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Abstract

In this note we point out some simple sufficient (plausible) conditions for ‘turbulence’ cascades
in suitable limits of damped, stochastically-driven nonlinear Schrodinger equation in a d-dimensional
periodic box. Simple characterizations of dissipation anomalies for the wave action and kinetic energy
in rough analogy with those that arise for fully developed turbulence in the 2D Navier-Stokes equations
are given and sufficient conditions are given which differentiate between a ‘weak’ turbulence regime
and a ‘strong’ turbulence regime. The proofs are relatively straightforward once the statements are
identified, but we hope that it might be useful for thinking about mathematically precise formulations of
the statistically-stationary wave turbulence problem.
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This note is regarding (weak) wave turbulence in dispersive PDE in the statistically stationary regime sub-
jected to white-in-time stochastic forcing and dissipation. We are interested in precising some simple suf-
ficient conditions to observe the flux balance laws of both inverse and direct cascades that are observed in
wave turbulence; see e.g. [31,41] and more discussions below. In this section, we consider a torus of side-
length 27\, ']I‘gl\ with d = 2, 3 and the cubic nonlinear Schrodinger equation (NLS) rescaled in the following
manner for two small parameters o, > 0

—idu = (Au +o \u|2 U+ in(V)u) dt + ioc Z gj‘th(j)7
J
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The choice of splitting the o between the forcing and the nonlinearity is so that the formal limiting dynamics
in the v, 0 — 0 limit is the linear Schrédinger equation; see Section 6 for more discussion on this point.

Here the {Wt(j ’)‘)} are independent Wiener processes on a common canonical filtered probability space
(Q, F, F, P). We have allowed force to depend on the side-length of the box, i.e. for each A > 0, there is
a different set of { g;‘} and Brownian motions Wt(j ) The exact assumptions on the forcing is given below
in Assumption 1; for now we just remark that the functions g]).‘ are average zero, localized in frequency at
scales =~ 1, locally uniformly bounded, i.e. sup Aj ‘ ‘ g])“ ‘Wl’oo < o0, and normalized such that the volume-

averaged wave-action (mass) input per unit time is ~ o2, namely the noise is fixed so that the following
parameter is approximately independent of \:

1
€wa = €wa(A) = 5 ;]{rg

where the crossed integral sign denotes average, i.e. de = W de. We also define a corresponding €.,
A A

although its interpretation as related to ‘volume-averaged kinetic energy input per unit time’ will only be
precise in a weak turbulence regime

2
g?’ da,

2
Vg;\‘ dz.

1
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For simplicity and definiteness we set the dissipation operator D (k) to simply be
D=1-A.

With this choice of D, (1.1) is almost-surely globally well-posed in both 2D and 3D and the associated
Markov process has at least one stationary measure supported on smooth functions [29] (see Theorem 2.10
below for precise statement). In what follows, we generally use volume-averaged LP spaces,

1/p
1fllzg = (fr If(w)lpdx> |

A
The (non-driven, non-damped) conservative initial value problem conserves two basic quantities, the wave
action (here volume-averaged):

1

WA = 3|

2
ul 25
and the Hamiltonian energy:
1 2 1 1
Halu] = 5 IVullzz + 1° [lullzs -

Let 1 = 1), be an invariant measure of the SPDE (1.1) (see Lemma 2.10). In the sequel we denote

E¢ :=E, ¢ := /L2 d(u)p(du).

The white-in-time forcing implies the following balance law (note that because H is not quadratic, the 1t6
correction still depends on w).



Lemma 1.1 (Balance of wave action and Hamiltonian dissipation [29]). For all \,o,v >, all invariant
measures [ of (1.1) satisfy the balance of wave-action dissipation

2
vE HD1/2U‘ ‘L2 = O'2Ewa, (1.2)
A
and the balance of Hamiltonian energy dissipation

2 3 2
1/2 4 2 _ 2 g 2] A
VEHVD uHLi+uaE|yu\|L§+uo3E|yuvu\|L§_a ) E]{Ti‘ luf ‘gj‘ de.  (1.3)
J

In what follows we use the following terminologies
1/2 2 . . .
vE ’ ’D / u‘ ‘LQ = “wave-action dissipation”
A

2
vE HVDI/QU‘ ‘LQ + voE ||u] |i§ + vo3E ||uVul |%§ = “Hamiltonian energy dissipation”
A

2
, = “kinetic energy dissipation”.
L

A

VEHVDV%)

The most fundamental concepts in statistical theories of turbulence are the notions of anomalous dissi-
pation and nonlinear cascade, wherein a conserved quantity is injected and then through nonlinear effects,
is sent either to lower frequencies (an inverse cascade) or to higher frequencies (a direct cascade) where it
is eventually dissipated by the damping on the system, regardless of how small the dissipative parameter
v is (called ‘anomalous dissipation’). The range of scales between the injection scale and the dissipation
scale(s) is/are called the inertial range(s)', and it is here that we expect statistical universality, i.e. the statis-
tics should be essentially independent of the exact form of the dissipative effects and external forcing. The
statistical theory of hydrodynamic turbulence in the 3D Navier-Stokes equations was founded in earnest by
Kolmogorov in his K41 works [26-28] where he gave a (non-mathematically rigorous) derivation of his 4 /5-
law and predicted the power spectrum? in the inertial range; see for example [21,22] for more discussion.
The 4/5-law describes the on-average constant flux of kinetic energy from the injection scale down to the
viscous dissipation scale in a statistically stationary flow. It is considered the only ‘exact law’ of turbulence
and an analogous law of constant flux of conserved quantities through the inertial ranges is expected in all
turbulent systems (see discussions in [31,41]).

Wave turbulence in dispersive PDEs is expected to hold in a weakly nonlinear regime of turbulence,
i.e. when the solution is sufficiently small for the linear wave dynamics to dominate on large time-scales.
The classical wave turbulence theory began in [34] with the derivation of the wave-kinetic equation (WKE)
and was later continued in [24,25]; see for example [31, 35,41] for modern expositions on the topic. The
formal derivation assumes the dynamics to be leading order given by the linear dispersive dynamics and
studies the resonant interactions between waves over long-time scales to derive a leading order nonlinear
effect. The derivation is meant to hold for time-scales 1 < t ~ Tg;,, the so-called ‘kinetic time’, which
is a characteristic time-scale for the leading order nonlinear effects. The WKE for the NLS was recently
given a mathematically rigorous proof by Deng and Hani in [12—-16] where it was shown to correctly predict
the dynamics of the deterministic nonlinear Schrodinger with suitable small, random initial data (with no
damping or driving) in a certain parameter regime for times t < 07%;y, i.e. a small, fixed fraction of the

!This terminology refers to intermediate ranges of scales over which little to no external forcing or dissipative effects are directly
acting on the solution. Note that this can happen in both large and small scales. The terminology originates in fluid mechanics, as
in this range scales, it leaves only the nonlinear/intertial and pressure effects.

2The ‘power spectrum’ regards a prediction of the » — 0 asymptotics of E |k|?~* |a(k)|? (in the case of fluid mechanics, this
is the kinetic energy density in a frequency shell).



kinetic time-scale (see also [9] for earlier progress) and then finally to arbitrary finite times in their recent
work [16]. A variety of related works have appeared recently, for example [1, 10, 11, 18-20, 36] and the
references therein.

In this paper we are interested in discussing the statistically stationary setting, i.e. we send { — o0
first, and then send the parameters v, 0, \™' — 0. Specifically, we are interested in identifying the correct
scaling limits of the equations in which one should see wave turbulence (vs fully developed turbulence) and
to identify easy variants of the associated constant flux balance laws. There are several motivations for this.
Firstly, many physical systems of interest are modeled as a damped-driven, statistically stationary system
(note that this setting is out of equilibrium in the statistical mechanics sense). Indeed, most systems in the
physics and engineering literature are considered in exactly this regime (see discussions in e.g. [31, 40,
41]). Secondly, the statistically stationary setting opens up the possibility of using a variety of ideas from
stochastic PDEs, ergodic theory, and random dynamical systems, which may ultimately be very helpful for
making mathematically rigorous studies of wave turbulence beyond the kinetic time-scale.

In Section 2 we discuss necessary and sufficient conditions to characterize a full dissipation anomaly
in the weak turbulence regime, in Section 3 we discuss sufficient conditions to rule out any dissipation
anomaly, and in Section 4 we discuss the possibility of ‘partial’ dissipation anomalies. In Section 5 we
briefly discuss the strong turbulence regime (which would be related to quantum hydrodynamics, rather
than wave turbulence). Finally in Section 6 we discuss the relationship of the results with the physics
literature, such as empirical observations, and end with some mathematical conjectures.

2 Necessary and sufficient conditions for full dissipation anomaly

By Fjortoft’s argument (see e.g. [31]) suggests we will see wave action being sent by the nonlinearity to
larger and larger scales (before being dissipated at a large-scale dissipation range) while Hamiltonian energy
is sent to smaller and smaller scales (before being dissipated at the small-scale dissipation range). However,
in a weak turbulence regime, we expect a direct cascade of kinetic energy rather than the full Hamiltonian
energy, as the potential energy is expected to be higher order. The (volume-averaged) wave-action flux and
Hamiltonian flux through scale N are defined as the following, where here P<x (resp. P> y) denotes the
Littlewood-Paley projection to frequencies less (resp. greater) than NV,

My a[u] (V) = I ][ PoyuPa(uf u)da
T)\
HH[U](N> = —Imfd A?SNU (PSN(‘U‘Z u) — ‘PSNU,‘z PSN“) dx
T}\
+ UIm][d P<y(|u)? u) | P< yul® P<yudz.
T)\

For most of the paper we omit the ‘[u]” as it is always clear from context. We additionally define the kinetic
energy ‘flux’:

Mgp(N) = —Im][ AP<NuP<y(|u)? u)dz.
TS

In what follows we also denote Littlewood-Paley projections via subscripts
PSNUZUSJ\U PZNUIUZN.

Let us briefly discuss these definitions. Consider for a moment the conservative nonlinear Schrodinger
equation

—idp = Ay + o [ . (2.1)



As described above, the wave action is conserved, i.e. %WAA [t)] = 0. The quantity Iy 4[] (IV), satisfies

d

2 VALY = ollw a[¢](N),

and it can be interpreted as a ‘wave action flux through scale /N’ (in particular, a transfer of wave-action
from smaller scales to larger scales). Similarly, the Hamiltonian flux satisfies

d
o WVANP<nY] = olly[Y](N),
and so can be interpted as a ‘Hamiltonian flux through scale N’ (in particular, a transfer of Hamiltonian

energy from larger scales to smaller scales). The quantity Il g satisfies

d
T HV¢||%§ = ollgp[Y](N),

however, it should not be interpreted as a flux as the kinetic energy is not a conservation law of (2.1).

If wave action is to be transferred to large scales and dissipated, then we expect that in the large-scale
inertial range Np < N < 1 (where Np = Np(v) is a scale at which the low-frequency damping from D
dominates) the following holds:

1 2
—EIlya(N) = %E HD1/2UH R €was
o o L2

whereas in the small-scale inertial range 1 < N < Np (where Np = Np(v) is a scale at which the
high-frequency dissipation from D dominates) that the following holds:

1 1 L 1/2, ||?
“Elly(N) ~ —lxp(N) ~ ;EHVD u) p

A

R €ke-

Basic sufficient conditions for these identities to hold are the main content of Theorems 2.2 and 2.1 below.
Let us briefly discuss our scaling choices before we state the theorem as it is more delicate than the
analogous choices in fully developed hydrodynamic turbulence [7, 8, 17]. If the driving is too weak, then
naturally one would not see turbulence. For this we impose the condition
v

v,o—0 O

to make this concept precise we take two sequences {Vx }.cn s 10k } ey and we impose

. . . VE
lim v =0, lim o =0, lim— =0.
k—o0 k—o0 k—0 o

The limit o, — 0 is what implies the nonlinearity is weak. This driving ensures that all sufficiently strong
norms are unbounded, see for example (1.2) above — it is expected that sufficiently weak norms remain
uniformly bounded, but this is wide open and is generally much stronger than what is necessary to prove
Theorems 2.1 and 2.2. Note that the fluctuation dissipation regime, v ~ o2 is not included. It is unclear
what should happen in this borderline case; however Sections 3 and 4 do include this case.

Now, let us state theorems that give necessary and sufficient conditions for cascade flux balance laws
corresponding to a “full” dissipation anomaly under a condition of strong driving and weak nonlinearity.
See [7, 17] for analogues of this result for the stochastically-forced 2D Navier-Stokes and [8, 17] for 3D
Navier-Stokes. Note in those equations there is only a strong turbulence regime and so the conditions are
simpler to interpret in that case. Furthemore, note that the case of 2D NSE is more analogous to the case of
(1.1) as it has a dual cascade with two exact quadratic conservation laws.

The first result shows that the most natural condition — the vanishing of wave-action dissipation at finite
scales — is equivalent to the existence of an inertial range over which the nonlinear wave action flux exactly
balances the input wave-action.



Theorem 2.1 (Inverse cascade). Let 11, be a family of invariant measures of the NLS (1.1) for a sequence
of parameters (i, o, vg) — (00,0,0). Suppose that the external forcing satisfies Assumption 1. Suppose
that the strong driving condition holds:

k—o0 O
Then the following are equivalent:

(i) YNo > 0 fixed there holds

. Vi
lim —
k—o0 O'k

2
EHDl/zPZNOu =0 2.2)
Ak

(ii) Forall k > 1, ANp = Np(k) with limy_,o N = 0 such that

1
—EIlwa(N) — €yq
Ok

=0; 2.3)

lim limsup sup
No—=0 k—oo Ne(Np,No)

The case of the direct cascade of kinetic energy is more interesting, as some weak nonlinearity assump-
tions are required for the flux of the Hamiltonian energy and kinetic energy to be asymptotically equal (and
balance the input €ge).

Theorem 2.2 (Direct cascade of kinetic energy). Let i) ., be a family of invariant measures of the NLS
(1.1) for a sequence of parameters (A, oy, vk) — (00,0,0). Suppose that the external forcing satisfies
Assumption 1. Suppose that the following conditions hold:

(i) sufficiently strong driving:

(ii) weak nonlinearity and vanishing potential energy dissipation: YNy > 0 fixed, there holds

lim oxE|jull74 =0 2.4
Jim oy Bfully 2.4)
- 4 _

klggo ?kE‘|PSN0u||L§k = 0. (2.5)
Then, the following are equivalent
(i) YN > 0 fixed there holds
2
lim 2B ||VD2Peyyul[ - =0, 2.6)
k—o0 Oj. - Lik

(ii) Yk > 1, ANp(k) such that Np — oo as k — oo such that

1
lim limsup sup —Ellgp(N) — ege| = 0; 2.7
No—=00 koo Ne(No,Np) |k
and
. . 1
lim limsup sup —EIly(N) — €ge| = 0. (2.8)
No—=00 k00 Ne(No,Np) |0

6



Remark 2.3. That we take Ny — 0 in Theorem 2.1 and Ny — oo in Theorem 2.2 is remove any effects of
details of the forcing profies gj)-‘. For example, they are not assumed to be compactly supported in frequency.

Theorem 2.2 does not seem to directly imply the expected balance of kinetic energy dissipation
2
%E HVDI/QUH R €pe.
o L3

However, with a slight strengthening of (2.5) we have the following.

Lemma 2.4. Let y1) ,, be a family of invariant measures of the NLS (1.1) for a sequence of parameters
(Mg, ok, vk) — (00,0,0). Suppose that the external forcing satisfies Assumption 1. If we assume (2.4)
together with

. Vg 4
lim —E =0 2.9
Jim B lullyy =0, (2.9)

. Vg 2 2
Jm 2By Vullfy =0, @.10)
then there holds
2
lim £ HVDI/Qu‘ = Che.
k—o0 o Ak

All of the results in this note are some variation of the following basic flux balances, which can be simply
interpreted as saying that the nonlinearity must dissipate whatever the dissipation does not. The proof of
this proposition is evident from the proofs of Theorems 2.1 and 2.2.

Proposition 2.5. Let iy ., be a family of invariant measures of the NLS (1.1) for a sequence of parameters
(Aks 0k, k) — (00,0,0). Suppose that the external forcing satisfies Assumption 1. Then VN < 1 there
holds

lim sup = on—o(1).

k—oo |0k

1 v
Ty a(N) — ;’;EHDU%W‘
k

2
2
ka

If we further assume the weak nonlinearity assumptions (2.4), (2.9), and (2.10), then VN > 1 there holds

1 2
limsup | — g p(N) — LB HVD1/2u>N‘ — onseo(1),
k—oo |Ok o L3,
and
limsup | —IIx(N) - S E HVD u>N’ = ONo00(1).
k—oo |0k O Lik
Remark 2.6. Note that the following a priori estimates
2
lim 2B ||DV2Pora|| =0 @11)
k—oo Oy - Xk
2
lim A HVDI/QPQU‘ —0, 2.12)
k—oo 0% - L?

Ak
together imply (2.2) and (2.6).

Remark 2.7. Condition (ii) in Theorem 2.2 can be interpreted as the the vanishing potential energy input and
dissipation. The proof will clarify that the latter two conditions are claiming an inertial and integral range
over which the potential energy dissipation vanishes whereas the first condition implies that the potential
energy input will vanish (and hence the Hamiltonian energy is primarily dominated by the kinetic energy).



2.1 Preliminaries

For the forcing, we make the following frequency localization assumptions.

Assumption 1. We assume that the family of forcing profiles { gg\}/\>1 o satisfy the following:
>1,5>

1 2

52”g§“ 2 = Epg 1 (2.13)
J

1 NIk

§Zva]‘ =] (2.14)
J

2 2
A A
sup Hg + HAQ»‘ > <0 (2.15)
Ae(l,oo)zj:< Ty T3
2
lim sup ’ P<ng ‘ =0 (2.16)
NHO)\E(l oo); ! 3
2
lim sup Z ’VPZNg;" ) =0, 2.17)

N—=00 \g(1,00) ;

Roughly speaking, the latter three assumptions ensure that the forcing is concentrated at frequencies
~ 1. We did not attempt to find the weakest possible conditions.

Example 2.8 (Examples of admissible forcing). It is simpler to construct examples of this forcing if we
restrict to A € N and parameterize T as [0, 27r\)2. For example one can choose the following frequency-
localized forcing

§ : qjeij-xdwt(j)
)
jezd:1<|j|<Jo

for some fixed constants g; € C and Jy > 1. In this case, we do not need to index the Brownian motions
by A. This forcing satisfies Assumption 1, however, it will almost certainly not lead to a unique invariant
measure in general. This is due to the fact that the forcing is 2m-periodic in space while the domain is 27\
periodic. It may be possible to prove that there is a unique invariant measure with non-trivial support in all
Fourier modes, however, no result of this type has appeared in the literature for any similar problem at the
time of writing. With this in mind, it would be more natural to choose a forcing which does not have any
long-range correlations. One simple and explicit way to do this is by the following localization method; we
show the construction in d = 2 for simplicity but one can do analogously in any dimension. Denote for
j € Z?> with 0 < j, < XA — 1 the cube

o+l Jo J2+1
Q]_[27T7 27 )X[QW’ o7 ):

Denote x; the center of the cube

L (j1+1/2 j2+1/2)
I 2r 1 2m 7

Let x be a radially symmetric, smooth cutoff which satisfies x = 1 on ()(1,1) and vanishes outside of the
support of UQ1+1,1+1. Then, consider forcing of the form:

Z Z (JKX (m _ ]) e’ie'(l‘—xj)th(jvé)’

FEL2:0<| |00 <A—1  L€Z2:0<[¢|<lo



where note that we are indexing the Brownian motions over both j and ¢. Here ¢ is fixed finite; if one wants

to consider forcing which is rougher in space, one could take {5 = co and impose a decay condition on ¢y

to obtain whichever desired regularity class. The forcing profiles would be g(>‘j 0 = QX (x —7) it (@—zj),

While the Brownian motions and profiles do not depend on A per se, the range that the first index, j, runs
over is Z2 with 0 < |4] oo < A—1, and so the form of the forcing does vary in . While there are no existing
results of this type in the literature, we believe it might be possible to prove that there is a unique invariant
measure for all A if one chooses this forcing (assuming £y > 2) suitably non-degenerate; for example, a
variant of [23] suitably adapted to the energy structure of nonlinear Schrodinger may be able to do this.

It is classical to obtain almost-sure global well-posedness of the SPDE defined by (1.1).
Definition 2.9. We say an F;-adapted Markov process u(t) € C([0,T]; H') N L%(0,T; H?) for some
0 < T < oo solves (1.1) in the mild form if

t
u(t) = e HPHR) 0 4 1y + ia/ e~ =) WDHIA) 1312 4y(5)ds,
0

where I'; is given by the stochastic convolution
¢
r=o¥ /O e~ (=D WD+8) A qpy ),
J

The following theorem is by-now classical (see e.g. [29] and the references therein).

Theorem 2.10 (See e.g. [29]). Suppose A, v, 0 > 0 are fixed. Let ug be a Fo-measurable random variable
with values in H' independent from {Wt(] ”\)}. Then, for P-almost every w € §Q, there exists a unique

Fi-adapted Markov process u(t) which satisfies VT < oo, u € C([0,T); H') N L?(0,T; H?) and which
solves (1.1) in the sense of Definition 2.9. Furthermore, the solutions are associated with a Feller Markov
semigroup Py and there exists at least one stationary measure [ (i.e. Pfu = p) which is supported on C*°.

2.2 Proof of Theorem 2.1

We begin with the proof of Theorem 2.1, which is rather straightforward after the following lemma of
diagonalization type.

Lemma 2.11. Let {AN,k}(N k) N2 be a non-negative, two-parameter sequence. If VN, limy_,oc An = 0,
then 3 a non-decreasing sequence Ny, with limy,_,, N}, = oo such that limy,_, Ay, 1, = 0.

Proof. By definition, VN, 3k such that for k > ky, Ay < 2~N_ Without loss of generality we may take
kn to be strictly increasing by replacing ky — max(ki,..,kn—1,kn) + 1. We now define the sequence

{Ni}tysq as

Ne=1 1<k<k
N, =2 ko<k<ks
N =3 ky<k<k

The desired conclusion follows upon noting that the construction ensures that for all k£ > k1, there holds,
A Nk < 2Nk,

and limy,_, o, N, = oo as desired. ]



Proof of Theorem 2.1. First we prove that (2.2) implies (2.3). By Lemma 2.11 applied to

2
Ang =EZ EHD1/2P>N |l =o,
X
we see that (2.2) implies 3N (k) — 0 such that
2
lim g HD1/2P>NF ‘ ~0. 2.18)
k—ro0 Uk LAk

In the proof here and in all proofs in the sequel, we omit the k subscripts on v, o, and A for simplicity of
notation.
By projecting (1.1) with P>, pairing with 7, and applying It6’s lemma we have for any N > 0,

2 1 NE
‘L§+22j:][‘PzNgj‘ da. (2.19)

First consider the external forcing term. By the definition of €,,, we have

|
ZEly4(N) = ——E HD1/2P>NU
g g -

1 2
22][‘PZN9]>\‘ dr — €pq SJZHPEN-Q]LHi&
j J

Therefore, the contribution of the forcing converges to €,,, as N — 0 uniformly in A\ by the low-frequency
assumption (2.16) on the noise. Putting this together with (2.18) implies the desired result (2.3).
Next, we prove that (2.3) implies (2.2). By the above argument we have

“Eya(N) = €wo = — B HD PZN’LL‘ +ono(1).
o o L2
Hence, by the assumption (2.3), 3Nr — 0 such that
2 1 2
lim sup —EHD P>N uH = lim limsup sup —EHD / P>Nu)
koo O LY No=0 koo Ne(Np,No) LX

=0,
which in particular implies (2.2) (by the monotonicity with respect to [Ng). This completes the proof. 0

2.3 Proof of Theorem 2.2

Next we consider the more interesting case of the direct cascade.

Proof of Theorem 2.2. As above, we first prove that (2.6) implies (2.7) and (2.8).
By Lemma 2.11, (2.6) implies INp (k) — oo such that

v,0—0 O'2

2
lim —B HVDl/ Pon,u H = 0.
L3
First note the ‘balance’ of kinetic energy that arises from Itd’s lemma applied to the quantity 3 ||Vu<y| |%2,

1 v 1/2 2 1 A2
“Ellp(N) = - 5E HVD P<NuHLi +3 ZJ:][ ’Pnggf ( de.

10



First consider the forcing term. We have

1 2
3 3 Py o £ S|PV,
J J

Therefore, the contribution of the forcing converges to €z, as N — oo uniformly in A by the uniform

regularity assumption (2.17) on the noise. By Lemma 2.11, 3Np = Np(k) with limy_,.o Np = oo such
that

. Vg

lim —

k—o0 O

2

E HVDI/QPSNDu‘ -
L2
Ak

Hence we obtain (2.7).
Turn next to the Hamiltonian energy flux (2.8). Consider the balance of Hamiltonian energy arising
from applying Itd’s lemma to H[P< yu], yielding

1 v 2 v v
LElly(N) = ——QEHVDI/QPSNuH — B |Poyullts — 3ZE || PcyuV Peyul 2
o o L3 o A o by

1 2 o 2
- P %‘ dr+ 2 P 2}P %‘ dz. 22
+2zj:]§§‘ <NJ; $+22j:]fri| <nu|” |P<ngj| dz (2.20)

We have already seen that the assumptions on the noise imply

1
2,

Furthermore we have (by Holder’s inequality and Bernstein’s inequality (Lemma A.1)),

2
PSNg]’-\‘ dz = €ke + 0N 00(1).

o 2 A 2 Al
QZ]{N | P<nul ‘PSNgj‘ dz S oB || P<yullL > HPSNQJ-} s
J A J

2
2 A
SoBllit Y|l .
j A

which then vanishes in the limit by (2.4) and the assumption (2.15) on the forcing. Turn next to the dissi-
pation terms. By Lemma 2.11, Vk, ANp (k) with limy_, o, Np = oo such that the following holds by (2.4)
and (2.5) respectively,

. 14 2
Jim —E||VP<npully; =0
lim 2B ||P<yyullts =0
oo o <NpUllzg = H
Furthermore, by Bernstein’s inequality,
1% v
“E|[P<yuVPeyullj; € El[P<yullfs [V P<yullj
v
S N2 =E||Penul[7a
o Iy
and therefore, by applying Lemma 2.11 again and adjusting Np further, we can also impose

. 14 2
Jim —B||P<npuVPenpullpz =0,

11



while still having Np — oo. Putting everything together we have,

1 v 2 . 14 4
su —EIly(N) — €| < <=E||VP U lim —E||P. n
NG(NOI,)ND) o H( ) kel ~ o2 ” <Np HL% * k—o0 O H =Np HLi

14
+ ZE||PenyuV Penpulltg + 0B llulll g, +ongoc (1),

which therefore completes the proof of (2.8).
Next, we check that (2.7) and (2.8) imply (2.6). This follows easily as in the proof of Theorem 2.1 (and
in fact, we only need to use (2.7)). By the balance of kinetic energy we have

“Ellp(N) = - 5F HVD PSNU‘ o e T oNoc (1),

A

and so by (2.7), INp (k) — oo such that

2 1
lim sup V—’;EHVD1/2P<NDU‘ < lim limsup sup —Ellgp(N) — €gel ,
k—oo O% - LY = No—=%© koo Ne(No,Np) |
from which the desired result (2.6) follows. ]

We end the section with a proof of Lemma 2.4.
Proof of Lemma 2.4. Recall the balance of Hamiltonian energy dissipation (1.3) which gives

v 12 ‘2 v a(lul w)dz = e + 2 d af
JQE“HVD u L§+UReE][Du(|u| u)dzr = € + QEuZ]frdL lul” |g7| dz.
j

First consider the It6 correction term. By Holder’s inequality
g 2] Al 2 A
SB[ do S o iy 3 )]
J A J

which then vanishes in the limit by assumption (2.4).
We next prove that the potential energy dissipation vanishes in the limit, by observing that due to our
particular choice of D,

2

4
L)\

ReE][Du(|u]2 u)dz = E ||[ul|7+ + 3E ”W“”%‘i
4
< E|ullzs + 3E ||ul[7s [|Vul 74 ,

which then vanishes from the Hamiltonian energy balance due to (2.9) (2.10), yielding the final result. [

3 Characterization of non-anomaly

Theorems 2.1 and 2.2 show that all of the dissipation concentrating at low frequencies (resp. high frequen-
cies) is equivalent to the cascade flux laws. The opposite is also true: no dissipation concentrating at low
(resp. high) frequencies is equivalent to the nonlinear fluxes vanishing.

Theorem 3.1 (Vanishing wave-action cascade). Let uy o, be a family of invariant measures of the NLS
(1.1) for a sequence of parameters (i, o, vE) — (00,0,0). Suppose that strong driving or fluctuation
dissipation holds:

. Vi
lim sup — < oo.
k—oo Ok

Then the following are equivalent:

12



(i) Vanishing of wave-action dissipation at low frequencies

lim lim sup —E ‘ ‘DI/Q 3.1)
N—=0 koo O'k
(ii) The vanishing of the nonlinear wave-action flux at high frequencies
1
lim limsup sup EHWA(N)’ =0. (3.2)
No—=0 koo Ne(0,No) | Tk

Remark 3.2. Notice that any a priori estimate on the low frequencies of the form: 36 > 0 such that:

lim sup — H\Vr D1/2u<1H < 00,
v,o—0 O L3

is sufficient to prove (3.1).
The corresponding theorem for the kinetic energy cascade is the following.

Theorem 3.3 (Vanishing kinetic energy cascade). Let 1) ., be a family of invariant measures of the NLS
(1.1) for a sequence of parameters (A, o, vk) — (00,0, 0). Suppose that the following conditions hold:

(i) strong driving or fluctuation dissipation:

Vi
limsup = < oo.
k—so00 Uk

(ii) the weak nonlinearity assumptions (2.4), (2.9), and (2.10).
Then, the following are equivalent:

(i) The vanishing of kinetic energy dissipation at high frequencies

lim limsup —& E HVDV2 —0. (3.3)

N—00 koo O'k

(ii) The vanishing of kinetic energy and Hamiltonian energy flux at high frequencies:

1
lim limsup sup EHH(N)' =0 (3.4
No—=o0 koo Ne(No,o0) | Ok
and
1
lim limsup sup EHKE(N)‘ =0. (3.5)
No—=0 ko0 Ne(No,o0) | Ok

Remark 3.4. Notice that any a priori regularity estimate such as: 39 > 0 such that:
v 2
lim sup —2EH\V|5VD1/2u>1H < 00,
v,o—0 O — ez

is sufficient to prove (3.3). Hence, the formation of a true cascade requires that the a priori regularity
estimates given by the dissipation balance are basically sharp, at least in terms of estimates available in >
moments in P.

13



3.1 Proof of Theorems 3.1 and 3.3

Proof of Theorem 3.1. As in previous proofs, we drop the k subscripts. By the wave action dissipation
balance (1.2) and wave-action flux balance (2.19) we have VN > 0 (as in the proof of Theorem 2.1),

1 v 2
ZElly 4(N) = —2EHD1/2P§Nu’ +ono(1),
o o L2

A

which implies

sup
NE(07NU)

g

1 v 2
HWA(N)’ = gE HDl/QPSNOU ‘LZ +ONO_)O(1).
b

Therefore (3.1) is equivalent to (3.2). ]

Proof of Theorem 3.3. We only consider the more interesting case of (3.4). By the Hamiltonian energy
dissipation balance (2.20) we have

~Elly(N) = —;EHVD PSNu’ p

A

14 14
— —E||P<yul|}s — 3=E||P<xuV P<yul|72
g A g A
o 2
+6ke+2Z][ ‘PSNU‘Q‘PSNQJ)-" dx—'_ON—)oo(].).
PR

By the assumptions (2.4), (2.9), and (2.10) as in the proof of Theorem 2.2 we have

1 1% 2
;EHH(N) = tre = 5B HVDI/QPSNU‘ et Ok—00(1) + 0N oo(1).

A

By Lemma 2.4, there then holds

2
12 + Ok%oo(l) + ON—>00<1)‘

A

1
~Elly(N) = %E HVD1/2P>Nu’
g g

Therefore,
1 14 1/2 2
sup | ~Elly(N)| = =E HVD Py ‘ 4 0so0(1) + 0ngsoo(1)
N>Np | O o L3
and therefore we see that (3.3) is equivalent to (3.4). ]

4 Partial dissipation anomaly

Although not clearly consistent with observations, there is a possibility that some, but not all, of the wave-
action (resp. kinetic energy) will be dissipated at asymptotically large scales (resp. small scales), leaving
the rest to be dissipated either in the integral or inertial range. In the strong driving regime

Y 50
— =
0-2

non-trivial dissipation of wave-action (or kinetic energy) at any fixed scale Ny implies a divergence in
amplitude:

E[Juxn |7z — oo 4.1

14



This does not rule out the possibility that some of the wave action is sent to asymptotically low frequencies
as k — oo and, the most important condition for weak turbulence, condition (2.4), is not in contradiction
to (4.1) either. We make the following assertion about nonlinear wave action flux if there is partial, but not
total, dissipation anomaly. Note that the following theorem does not require the strong driving condition,
and it makes sense even if
lim inf V—]; > 0.

k—o0 oF
Theorem 4.1 (Partial inverse cascade). Let py o, be a family of invariant measures of the NLS (1.1) for a
sequence of parameters (i, ok, Vi) — (00,0,0). Suppose that the external forcing satisfies Assumption 1.
Let €, € [0, €y be defined by

hminfhminfﬂEHDl/QPw u (2 — 4.2)
No—0 k—oco O3 S 177 S
If €y, > 0, then Vk > 1, AN (k) which satisfies limy,_,oo Np = 0 such that
1
liminflimsup inf = —EIlya(N) > €,,. 4.3)

No—0 k—00 NG(NF,No) g

Proof. As above, by (2.19), (1.2), and Assumption 1. we have

1 1%
fHWA(N) = _O%E HDl/QPSNU)
k

2
I T on—o(1)

A

Since for N’ < N there holds

‘ 2

1% 1% 2
—’;EHDUQPSN/U < —];EHDl/QPgNu‘ y
Jk‘ Gk L

L/\ A

for any 0 < Ng < Nj there holds

inf lHWA(N)>ﬁEHDW&N uH2 + ongso(1).
Ne(Np,No) N = ol =g ’

By an argument similar to Lemma 2.11 , the assumption (4.2) implies 3Ny (k) with limy_, o Np = 0 such
that

.. Vi
lim inf —
k—o0 O},

2

5 wa*
L)\

The result then follows. O

Theorem 4.2 (Partial direct cascade). Let uy ., be a family of invariant measures of the NLS (1.1) for a
sequence of parameters (i, ok, Vi) — (00,0,0). Suppose that the external forcing satisfies Assumption 1.
Suppose that the following conditions hold:

lim oE |[u|[7: =0 4.4
Jim oB|lull74 =0, (4.4)
. v 4
lim —E =0 45
Jim —E|lul74 =0, (4.5)
.V 2 2
Jim —Blullz4 |IVullzg =0. (4.6)

15



Let €, € [0, €] be defined by

2

lim inf lim inf chE |vDY2P. sy = e @.7)

If €5, > 0, then Vk > 1, ANp(k) — oo as k — oo such that
1

liminfliminf  inf —Elgp(N) > €,; (4.8)

No—oo k—oo Ne&(No,Np) O
and

1
liminflimsup inf = —EIly(N) > €. 4.9)

No—=oo g oo NE(No,Np) O

Proof. The proof proceeds by combining the arguments of Theorem 4.1 with Theorem 2.2, so we only
provide a sketch. We will only consider (4.9) as (4.8) is the same but easier. By Lemma 2.4 and (2.20) and
the arguments applied in the proof of Theorem 2.2, there holds

1 v 2 v v
“Elly(N) = 2B HVDl/2P>NuH — B |Poyullts — 3ZE || PeyuV Peyul 2
o o L2 o A o X

o 2
Ty Zf | Penul? ’P§Ng§" dz + onoeo(1).
i YT
By the assumption (4.4) there holds (as above)

lim sup sup — Z][ |P<Nu| ‘P<Ng]‘ dz =0
k—o0 N>1

and by assumptions (4.5) and (4.6),

lim sup sup —E HP<NuHL4 =0
k—oo N>10

lim sup sup —E HP<NUVP<NUHL2 = 0.
k—oo N>10

As above, by an argument similar to Lemma 2.11 , the assumption (4.7) implies INp (k) with limg_,oo Np =
oo such that

2

lim inf — EHD1/2P>ND ‘L = €fie-
A

k—o0 O’k

Putting these observations together we have,
v 2
inf LB, (N) > SE HVD1/2P>NDuHL2 + 0Ng 500 (1) + 0pse0(1),
A

Ne(No,Np) O

from which the desired result follows. OJ
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S Remarks on the strong turbulence regime

In the ‘strong’ turbulence regime, it is expected that the NLS behaves more like quantum hydrodynamic
turbulence, characterized mostly as a tangle of interacting and reconnecting vortex filaments (see e.g. [32,
33,37,38] and the references therein), rather than being dispersive wave dominated in any traditional sense.
We end with a remark which follows up the idea that (2.4) is the only assumption we are making which
seems to really distinguish between ‘weak’ and ‘strong’ turbulence at the level of the cascade flux laws. In
particular, the most fundamental marker of weak vs strong turbulence is simply whether or not the direct
cascade is dominated by the ‘linear’ kinetic energy or the ‘fully nonlinear’ Hamiltonian energy; see for
example, discussions in [40]. Without an assumption like (2.4), one can instead prove a cascade flux law for
the Hamiltonian energy, rather than the kinetic energy. The assumptions that replace (2.4) are basically (A)
assuming that the Hamiltonian energy input has a well-defined limit, at least on a subsequence of parameters
(assumption (5.1)) and (B) an additional regularity estimate that implies that the potential energy is mostly
being injected at large scales (assumption (5.5)). The most clear indicator of a ‘strong’ turbulence regime
is then that €3y > €., although perhaps there might be intermediate regimes with o — 0 that have some
mixture of both wave and strong turbulence.

Theorem 5.1. Let p 5, be a family of invariant measures of the NLS (1.1) for a sequence of parameters
(Mg, ok, Vi) with v, — 0 and where we assume strong driving (however, note that we do not necessarily
require o — 0 or even A — 00)

Vi

lim — =0.

da. (.1

eH—eke—Fhm EZ][ 2
d

Suppose that for all Ny there holds the following vanishing dissipation conditions:

1/2 2

lim £E HVD /2P_nou ‘ — 0, (5.2)

k—o00 Uk: L5

k
kli)ngo U—E ]|P<Nou|\L4 = 0. (5.3)

Suppose that the following regularity assumptions hold:
llmsupakEHuHL4 < 00, (5.4)
k—o0

lim hmsupakEHuHL4 HU>NHL4 =0, (5.5)

N—oo koo

Finally, assume the following mild additional regularity estimate on the noise

limsup sup Z HP>N93 = 0. (5.6)
N—oo Xe(1l,00)
Then ANp = Np(k) with limg_,oo Np = oo such that
. . 1
lim limsup  sup —IIy(N) —ey| =0. (5.7)
No—00 ko0 Ne(No,Np) | Tk
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Remark 5.2. A priori estimates such as the following for any J < oo,

2
limsupy—l; E ||V P<iul|3. —i—EH<V)_J P>1u‘ =0 (5.8)
k—oo Of B Mk - Lik
I Y B || Paullts + 1EH<V)_JP ‘4 0 (5.9)
1m sup — Uu — u = .
lHoop o =L, A 21 3, ’

imply (5.2) and (5.3). See below for a proof.

Proof of Theorem 5.1. As previously, we omit the subscripts on the parameters. By the Hamiltonian flux
balance (2.20), there holds

ST = = 5B |[VD ucn] 2
1%

v 4 2
- ;E||U<N||L§ - 3;}3 HU<NVU<N||L§

2

1 A
+ QZ][ ‘P<Nng dx
J

1 2
+ 5 ZE][ | P yul? ‘P<Ngj)-" dz.
j

As in the proof of Theorem 2.2 there holds

2
Z][ ‘P<NV93\’ de = €ke T+ 0N—>oo(1)-
J

Moreover, the Itd correction converges by (5.4), (5.5), and (5.6)

2 2
2 2
7| S E A 1Pl [Peng) | do = 3B luf |53 do| < 0B lfull g lusnllg 3|9
J J J

2 A
+ 0B ull}y > |[o)]
J

2
4
Ly

P>Ng>'\‘ .
4 J 4
Ly Ly

Therefore it follows that

2 2
Z][ ’P<NVg?‘ dz + ZE][ | P yul? ‘P<Ng;“ do = e + Ok—00,N—0o(1).
J J

By Lemma 2.11 we may find a sequence Np(k) — oo such that all of the dissipation terms (both kinetic
and potential) vanish in the k& — oo limit over the inertial range Ng < N < Np. Hence, as in the proof of
Theorem 2.2, the desired result follows. O

Proof of Remark 5.2. By Bernstein’s inequalities (see Lemma A.1) we have

Vg 2 Vi 2
Mg HVD1/2P<NOUH < NZ2EE ||V Py ul 2
o - L3, o - Ak

1% _
< Ng;’; (EHVPSluH%ik + N2E H<v> JP>1u’
k C

2
2 9y
L3,
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which shows that (5.8) implies (5.2).
Similarly, note that by Bernstein’s inequality (see Lemma A.1)

1P<noull 3y < 1P<vully + [|Prc.cnyul g

d+J

N, -
S |1Prullyy + =0 |[(V)7 Pyl
k

4

2’
which shows that (5.9) implies (5.3). O

6 Discussion and conjectures

We end with some discussion regarding the results and their relationship with existing physics literature.
Let us first discuss the predicted Kolmogorov-Zakharov power spectrum as well as our choice of splitting o
between the forcing and nonlinearity. If one simply uses the direct scaling,

—idh = Mg — [* Y — iwD(V)w +io Y grdw,, (6.1)
J

the Kolmogorov-Zakharov (KZ) power spectrum (modulo perhaps logarithmic corrections for 1 < |k|),
predicts that

Bk (k) ? ~ eda 0?PRTVP Np < [k <1
k| ‘ZD ’ ~ 6114302/%—1 1 < |k| < Np.

See for example [31,41], where this prediction is derived from the Wave-Kinetic Equation (WKE). Then,
the driving conditions ¢ — 0 and vo~2 — 0 would imply that lim,, ;0 E |[1)| |%2 = 0. Hence, if we want
to potentially get a non-vanishing and non-divergent limit, we should study the unknown u = ﬁ which is
precisely the choice we made to derive (1.1). With this scaling, we expect the stationary measures {1ty ,,» }
in the (\,v,0) — (00,0,0) limit to converge to an invariant measure of the linear Schrodinger equation,
even more specifically, one where all of the Fourier modes are jointly independent complex Gaussians. The
nonlinear dynamics (and non-Gaussian statistics) would appear at the next order in 0. See [31] for more
details on this prediction.

The weak nonlinearity conditions might imply that v cannot be arbitrarily small relative to o. For

~

example, the KZ spectrum predicts that E ]|P21u||%§ e 6}143 llog v|. Hence, if one does not have 0 <

|log 1/]71, we could expect the Hamiltonian energy input per unit time to diverge as v — 0 (see (1.3)).
Similarly, note that in Theorems 2.1 and 2.2, there are no conditions which explicitly relate A to v or o (as
one may expect), however, there could be restrictions implicitly implied.

It is important to emphasize that the validity of the KZ power spectrum does not follow (neither heuristi-
cally nor rigorously) from (2.3), (2.7), or (2.8). However, Theorems 2.1 and 2.2 show that anything close to
a KZ power spectrum would imply the flux balance laws (2.3), (2.7), or (2.8). Indeed, it is entirely possible
that laws such as (2.3), (2.7), or (2.8) will hold even when other aspects of wave turbulence, such as the
WKE or KZ power spectra, fail in the statistically stationary regime (see [40] for numerical evidence of this
possibility in some 1d wave turbulence problems). A future proof of the flux laws is likely to proceed by
proving some of the basic principles of wave turbulence theory with much deeper methods which then in
turn imply that the hypotheses of Theorems 2.1 and 2.2 hold. This is how Yaglom’s law [39] (the analogue
flux balance law) was proved for Batchelor regime passive scalar turbulence in [4]. The Batchelor spectrum
[2] (the analogue of the KZ spectra) came later after significantly more effort: see [6] which uses [3-5].
That the power spectrum was much harder to prove than the flux balance law seems likely to be a general
phenomenon.
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Regarding the dissipation operator D, we note that the statistics within the inertial range are not expected
to depend on D [31,41]. It should be possible to generalize condition (ii) in Theorem 2.2 above to cover a
variety of dissipation operators. For example, more general operators of the form:

1
D(k) |k|2o‘
where o > 0 and v > 1. Common choices employed in numerical computations are of the hyper-viscous
form, i.e. v > 1 (see e.g. [30,40] and the references therein).

To clarify the relationship between our mathematical setting and the physics literature, we have included
an almost-precise mathematical conjecture regarding some of the important behaviors of (1.1) that are sug-
gested by wave turbulence theory applied in the statistically stationary regime. We have enumerated the
statements in what we believe to be roughly increasing difficulty (and in decreasing likelihood to be correct
exactly as stated).

+ &7

Conjecture 1. Let p1 5, be a family of invariant measures of the NLS (1.1) for a sequence of parameters
(Aky 0y V) — (00,0,0). Suppose that the external forcing satisfies Assumption 1 and that the forcing is
sufficiently non-degenerate such that the invariant measures are all unique. Finally, suppose that the strong
driving condition holds:

and possibly other further restrictions on (A, o, Vi), to be determined, that ensure a weakly nonlinear
regime (e.g. (2.4) and (2.5)). Then the following holds:

1. Full dissipation anomaly, in the sense that conditions (2.2), (2.4), and (2.10) all hold.

2. There exists s, s*, 1y, and v* such that: for s > s, and s' < s* we have

sup E [||V|* P<jul|?2 < oo (6.2)
k>0 .
, 2
supE H|V\S P>1uH < 00, (6.3)
k>0 LS
while for all v < ry and all 7' > r*,
sup B |||V|™ P<yulf32 = oo
k>0 .

. 2
supEH\VV leu‘ = 0.

£>0 L3

3. There is a measure u>° € P(H) such that all of the Fourier modes are jointly independent Complex
Gaussians which satisfies jix, o, v, —" 1°°. Here H is an appropriate Hilbert space of distributions
defined on R® which locally obey estimates of the type in (6.2) and (6.3).

4. Claim (2) holds with v, = s, = —1/3, r* = s* = 0 (as predicted by the WKE through the KZ
spectra).

5. There 3C,C*, N, N* independent of v, o and frequencies lim, ,_,o Np = 00 and lim,, 0 Np =
0 such that (possibly up to logarithmic corrections),

1 - :
S2UR<E Y k) < o2 Np <2 <N.
* 27 <|k|<27+1
1 .
—<E > Juk)f<c N* <2 < Np.
27 <|k|<27+1
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A Fourier analysis conventions and Littlewood-Paley

We define the Fourier transform on T¢, where below we denote Z§ = ()4

u(k) = / u(z)e @ Fde
']Id
zk T
27r)\ (9 )\)d Z
kezs
With this convention we have for u, g € L*(T$),

G 2 07 = [ (o) da

kezd

kezs A
Frglk) = f(k)a(k)
— 1

We use the following Fourier multiplier notation: given any locally integrable function we can (at least
formally) define the Fourier multiplier by

—

m(V) f (k) = m(ik) f (k).

Next let us state our conventions surrounding Littlewood-Paley decomposition.s Specifically, we set
Y € C*(B(0,2)) with 1)(z) = 1 for || < 1 and define for k € Z¢,

P = () = (3 ) (0,

and the frequency ‘projections’
Pyu:=un = u<on — u<n
Pi<.<p :i=ua<.<p = uU<p — U<A.
These are not true projections, however note that
Pyjg<.<snPnu = Pyu.
Notice that for all functions with %(0) = 0, we have the following
lulll2 = > lluwllzs
Ne2z?
and if [j — k| > 2and N = 2!, M = 2/, then
(un,upr) = 0.

Notice that we use a Littlewood-Paley decomposition which is uniform in ), that is, the dyadic shells are
chosen independent of )\, so that as A varies, the number of frequencies included in a given Littlewood-Paley
‘projection’ varies. We have the following uniform-in-A Bernstein’s inequalities.
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Lemma A.1 (Bernstein’s inequalities). The following inequalities hold for all N € 2% uniformly in X and

1<p<qg< oo,

lusn e S llullzs
IVusnlle S N lullzs

lunlze < [l
IN*unll o = IV unll Lo

1 1
N d(1-1)
lunllpe () lunllo -

A

Proof. First note that

Note that

€<
E%

27T)\dzw zk:w

kezs

(A.1)
(A.2)
(A3)
(A4)

(AS)

We will show that N *C%(N ~1.) makes an approximation of the identity uniformly in \. First, note that

V5
kez$
and hence (note no constants depend on \)
Vi s Y 1~
keZg:|k|<2
By summation by parts, (and |z| < ) we have

zmjz/J r )\d Zw w:]

kezd

29 (2) = (md > (k) *Pu(k)e™,

27r)\ (27\)d Z P(k w]/mj_l) (ei(kJr)\‘lej).m B 6ik-x)

kezd

- 27?)\dz Y= ))(

kezg

Then, notice that

> =

(k) = (k= X""e))| S

(/) 1) SA

and so, similar to above, we have uniformly in A,

|z (z)| Sa 1.
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Iterating this for higher powers of 2 simply gives higher and higher order finite-differences of 1, resulting
in a similar O(A™?) to balance each additional power. One can similarly obtain localization estimates on
the derivatives of 1. It follows that the sequence N ~di)(-N~1) (along with the average zero property)
is a smooth approximation to the identity that satisfies all the properties one desires of a mollifier. This
immediately implies (A.1), (A.2), and (A.3) by Young’s convolution inequality.

Having seen how ']I‘f\l is dealt with, the proofs of (A.4) and (A.5) proceed in the usual manner. ]
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