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ABSTRACT

Shrinkers are special solutions of mean curvature flow (MCF) that evolve by rescaling and model the singularities.
While there are infinitely many in each dimension, Colding and Minicozzi II (Ann. Math. 175(2):755–833, 2012) showed
that the only generic are round cylinders Sk × Rn−k . We prove here that round cylinders are rigid in a very strong sense.
Namely, any other shrinker that is sufficiently close to one of them on a large, but compact, set must itself be a round
cylinder.

To our knowledge, this is the first general rigidity theorem for singularities of a nonlinear geometric flow. We
expect that the techniques and ideas developed here have applications to other flows.

Our results hold in all dimensions and do not require any a priori smoothness.

0. Introduction

The mean curvature flow is an evolution equation where a hypersurface evolves
over time by locally moving in the direction of steepest descent for the volume element.

A hypersurface � ⊂ Rn+1 is said to be a self-similar shrinker, or just shrinker, if it is
the t = −1 time-slice of a mean curvature flow (“MCF”) moving by rescalings.1 Being
self-similar is easily seen to be equivalent to being stationary for the Gaussian surface
area.

By a monotonicity formula of Huisken and an argument of Ilmanen and White,
blow-ups of singularities of a MCF are shrinkers. The only generic shrinkers are round
cylinders by [CM1].

Our main theorem is the following rigidity or uniqueness theorem for cylinders:

Theorem 0.1. — Given n, λ0 and C, there exists R = R(n, λ0,C) so that if �n ⊂ Rn+1 is

a shrinker with entropy λ(�) ≤ λ0 satisfying

(†) � is smooth in BR with H ≥ 0 and |A| ≤ C on BR ∩ �,

then � is a generalized cylinder Sk ×Rn−k for some k ≤ n.

Smooth will always mean smooth and embedded.
The entropy λ is the supremum of the Gaussian surface areas of � over all centers

and scales. When � is a shrinker, there is no need to take a supremum as the entropy is
always achieved by the standard Gaussian surface area (see Section 7 of [CM1]).

1 This means that the time t slice of the MCF is given by
√−t�. See [A], [Ch], [KKM], and [N] for examples of

shrinkers.
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In particular, Theorem 0.1 implies that a shrinker that is close to a cylinder in a
sufficiently large ball must be isometric to the cylinder.

We will say that a singular point is cylindrical if there is at least one tangent flow
that is a multiplicity one generalized cylinder Sk ×Rn−k . We will prove the following gap
theorem for singularities in a neighborhood of a cylindrical singular point:

Theorem 0.2. — Let Mt be a MCF in Rn+1. Each cylindrical singular point has a space-time

neighborhood where every non-cylindrical singular point has entropy at least ε = ε(n) > 0 below that of

the cylinder.

As a corollary of the theorem, we get uniqueness of type for cylindrical tangent
flows:

Corollary 0.3. — If one tangent flow at a singular point of a mean curvature flow is a multiplicity

one cylinder, then they all are.

By definition, a tangent flow is the limit of a sequence of rescalings at the sin-
gularity, where the convergence is on compact subsets. For this reason, it is essential for
applications of Theorem 0.1, like Corollary 0.3, that Theorem 0.1 only requires closeness
on a fixed compact set.

These results are the first general uniqueness theorems for tangent flows to a ge-
ometric flow at a non-compact singularity. Some special cases for MCF were previously
analyzed assuming either some sort of convexity or that the hypersurface is a surface of
rotation; see [H1], [H2], [HS], [W1], [SS], [AAG], and Section 3.2 in the book [GGS].
In contrast, uniqueness for blowups at compact singularities is better understood; cf. [AA]
and [Si].

In each dimension, the sphere has the lowest entropy among closed shrinkers, but
in higher dimensions there are smooth noncompact shrinkers, very close to Simons cones,
with entropy below the cylinders; see [CIMW] or [I1] for details. The results of this paper
may be compared and contrasted with Brakke’s regularity theorem, [B], which shows not
only that the hyperplane isolated among shrinkers, but there is a gap to the entropy of all
other shrinkers.

0.1. Rigidity without smoothness. — The rigidity theorem holds even when the
shrinker is not required to be smooth outside of the ball of radius R. This is important in
applications, including Theorem 0.2 and Corollary 0.3.

Smooth shrinkers are stationary for Gaussian surface area (called the F func-
tional in [CM1]). Accordingly, weak solutions of the shrinker equation can be defined
as F-stationary n-dimensional integer rectifiable varifolds. We will refer to these simply
as F-stationary varifolds. Theorem 0.1 holds for F-stationary varifolds that are smooth in
BR with the given estimates.
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0.2. Outline of proof. — The proof of Theorem 0.1 uses iteration and improvement.
Roughly speaking, the theorem assumes that the shrinker is cylindrical on some large
scale. The iterative step then shows that it is cylindrical on an even larger scale, but with
some loss in the estimates. The improvement step then comes back and says that there
was actually no loss if the scale is large enough. Applying these two steps repeatedly gives
that the shrinker is roughly cylindrical on all scales, which will easily give the theorem.
We will make this outline more precise in Section 2.

Corollary 0.3 shows that if one tangent flow at a singular point of a MCF is a multi-
plicity one cylinder, then all are. However, it leaves open the possibility that the direction
of the axis (the Rk factor) depends on the sequence of rescalings. This has since been
settled in [CM3] where it was shown that even the axis is independent of the sequence of
rescalings. The proof given there, in particular, the first Lojasiewicz type inequality there,
has its roots in ideas and inequalities of this paper and in fact implicitly uses that cylinders
are isolated among shrinkers by Theorem 0.1. The results here and in [CM3] were also
used in [CM4], where new rectifiability results for the singular set were obtained, and
in [CM5].

The results of this paper were discussed in [CMP].

1. Notation and background from [CM1]

We begin by recalling the classification of smooth, embedded mean convex
shrinkers in arbitrary dimension from theorem 0.17 in [CM1]:

Theorem 1.1 [CM1]. — Sk ×Rn−k are the only smooth complete embedded shrinkers without

boundary, with polynomial volume growth, and H ≥ 0 in Rn+1.

The Sk factor in Theorem 1.1 is round, centered at 0, and has radius
√

2k; we allow
the possibilities of a sphere (n − k = 0) or a hyperplane (i.e., k = 0), although Brakke’s
theorem rules out the multiplicity one hyperplane as a tangent flow at a singular point.

The classification of smooth embedded shrinkers with H ≥ 0 began with [H1],
where Huisken showed that round spheres are the closed ones. In a second paper, [H2],
Huisken showed that the generalized cylinders Sk ×Rn−k ⊂ Rn+1 are the open ones with
polynomial volume growth and |A| bounded. Theorem 0.17 in [CM1] completed the
classification by removing the |A| bound.

1.1. Notation. — Let � ⊂ Rn+1 be a hypersurface, n its unit normal, � its Laplace
operator, A its second fundamental form, H = div� n its mean curvature, x is the position
vector, and let vT denote the tangential projection of a vector field v onto �.

It is easy to see that a hypersurface � is a shrinker if it satisfies the equation

H = 〈x,n〉
2

.(1.2)
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We will use the operators L and L on shrinkers from [CM1] defined by

L= � − 1
2
∇xT,(1.3)

L =L+ |A|2 + 1
2
.(1.4)

With our convention on H, a one-parameter family of hypersurfaces �t ⊂ Rn+1 flows by
mean curvature if

(∂tx)
⊥ = −Hn.(1.5)

It is convenient to recall the family of functionals on the space of hypersurfaces
given by integrating Gaussian weights with varying centers and scales. These are often
referred to as Gaussian surface areas. For t0 > 0 and x0 ∈Rn+1, define Fx0,t0 by

Fx0,t0(�) = (4π t0)
−n/2

∫
�

e− |x−x0|2
4t0 dμ.(1.6)

We will think of x0 as being the point in space that we focus on and
√

t0 as being the scale.
Write F = F0,1.

The entropy is the supremum over all Gaussians and is given by

λ(�) = sup
x0,t0

Fx0,t0(�).(1.7)

Here the supremum is over all t0 > 0 and x0 ∈Rn+1. The entropy is invariant under dila-
tion and rigid motions and, as a consequence of a result of Huisken, [H1], is monotone
nonincreasing under both MCF and rescaled MCF.

Note that both the F-functionals and the entropy are defined for rectifiable vari-
folds.

2. Key ingredients for the rigidity of the cylinder

In this section, we will prove the main theorem using the iterative step (Proposi-
tion 2.1 below) and the improvement step (Proposition 2.2 below). These propositions
will be proven in Sections 3 and 4, respectively. We will use the main theorem to prove
Theorem 0.2 and Corollary 0.3 in Section 2.2.

Throughout this section � ⊂ Rn+1 is an n-dimensional F-stationary varifold. On
a first reading, the reader may prefer to ignore the technicalities that arise because � is
not assumed to be smooth. The extra difficulties dealing with non-smoothness are very
minor and easy to overcome.

Smooth will always mean smooth and embedded.
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Proposition 2.1. — Given λ0 < 2 and n, there exist positive constants R0, δ0, C0 and θ so

that if λ(�) ≤ λ0, R ≥ R0, and

• BR ∩ � is smooth with H ≥ 1/4 and |A| ≤ 2,

then B(1+θ)R ∩ � is smooth with H ≥ δ0 and |A| ≤ C0.

From now on, δ0 and C0 will be given by the previous proposition.

Proposition 2.2. — Given n, λ0 > 0, δ0 > 0 and C0, there exists R1 so that if λ(�) ≤ λ0,

R ≥ R1, and

• BR ∩ � is smooth with H ≥ δ0 and |A| ≤ C0,

then H ≥ 1/4 and |A| ≤ 2 on BR−3 ∩ �.

When we apply these iteratively, it will be important that Proposition 2.1 extends
the scale of the “cylindrical region” by a factor greater than one, while Proposition 2.2
only forces one to come in by a constant amount to get the improvement. This makes the
iteration work as long as the initial scale is large enough.

2.1. The proof of the rigidity theorem. — We will see that the main theorem follows
from the following proposition, where we also assume a positive lower bound for H and
an upper bound for the entropy that is less than two.

Proposition 2.3. — Suppose that � satisfies the hypotheses of Theorem 0.1. If, in addition, we

have the stronger assumptions that λ0 < 2 and H ≥ δ > 0 on BR−1 where R = R(n, λ0,C, δ), then

� is a generalized cylinder Sk ×Rn−k for some k ≤ n.

Proof of Proposition 2.3 using Propositions 2.1 and 2.2. — This follows by applying first
Proposition 2.1 then Proposition 2.2 and repeating this. �

We will use the following elementary lemma in the proof of the main theorem.

Lemma 2.4. — There exists C depending only on n such that if R > 0 and μ is a measure

with λ(μ) ≤ λ0, then

F
(
μ

⌊(
Rn+1 \ BR

)) ≤ Ce−R2/8λ0.(2.5)

In particular, if μ is the mass measure of an F-stationary varifold �, then

∣∣λ(�) − F(� ∩ BR)
∣∣ ≤ Ce−R2/8λ0.(2.6)
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Proof. — Write ρx,t(z) := e−|x−z|2/4t/(4π t)n/2. Compute

F0,1

(
μ

⌊(
Rn+1 \ BR

)) ≤ sup
|z|≥R

ρ0,1(z)

ρ0,2(z)
F0,2(� \ BR) ≤ 2n/2e−R2/8λ0.

When � is F-stationary, [CM1] gives that λ(�) = F0,1(�), yielding the second state-
ment. �

We will also use the following compactness theorem for sequences of F-stationary
varifolds:

Lemma 2.7. — Let �i ⊂ Rn+1 be a sequence of F-stationary varifolds with λ(�i) ≤ λ0 and

BRi
∩ �i is smooth with |A| ≤ C,(2.8)

where Ri → ∞. Then there exists a subsequence �′
i that converges smoothly and with multiplicity one

to a complete embedded shrinker � with |A| ≤ C and

lim
i→∞

λ
(
�′

i

) = λ(�).(2.9)

Proof. — All of this discussion is done in great detail in [CM2] for a similar case, so
we will sketch the argument here.

Combining the a priori |A| bound with elliptic estimates for the shrinker equation,
the Arzela-Ascoli theorem, the strong maximum principle, and a diagonal argument, we
get that a subsequence converges in C2,α with finite multiplicity to a smooth embedded
shrinker � with λ(�) ≤ λ0.

We argue as in [CM2] to see why the multiplicity must be one. Namely, Propo-
sition 3.2 in [CM2] gives that � is L-stable if the multiplicity is greater than one.2 On
the other hand, by [CM1] (see Theorem 0.5 in [CM2]), there are no complete L-stable
shrinkers with polynomial volume growth, so the limit must have been multiplicity one.

Finally, (2.9) now follows from (2.6). �

We will now give the proof of the main rigidity theorem. Though nearly all of the
work involves smooth computations, the argument actually proves the general version
where � is F-stationary and need not be smooth everywhere. The proof uses Proposi-
tion 2.3 which relies on the two key ingredients, Propositions 2.1 and 2.2, which will be
proven in the next two sections.

Proof of Theorem 0.1 using Proposition 2.3. — By the compactness of Lemma 2.7 and
the classification of complete embedded mean convex shrinkers in [H1] and [H2], we
can assume that � is smoothly close to Sk × Rn−k in BR1 for some k ∈ {0, . . . , n}, where
R1 can be taken as large as we wish. Note that F0,1(Sk ×Rn−k) ≤ √

2π/e ≈ 1.52 by [S].

2 Proposition 3.2 in [CM2] is stated for surfaces (i.e., n = 2) but the proof applies in arbitrary dimension.
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Then, using the closeness to the cylinder and (2.6), we can arrange that

λ(�) < 1.6.(2.10)

We now consider two cases depending on k:

• When k = 0, then (2.6) allows us to make λ(�) as close to 1 as we wish, so
Brakke’s theorem ([B, Theorem 6.11]; cf. [W2]) gives that � is a hyperplane.

• When k > 1, we get that H is approximately
√

k/2 on BR1 ∩ � and the theorem
follows from Proposition 2.3. �

2.2. The proofs of Theorem 0.2 and Corollary 0.3. — Theorem 0.2 will follow from a
slightly more general form of the rigidity theorem for the cylinder and a compactness
result for mean curvature flows.

To make this precise, we will define a distance dV between Radon measures on
Rn+1 with the Gaussian weight. Namely, let fn be a countable dense subset of the unit ball
in the space of continuous functions with compact support and define

dV(μ1,μ2) =
∑

k

2−k

∣∣∣∣
∫

fke−|x|2/4 dμ1 −
∫

fke−|x|2/4 dμ2

∣∣∣∣.(2.11)

It is then easy to see that dV is a metric on the space of Radon measures satisfying
F(μ) < ∞ and μj → μ in the standard weak topology if and only if dV(μj,μ) → 0.

Corollary 2.12. — Given n and λ0, there exists κ > 0 so that if �n ⊂ Rn+1 is an F-

stationary varifold with entropy λ(�) ≤ λ0 and dV(�,Sk × Rn−k) ≤ κ , then � is isometric to

Sk ×Rn−k .

Here Sk ×Rn−k has multiplicity one and the Sk factor is centered at 0 with radius√
2k.

Proof of Corollary 2.12. — This follows immediately from Theorem 0.1 since
measure-theoretic closeness to a smooth shrinker implies smooth closeness on compact
sets by Allard’s regularity theorem [Al]. (Note that we need the version of the theorem
that assumes smoothness only in BR.) �

The rescaled mean curvature flow is obtained from a MCF by setting Ns =
1√
t0−t

(Mt − x0), s = − log(t0 − t), t < t0, where (x0, t0) is some fixed point in spacetime. It
satisfies the equation (∂sx)

⊥ = −Hν + x/2.

Proposition 2.13. — Given n, λ0 and ε > 0, there exists δ > 0 so that if Ns ⊂ Rn+1 is a

rescaled MCF of integral varifolds for s ∈ [0,1] with λ(N0) ≤ λ0 and

F(N0) − F(N1) ≤ δ,(2.14)

then there is an F-stationary varifold � with λ(�) ≤ λ0 and dV(�,Ns) ≤ ε for all s ∈ [0,1].
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Proof. — We will argue as in the existence of tangent flows in [I1], [W3]. Suppose
therefore that Ni

s is a sequence of rescaled MCFs satisfying (2.14) with δ = 1/i, but where

dV

(
�,Ni

si

) ≥ ε > 0 for some si and every such �.(2.15)

The Brakke compactness of Ilmanen (Lemma 7.1 in [I2]) gives a subsequence of the
Ni

s’s converges to a limiting Brakke flow Ns with λ(N0) ≤ λ0 and F(N0) = F(N1). In
particular, Ns is a static solution of the rescaled MCF (i.e., each Ns is the same F-stationary
varifold �). Since there is no mass loss, every sequence of time slices converges to � as
Radon measures, contradicting (2.15). �

Proof of Theorem 0.2. — Let κ > 0 be given by Corollary 2.12, and let δ > 0 by given
by Corollary 2.12 with ε replaced by κ/6.

Let (x0, t0) be a singular point with at least one tangent flow isometric to a cylinder
Sk × Rn−k . Then there is a time t < t0 such that 1√

t0−t
(Mt − x0) is C2 close to a cylinder

in a large ball. By (2.5), the Gaussian integral is predictably small outside of this ball, so
there is a space-time neighborhood U of (x0, t0) such that for any (x1, t1) ∈ U,

dV

(
1√

t1 − t
(Mt − x1),O

(
Sk ×Rn−k

)) ≤ κ

6
,

for some O ∈ SO(n + 1), and

F
(

1√
t1 − t

(Mt − x1)

)
≤ λk + δ

2
,

where λk ≡ F(Sk ×Rn−k).
Now suppose that (x1, t1) has entropy at least λk − δ/2. If Ns, s ≥ s0, is the rescaled

MCF starting from 1√
t1−t

(Mt − x1), then the total variation of F(Ns) is at most δ. For each
integer j ≥ 0, it follows by the choice of δ that there is an F-stationary varifold Vj so that

dV(Ns,Vj) ≤ κ

6
for every s ∈ [s0 + j, s0 + j + 1].(2.16)

We have that V0 is a generalized cylinder by Corollary 2.12. Furthermore, (2.16) and the
triangle inequality implies that dV(Vj,Vj+1) ≤ κ/3, so every Vj is a generalized cylinder,
giving the theorem. �

Proof of Corollary 0.3. — The corollary follows immediately from Theorem 0.2. �

3. Proof of Proposition 2.1

In this section, we will prove Proposition 2.1, which shows that a curvature bound
on a sufficiently large ball BR implies a slightly worse bound on a larger ball B(1+θ)R for
some fixed θ > 0. We will do this by using Brakke’s theorem to prove estimates in BR for
the mean curvature flow �t = √−t� associated to the shrinker.
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3.1. Applying Brakke to a self-shrinker. — We will use the following consequence of
Allard’s theorem, [Al]:

Lemma 3.1. — Given n, there exists εA > 0 so that if � ⊂ Rn+1 is an F-stationary varifold,

x0 ∈ �, and there is some τ > 0 so that

Fx0,t0(�0) ≤ 1 + εA for every t0 ∈ (0, τ ),(3.2)

then � is smooth at x0.

Proof. — Since � is F-stationary, it is stationary for a conformal metric. Thus, by
Allard’s theorem, it suffices to show that some tangent cone to � at x0 is a multiplicity
one hyperplane.

Any tangent cone V must be a conical stationary integral varifold in Rn+1. Since
V is a cone, we can compute F(V)

F(V) = (4π)− n
2

∫ ∞

0
e− s2

4 sn−1 Vol(∂B1 ∩ V)ds

= Vol(∂B1 ∩ V)

Vol(∂B1 ∩Rn)
= Vol(B1 ∩ V)

Vol(B1 ∩Rn)
.(3.3)

Combining this with (3.2) implies that

Vol(B1 ∩ V)

Vol(B1 ∩Rn)
= F(V) ≤ 1 + εA.(3.4)

Finally, Allard gives εA > 0 so that if V is any stationary varifold with Vol(B1∩V)

Vol(B1∩Rn)
≤ 1 + εA,

then V = Rn and has multiplicity one. �

Proposition 3.5. — Given λ0 < 2 and C1, there exist θ > 0 and C2 so that if � is F-

stationary with

• λ(�) ≤ λ0,

• BR ∩ � is smooth and has |A| ≤ C1,

then B(1+θ)R−1/3 ∩ � is smooth. Furthermore, we get the curvature estimate

sup
B(1+θ)R−1/2∩�

|A| ≤ C2.(3.6)

Proof. — We start with an almost-optimal bound on the F functionals at small
scales:

(�) Given any ε > 0, there exists rε ∈ (0,1) so that

Fx0,t0(�0) ≤ 1 + ε(3.7)

for every x0 ∈ BR−1/4 and t0 ∈ (0, r2
ε ).
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Observe that the curvature bound implies that on any sufficiently small scale � decom-
poses into a collection of graphs with small gradient, but the entropy bound implies that
there is only one such graph. Finally, (the scaled version of) Lemma 2.4 gives (�).

The next step is to extend the entropy bound (�) to a larger scale. This follows from
using Huisken’s monotonicity for the associated flow. We will instead use the shrinker
equation and, in particular, the following result from Section 7 in [CM1] (see Equa-
tion (7.13) there):

Given y ∈Rn+1, a ∈R, and s > 1 so that 1 + as2 > 0, then

Fsy,1+as2(�) ≤ Fy,1+a(�).(3.8)

We apply this to each y ∈ BR−1 with a = t0 − 1 (for each t0). This can be done so long

1 + s2(t0 − 1) = 1 + as2 > 0.(3.9)

It follows that we get some θ > 0 and τ > 0 so that every x0 ∈ B(1+θ)(R−1/4) has

Fx0,t0(�) ≤ 1 + ε for all t0 ≤ τ.(3.10)

Regularity now follows from Lemma 3.1.
Since we have (�), the curvature estimate now follows from applying Theorem 3.1

in [W2] to the associated MCF �t ≡ √−t�. We apply [W2] on each ball Brε ( y) for
y ∈ BR−1/2 to get a curvature bound on this ball at time r2

0 − 1. This yields the claimed
|A| bound on � on the larger ball. �

3.2. Extending curvature bounds outward. — We can now prove the first main ingredi-
ent for the rigidity.

Proof of Proposition 2.1. — Proposition 3.5 immediately extends smoothness and the
|A| bound to a larger scale, but it remains to extend the positivity of H to the larger scale.
This will follow from getting a uniform bound on the time derivative of H for the MCF
�t ≡ √−t� corresponding to �. This bound extends the positivity of H forward in time
for �t which corresponds to positivity of H on the larger scale for �.

We first use Proposition 3.5 to get δ > 0 and C so that

sup
BR∩�t

|A| ≤ C for t ∈ (−1, δ − 1).(3.11)

Parabolic estimates of [EH] (applied on balls of unit scale) then give the uniform higher
derivative bounds

sup
BR−1∩�t

|∇A| + ∣∣∇2A
∣∣ ≤ C′ for t ∈ (−1, δ − 1).(3.12)

Using the equation ∂tH = �H + |A|2H, these bounds on A and its derivatives give a
uniform bound on ∂tH on this set and, thus, strict positivity of H propagates forward in
time for some positive time interval, completing the proof. �
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4. Proof of Proposition 2.2

In this section, we will prove the second key ingredient (Proposition 2.2) that gives
the improvement in the cylindrical estimates. This proposition shows that if a shrinker has
slightly positive mean curvature and some large curvature bound on a large ball, then we
get much better bounds on H and A on a slightly smaller ball. Crucially, these uniform
bounds do not depend on the initial radius, so we get a fixed improvement that can be
iterated.

The proof of Proposition 2.2 uses the positivity of H to prove that the tensor τ ≡ A
H

is almost parallel. This is proven over the next two subsections. We then show that the
eigenvalues of τ fall into two clusters, one near zero corresponding to the translation in-
variant directions of the generalized cylinder and the other corresponding to the spherical
part of the cylinder. This is done in the last two subsections.

Throughout this section, � ⊂ Rn+1 will be an n-dimensional F-stationary varifold.

4.1. Simons’ equation. — This subsection contains some calculations that will be
used to show that τ = A/H is almost parallel. The calculations in this section are purely
local and, thus, are valid at any smooth point of �.

Given f > 0, define a weighted divergence operator divf and drift Laplacian Lf

by

divf (V) = 1
f

e|x|2/4 div�

(
f e−|x|2/4V

)
,(4.1)

Lf u ≡ divf (∇u) =Lu + 〈∇ log f ,∇u〉.(4.2)

Here u may also be a tensor; in this case the divergence traces only with ∇ . Note that
L=L1. We recall the quotient rule:

Lemma 4.3. — Given a tensor τ and a function g with g �= 0, then

Lg2
τ

g
= gLτ − τLg

g2
= gLτ − τLg

g2
.(4.4)

Proof. — We compute

Lτ

g
= e|x|2/4 div�

(
e−|x|2/4∇ τ

g

)
= e|x|2/4 div�

(
e−|x|2/4

[∇τ

g
− τ∇g

g2

])

= Lτ

g
− τLg

g2
− 2

〈∇τ,∇g〉
g2

+ 2
τ |∇g|2

g3

= Lτ

g
− τLg

g2
−

〈
∇ log g2,∇ τ

g

〉
. �
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Proposition 4.5. — On the set where H > 0, we have

LH2
A
H

= 0,(4.6)

LH2
|A|2
H2

= 2

∣∣∣∣∇ A
H

∣∣∣∣
2

.(4.7)

Proof. — Since LH = H and LA = A by [CM1], the first claim follows from the
quotient rule (Lemma 4.3). The second claim follows from the first since |A|2

H2 = 〈 A
H , A

H〉. �

4.2. An effective bound for shrinkers with positive mean curvature. — The next proposition
gives exponentially decaying integral bounds for ∇(A/H) when H is positive on a large
ball. It will be important that these bounds decay rapidly.

Proposition 4.8. — If BR ∩ � is smooth with H > 0, then for s ∈ (0,R) we have

∫
BR−s∩�

∣∣∣∣∇ A
H

∣∣∣∣
2

|H|2e−|x|2/4 ≤ 4
s2

sup
BR∩�

|A|2 Vol(BR ∩ �)e− (R−s)2
4 .(4.9)

Proof. — Set τ = A/H and u = |τ |2 = |A|2/H2, so that LH2u = 2|∇τ |2 by Proposi-
tion 4.5. Fix a smooth cutoff function φ with support in BR. Using the divergence theo-
rem, the formulas for LH2, and the absorbing inequality 4ab ≤ a2 + 4b2, we get

0 =
∫

BR∩�

divH2

(
φ2∇u

)
H2e−|x|2/4(4.10)

=
∫

BR∩�

(
φ2LH2u + 4φ〈∇φ,∇u〉)H2e−|x|2/4

=
∫

BR∩�

(
2φ2|∇τ |2 + 4φ〈∇φ, τ · ∇τ 〉)H2e−|x|2/4

≥
∫

BR∩�

(
φ2|∇τ |2 − 4|τ |2|∇φ|2)H2e−|x|2/4,

from which we obtain
∫

BR∩�

(
φ2

∣∣∣∣∇ A
H

∣∣∣∣
2

|H|2
)

e−|x|2/4 ≤ 4
∫

BR∩�

|∇φ|2|A|2e−|x|2/4.(4.11)

The proposition follows by choosing φ ≡ 1 on BR−s and going to zero linearly on ∂BR. �

The next corollary establishes bounds on two derivatives of the tensor τ = A/H by
combining the integral estimates of the previous proposition with elliptic estimates.
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Corollary 4.12. — Given n > 0, δ > 0, λ0 > 0 and C1 > 0 there exists a constant Cτ > 0
such that if λ(�) ≤ λ0, R ≥ 2, and

• BR ∩ � is smooth with |A| ≤ C1 and H ≥ δ > 0,

then

sup
BR−2∩�

|∇τ |2 + R−2
∣∣∇2τ

∣∣2 ≤ Cτ R2ne−R/4.(4.13)

Proof. — Throughout this proof C will be a constant that depends only on n, δ, λ0

and C1; C will be allowed to change from line to line.
Proposition 4.8 with s = 1/2 gives

∫
BR−1/2∩�

|∇τ |2e−|x|2/4 ≤ CRne−(R−1/2)2/4.(4.14)

Since e−|x|2/4 ≥ e− R2−2R+1
4 on BR−1, it follows that

∫
BR−1∩�

|∇τ |2 ≤ CRne− R
4 .(4.15)

This gives the desired integral decay on ∇τ . We will combine this with elliptic theory to
get the pointwise bounds. The key is that τ satisfies the elliptic equation LH2τ = 0. The
two first order terms in the equation come from xT in L and ∇H; both grow at most
linearly (in the second case, we differentiate the shrinker equation and use the bound
on |A|). Therefore, we can apply elliptic theory on balls of radius 1/R to get for any
p ∈ BR−2 ∩ � that

(|∇τ |2 + R−2
∣∣∇2τ

∣∣2)
(p) ≤ CRn

∫
B 1

R
(p)∩�

|∇τ |2.(4.16)

Combining this with the integral bound gives the corollary. �

4.3. Finding small eigenvalues of A. — The next lemma shows that if we have an
almost parallel symmetric 2-tensor with two distinct eigenvalues, then the plane spanned
by the corresponding eigenvectors is almost flat.

The results in this subsection are valid for a general smooth hypersurface, possibly
with boundary, and do not use an equation for the hypersurface.

Lemma 4.17. — Suppose that B is a symmetric two-tensor on a Riemannian manifold with

|∇B|, |∇2B| ≤ ε ≤ 1. If e1, e2 are unit vectors at p with

Bp(e1) = 0 and Bp(e2) = κe2, κ �= 0,
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then the sectional curvature K of the 2-plane spanned by e1 and e2 satisfies

|K| ≤ 2ε

(
1
|κ| + 1

κ2

)
.

Proof. — Let v1 and v2 be smooth vector fields in a neighborhood of p with

vj(p) = ej, ∇vj(p) = 0, |vj| ≤ 1,

and set

w2 ≡ B(v2)

κ

so w2(p) = e2(p). Then the sectional curvature K at p is

K = 〈
R(e2, e1)e2, e1

〉
(4.18)

= 〈∇v1∇w2w2, v1〉 − 〈∇w2∇v1w2, v1〉 − 〈∇[v1,w2]w2, v1〉.

We will bound each of these terms by showing that ∇w2 and ∇2w2 are orthogonal to v1

up to small error terms.
Let x and y be vector fields with |x(p)| = | y(p)| = 1. We have

κ∇xw2 = (∇xB)(v2) + B(∇xv2)

so at p one has

∣∣∇xw2(p)
∣∣ ≤ ε

|κ| ,
∣∣[v1,w2](p)

∣∣ ≤ ε

|κ| ,
∣∣〈∇[v1,w2]w2, v1〉(p)

∣∣ ≤ ε2

|κ|2 ,

(4.19)

thus estimating the third term of (4.18).
Differentiating again, we have

κ∇y∇xw2 = ∇y

{
(∇xB)(v2) + B(∇xv2)

}
= (∇2

y,xB
)
(v2) + (∇∇yxB)(v2) + (∇xB)(∇yv2)

+ (∇yB)(∇xv2) + B(∇y∇xv2).

The last term on the right is in the range of B and, thus, is orthogonal to v1(p) = e1 which
is in the kernel of B. We obtain at p
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∣∣〈∇v1∇w2w2, v1〉(p)
∣∣ ≤ 1

|κ|
(∣∣〈(∇2

v1,w2
B
)
(v2), v1

〉
(p)

∣∣(4.20)

+ ∣∣〈(∇∇v1w2B)(v2), v1

〉
(p)

∣∣ + 0 + 0
)

≤ 1
|κ|

(
ε + ε2

|κ|
)

= ε

|κ| + ε2

|κ|2 .

Similarly we obtain∣∣〈∇w2∇v1w2, v1〉(p)
∣∣ ≤ ε

|κ| .(4.21)

Combining (4.18), (4.19), (4.20) and (4.21) gives the desired bound. �

We will apply the above lemma when B is given by τ − κ1g where κ1 is one of the
small eigenvalues of τ at the point p.

Corollary 4.22. — Suppose that � ⊂ Rn+1 is a hypersurface (possibly with boundary) with

the following properties

• 0 < δ ≤ H on �.

• The tensor τ ≡ A/H satisfies |∇τ | + |∇2τ | ≤ ε ≤ 1.

• At the point p ∈ �, τp has at least two distinct eigenvalues κ1 �= κ2.

Then

|κ1κ2| ≤ 2ε

δ2

(
1

|κ1 − κ2| + 1
|κ1 − κ2|2

)
.

Proof. — Let Kp be the sectional curvature of the plane at p spanned by an eigen-
vector for τp with eigenvalue κ1 and one with eigenvalue κ2. Since A = Hτ , the Gauss
equation gives

|Kp| = H2|κ1κ2| ≥ δ2|κ1κ2|.
On the other hand, Lemma 4.17 with B = τ − κ1g and κ = κ2 − κ1 gives

|Kp| ≤ 2ε

(
1

|κ2 − κ1| + 1
|κ2 − κ1|2

)
.

The corollary follows by combining these. �

4.4. The proof of Proposition 2.2. — We are now ready to prove the second key
proposition.

Proof of Proposition 2.2. — Fix n, λ0 > 0, δ0 > 0, and C0 > 0. Let R > 0 and assume
that � is a shrinker in Rn+1, λ(�) ≤ λ0, � ∩ BR is smooth and

|A| ≤ C0 and 0 < δ0 ≤ H on � ∩ BR.
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It follows by Corollary 4.12 that the tensor τ ≡ A/H satisfies

|∇τ | + ∣∣∇2τ
∣∣ ≤ ετ on BR−2 ∩ �,

where

ε2
τ := CR2n+2e−R/4

and the constant C depends only on n, C0, δ0 and λ0 (and, in particular, not on R).
Now fix some small ε0 > 0, to be reduced as needed, but depending only on n.

Combining the compactness result of Lemma 2.7 with Huisken’s classification ([H1] and
[H2]) of complete shrinkers with H ≥ 0 and bounded |A|, there exists R1 > 0 depending
on λ0, C0, n, and ε0 such that if R ≥ R1, then for some k ∈ {1, . . . n}, B5

√
2n ∩ � is C2

ε0-close to a cylinder Sk × Rn−k where Sk has radius
√

2k. In particular, we can arrange
that

|A|2 ≤ 3/4 and 1/2 ≤ H on B5
√

2n ∩ �,(4.23)

and further, that at every p in � ∩ B5
√

2n there are n − k orthonormal eigenvectors

v1(p), . . . , vn−k(p),

of A with eigenvalues less than 1/
√

100n, plus at least one eigenvector with eigenvalue at
least 1/

√
4n. Then we can apply Corollary 4.22 to obtain

∣∣κj(p)
∣∣ ≤ Cετ , j = 1, . . . , n − k,

where C depends only on n, C0, δ0 and λ0.
Now fix p in � ∩ B2

√
2n and define n − k tangential vector fields vi on � by

vi = vi(p) − 〈
vi(p),n

〉
n.

Fix a constant L (later we will take L = 2R) and let � denote the set of points in BR−2 ∩�

that can be reached from p by a path in BR−2 ∩ � of length at most L.
We will show that the vi ’s have the following three properties on �:

∣∣vi − vi(p)
∣∣ ≤ C

(
L + L2

)
ετ ,(4.24) ∣∣τ(vi)

∣∣ ≤ C
(
1 + L2

)
ετ ,(4.25)

|∇vi
A| ≤ C(1 + L)

(
1 + L2

)
ετ .(4.26)

To prove (4.24) and (4.25), suppose that γ : [0,L] → � is a curve with γ (0) = p and
|γ ′| ≤ 1 and that w is a parallel unit vector field along γ with w(0) = vi(p). Therefore,
the bound on ∇τ gives |∇γ ′τ(w)| ≤ ετ and, thus,

∣∣τ(w)
∣∣ ≤ Lετ + ∣∣τp

(
vi(p)

)∣∣ ≤ (C + L)ετ .
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In particular, we also have
∣∣A(w)

∣∣ = |H|∣∣τ(w)
∣∣ ≤ C(C + L)ετ .

Therefore, since ∇Rn+1

γ ′ w = A(γ ′,w), the fundamental theorem of calculus gives
∣∣w(t) − vi(p)

∣∣ = ∣∣w(t) − w(0)
∣∣ ≤ C

(
L + L2

)
ετ .(4.27)

Since 〈w(t),n〉 = 0, we see that |〈vi(p),n〉| ≤ C(L + L2)ετ , giving (4.24). Adding (4.24)
and (4.27) yields

∣∣w(t) − vi

∣∣ ≤ C
(
L + L2

)
ετ ,

so we get that
∣∣τ(vi)

∣∣ ≤ ∣∣τ(w)
∣∣ + ∣∣τ(w − vi)

∣∣ ≤ C
(
1 + L2

)
ετ

which is (4.25).
Next we will see that (4.25) implies (4.26). Namely, the Codazzi equation gives

∣∣(∇vi
A)(x, y)

∣∣ = ∣∣(∇xA)(vi, y)
∣∣ = ∣∣(∇x(Hτ)

)
(vi, y)

∣∣
≤ ∣∣H(∇xτ)(vi, y)

∣∣ + ∣∣(∇xH)τ (vi, y)
∣∣

≤ Cετ + C(1 + L)
(
1 + L2

)
ετ ,

where we have used the linear growth estimate |∇H| ≤ 1+R|A| ≤ 1+CL as in the proof
of Corollary 4.12. This gives (4.26).

The key for the bounds (4.24)–(4.26) is that ετ decays exponentially in R and,
thus, these bounds are extremely small even compared to any power of R.

Finally, (4.24) and (4.26) together allow us to extend the nearly sharp bounds on
A and H in B5

√
2n ∩ � given by (4.23) to all of �. Define the linear functions

fi(x) = 〈
vi(p), x

〉
, i = 1, . . . , n − k.

From the ε0 closeness to the cylinder in the ball B5
√

2n, we know that

�0 ≡ B5
√

2n ∩ � ∩ {f1 = · · · = fn−k = 0}
is a compact topological Sk of radius approximately

√
2k.

When n − k = 1 (there is only one approximate translation), then the flow of the
vector field v1/|v1|2 starting from �0 preserves the level sets (in �) of f1, the flow vector
field nearly equals the constant vector vi(p) by (4.24), and the second fundamental form
A is almost parallel along the flow lines, for as long as the flow remains within �. Note
that if R > 30n, then the disk D of radius

√
2n + 1 in the plane f1 = R − 3 with center
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the point closest to the origin lies within BR−2. Also, by considering the shape of the
approximate cylinder, the path distance within � between p and a point x(t) on the flow
line is no more than the length of the flow line plus (5 + 2π)

√
2n + 1. So if we take

L = 2R and R3ετ small enough, then each flow line hits D before it leaves �. Similarly,
if we flow along the negative vector field, then again each flow line hits −D before it
leaves �. Thus, the connected component of BR−3 ∩ � containing �0 is contained in �

and in the union of the flow lines. In particular, the nearly sharp bounds on A and H
in B5

√
2n ∩ � extend to this component. By the maximum principle, every component

of BR−3 ∩ � meets B√
2n. However, there is only one such component since B5

√
2n ∩ �

is cylindrical. Thus, the nearly sharp bounds are valid on BR−3 ∩ �, and the proof is
complete for this case.

We argue similarly when n − k > 1, except that we construct a single “radial flow”
rather than doing each flow successively as this seems simpler. First, define f by

f 2 =
n−k∑
i=1

f 2
i ,

and then let

v = ∇f

|∇f |2 ,

where as before ∇ is the tangential derivative, Thus, the flow by v preserves the level sets
of f . Note that

∇f =
∑

fi∇fi

f
=

∑ fi

f
vi.

Since the vi(p)’s are orthonormal and each vi − vi(p) is small by (4.24), it follows that
|∇f | is almost one. Furthermore, v is given at each point as a linear combination of the
vi ’s, so (4.26) implies that |∇vA| is small. Arguing as in the previous case completes the
proof. �
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