(N)− ǫke

∣∣∣∣ .
ν

σ2
E ||∇P≤ND

u||2L2
λ
+ lim
k→∞

ν

σ
E ||P≤ND

u||4L4
λ

+
ν

σ
E ||P≤ND

u∇P≤ND
u||2L2

λ
+ σE ||u||2L4

λ
,+oN0→∞(1),

which therefore completes the proof of (2.8).

Next, we check that (2.7) and (2.8) imply (2.6). This follows easily as in the proof of Theorem 2.1 (and

in fact, we only need to use (2.7)). By the balance of kinetic energy we have

1

σ
EΠKE(N) = −

ν

σ2
E

∣∣∣
∣∣∣∇D1/2P≤Nu

∣∣∣
∣∣∣
2

L2
λ

+ ǫke + oN→∞(1),

and so by (2.7), ∃ND(k) → ∞ such that

lim sup
k→∞

νk
σ2k

E

∣∣∣
∣∣∣∇D1/2P≤ND

u
∣∣∣
∣∣∣
2

L2
λ

≤ lim
N0→∞

lim sup
k→∞

sup
N∈(N0,ND)

∣∣∣∣
1

σ
EΠKE(N)− ǫke

∣∣∣∣ ,

from which the desired result (2.6) follows.

We end the section with a proof of Lemma 2.4.

Proof of Lemma 2.4. Recall the balance of Hamiltonian energy dissipation (1.3) which gives

ν

σ2
Eµ

∣∣∣
∣∣∣∇D1/2u

∣∣∣
∣∣∣
2

L2
λ

+
ν

σ
ReE

 

Du(|u|2 u)dx = ǫke +
σ

2
Eµ

∑

j

 

Td
L

|u|2
∣∣∣gλj
∣∣∣
2
dx.

First consider the Itô correction term. By Hölder’s inequality

σ

2
Eµ

∑

j

 

Td
λ

|u|2
∣∣∣gλj
∣∣∣
2
dx . σE ||u||2L4

λ

∑

j

∣∣∣
∣∣∣gλj
∣∣∣
∣∣∣
2

L4
λ

,

which then vanishes in the limit by assumption (2.4).

We next prove that the potential energy dissipation vanishes in the limit, by observing that due to our

particular choice of D,

ReE

 

Du(|u|2 u)dx = E ||u||4L4 + 3E ||u∇u||2L2
λ

≤ E ||u||4L4 + 3E ||u||2L4
λ
||∇u||2L4

λ
,

which then vanishes from the Hamiltonian energy balance due to (2.9) (2.10), yielding the final result.

3 Characterization of non-anomaly

Theorems 2.1 and 2.2 show that all of the dissipation concentrating at low frequencies (resp. high frequen-

cies) is equivalent to the cascade flux laws. The opposite is also true: no dissipation concentrating at low

(resp. high) frequencies is equivalent to the nonlinear fluxes vanishing.

Theorem 3.1 (Vanishing wave-action cascade). Let µλ,σ,ν be a family of invariant measures of the NLS

(1.1) for a sequence of parameters (λk, σk, νk) → (∞, 0, 0). Suppose that strong driving or fluctuation

dissipation holds:

lim sup
k→∞

νk
σ2k

<∞.

Then the following are equivalent:
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(i) Vanishing of wave-action dissipation at low frequencies

lim
N→0

lim sup
k→∞

νk
σ2k

E

∣∣∣
∣∣∣D1/2u<N

∣∣∣
∣∣∣
2

L2
λk

= 0 (3.1)

(ii) The vanishing of the nonlinear wave-action flux at high frequencies

lim
N0→0

lim sup
k→∞

sup
N∈(0,N0)

∣∣∣∣
1

σk
EΠWA(N)

∣∣∣∣ = 0. (3.2)

Remark 3.2. Notice that any a priori estimate on the low frequencies of the form: ∃δ > 0 such that:

lim sup
ν,σ→0

ν

σ2

∣∣∣
∣∣∣|∇|−δD1/2u≤1

∣∣∣
∣∣∣
2

L2
λ

<∞,

is sufficient to prove (3.1).

The corresponding theorem for the kinetic energy cascade is the following.

Theorem 3.3 (Vanishing kinetic energy cascade). Let µλ,σ,ν be a family of invariant measures of the NLS

(1.1) for a sequence of parameters (λk, σk, νk) → (∞, 0, 0). Suppose that the following conditions hold:

(i) strong driving or fluctuation dissipation:

lim sup
k→∞

νk
σ2k

<∞.

(ii) the weak nonlinearity assumptions (2.4), (2.9), and (2.10).

Then, the following are equivalent:

(i) The vanishing of kinetic energy dissipation at high frequencies

lim
N→∞

lim sup
k→∞

νk
σ2k

E

∣∣∣
∣∣∣∇D1/2u>N

∣∣∣
∣∣∣
2

L2
λk

= 0. (3.3)

(ii) The vanishing of kinetic energy and Hamiltonian energy flux at high frequencies:

lim
N0→∞

lim sup
k→∞

sup
N∈(N0,∞)

∣∣∣∣
1

σk
EΠH(N)

∣∣∣∣ = 0 (3.4)

and

lim
N0→∞

lim sup
k→∞

sup
N∈(N0,∞)

∣∣∣∣
1

σk
EΠKE(N)

∣∣∣∣ = 0. (3.5)

Remark 3.4. Notice that any a priori regularity estimate such as: ∃δ > 0 such that:

lim sup
ν,σ→0

ν

σ2
E

∣∣∣
∣∣∣|∇|δ∇D1/2u≥1

∣∣∣
∣∣∣
2

L2
λ

<∞,

is sufficient to prove (3.3). Hence, the formation of a true cascade requires that the a priori regularity

estimates given by the dissipation balance are basically sharp, at least in terms of estimates available in L2

moments in P.
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3.1 Proof of Theorems 3.1 and 3.3

Proof of Theorem 3.1. As in previous proofs, we drop the k subscripts. By the wave action dissipation

balance (1.2) and wave-action flux balance (2.19) we have ∀N > 0 (as in the proof of Theorem 2.1),

1

σ
EΠWA(N) =

ν

σ2
E

∣∣∣
∣∣∣D1/2P≤Nu

∣∣∣
∣∣∣
2

L2
λ

+ oN→0(1),

which implies

sup
N∈(0,N0)

∣∣∣∣
1

σ
ΠWA(N)

∣∣∣∣ =
ν

σ2
E

∣∣∣
∣∣∣D1/2P≤N0

u
∣∣∣
∣∣∣
2

L2
λ

+ oN0→0(1).

Therefore (3.1) is equivalent to (3.2).

Proof of Theorem 3.3. We only consider the more interesting case of (3.4). By the Hamiltonian energy

dissipation balance (2.20) we have

1

σ
EΠH(N) = −

ν

σ2
E

∣∣∣
∣∣∣∇D1/2P≤Nu

∣∣∣
∣∣∣
2

L2
λ

−
ν

σ
E ||P≤Nu||

4
L4
λ
− 3

ν

σ
E ||P≤Nu∇P≤Nu||

2
L2
λ

+ ǫke +
σ

2

∑

j

 

Td
λ

|P≤Nu|
2
∣∣∣P≤Ng

λ
j

∣∣∣
2
dx+ oN→∞(1).

By the assumptions (2.4), (2.9), and (2.10) as in the proof of Theorem 2.2 we have

1

σ
EΠH(N) = ǫke −

ν

σ2
E

∣∣∣
∣∣∣∇D1/2P≤Nu

∣∣∣
∣∣∣
2

L2
λ

+ ok→∞(1) + oN→∞(1).

By Lemma 2.4, there then holds

1

σ
EΠH(N) =

ν

σ2
E

∣∣∣
∣∣∣∇D1/2P>Nu

∣∣∣
∣∣∣
2

L2
λ

+ ok→∞(1) + oN→∞(1).

Therefore,

sup
N≥N0

∣∣∣∣
1

σ
EΠH(N)

∣∣∣∣ =
ν

σ2
E

∣∣∣
∣∣∣∇D1/2P>N0

u
∣∣∣
∣∣∣
2

L2
λ

+ ok→∞(1) + oN0→∞(1)

and therefore we see that (3.3) is equivalent to (3.4).

4 Partial dissipation anomaly

Although not clearly consistent with observations, there is a possibility that some, but not all, of the wave-

action (resp. kinetic energy) will be dissipated at asymptotically large scales (resp. small scales), leaving

the rest to be dissipated either in the integral or inertial range. In the strong driving regime

ν

σ2
→ 0

non-trivial dissipation of wave-action (or kinetic energy) at any fixed scale N0 implies a divergence in

amplitude:

E ||u≈N0
||2L2

λ
→ ∞. (4.1)
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This does not rule out the possibility that some of the wave action is sent to asymptotically low frequencies

as k → ∞ and, the most important condition for weak turbulence, condition (2.4), is not in contradiction

to (4.1) either. We make the following assertion about nonlinear wave action flux if there is partial, but not

total, dissipation anomaly. Note that the following theorem does not require the strong driving condition,

and it makes sense even if

lim inf
k→∞

νk
σ2k

> 0.

Theorem 4.1 (Partial inverse cascade). Let µλ,σ,ν be a family of invariant measures of the NLS (1.1) for a

sequence of parameters (λk, σk, νk) → (∞, 0, 0). Suppose that the external forcing satisfies Assumption 1.

Let ǫ⋆wa ∈ [0, ǫwa] be defined by

lim inf
N0→0

lim inf
k→∞

νk
σ2k

E

∣∣∣
∣∣∣D1/2P≤N0

u
∣∣∣
∣∣∣
2

L2
λ

= ǫ⋆wa (4.2)

If ǫ⋆wa > 0, then ∀k ≥ 1, ∃NF (k) which satisfies limk→∞NF = 0 such that

lim inf
N0→0

lim sup
k→∞

inf
N∈(NF ,N0)

1

σ
EΠWA(N) ≥ ǫ⋆wa. (4.3)

Proof. As above, by (2.19), (1.2), and Assumption 1. we have

1

N
ΠWA(N) = −

νk
σ2k

E

∣∣∣
∣∣∣D1/2P≤Nu

∣∣∣
∣∣∣
2

L2
λ

+ oN→0(1)

Since for N ′ ≤ N there holds

νk
σ2k

E

∣∣∣
∣∣∣D1/2P≤N ′u

∣∣∣
∣∣∣
2

L2
λ

≤
νk
σ2k

E

∣∣∣
∣∣∣D1/2P≤Nu

∣∣∣
∣∣∣
2

L2
λ

,

for any 0 < NF < N0 there holds

inf
N∈(NF ,N0)

1

N
ΠWA(N) ≥

νk
σ2k

E

∣∣∣
∣∣∣D1/2P≤NF

u
∣∣∣
∣∣∣
2

L2
λ

+ oN0→0(1).

By an argument similar to Lemma 2.11 , the assumption (4.2) implies ∃NF (k) with limk→∞NF = 0 such

that

lim inf
k→∞

νk
σ2k

E

∣∣∣
∣∣∣D1/2P≤NF

u
∣∣∣
∣∣∣
2

L2
λ

= ǫ⋆wa.

The result then follows.

Theorem 4.2 (Partial direct cascade). Let µλ,σ,ν be a family of invariant measures of the NLS (1.1) for a

sequence of parameters (λk, σk, νk) → (∞, 0, 0). Suppose that the external forcing satisfies Assumption 1.

Suppose that the following conditions hold:

lim
k→∞

σE ||u||2L4
λ
= 0, (4.4)

lim
k→∞

ν

σ
E ||u||4L4

λ
= 0, (4.5)

lim
k→∞

ν

σ
E ||u||2L4

λ
||∇u||2L4

λ
= 0. (4.6)
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Let ǫ⋆ke ∈ [0, ǫke] be defined by

lim inf
N0→∞

lim inf
k→∞

νk
σ2k

E

∣∣∣
∣∣∣∇D1/2P>N0

u
∣∣∣
∣∣∣
2

L2
λ

= ǫ⋆ke (4.7)

If ǫ⋆ke > 0, then ∀k ≥ 1, ∃ND(k) → ∞ as k → ∞ such that

lim inf
N0→∞

lim inf
k→∞

inf
N∈(N0,ND)

1

σ
EΠKE(N) ≥ ǫ⋆ke; (4.8)

and

lim inf
N0→∞

lim sup
k→∞

inf
N∈(N0,ND)

1

σ
EΠH(N) ≥ ǫ⋆ke. (4.9)

Proof. The proof proceeds by combining the arguments of Theorem 4.1 with Theorem 2.2, so we only

provide a sketch. We will only consider (4.9) as (4.8) is the same but easier. By Lemma 2.4 and (2.20) and

the arguments applied in the proof of Theorem 2.2, there holds

1

σ
EΠH(N) =

ν

σ2
E

∣∣∣
∣∣∣∇D1/2P>Nu

∣∣∣
∣∣∣
2

L2
λ

−
ν

σ
E ||P≤Nu||

4
L4
λ
− 3

ν

σ
E ||P≤Nu∇P≤Nu||

2
L2
λ

+
σ

2

∑

j

 

Td
λ

|P≤Nu|
2
∣∣∣P≤Ng

λ
j

∣∣∣
2
dx+ oN→∞(1).

By the assumption (4.4) there holds (as above)

lim sup
k→∞

sup
N≥1

σ

2

∑

j

 

Td
λ

|P≤Nu|
2
∣∣∣P≤Ng

λ
j

∣∣∣
2
dx = 0

and by assumptions (4.5) and (4.6),

lim sup
k→∞

sup
N≥1

νk
σk

E ||P≤Nu||
4
L4
λ
= 0

lim sup
k→∞

sup
N≥1

νk
σk

E ||P≤Nu∇P≤Nu||
2
L2
λ
= 0.

As above, by an argument similar to Lemma 2.11 , the assumption (4.7) implies ∃ND(k) with limk→∞ND =
∞ such that

lim inf
k→∞

νk
σ2k

E

∣∣∣
∣∣∣D1/2P≥ND

u
∣∣∣
∣∣∣
2

L2
λ

= ǫ⋆ke.

Putting these observations together we have,

inf
N∈(N0,ND)

1

σ
EΠH(N) ≥

ν

σ2
E

∣∣∣
∣∣∣∇D1/2P>ND

u
∣∣∣
∣∣∣
2

L2
λ

+ oN0→∞(1) + ok→∞(1),

from which the desired result follows.
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5 Remarks on the strong turbulence regime

In the ‘strong’ turbulence regime, it is expected that the NLS behaves more like quantum hydrodynamic

turbulence, characterized mostly as a tangle of interacting and reconnecting vortex filaments (see e.g. [32,

33,37,38] and the references therein), rather than being dispersive wave dominated in any traditional sense.

We end with a remark which follows up the idea that (2.4) is the only assumption we are making which

seems to really distinguish between ‘weak’ and ‘strong’ turbulence at the level of the cascade flux laws. In

particular, the most fundamental marker of weak vs strong turbulence is simply whether or not the direct

cascade is dominated by the ‘linear’ kinetic energy or the ‘fully nonlinear’ Hamiltonian energy; see for

example, discussions in [40]. Without an assumption like (2.4), one can instead prove a cascade flux law for

the Hamiltonian energy, rather than the kinetic energy. The assumptions that replace (2.4) are basically (A)

assuming that the Hamiltonian energy input has a well-defined limit, at least on a subsequence of parameters

(assumption (5.1)) and (B) an additional regularity estimate that implies that the potential energy is mostly

being injected at large scales (assumption (5.5)). The most clear indicator of a ‘strong’ turbulence regime

is then that ǫH > ǫke, although perhaps there might be intermediate regimes with σ → 0 that have some

mixture of both wave and strong turbulence.

Theorem 5.1. Let µλ,σ,ν be a family of invariant measures of the NLS (1.1) for a sequence of parameters

(λk, σk, νk) with νk → 0 and where we assume strong driving (however, note that we do not necessarily

require σ → 0 or even λ→ ∞)

lim
k→∞

νk
σ2k

= 0.

Suppose that there exists ∃ǫH <∞ such that

ǫH = ǫke + lim
k→∞

σk
2
E

∑

j

 

Td
λk

|u|2
∣∣∣gλkj

∣∣∣
2
dx. (5.1)

Suppose that for all N0 there holds the following vanishing dissipation conditions:

lim
k→∞

νk
σ2k

E

∣∣∣
∣∣∣∇D1/2P≤N0

u
∣∣∣
∣∣∣
2

L2
λk

= 0, (5.2)

lim
k→∞

νk
σk

E ||P≤N0
u||4L4

λk

= 0. (5.3)

Suppose that the following regularity assumptions hold:

lim sup
k→∞

σkE ||u||2L4
λk

<∞, (5.4)

lim
N→∞

lim sup
k→∞

σkE ||u||L4
λk

||u>N ||L4
λk

= 0, (5.5)

Finally, assume the following mild additional regularity estimate on the noise

lim sup
N→∞

sup
λ∈(1,∞)

∑

j

∣∣∣
∣∣∣P≥Ng

λ
j

∣∣∣
∣∣∣
2

L4
λk

= 0. (5.6)

Then ∃ND = ND(k) with limk→∞ND = ∞ such that

lim
N0→∞

lim sup
k→∞

sup
N∈(N0,ND)

∣∣∣∣
1

σk
ΠH(N)− ǫH

∣∣∣∣ = 0. (5.7)
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Remark 5.2. A priori estimates such as the following for any J <∞,

lim sup
k→∞

νk
σ2k

(
E ||∇P≤1u||

2
L2
λk

+E

∣∣∣
∣∣∣〈∇〉−J P≥1u

∣∣∣
∣∣∣
2

L2
λk

)
= 0 (5.8)

lim sup
k→∞

νk
σk

(
E ||P≤1u||

4
L4
λk

+
1

λdk
E

∣∣∣
∣∣∣〈∇〉−J P≥1u

∣∣∣
∣∣∣
4

L2
λk

)
= 0, (5.9)

imply (5.2) and (5.3). See below for a proof.

Proof of Theorem 5.1. As previously, we omit the subscripts on the parameters. By the Hamiltonian flux

balance (2.20), there holds

1

σ
ΠH = −

ν

σ2
E

∣∣∣
∣∣∣∇D1/2u<N

∣∣∣
∣∣∣
2

L2
λ

−
ν

σ
E ||u<N ||

4
L4
λ
− 3

ν

σ
E ||u<N∇u<N ||

2
L2
λ

+
1

2

∑

j

 ∣∣∣P<N∇gλj
∣∣∣
2
dx

+
1

2

∑

j

E

 

|P<Nu|
2
∣∣∣P<Ngλj

∣∣∣
2
dx.

As in the proof of Theorem 2.2 there holds

∑

j

 ∣∣∣P<N∇gλj
∣∣∣
2
dx = ǫke + oN→∞(1).

Moreover, the Itô correction converges by (5.4), (5.5), and (5.6)

σ

∣∣∣∣∣∣
∑

j

E

 

|P<Nu|
2
∣∣∣P<Ngλj

∣∣∣
2
dx−

∑

j

E

 

|u|2
∣∣∣gλj
∣∣∣
2
dx

∣∣∣∣∣∣
. σE ||u||L4

λ
||u>N ||L4

λ

∑

j

∣∣∣
∣∣∣gλj
∣∣∣
∣∣∣
2

L4
λ

+ σE ||u||2L4
λ

∑

j

∣∣∣
∣∣∣gλj
∣∣∣
∣∣∣
L4
λ

∣∣∣
∣∣∣P>Ngλj

∣∣∣
∣∣∣
L4
λ

.

Therefore it follows that

∑

j

 ∣∣∣P<N∇gλj
∣∣∣
2
dx+

∑

j

E

 

|P<Nu|
2
∣∣∣P<Ngλj

∣∣∣
2
dx = ǫH + ok→∞,N→∞(1).

By Lemma 2.11 we may find a sequence ND(k) → ∞ such that all of the dissipation terms (both kinetic

and potential) vanish in the k → ∞ limit over the inertial range N0 ≤ N ≤ ND. Hence, as in the proof of

Theorem 2.2, the desired result follows.

Proof of Remark 5.2. By Bernstein’s inequalities (see Lemma A.1) we have

νk
σ2k

E

∣∣∣
∣∣∣∇D1/2P≤N0

u
∣∣∣
∣∣∣
2

L2
λk

. N2
0

νk
σ2k

E ||∇P≤N0
u||2L2

λk

. N2
0

νk
σ2k

(
E ||∇P≤1u||

2
L2
λk

+N2+J
0 E

∣∣∣
∣∣∣〈∇〉−J P>1u

∣∣∣
∣∣∣
2

L2
λk

)
,
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which shows that (5.8) implies (5.2).

Similarly, note that by Bernstein’s inequality (see Lemma A.1)

||P≤N0
u||4L4

λ
. ||P≤1u||

4
L4
λ
+ ||P1<·<N0

u||4L4
λ

. ||P≤1u||
4
L4
λ
+
Nd+J

0

λdk

∣∣∣
∣∣∣〈∇〉−J P>1u

∣∣∣
∣∣∣
4

L2
λ

,

which shows that (5.9) implies (5.3).

6 Discussion and conjectures

We end with some discussion regarding the results and their relationship with existing physics literature.

Let us first discuss the predicted Kolmogorov-Zakharov power spectrum as well as our choice of splitting σ
between the forcing and nonlinearity. If one simply uses the direct scaling,

−i∂tψ = ∆ψ − |ψ|2 ψ − iνD(∇)ψ + iσ
∑

j

gλj dW
(j)
t , (6.1)

the Kolmogorov-Zakharov (KZ) power spectrum (modulo perhaps logarithmic corrections for 1 ≪ |k|),
predicts that

E |k|d−1
∣∣∣ψ̂(k)

∣∣∣
2
≈

{
ǫ
1/2
wa σ2/3k−1/3 NF ≪ |k| ≪ 1

ǫ
1/3
ke σ

2/3k−1 1 ≪ |k| ≪ ND.

See for example [31, 41], where this prediction is derived from the Wave-Kinetic Equation (WKE). Then,

the driving conditions σ → 0 and νσ−2 → 0 would imply that limν,σ→0E ||ψ||2L2 = 0. Hence, if we want

to potentially get a non-vanishing and non-divergent limit, we should study the unknown u = ψ
σ1/3 , which is

precisely the choice we made to derive (1.1). With this scaling, we expect the stationary measures {µλ,ν,σ}
in the (λ, ν, σ) → (∞, 0, 0) limit to converge to an invariant measure of the linear Schrödinger equation,

even more specifically, one where all of the Fourier modes are jointly independent complex Gaussians. The

nonlinear dynamics (and non-Gaussian statistics) would appear at the next order in σ. See [31] for more

details on this prediction.

The weak nonlinearity conditions might imply that ν cannot be arbitrarily small relative to σ. For

example, the KZ spectrum predicts that E ||P≥1u||
2
L2
λ
& ǫ

1/3
ke |log ν|. Hence, if one does not have σ ≪

|log ν|−1
, we could expect the Hamiltonian energy input per unit time to diverge as ν → 0 (see (1.3)).

Similarly, note that in Theorems 2.1 and 2.2, there are no conditions which explicitly relate λ to ν or σ (as

one may expect), however, there could be restrictions implicitly implied.

It is important to emphasize that the validity of the KZ power spectrum does not follow (neither heuristi-

cally nor rigorously) from (2.3), (2.7), or (2.8). However, Theorems 2.1 and 2.2 show that anything close to

a KZ power spectrum would imply the flux balance laws (2.3), (2.7), or (2.8). Indeed, it is entirely possible

that laws such as (2.3), (2.7), or (2.8) will hold even when other aspects of wave turbulence, such as the

WKE or KZ power spectra, fail in the statistically stationary regime (see [40] for numerical evidence of this

possibility in some 1d wave turbulence problems). A future proof of the flux laws is likely to proceed by

proving some of the basic principles of wave turbulence theory with much deeper methods which then in

turn imply that the hypotheses of Theorems 2.1 and 2.2 hold. This is how Yaglom’s law [39] (the analogue

flux balance law) was proved for Batchelor regime passive scalar turbulence in [4]. The Batchelor spectrum

[2] (the analogue of the KZ spectra) came later after significantly more effort: see [6] which uses [3–5].

That the power spectrum was much harder to prove than the flux balance law seems likely to be a general

phenomenon.
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Regarding the dissipation operatorD, we note that the statistics within the inertial range are not expected

to depend on D [31, 41]. It should be possible to generalize condition (ii) in Theorem 2.2 above to cover a

variety of dissipation operators. For example, more general operators of the form:

D(k) =
1

|k|2α
+ |k|2γ ,

where α ≥ 0 and γ ≥ 1. Common choices employed in numerical computations are of the hyper-viscous

form, i.e. γ > 1 (see e.g. [30, 40] and the references therein).

To clarify the relationship between our mathematical setting and the physics literature, we have included

an almost-precise mathematical conjecture regarding some of the important behaviors of (1.1) that are sug-

gested by wave turbulence theory applied in the statistically stationary regime. We have enumerated the

statements in what we believe to be roughly increasing difficulty (and in decreasing likelihood to be correct

exactly as stated).

Conjecture 1. Let µλ,σ,ν be a family of invariant measures of the NLS (1.1) for a sequence of parameters

(λk, σk, νk) → (∞, 0, 0). Suppose that the external forcing satisfies Assumption 1 and that the forcing is

sufficiently non-degenerate such that the invariant measures are all unique. Finally, suppose that the strong

driving condition holds:

lim
k→∞

νk
σ2k

= 0,

and possibly other further restrictions on (λk, σk, νk), to be determined, that ensure a weakly nonlinear

regime (e.g. (2.4) and (2.5)). Then the following holds:

1. Full dissipation anomaly, in the sense that conditions (2.2), (2.4), and (2.10) all hold.

2. There exists s∗, s∗, r∗, and r∗ such that: for s > s∗ and s′ < s∗ we have

sup
k≥0

E |||∇|s P≤1u||
2
L2
λ
<∞ (6.2)

sup
k≥0

E

∣∣∣
∣∣∣|∇|s

′

P≥1u
∣∣∣
∣∣∣
2

L2
λ

<∞, (6.3)

while for all r < r∗ and all r′ > r∗,

sup
k≥0

E |||∇|r∗ P≤1u||
2
L2
λ
= ∞

sup
k≥0

E

∣∣∣
∣∣∣|∇|r

∗

P≥1u
∣∣∣
∣∣∣
2

L2
λ

= ∞.

3. There is a measure µ∞ ∈ P(H) such that all of the Fourier modes are jointly independent Complex

Gaussians which satisfies µλk,σk,νk ⇀
∗ µ∞. Here H is an appropriate Hilbert space of distributions

defined on Rd which locally obey estimates of the type in (6.2) and (6.3).

4. Claim (2) holds with r∗ = s∗ = −1/3, r∗ = s∗ = 0 (as predicted by the WKE through the KZ

spectra).

5. There ∃C∗, C
∗, N∗, N

∗ independent of ν, σ and frequencies limν,σ→0ND = ∞ and limν,σ→0NF =
0 such that (possibly up to logarithmic corrections),

1

C∗
2−2j/3 ≤ E

∑

2j≤|k|≤2j+1

|û(k)|2 ≤ C∗2
−2j/3 NF ≤ 2j ≤ N∗

1

C∗
≤ E

∑

2j≤|k|≤2j+1

|û(k)|2 ≤ C∗ N∗ ≤ 2j ≤ ND.
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A Fourier analysis conventions and Littlewood-Paley

We define the Fourier transform on Tdλ, where below we denote Zdλ = (Zλ )
d

û(k) =

ˆ

Td
λ

u(x)e−ix·kdx

ǔ(x) =
1

(2πλ)d

∑

k∈Zd
λ

û(k)eik·x.

With this convention we have for u, g ∈ L2(Tdλ),

1

(2πλ)d

∑

k∈Zd
λ

|û(k)|2 =

ˆ

Td
λ

|u(x)|2 dx

1

(2πλ)d

∑

k∈Zd
λ

ĝ(k)û(k) =

ˆ

Td
λ

g(x)u(x)dx

f̂ ∗ g(k) = f̂(k)ĝ(k)

f̂ g(x) =
1

(2πλ)d
f̂ ∗ ĝ.

We use the following Fourier multiplier notation: given any locally integrable function we can (at least

formally) define the Fourier multiplier by

m̂(∇)f(k) = m(ik)f̂(k).

Next let us state our conventions surrounding Littlewood-Paley decomposition.s Specifically, we set

ψ ∈ C∞(B(0, 2)) with ψ(x) ≡ 1 for |x| ≤ 1 and define for k ∈ Zdλ,

P̂≤Nu(k) := û≤N (k) := ψ

(
k

N

)
û(k),

and the frequency ‘projections’

PNu := uN := u≤2N − u≤N

PA≤·≤B := uA≤·≤B := u≤B − u≤A.

These are not true projections, however note that

PN/8≤·≤8NPNu = PNu.

Notice that for all functions with û(0) = 0, we have the following

||u||2L2 =
∑

N∈2Zd

||uN ||
2
L2

and if |j − k| ≥ 2 and N = 2i, M = 2j , then

〈uN , uM 〉 = 0.

Notice that we use a Littlewood-Paley decomposition which is uniform in λ, that is, the dyadic shells are

chosen independent of λ, so that as λ varies, the number of frequencies included in a given Littlewood-Paley

‘projection’ varies. We have the following uniform-in-λ Bernstein’s inequalities.
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Lemma A.1 (Bernstein’s inequalities). The following inequalities hold for all N ∈ 2Z uniformly in λ and

1 ≤ p ≤ q ≤ ∞,

||u≤N ||Lp . ||u||Lp (A.1)

||∇u≤N ||Lp . N ||u||Lp (A.2)

||uN ||Lp . ||u||Lp (A.3)

||N suN ||Lp ≈ |||∇|s uN ||Lp (A.4)

||uN ||Lq .

(
N

λ

)d
(

1

p
− 1

q

)

||uN ||Lp . (A.5)

Proof. First note that

u≤N =
1

Nd
ψ̌
( ·

N

)
∗ u.

Note that

ψ̌ (x) =
1

(2πλ)d

∑

k∈Zd
λ

ψ(k)eik·x.

We will show that N−dψ̌(N−1·) makes an approximation of the identity uniformly in λ. First, note that

∇β
xψ̌ (x) =

1

(2πλ)d

∑

k∈Zd
λ

(ik)⊗βψ(k)eik·x,

and hence (note no constants depend on λ)

∣∣∣∇β
xψ̌(x)

∣∣∣ .d
2β

λd

∑

k∈Zd
λ:|k|≤2

1 ≈d 2
β .

By summation by parts, (and |x| ≤ π) we have

ixjψ̌ (x) =
1

(2πλ)d

∑

k∈Zd
λ

ψ(k)ixje
ik·x

=
1

(2πλ)d

∑

k∈Zd
λ

ψ(k)
ixj(

eixj/(λ) − 1
)
(
ei(k+λ

−1ej)·x − eik·x
)

= −
1

(2πλ)d

∑

k∈Zd
λ

(
ψ(k)− ψ(k − λ−1ej)

) ixj(
eixj/(λ) − 1

)eik·x.

Then, notice that

∣∣ψ(k)− ψ(k − λ−1ej)
∣∣ . 1

λ∣∣∣∣∣
ixj(

eixj/(λ) − 1
)
∣∣∣∣∣ . λ,

and so, similar to above, we have uniformly in λ,

∣∣xjψ̌(x)
∣∣ .d 1.
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Iterating this for higher powers of xβ simply gives higher and higher order finite-differences of ψ, resulting

in a similar O(λ−β) to balance each additional power. One can similarly obtain localization estimates on

the derivatives of ψ̌. It follows that the sequence N−dψ(·N−1) (along with the average zero property)

is a smooth approximation to the identity that satisfies all the properties one desires of a mollifier. This

immediately implies (A.1), (A.2), and (A.3) by Young’s convolution inequality.

Having seen how Tdλ is dealt with, the proofs of (A.4) and (A.5) proceed in the usual manner.
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