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EQUATION ON THE WHOLE SPACE

JACOB BEDROSSIAN, MICHELE COTI ZELATI, AND MICHELE DOLCE

ABSTRACT. In this paper we describe the long-time behavior of the non-cutoff Boltzmann equation with
soft potentials near a global Maxwellian background on the whole space in the weakly collisional limit
(i.e. infinite Knudsen number 1/v — o0). Specifically, we prove that for initial data sufficiently small
(independent of the Knudsen number), the solution displays several dynamics caused by the phase mix-
ing/dispersive effects of the transport operator v - V, and its interplay with the singular collision operator.
For x-wavenumbers k with |k| > v, one sees an enhanced dissipation effect wherein the characteristic
decay time-scale is accelerated to O(1/ yTIE |k| ﬁ), where s € (0, 1] is the singularity of the kernel
(s = 1 being the Landau collision operator, which is also included in our analysis); for |k| < v, one
sees Taylor dispersion, wherein the decay time-scale is accelerated to O(v/|k|?). Additionally, we prove
almost-uniform phase mixing estimates. For macroscopic quantities such as the density p, these bounds
imply almost-uniform-in- decay of (tV,)?p in LS due to phase mixing and dispersive decay.
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1. INTRODUCTION

In this paper we consider the Boltzmann equation for a distribution function F' = F'(t, z,v),

OF +v-V,F=vQ(F,F), t>0, z,ve R (or T, (1.1)

where 1/v > 0 is the Knudsen number or inverse collision frequency. We are interested in understanding
the long-time dynamics of this equation in the limit v — 0, i.e. the weakly collisional limit. That is,
we describe the dynamics simultaneously in ¢ — oo and v — 0. The Boltzmann equation serves as the
classical kinetic model for the dynamics of a rarefied, monoatomic gas with Q accounting for elastic,
binary collisions between the gas molecules. The collision operator Q is

o) =5 [ [ Bw—v.o)fs~ fa)dvdo

with

vt v v —

2 2 ’ r_ / I _ / _ _

viv. |p=ul fO), ga=90l), [f=[f), g.=g(v). (1.2)
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The velocities v', v/, are the result of an elastic collision between particles with equal mass and velocities
v, Vy. In particular, momentum and energy are conserved, namely

{v/+v;:v+v*, (13)

[0'[? + il = Jof? + o]

As in [5], we consider the class of non-negative kernels B = B(z,0) : R? x S¥=! — R depending only
on |z| and the angle between the vectors z and o. In particular, we take

B(z,0) = ®(|2|)b(cos(8)),  cos(d) = ‘% :
where the kinetic factor is given by
O(|z]) = |27,
whereas the collision angle contains a singularity
b(cos(0)) ~ K ~(4+29) as @ — 0T, 0<s<l.
More precisely, as in [38], we assume no angular cutoff, namely for some s € (0, 1) we have

1

sin(6)b(cos(0)) ~ gaTss

(1.4)

See [20] for more discussion about the derivation of the collision operator. The parameter -y differentiates
hard from soft potentials in the following manner:

e Soft potentials: —d < v + 2s < 0 and v > max{—d, —d/2 — 2s};

e Moderately soft potentials: —2s < v < 0;

e Hard potentials: v > 0.

We will treat all of these cases, but mostly focus on the soft potentials, as these are the most difficult,
since collisions have a weaker effect on high velocity particles. The singular limit s — 1 reduces to the
Landau collision operator [18,68]. In this limit, the collision operator becomes a second-order elliptic
operator, which usually makes the analysis simpler. This limit is important as it is a significantly more
accurate model of charged particle collisions than Boltzmann, and hence is one of the standard collision
models used in plasma physics. All our results apply to the Landau collision operator (see Remark 1.3),
however, we focus our attention on the more difficult Boltzmann case.
The thermal equilibria are described by the global Maxwellians

n _lv—uf?
—e 2T
(2nT)2
with parameters n, T > 0, u € RY and all satisfy Q(y, 1) = 0. In this work we consider small (to be

quantified), localized perturbations to a global thermal equilibrium, specifically we study solutions of
the form

fn,u, (V) =

)

F=p+yuf,  plv)= 128_%-
(2m)>

The Maxwellian y is a stationary solution to (1) thanks to (1). The equation for the perturbation f is
given by

hf+v - Vof +vLf =vI(f, [), (1.5)
where

T(g,h) = ;EQ (v/Figs V/Fih) (1.6)

Lf=-T(\/w, )=T(f,v/1r) =Lif+Laf.

In view of the conservation of the energy, we know pu, = p’p, and therefore
1
I'(g,h) == // B(v — vy, 0)\/1ix (g;h' — g*h) dv,do,
2 J Jraysd-1

(Ef)(v):—2\1/ﬁ//Rd L B v <\;}7+ f;/ _jﬁ_ jﬁ) dvndo. (17)
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From (1) and the conservation of mass, momentum and energy, it readily follows that

Ker(L) = span { /i, v/, [v* /11 } .

We will denote the projection onto the kernel as P and for the perturbation f we denote
Pf(t,z,v) = (p(t,g;) Fm(tz) v+ et,z)(jo]? — d)) N (1.8)

the unknowns (p, m, e) correspond respectively to the macroscopic, or hydrodynamic, quantities of den-
sity, momentum and energy.

On T¢, small data global existence near Maxwellians was proved for the Landau equations by Guo in
[39] and for non-cutoff Boltzmann in independent works by Gressman and Strain [37] (extended to the
whole space by Strain [60]) and Alexandre et. al. in [4-6]. See [19, 66, 67] for some of the earlier works
on Boltzmann with angular cutoffs and [31,41,42] for the corresponding stability and decay estimates.
Many further extensions of these foundational works exist, for example, covering cases which include
self-generated electric and/or magnetic fields such as [33-35,40,43,62].

The study of the v — 0 weakly collisional limit in kinetic theory is relatively new in mathematics.
However, in plasmas, collisions are typically very weak, and hence there are many works in the physics
literature considering how the collisions and the phase mixing due to the free transport will interact,
albeit mostly in the context of Landau or Fokker-Planck collisions [52, 56,57, 63]. If one considers the
toy model

atg“‘v'vxg:VAvg, (1.9)

—ik-x

it is not hard to show that the z-Fourier modes §(t, k,v) = W Jae g(t, z,v)dx undergo en-

hanced dissipation in the regime |k| > v, namely for some ¢ > 0 there holds
. Sulkl2e3 1 ~
13t k)l g2 S e 100, k)|l 2 - (1.10)

This was essentially observed by Kelvin [50] for the 2D incompressible Navier-Stokes equations lin-
earized near the Couette flow and was predicted to hold also in plasmas due to charged particle collisions
in [52,63]. The effect here is that the free streaming v - V, term creates large gradients in v of the size
~ |k|t, which correspondingly enhance the effect of the A, dissipation to ~ | k|22, which explains form
in (1). As the leading order singularity in the non-cutoff Boltzmann equation (1) is similar to a fractional
Laplacian of order s € (0, 1) (see e.g. discussions in [4,37,59]), the rate of enhanced dissipation will
depend on s in the corresponding manner; see Remark 1.4 below.

Another important effect observed in kinetic theory with 0 < v < 1 is phase mixing and Landau
damping, which generally refers to the rapid damping of hydrodynamic fields such as the density. This
was first observed in the linearized Vlasov—Poisson equations by Landau in [51] and is now considered a
fundamental aspect of collisionless plasma physics (see e.g. [18,58]). For the kinetic transport equation
(1) Landau damping' is relatively simple to verify, leading to the following estimates: for all 3 > 0,
m > d/2 and uniformly in v, there holds

109217 0] ey = [0 907 000)]

< sup [[(V.)*™7 (0, k)|
k

2 2
Lt Lx,v

sup (1) 119,17 p|
t>0

Lge Ly
The first inequality follows from the Fourier transform formula for (1); see Lemma 2.6 below for a proof
of the second inequality. In particular, we see that regularity in v translates directly to decay of p. Phase
mixing refers to the fact that, provided there is some regularity of the initial distribution function, all of
the particles are traveling at different velocities, which tends to correspondingly smooth out the density
variations. On R, the decay is due to a combination of phase mixing and dispersion.

Landau damping for all sufficiently regular (analytic and sufficiently high Gevrey regularity) initial
conditions for 2 € T? was proved by Mouhot and Villani [55]; the Gevrey classes conjectured to be
sharp was obtained in a later simplified proof [15]. The analogue on R?, Landau damping and disper-

sive decay, was proved in Sobolev spaces for the screened Vlasov-Poisson equations in [16]; see also

1Often the term “Landau damping” is reserved specifically for the effect in plasma physics, however we will sometimes
abuse terminology and use it here as well, as the origin of the damping is the same.
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[45-48] for related works. In [11] the enhanced dissipation effect was proved in the Vlasov—Poisson—
Fokker—Planck equations on T¢ near a global Maxwellian, along with uniform-in-» Landau damping
estimates on the density, provided the initial velocity-weighted H° norm of the initial condition was
< /3 (see earlier work by Tristani [65] that proves uniform Landau damping for the linearized prob-
lem). More recently, the case of Vlasov—Poisson-Landau equation on T? was solved by Chaturvedi,
Luk, and Nguyen [21]. Due to the nonlinear echo phenomenon, the (’)(vl/ 3) threshold seems potentially
sharp in Sobolev spaces [12]. See also similar recent results on active suspension models for the col-
lective motion of swimming of microorganisms [2,26]. This kind of stability threshold problem mirrors
the work on quantitative stability results based on enhanced dissipation in the incompressible Navier-
Stokes equations (see e.g. [14,17,22,28,36,70,71]). However, enhanced dissipation has probably been
best studied mathematically in passive scalars (see e.g. [1, 10, 13,23,25,27,69,73] and the references
therein). For passive scalars, another effect arises, known as Taylor dispersion, wherein for |k| < v
the effective dissipation rate for f (t, k) of a passive scalar in a shear flow (in say, a channel) would be
O@w! \k|2) This effect was first predicted by Taylor in [64]; see also [8]. The work [9] provided the
first mathematically rigorous proof using center manifold theory, whereas [29] showed that a unified
energy method could be used to treat both |k| > v and |k| < v. We will discuss this in more detail
in Section 2.1 below. This effect was also noted in the works on active suspensions in the linearized
equations [2].

The goal of this work is to prove that for sufficiently small initial data (independent of v), the Boltz-
mann equation (1) displays all of these effects: enhanced dissipation, Taylor dispersion, and a nearly-
uniform-in-v phase mixing/Landau damping (discussed more below). A careful reading of the work of
[60] already shows that global existence of strong solutions holds for initial conditions small independent
of v: there exists a v-independent g > 0 such that if the initial datum f;,, satisfies

> [wmaisa],, + @ ois

|lal+|8|<eo

< €0,

L3L;

for sufficiently large o, m, then the solution is global in time and vanishes as ¢ — co. Hence, the specific
aim of this paper is to obtain the quantitative estimates in the limit » — 0. Neither the methods of [21]
nor [60] apply here although ideas from both are utilized; see Section 2 for an outline of the proof. Note
in particular that the Landau damping is not quite the same as (1) for t > v~!. More precise estimates
that quantify the phase mixing are discussed in Section 2. Below we denote the density by

P(t, .’IJ) - f(t,l‘,’l))d?].
R4

Our main result reads as follows.

Theorem 1.1. Let d > 2, s € (0,1), and ~ be either soft, moderately soft, or hard. Let o > d and
M, M' > d be integers. There exists €y > 0 (independent of v) such that if the initial datum f;, satisfies

> [lwrer ot

laf+|B8]<o

=e<e¢gg
2L} ’

+ || @M 0 fi

2
Lz,v

then the following holds for the corresponding solution f to (1) and for all v € (0,1):
(i) For 0, 81 > 0 determined by the proof (depending only on o, M, M'), define

1 _2s
V1+23‘k“1+237 y/‘k’ < 4y,

1.11
kP, v/k] > . (LD

)\,,7]C = )\(V, k) = (51 {
For an integer J = J(o, M, M',~, s) there holds the Taylor dispersion/enhanced dissipation estimate

sup | )M (A, V)t (1)

t>0 L%,v

< e.

~

A formula for J can be found in Theorem 2.4; importantly, for any N we can choose M, M' sufficiently
large such that J > N.
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(i) If £25-.J > d, we have the low frequency decay estimate

1+2s
H(v)M/2 (A(v, Vx)t)‘]/2 f(t)‘ < <<1/t1+25>_d/25 4 a2 <t>—d/2) .

~

L3Lg

(iii) The density satisfies almost-uniform Landau damping, namely for J as in (ii) and all o —d > 3 > 0,
there holds

(tV,)”
(vt)?

A, Vo)) p(t)

S (O +v 2 (1)) e
Lge
Remark 1.2. Similar almost-uniform Landau damping estimates hold on other hydrodynamic moments

of f. Almost-uniformity refers to the fact that one observes the same Landau damping as expected from
the kinetic free transport until times ¢ ~ v !, at which point the hydrodynamic fields are already O (v%).

Remark 1.3. All our results hold for the generalized Landau collision operator equation on d = 3
(setting s = 1), i.e. the collision operator given by

QL(F,G) =V, - < » (v — ") [F(V")V,G — G(0)Vy F(v')] dv') ,

where ¢ is the non-negative matrix given by
VRV 2
¢ij(v) = (I— ; ) o] 77
|v]
The classical case is v = —3 (which is included in our analysis). This collision operator is generally

easier for our analysis than non-cutoff Boltzmann due to the local nature of the derivatives, which allows
for a more direct use of hypocoercivity and simpler commutator estimates for the derivatives.

Remark 1.4. For |k| > v, the form of A(v, k) can be guessed using the simple toy problem
99 + yOag = —v(=A)°g,
which can be solved explicitly using Fourier analysis on (z,v) € T x R, yielding for some ¢ > 0,
2s s
lg(ts k)12 S e ™ F (0, k)

For |k| < v the rate is the same as the Taylor dispersion rate predicted for passive scalars by Taylor
[64]. It is interesting to note that this rate does not depend on s (or ).

The proof on T¢ is significantly easier as one can adapt ideas from [21] to the Boltzmann collision
operators (see especially Section 4 for what is required for this adaptation). We state the result for
completeness but will not discuss the proof further. Note that d = 1 is possible in this theorem as the
decay is not limited by low frequencies here.

Theorem 1.5 (Result on T¢ for d > 1). If the initial datum f;,, satisfies

3 Heq|”|2(‘)gfm

laf+|8]<eo

o T e < ggp, (1.12)

then the following holds for the corresponding solution f to (1) and for all v € (0,1):
(1) There holds the enhanced dissipation estimate

M . —do (Vﬁop%S ) (mm
(v) f(t) — /f(tvxu )dx . < eminyk e ,e % ’
L v

2
<U>M / f(t; x, )d(]? (vt) 2+ +2s]

—0
See”® ;
L3

where
2(1+s)

20 +5) + 1B -5 — 7,
with 91 = 0 and 95 > 0 arbitrarily small for any s € (0,1);

Py =
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(ii) For all B < o — d, there holds the uniform Landau damping estimate
_50 (ViTlﬂt) Pry,s - 2 5
[9.)7 p()|| , S emin { e 0(wt) T } |

Remark 1.6. The stretched exponential decay rates can be easily explained by looking at the linearized
problem. In particular, as shown by Strain and Guo [61], this time-decay is a direct consequence of
monotonicity estimates and properties of the collision operator. The bounds we state follow by a straight-
forward improvement (due to the Gaussian weight) of Lemma 4.8 and the proof of Theorem 2.4. The
rate 2/(24 |y 4 2s]) is the one that can be inferred for the Boltzmann equation” directly from the mono-
tonicity estimate (2.1) and the properties of £ given in Proposition 3.1. Notice that for s = 1 we have
p,, = 2/(2+ |y|). Thus, for the Landau collision operator we get a power p_, , = 2/5 which is an
improvement over the 1/3 power given in [21]. We believe this improvement is related to the veloc-
ity weights we use in our energy for the hypocoercive scheme. In particular, we use a weight <v>_3/ 2
for terms involving v-derivatives whereas in [21] a weight <v>74 is used. This improvement on velocity
weights is possible because we perform weighted interpolation inequalities with a dyadic decomposition
in velocity to handle the weights, see for instance the treatment of the term in (4.1).

2. OUTLINE OF THE PROOF

2.1. Linearized problem. The first step in the proof of Theorem 1.1 is to understand the linearized
problem

Of+v-Vof +vLf =0,
in the singular limit ¥ — 0. Due to translation invariance, we Fourier transform in z, and obtain
of +ik-vf+vLf =0, (2.1

where

~

1 —ik-x
ft k,v) = W/Rde Rtz v)de.

In analogy with the passive scalar problem [29], the behavior of (2.1) is different depending on the
relationship between |k| and v. There are two distinct regimes:

|k| > v the enhanced dissipation regime;

|k| < v the Taylor dispersion regime.

The most significant difference between (2.1) and the passive scalar problem (where L is replaced by
A,) lies in the Taylor dispersion regime, which will require a more complicated energy method than the
hypocoercivity employed in [29]. This is also reflected in the quantification of phase mixing, which we
carry out through the vector field method as done in several previous works (see e.g. [21,24,26,72]).
Define the vector field

Z =V, +1Vy,
and observe the commutation property
[Z,6t+v-Vx] =0.

This vector field is exactly equivalent to the V,, derivatives used in previous works that make the co-
ordinate change z = x — tv (for example [15,55]), and so controlling Z implies the Landau damping
of p and other hydrodynamic moments in exactly the same manner. While it is convenient for treat-
ing Vlasov-Poisson in some contexts, the change of coordinates is not convenient for dealing with the
collision operator, so it will be easier to work with Z instead.

2The stretched exponential rate obtained by Strain and Guo in [61] is 2 /(2 + |y]) for the Botlzmann equation and 2/3 for
the Landau collision operator (corresponding to 2/(2 + |y + 2s|) when v = —3 and s = 1). This improvement in the rate for
the Boltzmann case is due to better bounds on £ obtained in subsequent works [4,37], see Proposition 3.1 herein.
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o Enhanced dissipation regime: v//|k| < dy. In this range of k, v, we use the energy functional

1 2-CB . .
Bifs(t k=g 5 G (10 2211 + a0 259,12
a+|B|<B <yt>

+ 2b,, ;Re <<v>M s ZBik f, ()M tare Z8y, f‘>L2 ) L2

where o € N, (3 is a multi-index, C > 1 is sufficiently large depending on the proof,
/28 — Ko < @y,s < Y/25, 0< ko<1, (2.3)

where £ can be chosen arbitrarily small (¢,,; = /2 for s = 1 in the Landau case) and

2 1
ayg = ao(v/|K)) =, by = bo(v/|k]) = [k 2.4)

with 0 < ag < by < 1 fixed constants determined by the proof in Section 4. For the linearized problem
(2.1) the (vt) ~28 in the norm is only necessary in the Taylor dispersion regime (on T it is never needed).
Its presence is associated with problems emanating from low frequencies that then cause issues also in
the nonlinear interactions. Notice that

e 27 s R
Bitnt )~ 3 T () 28R, + aall ) 20V, 7B

atiprcs Vi )’

where the implicit constants are independent of £ or v. There is no need to specifically treat the kernel
of £ since ignoring P f is equivalent to getting error terms scaling as ||z f|| r2- In this regime, those are
under control since a key point of the hypocoercivity scheme is to produce damping of V, f with the
expected decay rate. This automatically implies the desired control over the hydrodynamic fields using
that |k| is bounded below. On T¢, this energy is essentially all that is required to treat both the linear
and nonlinear problem by Poincaré inequality; see [21] where essentially this method was used on the
Vlasov-Poisson-Landau equations (i.e. s = 1 case with nonlinear electrostatic interactions) on Te.

The energy comes with a natural dissipation, namely, the negative-definite contributions that come
from the time-derivative after the various coercivity properties have been used and the parameters ag, by
have been suitably set. This quantity is given by

—CB /@ R )
Difp(t k)= > QC@)(VA (M 27 f] 4 vay A [ 9,20 @3)
atipicn (V1)
|12
L2 )’

where A[g] is an anisotropic norm naturally arising from the linearized operator £; see (3.1) below
for the definition. It is comparable in some sense to certain weighted Sobolev norms of the type
||<v>7/ 2g]| s, see Proposition 3.1 in Section 3 for more details. More precisely, for the linearized
problem (2.1), we obtain the monotonicity estimate (see Section 4),

+ by, 1 || H<U>M+q”

G Bifs +0Dfil <0, (2.6)

for a fixed universal constant . > 0. In the case of hard potentials, i.e. v > 0, one can show that

.d.
2 )\ kEﬁl,Ba

_>\u,kt

DMB

and hence (2.1) implies exponential decay of the type e for the linearized problem. In the case
of soft potentials (y < 0), as is standard, one needs to a use a weak Poincaré-type approach, instead
proving that for any R > 0

DMB >R )\VkE —R (q+2MI)EM+M/ B

for some ¢ > 0 depending on ~, s. Choosing R depending on t in an optimal way, one obtains then a
suitable polynomial decay estimate

E§f(t) S gty ™ ESfiap 5(0).
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As usual, stretched-exponential decay can be obtained if one uses exponential or Gaussian weights; see
Section 4.3 for more details.

o Taylor dispersion regime: v/|k| > Jp. One of the major challenges in the low frequency regime,
relative to the passive scalar case or the enhanced dissipation regime considered above, is that we lose
control on the kernel of the linearized operator P f. Contrary to the passive scalar case [29], where one
can employ a simple variation of the energy functional E§¢ A.3> We here have to combine hypocoercivity
and a (quantitative) adaptation of the micro-macro energy approach introduced by Guo [39,42] and Liu,
Yu [53], see also Duan et al. [31,32] and Strain [60]. An energy functional similar to Eﬁf,lB is still used to
obtain information on microscopic quantities, i.e. (I — P) f, however a different energy yields estimates
on (p, m, e). Recall that (p, m, e) (defined in (1)) solve the following (non-closed) hydrodynamic system
(seee.g. [32,42])

Op+ Ve - m=0, (2.7a)

Om + Vap = —2V,e — V, - O[(I — P)f], (2.7b)

Ore = —%Vm -m — évm -A[(I — P)f], (2.7¢)

where the high-order moment functions ©[g] = (0;;[g])axq and A[g] = (A1]g], ..., Ag[g]) are defined
as

®¢j [9] = ((vivj = DV 9) 2 5 (2.8)

= ((Jo* = (d+2)viv/ii, g) 5 - (2.9)

This system is used to design an appropriate energy that can transfer collisional damping from (I — P) f

o (p, m,e). Here we would like to obtain the sharp decay rate predicted by Taylor dispersion and also
obtain as much Landau damping as possible. This motivates the introduction of the following energy
functional

1 .
E%(t, k) = *Hf\l%

27C8 [k
3 2 S 2 (B alzei - Py

|/3|<BJ o {
Fal) e - PR o)
9—Cof3 R R
+ O DS D Re () Z(k(I — P)J), (o) 29,1~ P)F) ),
v Y ais 0 =

where ¢, ; is defined in (2.1), 1 < Cp < C1,0 < ¢j41 < ¢; < 1 withi = 0,...,3 are small universal
constants determined by the proof; the term M is a mixed inner product involving the macroscopic
variables which we define precisely below. The energy functional in (2.1) contains the terms in the
enhanced dissipation regime for the projection out of the kernel (namely the ones multiplied by c2 and
¢3). These terms do not give any information on P f. To recover dissipation on (p, m, e) through (2.1)
we use

M :=Re(A[(I — P)f]- (ike) + biRe((O[(I — P)f] + (2&)) : (ikm + (ikm)T))
+ boRe(m - (ikp)), (2.11)
where 0 < by < b; < 1 are small universal constants determined by the proof. Notice that

k . .
Bl 72+ 3 Z (‘ 2812, + 12800 (1 - P)fIR

|BI<B j= 0

+ ) e 2V~ PIfI ). @D
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Remark 2.1. The idea of adding the mixed inner product (2.1) in the energy to recover dissipation for
P f shares analogies with Kawashima-type energy arguments [49]; indeed one can use M to explicitly
build a Kawashima compensator. For the Landau equation, this energy method was introduced by Guo
[39] and in Boltzmann by Liu, Yu [53].

As in the enhanced dissipation regime, for the linearized problem (2.1), we obtain a monotonicity
estimate of the form
d

3 BAilis + 04D < 0, (2.13)
for a fixed universal constant §; > 0 and the dissipation functional
T.d. 3 28 g sp | M+qy,s 783 il
Dl = Al =PI+ 3 T M |22 ||, + w220 - By
|B|<B ! Y
! 2—C;iB N , N
+ > > e (\k;A[zﬂ(I — P)f]+ vA[Z°(V,) (I — P)f] (2.14)
v

|8|<B j=0

+ vA[(w)MHI%s ZB(v,) (T - P)f])-

Remark 2.2. Notice the v~ prefactor in the last terms of (2.1). This is possible due to the power of
k and the uniform boundedness of |k|/v in this range of k,v. This scaling is key to obtain the Taylor
dispersion estimates in Theorem 1.1.

Remark 2.3. The factor (vt) 2 is essential in our estimates in the regime |k| < v. As we show in
Lemma 4.4, it allows us to obtain dissipation for Z° P f whose control is necessary for the ‘Landau
damping’. Having the factor (ut>_26 in the energy removes the effect of the phase mixing for ¢t > v =1,
though this is a time-scale much larger than the one in which we see the dissipation enhancement. In
Remark 4.6, we comment about another natural strategy to get dissipation for Z? P f , which however
still requires the factor (ut)fzﬁ . We do not know if this is sharp, but it might be an effect related to
frequencies |k| < v where the phase mixing is very weak.

¢ Linear decay estimates. In Section 4 we prove the following estimates on the linearized problem.

Theorem 2.4. Let f solve (2.1) and Eﬁf‘B, EﬁfiN, vk, and q., s be defined as in (2.1), (2.1), (1.1) and
(2.1) respectively. Then, the monotonicity estimates (2.1) and (2.1) both hold. Define,

En,B(t, k) = 1ok <so ESTB (6 K) + Lo jiys0, Ei B (1, ), (2.15)
Durs(t k) = Ly/k<se D5t (k) + Ly >0, Dai ( K). (2.16)
Then, for any M > 2max{|qys|, |y| + 2s} and M’ > 1 there holds
_ 1
Enrp(t k) S e rMer) ey 5 (0,k) + ———=Enrsar,p(0, k), (2.17)
<)‘V,kt>
—~ 1 2 2M’
where p € (0, 1) is a given number, 0 < §, < 1 and M = p(L+8)(|y + 25| + ) -

V(2 = 5) + 25|qy 5]

Remark 2.5. By a straightforward variant, one can obtain stretched exponential decay estimates as in
Theorem 1.5 using Gaussian localization estimates as in (1.5). These are omitted as this is not possible
for z € R%, which is the main focus of this work.

Before we continue to the nonlinear problem, let us briefly explain now how to pass from the distri-
bution function estimates to the estimates on hydrodynamic quantities. In particular, the decay estimate
(2.4) implies all of the claims in Theorem 1.1 for the linearized problem (2.1).
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Lemma 2.6. Let > 0,7 > d, and N be integers. For j < 1), suppose that b satisfies ’V{,b(v)’ Ny ()N,

Let d > 2 and let f satisfy sup;>g ENyy,5(t, k) < 0o. Then, there holds

H()\(V,Vx)t>< / F(t, -, 0)b(v)dv

Proof. The case ¢ = 0 can easily be extended to handle { > 0, and hence we only consider the following

H/f(t,-,v)b(v)dv LgOS/Rd /f(t,k:,v)b(v)dv
dk+/|k|>50_1u

<)
|k|<o5 1y
1
< / 4k | sup (A pt)? \/Enrgno(t k)
ki<ay v (vt [k t) keR
n

n / (vt)"
k|07 1w [tE[T (Aukt)” (vt)"

vd/? 1 n
N @T/Q + W :Uﬂgj (Ao kt) T\ Errpn (L, E),
€

<o [ st ™ Exmn (6 B)
¢ + sup sup Mkt N+, t, k).
e TN (B2 ) 20 pers o

dk

dk

/ f(t, k,v)b(v)dv

/ f(t, k,v)b(v)dv

dk

Oit)” ( (. k, v)b(v)) dv

where in the last line we used that \, j, 2 v for |k| 2 v and we used > d. O
In a similar vein, let us record the following L2 L2 decay estimate which follows from Theorem 2.4.

Lemma 2.7. Let { > 0, > d, and N be integers. For j < n, suppose thatbsatisﬁes ’V%b(v)’ Ny <U)N.
Let d > 2 and let f satisfy sup;>o Enyac(t, k) n > d. Then,

1+2

/2 1
H<)\(V V) be‘ PTRS << + > sup (A, k)7 \/En iy (t, K).

Y2 sy | g

Proof. The ( > 0 case is a trivial extension of the ( = 0 case, and so we just consider this one. For
1
t < v~ T+25, we may simply use Sobolev embedding in = and obtain an estimate with no time-decay.
1 .
Therefore, consider ¢ 2 v~ 7+2s. By Cauchy-Schwarz and Fubini’s theorem,

2
dv

16f122 10 < U’ Ft, b, v)dk

5/ / (U>2N+77 f(t,k:,v)rdvdk
R JRd
1

1
< Ak / _dk
/k<z//60 (v k2t)" K[> /60 <yﬁ,k,ﬁt>"

x sup (Aykt)" \/Entn(t, k),
keRd

from which the desired estimate follows. |

2.2. Nonlinear problem. For the nonlinear problem, we need also to estimate vI'(f, f), which now
couples all of the z-frequencies together. The norms we will use to treat the nonlinear problem are the
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following: for integers M, M’ , M > 2d, B > B’ + d > 3d we define

&= [ Ovatl® Bl (e, Rk + [ k)2 B (8, k)b
{|k|<65 v} ’ {1kl>05"v} ’
Enom®) = [ ElftaptRdbs [ Eg bk
{|k|<6; v} ’ {Ik[>6; v} ’
Ert):=  sup ) BTt k) + sup () S (k)
{k:|k| <55 v} {k:|k|>05 tv}
gLF,mom(t) = sup E],J\}sl—.&-MJ/,B’ (t, ]f) + sup Eifg._i,_MJ,yB’ (t, k),
{k:|k| <55 v} {k:|k|>05 tv}

where the parameters are set satisfying certain conditions determined by the proof, namely

M, M > 2max{(|7/(2 — 5) + 25|gy.s)/(1 + ), B + || + 25},
My, My > 2max{(|7[(2 — s) + 2s|gy,s|) /(1 + ), B+ |[v[ +2s}(J + 1),
M +Mp<M, 2d<B <B-1, d<J <J-1. (2.19)

As above, each of these energies are also associated with a natural dissipation functional D,; see (5) and
Section 4. The energy & represents the fundamental L2 L? decay estimates we obtain, while the energy
Emom controls higher moments in v but with no decay estimates (to use a weak Poincaré approach in
the treatment of soft potentials) and £, obtains better estimates at low frequencies using L?L% (i.e.
pointwise-in-frequency) as a more convenient surrogate for L L2-type estimates. This allows to obtain
the sharp decay estimates for both f and p; these sharp decay estimates are also crucial to close the
nonlinear argument in d = 2 (however in d > 3, they can be obtained a posteriori).

The majority of the paper is devoted to the following bootstrap estimate, which implies Theorem 1.1
by a straightforward regularization argument.

Proposition 2.8. Let f be a classical solution to (1) such that (v\™ 9285 f € L2, forallt e [0,T]and
N,a, B > 0. Suppose that for t € [0, T there holds

t
E(t) +v / D(7)dr < 4Bge? (2.20)
0
t
Emom (t) + v/ Dinom (T)dT < 4B;e? (2.21)
0
t
ELF(t> + I// DLF(T)dT < 48262 (2.22)
0

t
gmom,LF(t) + V/ Dmom,LF(T)dT < 483527
0

for universal constants Bj set by the proof. Then for € sufficiently small (not depending on t or v), the
same estimates hold with 4 replaced with 2. Furthermore, the quantities on the left-hand side take values
continuously in time, and therefore, these estimates hold for all t € [0, o).

Moving from the linearized to the nonlinear problem is not too difficult on T%, as the nonlinearity
vI'(f, f) has a power of v in front admits estimates of the general form

ZP00T, ZPo2 £ )| < VED, (2.23)
(zor.2°cs)

where £ is one of the energy functionals and D denotes one the associated dissipation operators. This
allows it to be absorbed by the dissipation in a relatively straightforward manner. However, on R?, sev-
eral new difficulties arise connected with the low frequencies if one wants to obtain the sharp decay rates
and almost-uniform Landau damping. Instead of (2.2), we eventually reduce ourselves to an estimate of
the form

d d/2

LE+HADSVED L (letgyl n (t”>d/21t>y1> VELrVEVD.
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Coupled with suitable estimates on £rr and &0y, provided d > 2, this implies Proposition 2.8 and
hence Theorem 1.1.

2.3. Notation. Let 8 = [f,. .., 34] be a multi-index with 3; € Nand |3| = 81 + - - - + 4. We define

B =8y, +10:,)P" ... (D, + t0s,) 4, (2.24)
(Vv)ﬁ = 6511 . 6557

(Vo)P =00 95,

We denote (V) as the operator whose symbol in the Fourier space is (k) = (1 + |k:|2)%. For a given
constant ¢ > 0 and a multi-index /3, we will slightly abuse in notation by writing ¢” instead of /8.
The L2(RY) inner product inner product and norm are

7 2
(o:h)sz = [ a@hd. gl = (9.9)12
We use the following notation for weighted Sobolev spaces
lallms. = 1Y gl

where H? is the usual H*(R?) Sobolev space. When no confunsion arise, we will omit the subscript v
for the weighted spaces.
We denote the x-Fourier transform as

N _ 1 —iz-k
Flo)) = 3(0) = o [ e of@)a.
Given x € C2°(B2(0)) with x(k) = 1 for |k| < 1 we define the homogeneous Littlewood-Paley
decomposition in R? as
g9=>_ on (2.25)
Ne2Z
where 22 = {27 : j € Z} is the set of dyadic numbers and

gn (k) = (x(k/N) = x(2k/N))g (k).

‘We denote
P<ng(k) = g<n(k) = x(k/N)g(k),
Pong(k) = g=n(k) = (1 = x(k/N))g(k).
Moreover
lgll2 = HQHL% ~ Z ||§J\V||L§ (2.26)
Neg2Z

3. PRELIMINARIES

In this section, we recall some known results and we prove basic estimates that play a crucial role in
our subsequent analysis.

3.1. Linearized operator. A well-known coercive estimate for the linearized operator, given in [54], is
2
(£9.9)1 > C I = Pyl

This estimate shows a dissipative mechanism of the linearized operator for elements outside the ker-
nel. However, it does not quantify any regularization property, which are in fact carried over by
Ly = —I'(y/1, -). In particular, by standard symmetrization arguments one can show

(£19.9) 2 //wasdl ( it (9 — 9)° + 62 (f \F) >dv*dvda

This identity suggests the following splitting, used for instance in [4, 5],
(Lg,9) 2 = Algl + Klg],
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where

1 , 2
Algl =5 // B (u* (¢ —9)° + ¢ (x/ — \/ﬁ) ) dv,dvdo (3.1
RQdXSd—l
1 /
Klal = (Cagvalsz +3 [ BV (Vi = Vi) (¢ =) dudodo

From the results in [5], which we recall below, we know that the operator A contains the information
about the anisotropic dissipation and is comparable to some weighted Sobolev norms. On the other
hand, IC can be thought as a compact perturbation. In the sequel, we also need to use the following
variation of A

1 / ne K 2
AS[f] = 2//dexsd-13 (u: (f = 1)+ 12 () = rr?) )dv*dvda (3.2)

which is defined for any x > 0.

In the next proposition we collect some bounds that are proved in [5, Proposition 2.1-2.2, Lemma
2.12 and Lemma 2.15] (in the case of the Landau collision operator, i.e. s = 1 and v = —3, analogues
can be found in [39]).

Proposition 3.1. Ler0 < s < 1,v> —3and k > 0. Then

Al = P)g] S (Lg,9) 12 < 2(L19,9) 12 S Algl; (3.3)
2 2 < < 2

||9||stw/2 + HQHLﬁ’SM/Z ~ A[g] ~ ||9||Hj!5ﬂ/2 ) (3.4)

A%[g] < Algl. (3.5)

Moreover, there exists a constant 0 < § < 1 such that
(Lag,h) S gll 2 1ol s

In fact, an important bound we need, which is one of the main ingredients to prove (3.1)-(3.1), was
given in [5, Proposition 2.16].

Proposition 3.2. Let v > —3. There exists a constant C' > 0 such that

1
7oAl = Cllglzz | < (£19,9)12 < Algl:

3.1.1. Commutation properties. Since we are going to use an energy method, commutator estimates of
the linearized operator with derivatives and weights are crucial. For standard derivatives, these were
already understood in e.g. [4,37,42,44]. However, we need to be sure of analogous properties involving
the vector field Z. Introducing the trilinear operator

T(g,h,q) = // B(v — v, 0)qs (gih' — guh) dvido,
R xSd-1
it is straightforward to check that
Z(T(9,h,q)) = T(Zg,h,q) + T (9, Zh,q) + T (9, h, Zq).
Since I'(g, h) = T (g, h, \/11), recalling the multi-index notation (2.3), we have the Leibniz formula
2= Y CamaT (279,270, (9.7 Vi), (3.6)

|B11+|B2]+|83|=8]

where we also used that p does not depend on x. Then we have the following adaptation of estimates
obtained in [4,37] for the standard derivatives.

Lemma 3.3. There exist constants C,Cy > 0 such that for any § > 0 the following holds true:

~ C
(L1, 2% g, By 2| < OAR+ = > A[Z%yg] 3.7)
|B1|<18]-1
~ 1 _ C 1
([L2, 2%, By 2] < OlnT@hF, + = Y (|u®P Z7]f3, (3.8)

|311<]8]-1
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where C(3) = 10%(|3| + 1). Moreover; let £ > 0. There exists 0 < §. < 1, C3,Cy > 0 such that
(L1, (0) g, (0)° 92| S I g7 (3.9)

1
<<v>€Zﬁ(£g), <v)ZZﬂg> > 1Al 2] = G5 D Alfw)" 2%g] = Cullu* 2P| 743.10)
[B1|<B~1
The same bound holds with Z replaced by V,,.

Proof. We first prove the bounds (3.3) and (3.3) involving £;. Recall that

ng = _F(\/ﬁa g) = _T(\/ﬁmga \//7)

Combining the Leibniz formula (3.1.1) with the fact that ; does not depend on x, we get

[‘Cl’Zﬁg] = Z 051752753T((vv)ﬁ1\/ﬁ7 26297 (vv)gg\/ﬁ> : (3.11)

|B11+|B2]+|B3|=p
|B21<8]-1

We thus have to estimate terms like
1= (T (Vo) Vit 2%, (V) i) 1)

From this point on, having Z-derivatives is the same as having (x, v)-derivatives in the proofs of the
commutator estimates in [4,37]. For convenience of the reader, we present the main ideas to obtain such

bounds. Notice that 855 VI = Pg,(vi),/j for a polynomial Ps.. Hence, with a slight abuse in notation
we rewrite the term above as

I = //RM " B(PB3\/E)*((Pﬂ1\/ﬁ);Z629/ — (P, \//7)*Zﬁ2g)hdvdv*da,
-

We split this term as I = I + I?, where

M= ] B Pa V(2% — 2%g)hdudu.do,
R2d xS§d—1

P[] BER(PaVE. ~ (P2 g hdudude. G12)
R2d xS§d—1

For 12, combining Lemma A.2 with Lemma A.3 and using Cauchy-Schwarz we get

121 S 12%glle IRl

v,s+7/2 v,s+7/2 '

Concerning I', we consider the symmetric and antysimmetric part of the coefficients involving the

Maxwellian, namely 7! = Islym + IL ., with
1
Il == // BS(zP2g — Z2%2g)h dvdu,do,
Y 2 J Jp2dysd—1
S = (Pay /1)« (Pay V1) + (P /1) (Poy /1) (3.13)
1
Il =— // BA(ZP2¢' — 72 g)h dvdv,do,
2 J Jp2dysd—1
A= (P53\/ﬁ)*(P,31\/ﬁ)/* - (Pﬁ:a\/ﬁ);(P&\/ﬁ)*' (3.14)
For the symmetric part, since S and B are invariant under the change (v, v,) — (v, v}), we have
1
IL == // BS(zPg' — ZP2g)(h — ') dvdu,do.
Y 4 J Jr2dysd—1

To bound S, notice that for some 0 < k < 1 (depending on 53, 81) we have
812 (et = (i)™ = o 2 ()% = 02
Hence, by the Cauchy-Schwarz inequality and the definition of A4” in (3.1), we infer
oyl S A%[27%g]A%[R] S A[Zg]A[D],
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where we used (3.1) in the last inequality. To handle Iantl’ one exploits the fact that under the as-

sumptions in the kernel, the change v — v’ does not change the bounds. Thus, introducing further
commutators, one is in a situation analogous to I>. With the bounds above, appealing to Lemma 3.1 and
using Young’s inequality, the commutator estimate (3.3) is proved.

Turning our attention to (3.3), notice that

<[E1 ()l //R?d s B\/1iilg g((v') — ) dvdv,do
=1/ B(u*u;ﬁ<u%g>'<u%g><<v'>£ ~ (0)")? dodv.do,

where in the last identity we used 1), = pp’ and we symmetrized using v — v'.
Since Q(Nig)’(,uig) < ((uig)’)2 + (,uig)g, exchanging v — ¢’ in the resulting integral of the first
term, we get

‘<[£1,< )19, //W%d 1 B () 1 (u4g) <<v> — (v) Z)Q dvdv.do.  (3.15)

By the mean value theorem
() = @)1 S o= () + ). (3.16)
Arguing as in (A), one has
v — | <sin(0/2)|v — vs|. (3.17)
Therefore, combining (3.1.1) and (3.1.1) with Lemma A.2 and Lemma A.3, from (3.1.1) we infer

(121, 0) . (0) ) | S llugll3s,

where 6. > 0 is sufficiently small.
To prove (3.3), recalling that Log = —I'(g, \/1t) = =T (g, /11, /11), We get

(L2, Zﬁf] — Z T (Zﬁlf, (Vv)BQ Nm (VU)BB\/E) .

|B11+|B2|+|B3|=8]
|B21<8]-1

Consequently, we can proceed as in the proof of [4, Proposition 4.5] (and [4, Lemma 2.15]) to prove
(3.3). More precisely, one has to bound terms like

1= / / B(Bpy /1) (Zﬁlg;(Pﬁg VR = 2% g.(Ps, ﬂ)) hdvdv,do,
R2dxS§d—1

where Pg are again suitable polynomials arising from the derivatives of the Maxwellian. Split [] =
ITV + 117 as

— //RQdXSd 13(2519)1((%3\/@*(}’52\@/_ (P, /11)4 (P, /1)) h dvdu,do,
//waSd 1 PB“\FZBl ) (PB \fzﬁl ) )(P,Bzx/ﬁh) dvdv,do.

For the term 112 one exploits the cancellation in [3, Lemma 1] which says that
[ Ble = g)dodo = (Kxg)w). K~
R2d x§d—1

For the term II' it is enough to split the term containing the Maxwellians to apply the mean value
theorem together with Lemmas A.2 and A.3.
Finally, to prove (3.3), notice that

() Z°Lg = L1((v)" Z°9) + La((0)" Z7g) + [(0)", L1 + L2] 209 + (v)" [2°, L1 + La]g.
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Thanks to Proposition 3.2 and (3.3)-(3.3), in the formula above the only term we do not know how
to estimate are the last ones containing £; on the right-side. However, multiplying (3.1.1) by <v>£
corresponds in redefining .S and A in (3.1.1) and (3.1.1) respectively as

St 1= (Pay /1P, /). ()" + (Pay /)P, /i) (o)
Ap = (Pay /)« (Pay /1)l (0)f — (Pay/ 1) (P /1) (V')

Moreover, also the term 72 in (3.1.1) has an extra <v)€ multiplying the Maxwellian ,/j1.. Upon intro-
ducing further commutators if necessary, for instance in Ay, one can repeat the arguments done to prove
(3.3) and obtain the same estimates (clearly with worst constants depending on £).

The fact that the lemma is true if we change Z with V, is straightforward. Indeed, as observed
before, there is no difference between having Z or V, derivatives (the latter being used for the bounds
in [4,37]). (]

3.2. Nonlinear operator. For the nonlinear part, the main trilinear estimate we are going to exploit
was derived by Alexandre et al. [4] and Gressman and Strain [37,38] (obtained independently and with
different techniques, see the discussion in [38]).

Theorem 3.4 ( [38, Theorem 2.1], [4, Theorem 1.2]). Let 0 < s < 1 and v > max{—d, —d/2 — 2s}.
Then

[ 9), B L S NNl e v Algl AR (3.18)
For the commutation properties with the weight we have the following.

Proposition 3.5 (Proposition 3.13 [4]). Let 0 < s < 1 and v > max{—d, —d/2 — 2s}. Then, for any
£ > 0 one has

(@) T(F.9) =T 0 )1 | SVARI(I e 10 gz (3.19)
mind |l 10) gz Il 10 gllez)).

Combining Theorem 3.4, Proposition 3.5 and Lemma 3.3, we get the following.

Lemma 3.6. Let 0 < s < 1 and v > max{—d, —d/2 — 2s}. Then, for any B > 2d, M > B+ |y|+2s,
|B] < B one has

(@M 2°T(f.0),0)| < VAR (H<v>MZﬁlfHLg\/AKwMZ%] (3.20)

1B1+1B2|<|8
A 25110 2%l
Proof. From (3.1.1), we see that we have to control terms like
(M (27 1,279,(9.)% 1) ).
We split this term as
(@MT (201, 2%9,(V) ) )
(M T (295,220, (V0) ~ T (21,0 20, () 1) @2n

+ (T (204, ()™ 2%, (Vo)) ).
Then, we notice that Theorem 3.4 and Proposition 3.5 are stated for I'(f, g) = T (f, g, /1). However,

it is not difficult show that the bounds (3.4)-(3.5) holds true also for 7(f, g, 65{ w). Indeed, the proofs
in [4] rely on a decomposition of the operator I" based on a nice identity to isolate the singularities, see
in [4, Lemma 3.6]. Upon properly symmetrizing to take care of the polynomial (as done for instance
in (3.1.1)), using (3.1) and Proposition 3.1, one can verify that the estimates (3.4)-(3.5) holds also for
T(f,q, 857 1). Thus, we can apply the analogue of Proposition 3.5 to the terms in (3.2) and Theorem
3.4 to the remaining ones. U
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4. LINEAR ESTIMATES

This section is devoted to proving the results announced in Section 2.1. A first crucial step is to obtain
the monotonicity estimates (2.1) and (2.1) which we collect in the next proposition.

Proposition 4.1. Let E5f'y, DS, Ej% and D% be the functionals defined in (2.1), (2.1), 2.1) and
(2.1) respectively. Then, there exists constants 0 < J.,0q < 1

d
th 5+ 5eD§fB <0 4.1
d

We prove (4.1) and (4.1) in Section 4.1 and Section 4.2 respectively. Having these estimates at hand,
in Section 4.3 we present the proof of the decay estimates for the linearized problem given in Theorem
2.4.

To simplify the notation, since all the norms are L? based, in the rest of this section we will always
omit the subscript L? and we write H? instead of H3 . Moreover, thanks to (2.1) we know that the
problem decouples in k. Hence, the factors (k) in the definition of the energies play no role in the
estimates (but are useful in the nonlinear problem).

4.1. Monotonicity estimate in the enhanced dissipation regime. The aim of this section is to prove
(4.1) in Proposition 4.1. As a consequence of the properties given in Section 3, we first give some basic
energy inequalities which are necessary to control the time-derivative of EﬁZdB (2.1).

2dt H " ﬁfH 100 >MZB«ﬂ < vRj, (4.3)
2dt H e, ZﬂfH Tog ALY vz
< [ 200Gk f), )M e v, 28 )| + RS, 4.4)
%Re << VM+ars 7Bk ), (v) MHars VUZ*Bf> 4R H<,U>M+qv,s Zﬁsz <vRY.  (45)
where the remainder terms are given by
Ry = (2P + 3 Al 271)). @6
[B1]<18|-1

R% = Cp <||u5v,,zﬁ FIP+ Af)MF e 2014 >~ Ay v, 25 f]), (4.7)
181 1<IB] -1

Ry = 2 |{() M0 v, 20 f, (o) e 20 L (i) )|
+ 2|10, @M1 20 f, o) M0 20 Lk ) ) (48)
with 0 < Cg 1, Cg2 being fixed constants depending only on 3.
Proof. Bounds (4.2) and (4.2) are a consequence of (3.3). For (4.2), since
OV ZPf = —v -V, V., Z°f — vV, ZP L,
Vo ZPfF 4V, ZPf = —0 -V, Vo, 2P f — vV, ZPL ],

using the antisymmetry of v - V, we get

S Re (o)1 2GR ), ()M 0,20 ) 4 BP0y e 28 )P
— _JRe <<U>M+qws ZBL(ikf), ()M e v, 78 f>

~ Re <<U>M+w Z8(ikf), ()M e v, (2P f)> .
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Integrating by parts in v the last term above, and moving the ik on the term containing £, we prove
4.2). O

We are now ready to prove the first bound in Proposition 4.1.

Proof of Proposition 4.1. From (2.1) and (4.2)-(4.2), we get that

Qe 4 1 > 27 )" vA[()M Z° f] 4 va, g Al(0)M T v, Z8 £
dt— M5B 200 ) ()P v v

~l12
et i 225 )

27 (k) o ;
< 2 7<2,B> av:k\<<v>M+q”»s 28k ), )40 v, 2P )| )
ot |BI<B <”t>
- Z VR%—{—V@V’;CR%—i-VbV,kR%), (4.10)
a+|8|<B >

where we have neglected the term with a negative sign on the right-hand side coming from the time
derivative of (vt) =28 In the rest of the proof, we highlight all the necessary restrictions on the coefficient
and in the end we show that it is possible to choose the coefficients in order to satisfy said constraints.
We first bound the error terms in (4.1), which can be directly controlled with the available anisotropic
dissipation appearing on the left-hand side of the inequalty. Then we control the remaining mixed inner
product error term in (4.1).

¢ Bound on Ré (4.2). The sum containing lower order derivatives is controlled with the available
dissipation coming from the 8 — 1 terms. Namely, it is enough to impose that
9—C(B-1)

1
2—CBC 2_ —_— 411
A1 00 <G (1D

For the other term in Ré since M + ¢, s > 0 we have

W27 FIP S g [ Z0n )|

[k[2
Thus, to control R%, we need to impose the following restrictions on the coefficients

I/CB’

IR (4.12)

< Bound on R% (4.2). To control the first term in the definition of R% as in [4, (6.14)], we exploit the
following interpolation inequality: for any ¢ > —~, § > 0 there exists C'5 such that

1) VuglEs | < 8ll0) Vugls , + Colle) Tugllls. S SAL) Vo] + Coll(0) gl (4.13)

The bounds above follow by the Gagliardo-Nirenberg inequality and straightforward commutator esti-
mates to handle the weights. With the inequality (4.1) at hand, we get
5/372

1 N
A[<U>M+q%8 VvZﬁf] + ]k‘Z

— 400

Moreover, since ¢,; < 0 we have

Alw) 0 201 S Al)™ 27 f].

Cpoll®Vo 2P f|? <

oy MFans 78 (i, f)H2 .

Hence, we require that

l/amkéﬁ’Q
Ll

in order to be able to absorb the errors terms with the dissipation.

Kbk, arCsa<1l,  27°Czy <1, (4.14)
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© Bound on R% (4.2). From the upper bound in (3.1), we get

[{Lg. 1) | S VAlGIVAIf-

Hence, using M > ]q7 s| and —d < v < 0, from the Cauchy-Schwarz inequality we deduce

vb s Al(0) 20 f] 4+ vCIR P (by0)? (Al0) 9 9,2 f] 4+ Alw)™ 27 1))

R?)
wkItE = 1600
Consequently, the following restriction on the coefficients is needed

C|k[*(byx)? < min{a,, 1}. (4.15)

Collecting the estimates on the remainders made above, under the restrictions (4.1),(4.1) and (4.1), we
can absorb all the R’ 3 error terms to get

gEe.d. + L Z w vA[(YM ZP f] + vay, , Al ()M T v, Z8 f]
dt M,B 400 Sy <I/t>2ﬁ v, v

~l12
+ buglkf? || @)V e 28| )

27CB (k)™ g A
- %@ <1/t><2ﬁ> av | (@M 20k f), )M 0, Z0F) @)
a+|p|<

< Bound on the mixed inner product. The last error term appearing in (4.1) is the most delicate to
control. Indeed, we do not have v as a smallness parameter and it is the first term where we have to
explicitly deal with the softness of the potential. To overcome the latter issue, it is crucial to use the fact
that v-derivatives are controlled with weaker velocity weights. For instance, in the Landau case, one
has s = land ¢g_37 = —3/2. Thus, we can directly control this term combining the Cauchy-Schwarz
inequality with a?, i/ bui << v; the proof for s = 1 is omitted for brevity, as it is more straightforward
(see also [21], where g—31 = —4 though). We begin by noting the following lower bounds, obtained
from Proposition 3.1

vA[()M ZP f] + va, p Al ()M T v, Z8 f]

>y H<’U>M + vay H<v> e 4.17)

/2 v/2

For a general 0 < s < 1, we have to handle carefully the anisotropy of the dissipation. We consider a
dyadic decomposition of R? and apply the Cauchy-Schwarz inequality to get

v |( ()17 2Pk ), (o) H 0,277 )| <

iauklk\ Hll{2j§<v>§2j+1} (v) M s Zﬂf” )‘1{2j§<v>§2,7+1} (v)MF s VUZﬂfH
5=0

[e'e)
= Rj.
J=0

Using the Young’s inequality, we get

by k
<
Rj< 1600

[

16007 |11y cariny ()00

By the choice of the coefficients in (2. 1), notice that

(4.19)
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Combining (4.1) with the Gagliardo-Nirenberg inequality, since ¢, s < 0, we obtain

2

<()<2+1y (v >

1—s

I+s , 112
Cag <2_(J+1)'Yyal,7k H ]1{2j§<v>§2j+1} <'U>M+‘h,s VUZBfH >
0 H /o

2>S
H o

x (2—(1'*1”*2””’3’/ Hﬂ{%ﬂwsw‘“} ()" 2°f

From the inequality above, we deduce that

ZR] - 1600

H< M-+ ZﬁfH2

1+S 2 1—s 2 s +oo ‘ .
+c2o (yayk H<U>M+‘Iw A fH ) <y H@)M 7P f > Y o2,
bo ’ H: ") =

The series above is convergent for any ¢, s < /(2s), which is guaranteed by the choice we made in
(2.1). Thus, using (4.1), we conclude

Z R < 1600
1+s . .
+ 0% o (Vay7kA[<v>M e 7, 728 f] + v A[(0)M 28 f]) . (4.20)
0
The term above can be absorbed on the left-hand side of (4.1) upon choosing

ag ™ < by. (4.21)

ot 225

By the definition of the coefficients in (2.1), satisfying the constraints (4.1), (4.1), (4.1), (4.1) and
(4.1) is equivalent to imposing

2(1+s)

v\ T 35 (72s)
c>1, T < 5T < by, aody < by,

(4.22)
b < ag, ap ™ < bo.

Hence, C is simply some sufficiently large (universal) constant to absorb the error terms coming from
the commutators of L. To satisfy the restrictions on ag, by, dg, let 0 < kg < 1. One can then choose

1 +s S
s _ (1+s)
ag = 1000/{5” , by = \/koao, do = m min {/{0 Ko }

It is not hard to verify that this choice satisfies all the constraints in (4.1). Finally, using (4.1) in (4.1),
we arrive at

d e 1 2% (k) M 3} Mgy s 87
aEM’B + m a+§ﬁ|:<B W <I/A[<U> Z f] + ya,,7k.,4[<’u> va f] (423)

M‘Hhs Zﬁ H <
1600 H / 0

In view of the definition of D]e\'ff'B (2.1), the monotonicity estimate (4.1) is proved. O

4.2. Monotonicity estimate in the Taylor dispersion regime. We now turn our attention to the the
proof of (4.1). As explained in Section 2.1, we have to combine the micro-macro energy approach and
the hypocoercivity scheme. We first deal with the macroscopic quantities in Section 4.2.1 and then we
present the bounds for microscopic ones in Section 4.2.2.
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4.2.1. Bounds on the macroscopic quantities. Recall that

Pf = (plt,2) + m(t,) - v +e(t,2) (v — ) Vi,

where (p, m, e) satisfy the hydrodynamic system (2.1)-(2.1). To gain dissipation for the macroscopic
variables, it is necessary to introduce the equations satisfied by O[(I — P)f], A[(I — P)f] (that are
terms appearing on the right-hand side of (2.1) and (2.1) respectively) which are given

8(O[(I — P)f] + 2eI) + Vom + (V.m) = —O[ik - v(I — P)f +vL(I — P)f], (4.24)
OA[(I — P)f] + Vee = —Alik - (I — P)f +vL(I — P)f]. (4.25)

We recall that ©, A are the higher-order moments projections defined in (2.1) and (2.1) respectively.
Looking at the structure of the hydrodynamic system (2.1)-(2.1) and (4.2.1)-(4.2.1), it is natural to try
to exploit mixed inner products to recover dissipation for the macroscopic variables. Indeed, loosely
speaking, one has the following

%(m - Vap) + |Vap|? = error terms

d

a((@[(] — P)f]+2el) : (Vom 4+ (Vom))) + |[Vem + (Vom)T|> = error terms

d

a(A[(I — P)f]- Vge) + |Vze|*> = error terms

The idea of using mixed inner products to recover dissipation dates back at least to the PhD thesis
of Kawashima [49] and has been successfully exploited in many different problems [7, 31,42, 44, 60].
However, we also need to recover dissipation for terms involving Z-derivatives. Thus, we first need the

following equivalence.

Lemma 4.3. For any 3 > 0, the following inequalities holds true

1Z8PFII2, < 100|(tk)?||(. @)+ Cr Y |(tk)?7][(5 @), (4.26)
0<|BI<18]-1
— 1 A ~ R
1Z°Pf||72 > 5\(tk)25ll(p, m,e)P—Cy > |(th)*|(p,m, @)%
0<|BI<IB8l-1

From this lemma we deduce that we can consider || Z8 P f|| > as being equivalent to tE|%|(p, m, 8)|
up to lower order terms.

Proof. When 3 = 0 the equivalence is a direct consequence of the orthogonality in L? of

(Vi viv/i, (o] = d)y/1),

which is a basis for the kernel of £. When |3| > 0, notice that

Z°(Pf)= Y Coap (((tvx)ﬁlp)(véb\/ﬁ) +((tV2) ) (Vi ((Jvf* — d) /i)

|81]+821=|8]
d
£ 3 (V) Pmy (V <wﬁ>>)
j=1
d
(V) D)+ (T ) (1o — 5)E) + S (6V2)Pmy) (03 /F) + T,
j=1

where the term Z> is what it remains from the sum when [53| > 1. Using again the orthogonality
condition, the proof of (4.3) follows by the identity above and Cauchy-Schwarz inequality. (]

The dissipation for the macroscopic variables is recovered from the mixed inner product defined in
(2.1). In particular, we have the following adaptation of the estimate originally obtained in [31,42].
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Lemma 4.4. Let M be defined as in (2.1) and assume that bs < by < 1. Then, there exists a universal
constant 0 < ¢ < 1 such that

d _ k . .
Ivse Y B zph, <l - Pz, @27)
o<igres V)

This estimate is the only one where we need to crucially use the factor (ut>26 in the definition of the
energy functional, as we explain in more details after the proof (see Remark 4.6). Before proving this
lemma, we recall some basic properties of the higher order moment projections.

Lemma 4.5. Let O[], A[-] be defined as in (2.1)-(2.1). Then, there exists a universal constant ) < § < 1
such that

0[g]| + [Alg]] < I1K°gllz2 (4.28)
1O1L(9)] + AL S 19l 2. (4.29)

Proof. The proof of (4.5) is a direct consequence of Cauchy-Schwarz inequality and the fact that (v)? u? €
L2 for any p > 0 and ¢ > 0. Similarly, to prove (4.5) notice that

(AL = [0l = (d+ 2)viy/i, £9) 1z | = (L0 Poiv/i),9) 1 | S 109l 12
and analogous bounds holds for ©, whence proving (4.5). U

We are now ready to prove Lemma 4.4. In the proof we again omit the L2 subscript in the norms.

Proof of Lemma 4.4. In [31, Lemma 4.1] the following inequality is obtained (for v = 1)

\kl2

f—w1 (e w2 Sy (430)

for some ¢, independent of v, k. For convenience of the reader, we present below the proof of this
inequality. However first, having at hand (4.2.1), we prove (4.4). Indeed, since |k| < §; 1y, observe that

|tk[*

k|? > 677
(t)*

K[,

for any |3] > 0. Appealing to Lemma 4.3, we get

- 1 26, 2 R
kPl &™) 2 5 le 0 Ik gy (2r& P
0<|BI<B

ey & (EmEn e G e
= 200(B + 1) o )P ' 25

0<|BI<B 0<|Bi<|g—1 (V1)

1 28 0 L2 PR
tom—— Y 5 |kl |(h, &, m)|".
23
2(B+1) o<IAI<B (vt)

Since

28 SRR
Y oo Y Mg emp<npe Y I Gemp

0<|BI<B o<iBl<igl-1 Wt o<igl<B-1 ¢

for d¢ sufficiently small we deduce that

. 1 28 Lt
BRI e, )P > ————— Y 5 531 Z°Pf°.
Ié;
200(B +1) o<IpeE (vt)

Combining the inequality above with (4.2.1), we prove (4.4) with ¢ := 5*58’5 /(200(B + 1)).
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To prove (4.2.1), applying V to (2.1) and taking the Fourier transform of the resulting equation and
of (4.2.1), we get

%Rem[(I—P)f] - i%e) + |k Je]? 31)
< Ce([kPmI[AL(I = P)f]| + |kP|AL(I — P)f]|?

+ |k|[A[ik - v(I — P) f]]|é] + vIk[|A[L((T — P)f]|[¢e])
=Ce(Z5 + -+ I§)

From Young’s inequality and Lemma 4.5 we get for some @’s,

by ~ A
I8 < k2|2 + Clk[H|po (I — P)f|?
< o PR+ CulkZ (1 = P) P,
5 < Colk*|u (1 — P)fII%,
k|? ~ A
7e < o2y Gt — Py 72
3 < Joe el + CalkPli (2 = P)P
zs < M e 4 Gt - PR
- ].6Ce
Since |k| < v, using the bounds above in (4.2.1) we obtain
d P 1 . b . ~ .
 Re(A[ = P)f] - iké) + §!k\2!e!2 < %IWImI2 + OV’ (I — P) fI%. (4.32)
Consider now the second term in M. From (4.2.1) and (2.1), one obtains
d

Re((@[([ — P)f]+2(&I)) : ((ikm + (ikrﬁ)T))> +lk@m+ (kem)

dt
SIEP(el + 16D (81U — P)fIl + [&]) + [k[*|©[(I — P) S| (1O — P)f]| + [&])

Al
+ [Klm|(|O[F (v - V(I = P) )]+ vOIL((I — P)f)]).

Notice that
d
Eem+ (kem)T? =" (km + kimj)® = (k[ + |k - @),
i,j=1
Hence, using Young’s inequality and Lemma 4.5, similarly to (4.2.1), there exists Cy, (independent of
m) such that

d 5 . o - 1 .
dtRe((@[(I — P)f] +2(&I)) : ((ikrn + (zk:m)T))> + §|k|2\m|2 (4.33)
by, . . ~ 5
< |01+ ColKP[ef* + Con? [l (1 = P) I,
Arguing analogously for the remaing mixed inner product, we infer there exists C', (independent of p)
such that

d Y k% . . .

S Re(m-ihp) + " af? < k(P + Jef). (434)
In light of (4.3), choosing bs < b; < 1 and combining (4.2.1), (4.2.1), (4.2.1) we prove the bound
(4.2.1) for a suitable constant c,. U

Remark 4.6. In the proof of Lemma 4.4, it is crucial to exploit the factor (Vt>2/3 to recover dissipation
for all Z° P f by using only the one available for (p, m,e) (corresponding to 3 = 0). In fact, one can
also define the mixed inner product for (tV,)®”(p, m, e) and try to obtain an estimate as (4.4). However,
for |3| > 1 we have some dangerous error terms coming from v£(I — P) f in (4.2.1)-(4.2.1), where the
main errors are proportional to

V10 271 - P)f|2,.
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For 3 = 0 this is fine since, by the standard L? energy estimate, in the dissipation functional we have a
term that scales as v/| <v>7/ S (I-P)f |2,. On the other hand, the available dissipation on Z°(I — P) f

has at most a factor »~!|k|? in front, which is much smaller than v in the regime |k| < v. To overcome
this difficulty, one possibility is to exploit the estimate

I Z°(1 = P)fl7s S wt)* > W’ Z°(1 = P)f|.
0<|Bl<|8]-1
The loss (vt)? can indeed be easily controlled if we divide by (vt)*’ each mixed inner product related
to (tV2)®?(p, m,e). Hence, dividing by (vt)*’ seems to be necessary to handle frequencies |k| < v,
where the effect of the phase mixing generated by the transport can be too weak with respect to the
collisional effects.

4.2.2. Bounds on the microscopic part. It remains to control the microscopic quantities in E ;- Recall
that (I — P) f satisfies

(I —P)f+v-Vo(I—P)f+vL(I—P)f =P(v-Vof) —v-V,Pf. (4.35)

In the following lemma, we collect the bounds that are needed to recover the dissipation on the micro-
scopic part of f, which is a key ingredient to prove (2.1).

Lemma 4.7. Let M > 2max{|qys|,|7|/2 + s}, 8 > 0 and ¢ be the constant in (4.4). There exists

0 < & < 1 such that the following inequalities holds true: for the unweighted vector fields of the full
solution we have

1|l<:\d . .

1277 + ekl AZ (1 = P)f) < 6v Y AIZP(I - P)f] (4.36)
1BI<18l
k|2 4 .
+Cs’,,‘ Y. 27 Pz +Clkl > AlZ™(I-P)f].
|B11<|8]-1 [B1|<|8]-1
For the unweighted vector fields of the microscopic part we get
. \/{12 A
S 17PU = PV + Az - P < GRS S 127 P, @37)
18118
+Cw+ k) D AZMI-P)f],
1B11<|8]-1
and
2dtHZﬁV (I = P)fl7z2 + & A[Z°V (I - P)f] < Cv(A[Z°(1 = P)f] + Al(o)" Z°(1 - P)f])
|k| B F112 B p
+C=- Z 1ZPPfI5, +Cw+ k) Y. AZPV,(I-P)f]. (4.38)
1B1<18] [B1|<|8]-1

For the weighted vector fields of the microscopic part we obtain

2011t||< oM ZB(I — P)f|7: + & Al(0)" Z°(I - P)f] < CuA[Z°(1 - P)f]  (439)

+C Z 1Z°PfI2, + Clw+ k) > AlZ7(I - P)f),
181<|8] |B11<18]-1
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and

S S ZOV(T — P, + v Al 9,201 - P ) (4.40)

~ 2 ~
L T Y
+ C~V(A[Z5V (I — P)f]+ A[Z°(I — P)f] + A[(v\YM ZB(I — P)f])
ro it Z 1Z°Pfl3, + Cw+k) > AZ7(I-P)fl.
18I<18] 1811<]8]-1

Finally, for the microscopic mixed inner product we have

1d
S Re (@ 22V = PY D )Y 2PV = P @40

2 ~
+ Ry (1 py 2,
< cud M 29,1 P)f] + Alw)™ 21 - P)f)
+ B S 2R s c e k) Y Az - P
1B1<18] [B1]<]B]-1

Proof. We omit the subscript L2 for convenience of notation. From (2.1) we compute that

= dt Lz v <£(Zﬁ([ —P)f), 7% - P)f> = —VRe <Z/3£(I ~ P)f, 25Pf> (4.42)

+ uRe <[£, 29I — P)f, ZP(I — P)f> .
Appealing to (3.1), since (a — b)? > a?/2 — 2b?, we get

(£(2°(1 = P)f), 2°(1 - P)f) > CLA(I - P)Z°(I - P)
6;1,4[25 (I — P)f] — 2C1A[P(Z°(I — P)f)]. (4.43)
By the definition of Z# and the fact that P((¢tV,)?(I — P)f) = 0 for any multi-index 3, notice that

P(Z°(1 - P)j) = P( S otk (V) P)f)

|B114182|=18]
|B11<]8]-1

B P< Z Z C81,82,8,84 (vv)52+ﬂ4Z53 (I — P)f)

|B1]+|B2]= \5| |B3]4|Ba|=|p1]
1B11<]8]—

Since we are doing the projection onto the kernel of £, we can safely move all the v-derivatives and
weights on /u. Thus

AP(ZY(I-P)I S Y AZ"(I-P)f] (4.44)
181]<]B]-1
From the commutation properties (3.3)-(3.3) and (3.1), we obtain

| <[z:, 281 — P)f, ZP(I - P)f> | < %A[Zﬁ(l —P)f]+C ) ;u A[ZP(I — P)f]. (4.45)

It remains to control the term involving the macroscopic part, where we crucially exploit the cancellation

<(tvx)5£(1 ~ P)J, (th)BPf> —0 (4.46)
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to write
(72701 =PV, 2°Pf) = 3" Cay, (LIGR) (I = P)J], (ith)™ (V)2 Pf ) (447)
it e
Y Coun (GR)HV)RLIT - P (itk) P ) (4.48)
|B11+B21=|8]
|B1]<]8]-1
Y O ()P (V)R LIT — P, ) (V) P
|B1]+|B2|=|B]
|B3]-+|B4]=|B]

1B11<I8]-1,183|<|B]-1

Since (tV;)? = (Z — V,)?, moving all the v-derivatives on the Maxwellian, it is not hard to show that

[ (£lGR) (T~ P) L, (ith) (V)% PF) | < [k ](p &) 3 /A2~ P)f
i<la

For the term in (4.2.2), we first move (itk)? on I — P and (itk)” (V,)”? on P and then argue as above.
The remaining terms are lower order and can be controlled analogously to finally obtain

(2L~ P)f.2°PF) | S\ JAZo (1~ P)f) S (kP[5 i€ (4.49)
|811<]8]—1
LY Az - P A (5 m, ).
1B1|<|8] -1

Combining (4.2.2), (4.2.2), (4.2.2), (4.2.2) and (4.2.2) we have
1 \k| d
2 v

[Z2°(1 - P)f] S |k'|\/«4[251(f— P)fl Y [tk (p, @)
|B1|<|B]-1

kY \/«4[251(1—P)f]ltklﬁll(ﬁ,ﬁ%é)l+|k| Y. AZP(I-P)f].
1811<]8|-1 1811<|8]-1

ZP 1% + |k
|| fI?+] |1oo

From Young’s inequality, for any 6 > 0 we have

KAZO (- P)f] S (k)% (5, m,8)| < wAIZ(I — P)f]
1B1|<|8] -1

- k|2 o
Fa S ko m e
1B1I<I8]—1

Arguing analogously for the remaining terms and taking into account Lemma 4.3, we prove (4.7).
To prove (4 7), from (4.2.2) we compute

S 1200~ PV + v {21~ P)f), 2°(1 — P)f) (4.50)

= Re <ZﬁP(¢k ~uf), Z8(I - P)f> ~Re <Zf8(z'k: wPf), Z°(I - P)f> 4.51)
y <[£, Z8)(1 — P)f, Z8(I - P)f> .

For the last term in (4.2.2), using the Cauchy-Schwarz inequality and standard properties of the Maxwel-
lian we get

| <Zﬁ(z'k; wPf), 28I — P)f> | <ovA[ZP(I - P) ) 4.52)

- |kI? 5o
+5 RS kim0

18I<18
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Notice that here we pay a large constant in front of the macroscopic dissipation up to order |3|. This is
why we have to choose ¢; < ¢ in the definition of the energy functional (2.1).

To control the first term on the right-hand side of (4.2.2), we can again exploit a cancellation as in
(4.2.2) to remove the highest order ¢tV ,-derivatives. In particular, we have

<(tik)ﬁp(¢k ~of), (tik)? (I — P) f> —0.

Hence, writing (ik - vf) = (ik - vPf) + (ik - v(I — P)f), and arguing as done in (4.2.2) to get (4.2.2),
we infer

|<Zﬁp(ik.vf),zﬁ(I—P)f>\ (v + |k|)A[ZP(I — P)f] (4.53)
B Y el O Y AIZMI - Pl
161 |<1B|-1 1611<1B|-1

Therefore, from the energy identity (4.2.2) we first comblne (4.2.2), (4.2.2), (4.2.2), (4.2. 2) and (4.2.2).
Then, appealing to Lemma 4.3 and using that |k| < 5 v we prove (4.7) upon choosing 6 in (4.2.2) and
(4.2.2) sufficiently small.

To get (4.7), we can proceed as done to obtain (4.7) but we need to handle the commutator between
the weight and L. In particular, the energy identity has the same structure of (4.2.2) with the extra term

v (1L, ()")2°(1 - P)f,Z°(1 - P)f).

Appealing to (3.3), we get
(I, )220 - PYf, 21 - P)f) | S v w022 - P || s walz? - P)f)

whence proving (4.7).
To handle the terms with the v-derivatives, observe that

V(I —P)f +v-VyVyo(I — P)f +vLV,(I - P)f
= —Vof +V[L, V(I — P)f + VoP(v-Vaf) — v V,V,PFf. (4.54)

On the left-hand side we have exactly the same structure we had without V,. On the right-hand side
of (4.2.2), the first three terms are different with respect to the case without v-derivatives. The term
V. f is the most dangerous one. Notice that here we can always pay a large constant for error terms
involving the dissipation without v-derivatives since we choose 2% < 27% in the definition of the
energy functional (2.1).

To prove (4.7) and (4.7), observe that by the commutation properties in Lemma 3.3, for j = 0,1 we
have

< IMFavs) 7810 7, |(I — P)f, (v)/MFans) z8(1 — P)f>} (4.55)

| /\

SvAl() M e Z8(1 — P)fl+ Csr S ALY Z2P(1 — P) ),
1BI<I8]

where we also used that ¢, s < 0 to obtain the last terms inside the sum above.
For the error terms generated by V, P(v-V,f) = V,P(v-VzPf)+V,P(v-V4(I—P)f), moving
all the v-derivatives and weights on the term containing P, we get that

‘<<v>j(M+q“)VvP(ik f) (v > M+qu)v ZB(I P)f>‘
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For the error terms arising form —V . f, we argue as follows

[ {{p 0000 28 f), o0 0) 2091 - P) )

<

| <<U>j(M+qms) Zﬁ(z’k:Pf), <U>j(M+q7,s) ZBVU(I _ P)f> }

| (M) ZBGR(T = P)f), ()M T0) 289, (1= P)f) | o= T 4+ T3
For I{ , integrating by parts in v and using the properties of the Maxwellian we have

. N . k|2 5o
T < A7~ P+ G S i, )
181<I8l

To handle Z9, since M > 2|y|/2 + s and |k| < &, v, notice that
19 <ov|| 2PV, (I - P)f|2 Wt Cav|| 27 ()21 = P)f7
s+v/2
<oV A[ZPV (I — P)f] + Csv A[Z° (0)M (I — P) f].

For 7;, we proceed as done to control the mixed inner product in the enhanced dissipation regime, see
(4.1). Namely, appealing to the Cauchy-Schwarz inequality we get

+oo
7 < Y Ik || L ey @M 200 = P)f|| [ Licyzarny ()79 20,1 - P |
§=0
too
= R;

.
o

Combining the Young’s inequality, the Gagliardo-Nirenberg inequality and using ¢,s < v/(2s), as in
(4.1)-(4.1), we obtain that

v

ST TP ILI PRV A2
SR <de - [[@ e 200 - P
Jj=0

+u (5A[<U>M+ws Vo Z8(I — P)f] + C; Al(w)™ Z°(1 — P) f]) . (4.56)

Hence, the proofs of (4.7) and (4.7) follows by computing the time derivatives and using the estimates
(4.2.2)-(4.2.2) (upon choosing B sufficiently small).

Finally, to prove (4.7) notice that the good term on the left-hand side of (4.7) is given from the —V, f
in (4.2.2) since [<U>M+q”'5 V., P] = 0. Similarly to (4.2), the terms arising from the transport v - V,,
cancel out. All the remaining error terms can be treated in a similar way to what we did to get (4.7)-(4.7).
For instance, we control the following term as

()M 9,271 — P)f. (o) 2Lk ~ P)])) | <
Cv(A(w)M 0V, (I = P)f] + Al(w)™ (I - P)f]),
where we used |k| < &, 'v and ¢, s < 0. The remaining error terms can be handled analogously. O

We are now ready to present the proof of the monotonicity estimate (4.1), whence concluding the
proof of Proposition 4.1.

Proof of (4.1). Recall the definition of EATﬁN in (2.1) and Dﬁij\, in (2.1). When computing the time-
derivative of E]T/['fljv we neglect the negative terms on the left-hand side appearing from the time derivative

of <ut>_25 . Up to the constant independent of C; in front of each term, the first term in (2.1) directly
follows by the standard L2-energy estimate for the Boltzmann equation while the others are a suitable
linear combination of the good terms in Lemma 4.4 and Lemma 4.7. The error terms are absorbed thanks
to the choice of the constants ¢; < ¢;11 and 1 < Cyp < C;. Finally, é4 can be chosen to scale as the
smallest constant in EJ\T/jfiN, namely 64 = ¢3¢/1000 upon choosing Cy sufficiently large. (]
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4.3. Decay estimates. In this section, we aim at proving the decay estimates in Theorem 2.4. Thanks
to the monotonicity estimates in Proposition (4.1), it is enough to reconstruct the energy functional from
the available (anisotropic) dissipation. In the hard potential case 2s + v > 0, this is a relatively simple
consequence of some interpolation inequalities. On the other hand, for soft potentials the dissipation
degenerates for large velocities. To overcome this problem, the standard procedure (e.g. [19,30,61]) is
to use the control on higher-order moments. Indeed, the monotonicity estimates (4.1) and (4.1) are true
also for the functionals E, M'.B for any M’ > 0. Recalling the definition of £/, 5 given in (2.4), i.e.

Ev.B() = L, k<so ESi () + Lo jr >0, Ei%B (1),
we want to prove the following.

Lemma 4.8. Let £y g be the functional defined in (2.4) and define w = (|y|(2 — s) + 2s|q,s|) /(1 +s).
Then, for any M’ > 0, there exists constants c, C > 0 such that for all R > 1,
d )\I/,k: )\I/,k
M) < CRw M, (t) +CW

where \, . is defined in (1.1).

Env+mr,8(0), (4.57)

Having at hand the inequality (4.8), whose proof we postpone at the end of this section, we are ready
to prove Theorem 2.4.

Proof of Theorem 2.4. For 0 < t < 1 we have nothing to prove, therefore we assume ¢ > 1 in the
sequel. For simplicity of notation, we write A instead of A, ;.. Let 0 < p < 1 to and choose I in (4.8) as

R=(\)=
Then, calling §,, = ¢(1 — p)/2, combining the inequality (4.8) with the choice of R we get

d 1— e Sp(At)1—
& (e5p()\t) pEM,B(t)> S < >p(|7+25\+2M/ 5M+M' (()) (4.58)
Aty =

Define
M = p(h/ + 25| + QM/)
w M

Choosing M’ sufficiently large, we have M"” > 2. Integrating in time (4.3), we get

B 3 t Sp(AT)1—P
Ear,p(t) S e AT EY 5(0) + Enprar 5 (0)e PO / )\e<;>MNdT' 2
o (\r

To control the last integral in the inequality above, first observe that

Sp(AT)! At/2 At
/ e M// / / / M” dS < e’ dp(AL/2)1 + 1]\/[”/ 65p517pd8.
0o (A7) a/2) (s) (At/2) At/2

Having that
M gpstr N —pSpstTP Sp(A)L-P
/ e?® Tds = / sP(s7Pe%? T)ds S (At)Pe? ,
At/2 /2
we obtain

t c(AT)1—P
R / %dT < OO =0y ) W)L ot
0 (A7) (At/2) M

where M = M" — p > 1 and in the last inequality we used that 0 < p < 1 to bound the exponential
term with the polynomially decaying one. Therefore, combining the bound above with (4.3), we finally
get

- 1
Enp(t) S e %O ey 5 (0) + W‘SM-&-M’,B(O)
t

whence proving (2.4). U
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It thus remain to prove Lemma 4.8.

Proof of Lemma 4.8. From the definition of £y, g(t) (2.4) and Dy g(t) (2.4), we study the enhanced
dissipation regime (v/|k| < do) and the Taylor dispersion one (v/|k| > dp) separately.
¢ Taylor dispersion regime. When v//|k| > dy, recall the definitions of the energy ET’d' and dissipation

Dﬂ ‘v given in (2.1) and (2.1) respectively. We need to reconstruct the energy functlonal from the
available dissipation. Thanks to the equivalence (2.1), it is enough to reconstruct only the positive terms
in E]:\F/[‘dB.

Exploiting the integrability properties of the Maxwellian and M + ¢, s > 1, we get

k|? " .
B 12oP 1P + 1)V 4o 220~ PYFIP) 2 1 K127 1) (4.60)

2 ~
""u(]lﬁ ol /I? + 11271 = P)F|? + ||(0)* = Z°(1 = P) fII?).

Next, first note the following

IXtoi<rl 22 = ll9l2z = || Xju= g9l 72 = llgl2e — R72M [ ()™ g|12., (4.61)

for any M, > 0. To recover the weighted term without v-derivatives in EﬁdB, we use the last term in
(2.1). Namely, in view of Proposition 3.1, since v > |k|? /v, we have

vl 20 - o) 2 My vy w2t - I,
—1 R .
2 e 1Y 20— P~ o 0 20 - P)fI?) 6

_1|k:|2 . 1
2 Lol (W™ 22 = PP = s B, 0) )

In the last inequality we used that E]:C['dN, thanks to Proposition 4.1, is non-increasing for any M and
(4.3). Analogously, we reconstruct the piece of E]:\F/['dN involving v-derivatives as follows

~l12
ALy ) 9,221 = P)f) 2 [z (0 0,21 - PF
1 .
2 R ( () M) 7 78 R?M’ Bt s (o)>. (4.63)
Combining (2.1), (4.3), (4.3) and (4.3), since |k| 2> y—l\k|2, we get

vHEP vk
A2 M,B(>_WEM+M’ (0).

D1i%(t) 2 (4.64)

Therefore
L v k[?
2 dl M,B( ) < T Rz M,B( )+ WEM+M'B(O)-
In light of the definition of \, ;, (1.1) and £y, (2.4), since |y + 2s| < w the bound (4.8) is proved in
the Taylor dispersion regime.

o Enhanced dissipation regime. The idea of proof is very similar to the previous one, we only need
to be more careful with the right scaling of the (v, k)-dependent coefficients when reconstructing the
energy functional Eﬁ/ﬁB (2.1) from the dissipation Dﬁj‘f']\, (2.1). In this case, recall that

ed. [\ 2c’8<> 8 7112 M+qy.s 89 712
STEOEEDS (10 27712 + sl @)V 20V, f7) . @65)
N

To reconstruct the term without v-derivatives, we cannot proceed as in (4.3) since for large |k|’s we have
v < Ay k. Thus, we have to exploit the good term generated by the mixed inner product. Namely, in
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view of Proposition 4.1 we know that EiZdB is non-increasing for any M. Thus

1
R2|%S‘ <H L2 R2M’EM+M’ (0)) (4.66)

L R

where we recall that in this case
0 12
Ak = bi\kaV,k = 0T k| Thos
0

To reconstruct the piece with v-derivatives, we need to exploit an interpolation inequality. Combining
Proposition 3.1 with Lemma A.1, we have

A[< >M+qw sy Zﬂf] Mg, s

Rlvl (2—s) ‘X|v|<R< ) (4.67)

From the definitions of A\, j (1.1) and a, ;. (2.1), notice that

_1 s s 1

)\l/,kalj,k = 611+9 6+g ()\l/,k) s (Vau k) s

Therefore, using the Gagliardo-Nirenberg inequality we have

A,

_1 _s_
v9ll72(5) S 01 5 0 (va, IVugll3rs () T Ok 911325, T (4.68)

s 95 2 7
S 6T alt (mmIIvalle(BR)+)‘Va’c ”9”L2<BR))'

Since ag, §1 < 1, combining (4.3), (4.3) with (4.3), we infer

vay R A[) T 7, 28 f] + by |k H ()M (4.69)
Vay i M+qy,s B 7 2 )\ H M 8} 2
R|7|(2 s) ‘X|U|<R< > "V Z fHH R2|q7 ‘ X\v|<R< > zrf L2

2 )\uk ‘X\v\<R< M

Avk
< }éjw (al”k H<U> R2M’ ot Bt B(O)>
where we also used w = (|7](2 — s) + 2s|gs])/(1 + ), the inequality (4.3) and the fact that Eﬁ/ﬁB

is non-increasing for any M. Hence, recalling the definition of Ded VLN combining (4.3), (4.3) and (4.3),
we obtain

e.d. A

Dif's 2 Rw MB WEMHW 5(0). (4.70)
Consequently, appealing to (4.1) we get
d Ak Avk
&E&%B S —CR + CWEM-FM/ N(0)7

whence proving (4.8) in the enhanced dissipation regime since |y + 2s| < w.

5. NONLINEAR ESTIMATES

In this section we aim at proving Proposition 2.8, which requires the control of several error terms
arising from the time derivative of the energy functionals. We first define such error terms and we
collect their bounds Propositions 5.2-5.7. Having at hand the aforementioned bounds, we finally prove
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Proposition 2.8. Recall that

e - [ Ovat*! BT bk + [ i) Bt K)dk, (5.1)
{lk|<6y v} {lk|>64 "v}

Ert) = sup ) ELfp 6 k) + sup (At BSE i (t, k),
{k:|k| <65 v} {k:|k|>65 v}
Smom(t)—/ y EM+MJB(t,k)dk+/ B, st R,
{IkI<6; v} {IkI>65 v}
Emomrr(t) = swp Byl p(tk) 4+ sup B, p(tk), (5.2)
{k:|k| <65 v} {k:|k|>85 v}

where we assume the conditions (2.2). Associated to these energies, we have the dissipations defined as
above with

(&, EF4 B4 — (D, DI D) (5.3)
Taking the time derivative of £ and exploiting the pointwise in frequency monotonicity estimates in
Proposition 4.1, we know that

dfg—&,ﬂ)—i—/ Ly pdk
at Rt M

+v / Owat)?! NLTAdk + v / Owit)?! NL§fpdk, (5.4)
k<65t ’ k|>85 ' '

where J, = min{de, 04} > 0 with J., 04 being the one appearing in (4.1)-(4.1). The linear error term is
Ljmp:=2J A <)\wkt>2j_1 (ﬂ|k|§5aluEﬁle + 1\k\>551yEﬁf,lB)- (5.5)

We define the nonlinear error terms as follows: the one arising from the enhanced dissipation energy
functional EjfB is

Ny = QH;B f;;fﬁ (k) (\ (@ 2°F (7). )™ 2°F) (5.6)
+ ay| (M0 V2P ), ()M 9,28 f) %
+bu| (@10 2T ), (o) 00 9. 2°F)
b ()9 9,200, ), ()M e 2Pk f>L% )
From Ej%, using that (T(f, f), f) = (T(f, f), (I = P)[), we get
NLjl = ’ (C D 1= P)f) ]+ le ( (270000, 2°F) | 6

a+|B|<B J=0

+al(Z VPTG, 2V U= P)D)
+e2 <<v>M“‘“’S ZHYT(f, ), ()M 29, (1~ P)f>L2 > (5.8)
c —cp s X
+oMet+ Y cg<‘<<v>M+q%S ZPkT(f, f), (v) Mo vvzﬂ(I—P)f> ,
Y atIBI<B <”t> ke

! ‘ ()49 7, 2°0(F, ), (o) 2°(1 = P)ikf )

>7 (5.9
L3

Mr ;:\A[r(f,f (ike)| + [O[r f,f)]:(ikrﬁ+(ikrﬁ)T)|. (5.10)

where
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Observe that the term above, which is given by the mixed inner product with macroscopic variables
defined in (2.1), contains only the nonlinear terms for the equations involving the higher-order moments
© and A. This is a consequence of (I'(f, f), Pf) = 0.

The time derivative of £, is as (5) with

(€,D) = (Err Dup),  (J,M,B) - (J,M',B) and / ~ sup. 5.11)
For &,0m « instead we change (5) as follows
(£,D) = (Emoms Dmom),  (J, M, B) = (0, M + M, B),
(€,D) = (Emom,i.F> Dmom,pr)s (J,M,B) — (0, M’ + Mj,B) and / —sup (5.12)
Remark 5.1. Notice that, since we are not imposing any time-decay for &,,om «, we do not have the
linear error term. Namely Lo a7, = 0.

The goal is then to bound the error terms in (5) (with the changes (5)-(5)) for £ (each) energy func-
tional. The bounds for the linear errors are a direct consequence of the lower bounds on the dissipation
functionals given in Section 4.3. In particular, we show the following in Section 5.1.

Proposition 5.2. Let L, p be defined as in (5). Then, there exists constants C1,Cy > 0 (explicitly
computable) such that

t (5 t
/ / Lyypdtdk < = | DAt + Cy sup (Emom(s)), (5.13)
o Jra 8 Jo 0<s<t
t 5 t
/ sup Ly ap prdt < = Drrdt + Cy sup (Emom,Lr(s)), (5.14)
0 keRd 8 Jo 0<s<t

where 0, > 0 is the constant in (5).

To state the bounds for the nonlinear error terms, in the following propositions we always consider
&+, D, to be the functionals defined in (5)-(5) and N Li'd', N L:{'d' the nonlinear errors defined in (5), (5)
respectively. We control separately the nonlinear errors arising from the time derivative of each of the
energy functionals in (5)-(5). For the ones associated with £, in Section 5.2 we prove the following.

Proposition 5.3. The following inequality holds true

v / Oty NLTAdk + v / Ouat)? NLGEsdk
|k|<8y v ’ |k ’

[>05 v
S VEVD (VD + (V' Ligyr + (/)% 1) VELR) (8). (5.15)

To control the L7° energy functional £, which is needed in (5.3) and necessary to obtain the optimal
time-decay rates, in Section 5.3 we show the following.

Proposition 5.4. The following inequality holds true

v sup <)\V7kt>2j/ NL;‘\F/'[‘/%B/ +v  sup <>\u,kt>2J/ NL%‘,B/
{k:|k| <65 v} {k:|k|>85 v}

< /Dir (x/E\/TD+ (Ve + (v)1)? 11t>,1)5LF) (t). (5.16)

Remark 5.5. As it will be clear from the proof of Proposition 5.4, we are allowed to use £ in (5.4)
because £ is a lower order energy with respect to £. Indeed, it requires less derivatives, decay and
weights, a fact that is crucial to close the estimates.

We finally have to estimate the higher order moments functionals &, «, appearing in the bounds for
the linear error terms (5.2)-(5.2). Recall that for the time derivative of &,,om « We only have nonlinear
error terms, since Lo 7,3 = 0 as observed in Remark 5.1. Hence, to control the time derivative of &0,
the following proposition is sufficient.
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Proposition 5.6. The following inequality holds true
v / 1 NLif% v, pdk +v / 1 NL§H v, pdk
k| <55ty k|>55 v

< /Emom\/Drmom <\/Dmom + (e + /)2 11t>y_1)\/5LF) (t). (5.17)

Similary, for the L7° functional &0y, We obtain the following.

Proposition 5.7. The following inequality holds true

v sup  NLih o, p+v  swp  NL§a, p (5.18)
{k:| k<65 v} {k:|k|>65 v} ‘

d
S \/Dmom,LF <(\/ Emom + \/g) Drom + (Vdﬂtgy—l + <I//t>§ ]lt>1/_1) \/gLFgmom,LF) (t)

The proofs of Propositions 5.6 and 5.7 are given in Section 5.4 and are obtained via minor modifica-
tions in the arguments done to arrive at (5.3) and (5.4).
We first show how Propositions 5.2-5.7 imply the main bootstrap Proposition 2.8.

Proof of Proposition 2.8. We begin by proving that under the bootstrap assumptions (2.8)-(2.8), the in-
equality (2.8) holds true with half the constant on the right-hand side of (2.8). Indeed, integrating in
time (5) and using the bound (5.2) and (5.3), we have

() + ga* /0 D(r)dr < £(0)+ s 51D (Enon ()

+ C/Ot (\/ED + (udltgﬁl +(v/7)e ]1t>l,71> @x@x/ﬁ) (r)dr.

From the bootstrap assumptions (2.8)-(2.8), for any ¢t € [0, T] we get

Cy sup (Emom(s)) < 402,
0<s<t

C /0 t(\/ED)(T)dT <eC /0 tpmdr,
O [ (#1ocms + ) 1ot) (VELFVEVD )i

d
2

~ t 2 . t
< 5301/ (ydlngya + (v/7) ]lT>,,71) dr + ng/ D(T)dr. (5.19)
0 0

Since d > 2, we know that the first term on the right-hand side of (5) is integrable in time. Thus, we
obtain that

@) + (g —&(C + Cy))d, /t D(r)dr < (144C) +eC))e.
0

Setting

By :=2(1 +4C)),
and choosing € small enough, we prove that (2.8) holds with half the constant on the right-hand side.
The arguments for the other functionals are analogous and we omit their proof. U

The rest of this section is dedicated to the proof of Propositions 5.2-5.7. In particular, for the nonlinear
error terms we need to compare the solution in different frequency regimes, therefore we state some
technical estimates used throughout the proof.

Lemma 5.8. Let k,& € R?. For ay i, defined in (2.1), we have

ay ay
Lzotnk ST Lpmigze— S L Dajgze—— S L. (5.20)
aV’g allzkfg

Let \, i be defined as in (1.1). Then
Ligj<oztv Qukt) S Ligjzw (Avet) - (5.21)
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Forany 0 < J' < J — 1, the following inequality holds

’ 1
J J
Vot wrt)™ S ez (g™ (5.22)
Let EﬁfB and EﬁdB be defined as in (2.1) and (2.1) respectively. Then
L BT () & ﬂ|k|~uE1\T4'dB(t k), (5.23)
ﬂ|k|NVDMB(t k) ~ l\k\wD Bt k). (5.24)

Proof. The first and the second inequalities in (5.8) are immediate from the definition of a, ;. For the
last one, when |k| = |£| 2 v, notice that

Ay ke <|k 6‘) 1+29 <1
Ay k—¢ |k| ~

To prove (5.8), from the expression of A, 1, it is enough to observe that

2

1 2s
Vst S Lo ™ €55

To prove (5.8) notice that, whenever |£| 2 v we get

Ooet) m (VT3 €[ T3 ¢) > (u1)

Hence ) .
——— (A et T < —— (A et d
gty eet)” S iz gy osll

>

Jl
Lpjcosty Qurt)” S gz

which proves (5.8).
For the equivalence (5.8), by Cauchy-Schwarz inequality and the fact that

b2
(bu,k|k|)2 = ;Zau,k < Ay k,

see (4.1), we get

1 k)Y Ak
Bty < & W (2 H< ' o+ ) | 209,
2 (wt)?? ao L
a+|B|I<B
Ee.d. > 2—CB—2 Z < Z’Bf 2 +2a (1 - 2@) <U>M+Q'y,s Al
M,B = <I/t>2’8 12 v,k a0 )
a+|B|I<B N !

Therefore, when |k| ~ v we deduce that

By~ Y ([

a+|B|<B

22 e H () M

~12
), (5.25)
L3

for some ¢ explicitly computable.
For E}deB, recalling the definition of M (2.1), we first notice that

1 k| 4 P
i) < B2, < ot 1712,
for some constant C,,, > 0. Thus, there exists also another ém > 0 such that

1 _ N
Bl < <§ +eody C) |1 F1125

1 (|k ' f
+ ) Z <| |H ZP I3z + (c1 + e36 ' Cn) |1 20V (T = P) fI75

|B|<B j= O

T (o + 305 o)) M99 2851 — P)fn%g)



36 J. BEDROSSIAN, M. COTI ZELATI, AND M. DOLCE

and

1 .
Bl > (5 — codg O 113,

1 k
2702 Y Z <‘ ||| Z8f\172 + (1 — €305 " C) |1 ZPVI(T = P) 17

‘ﬁ|<B] 0
(2 — esb5 G| ()M H0 28 (1 — P)f”%g)-

Having that M + ¢y s > 1, it follows immediately that £/ MdB S ELf . 1 (for any |k| < v). On the other
hand, notice that

a C2 a C2 a
12135 = 72122 PFI, - 212°U - PfI;.

where in the last inequality we used (a + b)2 > (1 — (1 + c2/4)~1)a® — c2b? /4. From the integrability
properties of the Maxwellian, we also know that

1Z°PfI72 2 )™ ZPP |72 + ()" Vo ZPPfI7,.
Hence, combining the two inequalities above, when |k| ~ v we get

MBNZZ

|BI<B j= 0

(rZﬁPfH2+c\|< Mot 7B (] — P)fHQ) > iy,

where in the last inequality we used (5). For the dissipation energy functionals, the proof is analogous
and we omit it. (]

We are now ready to prove Propositions 5.2-5.7.

5.1. Linear errors. To prove Proposition 5.2, we rely on the pointwise-in-k estimates (4.3) and (4.3)
that are needed to prove decay for the linearized problem. In fact, the factor (A, ;t) in the energy
functionals replaces the k-by-k decay in time (which should not be possible in the nonlinear problem)
and generates the linear error term (5). It is therefore natural to expect that the same estimates giving
decay in the linearized problem allow us to control this linear error term.

Proof of Proposition 5.2. Appealing to (4.3) and (4.3), recalling that

= (W12 = 5) + 2slgy,s)/ (1 + 5),
for any R > 0 we have

)\z/,k Au,k
D(t) 2 /|k|<5 (Rw Out)?’ Eﬂ',dB ~ Rhtasiiai, at)?’ EM+MJ B>dk’

)\l/,k‘ e Au,k
+ /|k| - ( = Moit)? By — e Dwit)? ESfiag B)dk. (5.26)
> v N

The idea here is to choose R such that we control L ys g (5) with the dissipation and the higher order
moments. In particular, we need

)\V,k:

Rw
for some & sufficiently small to be specified later. Plugging (5.1) in (5.1), we know that there is a constant
C > 0 such that

/ Ly pdk < 6CD
Ra

Ouit)®? ~ A Ouat)? ! — R® =6 (A, xt) (5.27)

S1-M, 2J-M, d. d.
+ ¢t My /|k|<5_1 Ave (Avt)™ <ﬂ|k|§551yEﬂiMJ,B + H|k|>5JIVEﬁ4d+MJvB> dk,(5.28)
0 14
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where M = (|7 + 2s| + 2M) /@ > 2.J + 2 thanks to our choice in (2.2). Then observe that
t —
2J—M d. "
A /Rd >\V7k? <)\V7k7-> 7 (ﬂlklgao—lyE]j\—‘Jc—l‘rM‘],B —'I_ ]l‘k|>60—1VE7Md+MJ7B> (T)dek'

ot 1 T.d d 1

.a. e.d. -
— ~/Rd~/0 W (1]'|k|S50_1yEM+MJ,B + ]]"k‘>50_11/EM+MJ,B> (AVJ{,‘S)dek

s

oo

1

S/ sup (]l\k\ggglyEJ:\r/iiMJ,BﬂL]l\kb(salyEiZdJ}Mj,B) (Sl)dk/ —5ds
Rd 0<s'<t 0o (s)

< sup Emom(s).
0<s'<t
Hence, integrating in time (5.1), using the bound above and choosing § sufficiently small we prove (5.2).
The proof of (5.2) is analogous. (]

5.2. Nonlinear errors for the main Li energy. We now turn our attention the proof of Proposition 5.3.
A first crucial ingredient is the trilinear estimate in Lemma 3.6. This allow us to control everything with
L? and A norms, which are used in the definition of the energy and dissipation functionals. Having the
trilinear estimate (3.6) at hand, the main strategy of proof is to split the nonlinearity to study separately
the interactions between high and low k-frequencies in each nonlinear term. In particular, we must
take care also of very low frequencies |k| < v since the behavior in the enhanced dissipation regime
is different with respect to the Taylor dispersion one. The main technical difficulty is to choose this
splitting carefully to reconstruct the energy and dissipation functionals and to take advantage of the
time-decay when needed.

Proof of Proposition 5.3. First of all, appealing to the paraproduct decomposition (2.3)-(2.3), we split
the nonlinear term as

()= 5 (Cvfove) 4+ Taysfi) 3 Thndw)) 629

N,N’e2Z N/8<N'<8N
Due to the structure of the nonlinearity, the treatment of the first two terms inside the parenthesis of (5.2)
is identical and therefore we will not discuss the term I'(f y/g, fn) in the sequel. From (1), one has

Mo m0) = = [ Q). vih(k — ) (5.30)

The nonlinear error terms N L§f5 (5) and N L7;% (5) have fundamentally different frequency inter-
actions. We thus divide the proof by controlling first the error terms in NV Lf\ﬂB and then the ones in
N Lﬂdg.

5.2.1. Nonlinear enhanced dissipation errors. In this case |k| > ¢, 'y. We first consider the term
L(fn, f<nys). Using the notation in (5.2), we have

Kl <k =&+ 18l N, k=Kl -lk=¢=N/M4 = N=[kZv (5.31)

For T'(fn, fnr), we cannot have |¢| < (§,'v)/64. Indeed, if the latter inequality were true we would
get |k — &| > (638, 'v)/64. But this is not possible since otherwise

N'>|k—¢/2,  N=N'/8,  [gf=N/2 = ¢ = (5 v)(63/2")

which is a contradiction because 63/2!1 > 1/64. Namely, for T'[fy, fn+], we only have to study the
case

N,N' > v.
Thanks to (5.8)-(5.8), we can always consider f, fx to be in the enhanced dissipation regime. On the
other hand, the factor f_ /g can be in either regimes. For this reason, in the following we only detail
how to control the terms arising from I'( fn, f<n/s). The bounds for the terms involving I'( fn, fx+) are
easily recovered from the ones for I'(f, f<n/g) When f /g is at frequencies 2 v.
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To prove (5.3), we first bound the following term in N Lf\f‘B, namely

B 2
B = Dtz pas (00
<3 <<U>M+% Vo ZPF(U(fxs fenys)), (o) M0 v, 25 f>L2 (5.32)
N~|k| v
Then, we split the low-frequency part as
fenyg = Pesor, fanys + Posor, fanyss
and define

o =13, + 13, (5.33)

where IJCQ’@V and Zj}’iy are the right-hand side of (5.2.1) with f_ /g replaced by P_ 55ty f<nyg and

P 55w J<nyg respectively.

High-moderately low frequency interactions. We proceed with the bound for ZJO\‘/I’B>V. From the trilin-
ear estimate in Lemma 3.6 and the Leibniz rule for I', we infer

27¢h v; -
DY ﬂmlyau,ktw<k>2a%4[<v> e, 26 f (k)] (5.34)
N~k (V)
181 +1821<18]
j1+j2<1

' /]Rd (\/AKU)MMW (V)1 27 f(€)] H<U>M+qw (Vv)jQZBQP>551uf<N/8(k - 5)’

L3

[ (T2 €|, AL (V)20 P, fengsl - £>]>d£.

Thanks to (5.8), we can always control the terms containing P_ 55y f< ~y/g With the functionals in the
enhanced dissipation regime. In particular, for the terms involving .4 we can use the dissipation func-
tional D?\ZdB (2.1) and for the L% terms the energy Ej'le (2.1). However, when we take v-derivatives we
need to coinpare the coefficients a, 4, at different freqliencies as in (5.8). To proceed with the bounds, in
the following we denote

9—CB/2 P
wa ()M FPs (v,) ZP f. (5.35)

, see (5.2.1), we have

g(ﬁ7M7J) P

Since [B1] + |B2| < [B]and [{] = N ~ |k
9—CB 9—CB/2 9—C(B1+p2)/2
wt)?® = wt)? (ut)Brthe)

Hence, with the notation (5.2.1), using (5.8) and the above inequalities in (5.2.1), we get

k) & (€) -

ap <1 .
IM’,Bwa; > Lpssn (R) \/Vau,kA[g(ﬁ’M’l)(k)] (5.36)
N~k
161 |+1821<18]
Jitj2<1

x /R ) (<5>“ Vit g @ (a1, 0 S (k= )l 53D

+(&)* (Vare) Mlgl M (€)1 \/ V(e AP 51,0057 (s - 5)]) e, (5.38)

‘We now claim that

v / DY Mot)? T80 dk S VED (5.39)
F>00 " atjpi< N
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To prove this bound, we are going to use Cauchy-Schwarz and Young’s convolution inequalities. How-
ever, we need to be careful with the number of x and Z derivatives we have in each term, since the sum
of the two must always be less than B. Therefore we distinguish two cases.

o Case |32 ¢ and D§ 5 given in (2.1) and (2.1) respectively.
Notice that, since « + |31| < B, j1 < land N 2 v, using also (5.8)-(5.8), we have

H a,,k JlA[ (1, M ’Jl) D%B(k‘)]\[ (5.40)
|97 (g2t Weree (5:41)

Hence, from the quasi-orthogonality of the Littlewood-Paley projection, the Cauchy-Schwarz and the
Young’s convolution inequalities, combining (5.2.1) with (5.2.1)- (5.2.1) we get

v / y S )Tk S 3 H<A,,,kt>J D)
k>0 A< N>v i
|B2|+(d+1)/2<B |B2|+(d+1)/2< B, ja<1
( H sat)” DSty (k (v )2 P 5 ug(fif/s 72) (5.42)
LiL2
/B M,
+ H th MB H H\/ al/k: ]2.,4 >o5 1 g<61377/8 JQ)(k)] )
Ly
From Hoélder’s inequality we deduce
7M’ j d 2 6* j ) %
H V(@) P, (<5§f/8 ) So. || (K2 AP s 9(<Bzif/8 » 122 (5.43)
LiL2 Kt

where d, > 0 is an arbitrary small number. In the case under consideration, it is enough to choose 4,
such that |52] + d/2 4 ¢, < B to obtain

H<k>d/2+5* V@@l s G S|P Bt ) s | (5.44)
L2L2 L
Analogously, we get
M,
H\/ ay )2 AP, 5o g(<ﬁif/8 2 < H\/ 1, DS )<N/8‘ . (5.45)
k

Therefore, combining (5.2.1) with (5.2.1) and (5.2.1), using the quasi orthogonality of the Littlewood-
Paley projections, we infer

v / > Moit)? T2 dk < VED. (5.46)
|k|>65 v ™~

a+|B|<B
|B2|+(d+1)/2<B

o Case |2 + d/2 > B : In this case we cannot pay x-derivatives on the low frequency factors. Then,
since o + |B| < B and |B1| + |B2| < |B], observe that

a+d/2+ 61| < B+dj2 —|p| <d< B. (5.47)

Hence, when applying the Young’s convolution inequality to (5.2.1) we can use the L,lC norm in the
factors at frequencies NV in (5.2.1)-(5.2.1). Namely, using (5.2.1)-(5.2.1) with

(avjlaﬁlvN) — (Oaj27/827< N/8)7
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similarly to (5.2.1), one has

v /|k| - Yoo Il Ak S > H()\Mkt)‘] Dﬁfﬁs(’f%N)LQ
>04 vV

a+|B|<B NZv,|Bi|+|B82|<B k
|B2|+(d+1)/2>B |B2|+(d+1)/2>B, j1<1

S T R T I W AT e

k
+ H(z\u,kt)J (k) ﬂg(ﬁl, J1) ) )
k

Thus, thanks to (5.2.1), we can argue as done in (5.2.1)-(5.2.1) for the factors at frequencies N. So we
conclude that

Dﬁ}ff']g(kkN/S

LLL2

v /k - > Aoat)® TgL dk S VED, (5.48)
k120" aiipl<n
|B2|+(d+1)/2>B

which proves the claim (5.2.1) by combining (5.2.1) and (5.2.1).

Remark 5.9. Observe that to get (5.2.1) we never used the time-decay to control the nonlinearity. The
main reason for this is that all factors are in the enhanced dissipation regime. Therefore, if instead of
R? we consider T, the nonlinear error term under consideration is bounded by (5.2.1). Since the other
error terms enjoy analogous estimates, the proof for the bound (5.3) would be almost over (one has to
control the interactions between the £k = 0 mode and k& # 0 separately). On the other hand, to control
our energy functionals in R?, we cannot use the available dissipation for k too small and the time-decay
will play a crucial role.?

High-very low frequency interactions. We now turn our attention to I _» which we recall is de-
fined as the right-hand side of (5.2.1) with f_ /g replaced by P< 557 f< N/8 In this case the low-

frequencies < N/8 are at very low frequencies, namely in the Taylor dispersion regime, in which we
do not have k-dependent coefficients in front of v-derivatives in E (2 1). Therefore, exploiting that

ayy S 1for |k| 2 v, we bound T ’fy as the right-hand side of (5.2.1) with P Sty P<651u and
(k — &) \/ayr—¢ — 1. More precisely, recalling the notation for g* introduced in (5.2.1), we have

1 «
T Se 2 Lugssyt (07 y/ransAlg®¥ (k) (5.49)
N~lk|
|B1]+1B21<I8]
Ji1+j2<1
x /R d(<§>aW(czy,g)ﬁA[g%l’M’j“<5>1HP L9 k=0l (550

+(6) 4/ (ave)lgld™ ’ﬂ><5>uLg\/uA[P<5 W <k—5>]>dg. (5.51)
We claim that

l// Z <>\,,kt> dk‘<\f\/><\/>+(lj i<y 1—|—<1//t>2 Tyso- I)N/gLF)-
100" o 4151<

(5.52)
Observe that the first piece on the right-hand side of (5.2.1) is exactly as in (5.2.1). On the other hand,
we will see that to handle the interactions between two very different frequency regimes we need to
exploit all the available information about the solution.

3A similar issue was already present for the energy functional used by Strain [60]. However, due to the structure of the
energy functional in [60], it is not necessary to exploit the decay in time and estimates of the form v/ED are enough to close the
argument. On the other hand, exploiting the time-decay in the nonlinear problem seems crucial to prove the Taylor dispersion,
the enhanced dissipation and the optimal time-decay rates obtained by controlling the L;° norm of the solution.
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To prove (5.2.1), we need to use the micro-macro decomposition, which is a key ingredient at very
low frequencies. In light of (5.2.1), it is convenient to denote*
—CB/2
@y _ 2%/
macro <V t) B

To control the term involving only the L2-norm at very low-frequencies in (5.2.1), we exploit the prop-
erties of the Maxwellian to get

()M Fre (v, ZP(I — P)f.

2—05/2 s
1P a0 k- Ol 5 Y T P (40— (. 2)(k — €)cs)
0<IBI<igal VD) (5.53)

+ HPS -t gr(ifzgcro’]Q)(k_g)<N/8 12

Since E}QdB 2.1), D (2 1) and E 5 (2.1), Djf‘B (2.1) control the same quantities for the micro-

scopic part (as observed after the deﬁmtlon of Eﬁle), we can proceed as done to obtain (5.2.1) for all
the terms with g .. . We therefore do not detail such bounds. On the other hand, when macroscopic
quantities are involved we must proceed in a different way.

First of all, when |3] = 0 we can readily reconstruct the energy functional in view of the term | f|| 2

in ET4,. For || > 1, since |k — £| < v, one has

itk — )7 \/ \tk‘ o)

Thus, in view of Lemma 4.3, we deduce that

9—CB/2 B )
e ——= Py, (k- O1°1(p, i, &) (k — ) anysl) S 1Pzt fanys(k = &)l (5.54)
14
27¢4/2 k=g, 3
+ vt Z P<5011/( | |”Z’B Fanys(k =€) HL2> (5.55)

) 1<p1-1
For the first term on the right-hand side of (5.2.1) we can again exploit the term [| f{[ ;> in Eﬁ"dB. For the
remaining ones, observe that, since |3’| < || — 1 we have
9—CB/2 2 ch' /2
o e
so we are able to absorb the factor v in (5.2.1). Recalling that in the definition of E{[i (2.1) we have
the term \/EI HZ By H 20 We finally obtain

vt

2— cB/2 -
> T Pa, Itk = P16, &)(k = O enssl) S 3/ Pesy 1, Bl (k — ey
osiaizien W0

Notice that here we do not need to pay attention to the number of z-derivatives since these terms are
compactly supported in the Fourier space. Therefore, the terms arising from (5.2.1) are controlled by
VED when proving (5.2.1).

Consider now the terms in (5.2.1), where very low frequencies are computed in the .A-norm. By the
micro-macro decomposition and standard properties of the Maxwellian, we get

(B2,M,j2) 2-CA/2 Bifa 4 a
AP g = 915 2 R a0k P15 .8k~ e
0<iai<isel (V)

\/ VA[ s Ine ”)(k—§><N/8] (5.56)

“This extra notation is introduced because [Z, P] # 0.
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As observed previously, since EﬁfB and EJ\TJ?B have the same structure for microscopic quantities, we
can proceed as done to obtain (5.2.1) to control the term in (5.2.1) (with the simplification that one can
always pay derivatives at very low frequencies). On the other hand, for the macroscopic part we need
to be more careful due to the degeneracy of the dissipation for very low k’s. In fact, we first need to
improve the bound (5.2.1) to

9—CB/2 — R
nggly(“(k —O)°I(p, &) (k — &) anysl) S 1Pz fanys(k = &)l (5.57)
14
1 2-C3'/2 || — ¢| 5 s
+$ Z B/ \/]7 HPS(S(;lyzﬁ f<N/8<k_§)HL%7

1<t (V0
where we used kg
3! 1 -

tlk—6)F = —(uvt

1k~ O = Z- )=
and the fact that 1 < |3/| < |3| — 1 to absorb the vt loss. Notice that we can control a term like
% HZ/B f H with D]:C[fiB (2.1). In particular, from (5.2.1) we infer

27Cﬁ~/2 Birs o
VY I P (10~ O, &)(k — ©) s

o<iai<issl V1)

S \/;HPSngyf<N/8(k - f)HL% + \/szsglyp%/ile(k - §)<N/8- (5.59)

Then, the last term on the right-hand side of (5.2.1) gives rise to terms that are bounded by V/ED.
However, for the other term we cannot exploit the dissipation functional since we would need a factor
|k — £| that can be extremely small in this regime. Thus, with the strategy outlined in (5.2.1)-(5.2.1) we
are able to prove

lt(k — €))7 (5.58)

v / OtV T3 dk S VED + VEVD| P, s, (5.60)
|k|<éy v ™~ - v
Then, since A, ; ~ |k|?/v for |k| < §;'v, notice that

) . de
1Poss Flliirs < IPos ) o) Flliers / N
<4y v L. L3 <5y v N\ AR kl<v <V_1|€|2t>J

S (Mgt + /) st ) VELP

Inserting this bound in (5.2.1) we finally prove (5.2.1). Combining (5.2.1) and (5.2.1) we finish the proof
of the bound (5.3) for the term I]C\V/[’B (5.2.1)in N L‘j\'/ff'B 5).

(5.61)

Remark 5.10. For d > 3 it is not necessary to control the energy functional £7,r in order to bound the
nonlinear terms coming from the Li energy functional, i.e. £. Indeed, we can use the L% norm instead
of the L7® norm in (5.2.1) to get

2 d d
1Peser fllzir S (Vi g + (/03 1451 ) VE.

However, for d = 2 this term would generate a logarithmic loss when doing estimates as in (5). Besides
getting sharp decay estimate, this is the other main reason why we directly control £ in terms of the £
even for d > 3.

Regarding the other terms in NV Lf\jf'B, notice that the first term on the right-hand side of (5) is easier
to control with respect to (5.2.1) since no v or z derivatives are involved. To handle the terms with
b, 1 in (5), recalling the definition of b, ;, (2.1), it is not hard to check that the factor |k|~! balances

1
the x-derivative whereas the remaining (v/|k|) 72 is exactly ,/a, ;, which is the coefficient we need
to reconstruct the energy and dissipation in the terms involving v-derivatives. Indeed, for these terms

at most one factor has a v-derivative as opposed to IJC\Y/["B where two factors can have a v-derivative.
Therefore, taking into account of the scalings of the coefficients, the estimates for these terms are also
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analogous to one for I]C\“/[’B . This finishes the proof of the bounds (5.3) and (5.4) for the nonlinearities
coming from the enhanced dissipation energy functional.

5.2.2. Nonlinear Taylor dispersion errors. We now consider the nonlinear error terms related to the
Taylor dispersion energy functional, see (5). In this regime we have |k| < §; 1y, We use again the
paraproduct decomposition (5.2). When studying the terms containing I'( fx, f N/g), thanks to (5.2.1)

we know that both fy and f_ /g are in the Taylor dispersion regime (namely [¢[, [k — &| < dy ).
Instead, for T'(fn, fn/) we can have

| <25, 'y = k=& <35y or [¢]>25,'r = |k—¢ >3, v

This means that fy and fy- are either in the Taylor dispersion regime or in the enhanced dissipation
one, namely
N ~N Zv, or N ~N=Zuw
Consequently, we will only detail the treatment of the error terms arising from I'( f, fn+) since the
bounds when N v easily adapt to I'( fn, f<n/s)-
Let us consider first the term from (5), that is the analogue of (5.2.1), namely

2*01/8 M M .
T = ﬂmg%lywl«w eV, ZOF (T (fs ), )T, 20T - P)F) L.
N~N’ 3
(5.62)
We define
jﬁﬁ — jj\o/if,,ﬂgy _|_‘_7]\(Z[77gw (563)

where jﬁl’iy and JAO/‘[’[; are (5.2.2) with N ~ N’ <vand N ~ N’ > v respectively.

Very low-very low frequency interactions. When N < v, thanks to (5.8) we can consider fy, fn
and (I — P)f in the Taylor dispersion regime. We can then apply Lemma 3.6 to obtain estimates as in
(5.2.1). Having that

vA[(w)M e, Z5(1 - P)f]
is a term included in D}Q’jiB (2.1), we can proceed as done to obtain the bound (5.2.1) in the previous

subsection to get
<)\u,kt>2j jj\czﬂsydk < \/E\/’B(\/ﬁ + (l/d]ltgyfl + <I//t>% ﬂt>u*1) VgLF)-

l//
Ik?
(5.6‘ )

Very low-high frequency interactions. On the other hand, for N 2 v we have to be more careful
since now we need to reconstruct the a, j coeffiecients in EﬁldB and Dﬁ;[d'B which could potentially

-1
[<d; VO!‘H,B|§B

lead to losses of order »—/(1+25)  This is because v-derivatives in the Taylor dispersion regime are not
weighted by factors v~1/(1+25) 45 in the enhanced dissipation one. To overcome this difficulty, using the
same notation introduced in (5.2.1), appealing to Lemma 3.6 we obtain
.3 1 o 2_016/2 M+ ;
Iz S - Z Ly<ortn (F)" ——5 VVAIY) oV, ZP(1 — P) f(K)]
v NeN'Zv N (vt)
|B1]+]B2]<IBl, j1+72<1

J1

1425 ] . k — % - .
< ()™ Vot a1 (FT2) ™ el - )y
# ()™ st @ (E52) ™ Yitana-om Ak o) Jae

v

(5.65)
To absorb the loss in v when estimating the L% norm, we use the fact that we are integrating on frequen-
cies |k| < v to gain powers of v from the integration. Namely, we eploit the inequality

a a
/W IGUYH * Q(R)dk < [IH * Qllye Gz v# S 1H I 1Ql sz Gz v#.  (5.66)
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Using that N ~ N’, we can distribute the z-derivative in (5.2.2) on the term with the lowest number of
Z-derivatives (smaller |3;|). Hence, combining the inequality (5.8) with (5.2.2) and using (5.2.2), we

get
J
P51, (Avit)” 4/ D%\FJ?B‘

d 1
V/ Y ) Tl dk S vr T
|k|<60 v I~

—1 L2
a+|B|<B k
J  [red. d.
X <HP>5O—1V <)\u7kt> D?W,B‘ 12 P>50—1y Eﬁ/[,B L2
J d. d.
+ HP>5O—1V (Avrt) \/%‘ 12 Pessu/ Pits L%)
<VED, (5.67)

where we also used that d/2—1/(1+2s) > O since d > 2 and s € (0, 1]. Combining (5.2.2) and (5.2.2)
we see that from the term 7, ]\af we get bounds in agreement with (5.3). Following the same arguments
outlined for the proof of the bounds for 7, o , it is not difficult to control in an analogous way the terms
in (5)-(5) containing at least one (I — P)f.

Macroscopic error terms. We are thus left with the macroscopic error terms given by

C
jr(r);f;ro NN’ T l\k\q*l,,*OMF,NNN', (5.68)
—Cop |k| R
2
jriacronN’ = Z ]]‘\k:\<6 >25< > “ <ZBF( (fN7fN’))szBPf>L2
N~N' o

where Mp n.nv is defined as in (5) with I'(f, f) replaced by >y v I'(fn, far). We recall that the
proof of the bounds for the terms with I'( fn, fo /8) can be treated as a subcase of the one we present
below, see also the discussion at beginning of the proof for the Taylor dispersion errors.

We claim that

v / S ) (T2 v T 2 M ) dk S VED. (5.69)
\k|<50—1ua+w§B ' v

Indeed, using the trilinear estimate in Lemma 3.6 we get

20002 0 1K

T (k) WHZBP]?(IC)HL%

1
a7/8
jmacro,NNN’ S ; Z l\k\géglu

N~N'
1B1]+182| <5

<[ (2”;/ uA[ZﬁlfN<§>12<COMHzﬁ2ka ).

9—Cof1/2

<1/t>B1

9—Cof2/2

* £z (pt)P

HZBIJEN(f)‘

vA[ZP2 i (k — 5)1) dé

where we used that (k)* < 1 for |k| < v. From the bound above, exploiting the inequality (5.2.2) we

get
P, V)’ /DR | VEVD
k
< VED.

~

2J , d
V/ 1 Z <)\V7kt> jﬂif@ro,NwN’dk S vz
k<007 o yi51<m
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Notice that here we never lose factors v~ 1/(1+2s)

in view of Lemma (4.3), it is not hard to see that

1
Mr NNt S > Z D<oty Z

N~N’
EXReEARE p<h

9—C1p1 - 9—C1f2
v B1
. /Rd < <l/t>ﬁl ALZP v () <1/t)62

because we do not have v-derivatives. For Mt y.nv,

2—015/2 o &l

(k)
wry? W

1Z°P (k)3

77 fx(k — 5)‘ L

200 g i) o fuAz )
ZlNg‘ \/u Z2Nk—£>d£.
(vt)Pr £z (vt)?
Therefore, also for this term we deduce a bound in agreement with (5.2.2), whence concluding the proof
of Proposition 5.3. U

5.3. Nonlinear errors for the main L;° energy. In this section we aim at proving Proposition 5.4. The
strategy of proof is the same followed to prove Proposition 5.3 and many steps will actually be identical.
The main differences appear when using Young’s convolution inequality in Fourier space. We, therefore,
provide the details only for the steps that differs from the proof of Proposition 5.3.

Proof. We split the nonlinear term as in (5.2) and we study separately the nonlinear error terms N L‘j\'jf'B
(5) and N LT (5).

5.3.1. Nonlinear enhanced dissipation errors. In light of the discussion before the inequality (5.2.1),
we study the term

.3 2_C6 2«
IM/ = ﬂ|k|26aly<yt>2/8 <k> amk
3 @M VU B fenge)) @), 20F) L 570)

N~lk|

Asin (5.2.1), we split this term as Ia’ =TI% M, >y +7 M? <y where Ia’/ <v and Z' M’,B -, are the right-hand
side of (5.3.1) with f /g replaced by P <51 f< N/8 and P 67! <y respectlvely
High-moderately low frequency interactions. We can repeat all the arguments done in (5.2.1)-(5.2.1)

by replacing M with M’, since none of these bounds depend on the specific choice of the velocity
weight. Hence, recalling the definition (5.2.1)

g _ 272 Mg (o vigB i
v
we have
1 /
LSy X Lupnggn (07 roce g D) 71

N~|k|

|B1]+1821<|B]

j1+72<1

x /R d(<s>“¢ v(aye ) Algy" M O (@21 Pos 1,0 P (k= Olliz - (5.72)

+(6)* (Ve g™ (¢ w% (anh-e) AP 51,950 ’”Nk—@])% (5.73)
We then claim that

v sup S ) I dk S VEVD/ Do (5.74)

{k:|k|>6, v} aq|8]<B’
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To prove this bound, when applying Young’s convolution inequalities to the terms in (5.3.1)-(5.3.1) we
can use the L% norm in both factors. This simplifies the proof compared to the one for Proposition 5.3
since we do not need to distinguish cases depending on the number of Z-derivatives. Indeed, having that

J<J M<M, a+|8|<B <B, |f]|+1/2<B +1<B,

since N 2 v, we get

Ot () v )it Afg &M ) 5 Hwktw Dl (k) x (5.75)
Ly
: (82,0,
\/WP u9<if/8 g2) e S H\/ >55t EMB )<N/8
J’ (B1,M’,51) e.d.
Ouat)” 1) (gl S |t Bl () (L2
\/ (ay1)72 AP >o5t g(f]if’/S ’]2 S H\/ > DMB k) <nyg 12 (5.76)

Using the Young’s convolution inequality in (5.3.1) and appealing to (5.3.1)-(5.3.1), we have

v sup Z ((Au,kt>2 M’ >1/ Z H ykt M’ B’ NN
k: |k|2661Va+|B|<B’

(H Avkt) \/D?MdB ‘ \/ IEMB k)<nys 12
+ ||t /Bt k)|

k
)
< VEVD\/Dprr,

where we also used the quasi-orthogonality of the Littlewood-Payley projections. The claim (5.3.1) is
proved.

LOO

L2

12 \/P>551qu\ZCfB(k)<N/8
k

High-very low frequency interactions. We now turn our attention to 7 M",B < We can repeat the

computations in (5.2.1)-(5.2.1) with M replaced by M’. Using the Young’s convolution inequality

lg *Allze < glgze Il

instead of (5.2.1) we arrive at

sup Z <)\V k;t> M’ <y~ ff\/DLF + \/gLF\/DLFH O_lnyL}gL%' (5.77)

k: \k\§5glua+|6|§3/

Also in this case we can argue as in (5.2.1) to get
1Pesr, Flle (1/ eyt + W/t Tps 1> VErr. (5.78)

Plugging the bound above in (5.3.1) and using (5.3.1) we finally prove the bound (5.4) for the term 78
(5.3.1)in N L‘j\fx g (5). The other terms in N L‘j\f/ g can be treated analogously, see the discussion at
the end of Section 5.2.1.

5.3.2. Nonlinear Taylor dispersion errors. Following the discussion in Section 5.2.2, we study the term

2—015

TJoB = 1,1 —
N;V/ |k|§60 u<yt>25

(5.79)

We split it as 7" = J%% + 700 where J3° and %2 are (5.3.2) with N ~ N’ < &5 v and
N ~ N’ > §; v respectively.

()M 7, ZPF (D (S, f)s ()M 0 v, 2P (1 = P) )

L3
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Very low-very low frequency interactions. When N < v, we can proceed as done in the previous
section (compare with the observation made before (5 2.2)). Thus, we get

v Z sup (,,kt>2J Job M <y (5.80)
a+|B|<B k:|k|§651V

Drr (\@@4- (V"1 + (V/t>g ]lt>v*1)gLF) :

Very low- moderately high frequency interactions. For N 2 v, we have the main difference with re-
spect to the L% case. Since we are considering the L7°-norm, here we cannot gain a smallness parameter
as in (5.2.2). Hence, for the L;° norm, we have to crucially use the fact that B’ < B. Indeed, since

vV, 2% = 78 v, 75,
by (5.3.2) we can bound j />, as

—C18 , / )
stz W% 3 ({000 2, 1), (04 920 - P

N~N'Zv

+ (vt) '<<v>M/+q“fvs ZPF(U(fx, f)s ()M 74 V1, 2P (1 = P) )

L3

> (5.81)

where in the last line we used that ¢|k| < (vt) in this regime. Thus, as opposed to (5.2.2), we never have
to pay negative powers of v since we never take a v-derivative of the terms fn, fy/ (which are in the
enhanced dissipation regime). However, we need to use one Z-derivative more but we can do so since
B > B’ + 1 and we aim at controlling terms with fx, fn/ with Li norms.

L3

Remark 5.11. This is a term where we are exploiting the phase mixing. Namely, we are controlling a
v-derivative in terms of a Z-derivative.

Notice that in (5.3.2) we have to lose a factor (vt) also in the term containing Z°+! and not only in
(5.3.2). This is because we have to divide Z5*! by <Vt>ﬁ +1 More precisely, instead of (5.2.2) we get

J L 1 Ry 2 Clﬁ\/A M'+avs 7, 76(1 — P) f(k
W Sy 00 3 Tue, W7 g rAll) W21 = P) (k)
52 +15al 15141
1 2, (5.82)
<[ (VoA Omal 0 e - i

1180 (€)]] /AL B 0><k—5>1)d5.

We rely on (5.8) to absorb the (vt) loss in (5.3.2). In particular, we have

2J' J’
v E sup (A it) T M >y < HP<5_1V (Avit) D]:\Fﬁ'B,
) ~1 =0 Ly
a+|B|I<B’ k:k|<éy v

J
x (HP>50_1V<AV,kt> ,/D%B‘ P By,
k
J e
[P, ust)” /Bty
>4, J€> M,B 12 L2

< \/E\/TD\/DLF. (5.84)

Combining together (5.3.2) and (5.3.2), we see that for the term 7, ]\02,'3 we get bounds in agreement with

(5.4). The other terms in (5)-(5) that contain at least one (I — P) f are analogous.
The macroscopic error terms defined in (5.2.2) do not depend on the velocity weights. Thus, we can
combine the arguments done to obtain (5.2.2) with the ones to get (5.3.2) to prove

v sup Z Mit)? (j'rifcro,NNN’ + %OMF,NNN/)dk < VEVD\/Drr,

kilk|<85 'V ot |51<B

(5.83)

2
Lk

e.d.
P>50_11/ Diis
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whence concluding the proof of Proposition 5.4. O

5.4. Nonlinear errors for the higher order moments. The control for the higher moments in the
linearized problem is a straightforward consequence of the estimates (2.1) and (2.1). For the nonlinear
problem, it is also not difficult to adapt the estimates leading to the bounds (5.3) and (5.4) to obtain (5.6)
and (5.7) respectively. Since we are using higher order velocity weights, we only have to check where
we need the functionals £, £, in (5.6) and (5.7).

Proof of Proposition 5.6. To prove the Lz bound (5.6), we can argue as done to prove (5.3) simply by
replacing (M, J) with (M + M, 0) in all the estimates. For instance, in the enhanced dissipation regime

we have to bound
?/8
v e
§ : M-+M;
/kzao—ly *

a+|B|<B

where 777 M M, is defined in (5.2.1). With the same splitting introduced in (5.2.1), we first prove (5.2.1)
with M — M + My and then, as in (5.2.1) with J = 0, we get

V/ Z IJﬁ}f—M >1/ k < v EmomDmom-
|k|>6, v

-1
a+|B|<B

For the term IM’iM <, We also have (5.2.1) with M — M + M ;. For the bound (5.2.1), notice that for
the piece with P f the weights are irrelevant thanks to the decay of the Maxwellian. These macroscopic
terms are the one that needs to be controlled with £ . We can argue as done to obtain (5.2.1) and

(5.2.1) to prove that

HB

v s dk
E: MA+M,<
/kgao—ly a5

a+|B|<B

< \/Emom/ Drom (ﬂ?mom + (e + /)2 nm,l)\/gLF) .

In the Taylor dispersion regime, consider the term 7. AC} v, s in (5.2.2) with its splitting (5.2.2). Fol-
lowing the reasoning before (5.2.2) and the estimates (5.2.2) with (M, J) — (M + My, 0), we get

Z /y M+MJ7<de;

a+|8|<B
< \/gmom\/Dmom (\/Dmom + (Vd]ltgu_l + <I//1§>g ]lt>,j—1)\/5LF) .

Also here, the £ F factor comes from macroscopic error terms, therefore insensitive to the weights. [

Proof of Proposition 5.7. For the proof of the L7° bound (5.7), we can readily follow the proof of (5.4)
since the only properties we used are M’ < M —1,.J' < J —1and B’ < B — 1 which are still true if
we replace M’ — M’ + M and J’ — 0 thanks to (2.2). For instance, following (5.3.1)-(5.3.1) and the
arguments to get (5.3.2) we obtain

a+f3
v sup E: IM'+M,+~7 My, Sy

ki |k[>65 v o1 |81< B

S \/Dmem,LF <\/€mom\/Dmom + (Vd]ltgy*1 + <V/t>% I[t>V*1) V SLF \V/ gmom,LF) .

On the other hand, for J% I M >, We get the bounds in (5.3.2) with M’ — M’ + M .. To absorb the
(vt) we have to use £ (or D) instead of Emom since the latter does not contain the factor (A, ;t). More
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precisely, as done to get (5.3.2), we have

E : B /PT.d.
sup v M’-‘y—MJ/,zV 5 HPS(SSIV DM’—FMJ/,B/ HLOO
o k

E: [k|<6, Ly a+|B|<B’

/ .d. .d.

8 < HP>6(;IV D?WIJ'_MJUBI‘ L% P>6(;1V <)\V’kt> E]eM/+MJ’7B/ L2
.d.

+ HP>5(;1V (Avkt) \/ Eze\4/+MJ,,B/

k
)
S \/E\/Dmom \/Dmom,LFa

where in the last inequality we used M’ + M < M and J > 1. Finally, all the error terms that do not
have velocity weights are clearly bounded in the same way, for instance the ones in (5.2.2). Hence, the
proof of Proposition 5.7 is over. (]

e.d.
12 P>5glu DM/+MJ,,B/
k

APPENDIX A. BASIC INEQUALITIES

To handle to anisotropic dissipation in the problem under consideration in this paper, we need the
following lower bound.

Lemma A.l. Let R >1,0< s < land~y < 0. Then

1
~ RhlE=s) HLUKRQHHS'

Proof. Consider first s < 1. Let 0 < § < 1 be a small parameter to be chosen. Then

I0i<rolly: , 2
s

2 2 2
Wei<rallys , = [Mpisrallzz |+ 0118 wi<rals. (A1)

Since (a + b)? > a?/2 — b?, we get

4

)2 (Ljyj<r9 — Li<r9’) + 1jwi<rg ({v)
HﬂviRgHHs // v — v/|d+2s

o (Lwj<rg — Liw|<rd)? )
>y ff o MR

~

5
((v)2 — (')2)?
- / / (To—vri<rs + Tjo—vrzre) L<r(g)? s dvdv
=1"—I2pg — I g,
where ¢ > 0 is a constant to be chosen later. For I, recalling that v < 0, one has
1 s (Ljoj<rg — Lij<r9’)? p 1 2
L=7 //((Uy + ()7) T dvdv’ 2 = o<l e (A2)

where in the last bound we used that on the support of the integral we cannot have |v| > R and |[v'| > R.
To control 1 i Ra» by the mean value theorem we get

ol J
]]'l’U—”U/|<1(<U>2 - <U/>2)2 S ]]-\v—v’|<1|v - U/|2(< + <U >’Y < IL|v ’L),|<1‘v —-v ’ < >7 :
Therefore, since s < 1 we have
1
2 2 2¢(1—
|12 pal 5/%'33 ()" () dv’/ﬂv—v'|<m,v_vf|32<13>d v g R H]l\v|<RgHLz

(A.3)
For the remaining term

1 _ 2
|12 Ral S/1U’|<R<g/)2dvl/]l|v—v’|>Rq’v_v/’d_,_gsdv < R H]l\u|gR9HL%- (A4)
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Thus, combining (A), (A) and (A) we deduce that there is a constant C' such that

Iwi<rol, , 2 Gamr wi<rolls. - CE [Lurglls | = CR7* [[Tp<ng] - A5

CR|’Y
Choosing

§=cR72U79 c=1/(4C),  q=hl/2
and plugging (A) in (A), we get

2 3 2 1 2 1 2
toi<rdlls | 2 3 1 2ei<rollie | + seapmmas 1teis<rdllys = gmr tmsrollL,

1 2 1 5
> 5o wi<rdllz + Jzagpmas Lw<rdlls.

Since 2 — s > 1, the proof for s < 1 is over. When s = 1, we can explicitly compute the commutator
Vo, <v>7/ 2] and we omit the details of this simpler proof. O

For convenience of the reader, we recall here some basic inequalities used in [4,5] and that we exploit
in Section 3.

Lemma A.2 ([5, Lemma 2.5 ]). Forany a > —3, p > 0, a € R one has
[ Tl ) ) w4+ w7
Lemma A.3 ([4, Lemma 2.5]). Forany g € Cg one has

| leostolaton) = geldo < €y (o = 0.

When 0 < s < 1/2 one can replace (v — vy) with |[v — v].

Proof. By (1), observe that

_ 2 _ . _ 2
o — = Y 2”*’ (1—(” ) "):‘” U (1 cos(@)) = sin(8/2)0 — val?. (A6)

v — vy 2
Using Taylor’s formula
19(02) — g(Wl)| < Cylon — | = Cysin(6/2)]v — v,

Let 0 < 6 < 7/2. Combining the inequality above with the property (1), we infer

sin(6/2) /2
| beos(Ola(v.) = a(w2))lde <, 1o = v / e+ [ s
g |U—U*|(5 23+1+5 25.

If |[v — v,| < 1 then choose § = 1/10 and use |v — v,| < 1 < (v — v,)** . If s < 1/2 then it is also true
|v — vi| < |v—vi|?. When [v — vy] > 1, take § = [v — v, |71 O
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