Vortex filament solutions of the Navier-Stokes equations
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Abstract

We consider solutions of the Navier-Stokes equations in 3d with vortex filament initial data of
arbitrary circulation, that is, initial vorticity given by a divergence-free vector-valued measure of
arbitrary mass supported on a smooth curve. First, we prove global well-posedness for perturba-
tions of the Oseen vortex column in scaling-critical spaces. Second, we prove local well-posedness
(in a sense to be made precise) when the filament is a smooth, closed, non-self-intersecting curve.
Besides their physical interest, these results are the first to give well-posedness in a neighbor-
hood of large self-similar solutions of 3d Navier-Stokes, as well as solutions which are locally
approximately self-similar.
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1. Introduction

1.1. Vortex filaments

The incompressible 3d Navier-Stokes equations in vorticity form on R3, with viscosity normalized
to 1, are

(NS) Ow~+u-Vw—w-Vu = Aw,
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where the velocity v and vorticity w are related by the Biot-Savart law

u=(—A)"'V x w.
| |

As usual, we also have the divergence-free requirement on the vorticity

for which it suffices to choose divergence-free initial data.
In this article we consider solutions with vortex filament initial data, i.e. the initial vorticity

(1.1) w(t =0) = adr,

where the circulation a € R, and, for a smooth oriented curve I' C R?, we define ér to be the
vector-valued measure satisfying for any test function ¢ € C°(R?)
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Of particular interest throughout this article will be the case of large Reynolds numbers, which
corresponds to the limit || — oo. For « large, this data falls outside the realm of previously
existing local well-posedness theory of mild solutions and, as the velocity is not in L120c= one cannot
construct Leray-Hopf weak solutions either.

The term ‘vortex filament’ refers to a configuration of intense vorticity approximately concen-
trated along a curve. In experiments, such structures tend to move in a coherent manner over
relatively long time-scales (see e.g. the experiments on knotted vortices [51]) and are also thought
to be potentially related to intermittent behavior in turbulent flows (see e.g. [19,58,61]). The
mathematical study of vortex filaments dates back to the work of Helmholtz [42], with other early
studies by Kelvin [64,65] and da Rios [18]. The latter formally derived the first dimension reduced
model, now called the local induction approximation, which sought to simplify the dynamics to the
evolution of a curve rather than an entire vorticity field. This was later rediscovered in the 1960s
with a renewal of interest in vortex filament motion, where more refined models were also considered
(see e.g. [43,57,62] and the references therein). The binormal flow, which is derived from the local
induction approximation, is an interesting equation in its own right and has been the subject of
much research (e.g. [1-6,23,41,44,45,53]).

The above derivations of dimension reduced models are not mathematically rigorous and es-
sentially neglect viscosity, instead modeling the filament as a smooth object of finite width in the
Euler equations. However, passing the width to zero in the Euler equations is a very singular limit.
Work has been done to rigorously justify the dimension reduction conditional on certain hypotheses
about the solution of Euler (see in particular [43] and the references therein) and in the case of ax-
isymmetric vortex rings [9,28]. To our knowledge, a complete description of vortex filaments either
in the Euler or Navier-Stokes equations remains open. In the viscous case, it is natural to model
filaments with the data (1.1) (as suggested as early as [38] at least) and for this initial data, with
« large, most of the fundamental questions of existence, uniqueness, continuity and dynamics in 3d
remain open. In this article we develop a framework to study general (smooth, non-self-intersecting)
vortex filaments in 3d and use this to prove several existence and uniqueness results that hold for
arbitrary circulation numbers o € R.



1.2. Criticality

The standard approach to constructing well-posed solutions in low regularity spaces is that of the
mild solution. That is, one formally writes the solution of (NS) with initial data w(t = 0) = wp
using the Duhamel formula as

(1.2) w(t) = ePwy — /Ot et=3)2 div (u(s) Ruw(s) —w(s)® u(s)) ds,

and may then attempt to use a contraction mapping argument in a suitable space. A natural
question is: what is the largest space of functions in which the mild formulation of (NS) is well-
posed (in the sense of Hadamard)? Taking coordinates y € R3, we observe that the equation (NS)
is invariant under the scaling

w(t,y) — Nw(\t, \y) for A >0,
where we note that the corresponding scaling of the velocity is
u(t,y) — Mu(A%t, \y).

Heuristic considerations suggest that the largest possible spaces in which one can obtain mild
solutions of (NS) are critical in the sense that the corresponding norm is invariant under this
scaling.

We refer to a space X as ultra-critical if X is critical and the Schwartz functions are not dense
(we will see some examples below). A common feature of such ultra-critical spaces is that they
contain initial data that are invariant under the scaling, so one can expect self-similar solutions to
live in precisely these classes. Another (closely related) common feature is that, in general, one
only obtains global existence for small data, and local well-posedness if the distance of the data to
Schwartz functions is small. The circulation number « of a vortex filament is invariant under this
scaling, and so one may view the problem of local well-posedness for initial data of the form (1.1)
as a large data problem in (ultra-)critical spaces.

1.3. 2d local well-posedness

Taking R? = R% x R with coordinates (z,2) € R? xR, an explicit and important example of a vortex
filament is obtained when I is the line {x = 0}. It is called the Oseen vortex, and is given by

1
, where G(ﬁ):—e*imz,
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with corresponding velocity field

—9(%) 1 ¢t _lig2
u = [\/Z 0\/5 ] , where g(&) = %@(1—6 2lE%y,

and £+ = (=&, &1)7. Tt is natural to expect that the Oseen vortex provides the microscopic structure
for the evolution of any smooth, non-self-intersecting vortex filament. This expectation is, in some
sense, confirmed by our results. The Oseen vortex is also a two-dimensional solution, and a detailed
understanding of its stability in 2d is a key element of our investigations.

We see that L' is the critical Lebesgue space for the vorticity in 2d, whereas M, the space of
finite measures equipped with the total variation norm, is an ultra-critical space. Note that the



Oseen vortex (1.3) is a mild solution with ultra-critical initial data. Uniqueness of the Oseen vortex
with ¢ initial data was proved in [25,34], and then uniqueness for arbitrary M initial data in the
work of Gallagher and Gallay [24] (see also [8,29]). See also earlier work of Giga, Miyakawa, and
Osada [39], Gallagher and Planchon [26], and [35].

Besides a reduction to 2d, another possible symmetry reduction is axisymmetry. For the 3d
problem with large circulation numbers, one can consider the axisymmetric case without swirl and
take vortex ring initial data of the form (1.1) with I' = {|z| = R} for some R > 0. Global existence
of axisymmetric solutions of this type with arbitrary circulation number was proved by Feng and
Sverédk [21] and uniqueness by Gallay and Sverak [28] (see also [27]).

Finally, we note that a careful analysis of the linearized stability of the Oseen vortex (and more
general column vortices), without any symmetry assumptions, has recently been carried out for the
inviscid case (v = 0) by Gallay and Smets [31,32].

1.4. 3d local well-posedness

The first critical well-posedness results for (NS) dealt with spaces excluding self-similar data. Fujita
and Kato [22,50] proved well-posedness of (NS) for the velocity in the space H 2 (see also [14]).
Twenty years later Kato [48] proved a similar result for the velocity in the larger space L3 (see
also [37]). Both of these results prove local well-posedness for arbitrary initial data and global
well-posedness for sufficiently small initial data. See [16] for a separate line of research focused on
identifying data that are large in critical norms, but give rise to global solutions.

The next step in the theory was to deal with ultra-critical spaces, hence allowing self-similar data.
Well-posedness in critical Besov spaces was proved by Cannone [11,12], Planchon [60], Chemin [15]
and Cannone and Planchon [10]. Giga and Miyakwa [38] considered solutions with the vorticity in
the critical Morrey space defined as the set of signed measures satisfying sup,~q egs " [(B(y,7))| <
oo and they observed there that data of the type (1.1) falls into precisely this class. Their results
were subsequently improved by Taylor [63] (see also [49,54]). The largest space of initial data for
which well-posedness for small data is known is the space BMO™! of Koch and Tataru [52] (see
also [36]).

Finally, let us mention the work of Jia and Sverdk [46], who proved the existence of smooth
self-similar solutions for arbitrarily large initial velocities that are locally Holder continuous away
from zero. This provides some large data solutions in the ultra-critical space L>*° (weak L3).
Furthermore, in [47] they proved a conditional non-uniqueness result for self-similar initial data in
L3 under suitable spectral assumptions on the corresponding linearized operator (see also [40]).
Roughly speaking, they prove that if the linearization around the self-similar solution (in self-similar
variables) has eigenvalues that move from stable to unstable, then one can perform a bifurcation
and construct additional smooth solutions. Our work will show that a similar bifurcation cannot
happen for the solution (1.3).

Our results, which will be presented in the next subsection, are the first to give local well-
posedness for the 3d Navier-Stokes equations in a class of solutions containing large self-similar
solutions. The well-posedness class is essentially the mild solutions which are sufficiently close to
the self-similar Gaussian in a certain scaling-critical sense as ¢ ™\, 0. Subcritical contributions are
vanishingly small for short time, so no smallness requirement will be present. Moreover, it will turn
out that the curvature of the filament is effectively subcritical. Note that, in particular, this indeed
rules out other self-similar solutions in a certain neighborhood of (1.3), but does not rule out the
existence of other self-similar solutions with the same initial data that are sufficiently different from
(1.3).



1.5. A sketch of obtained results

Our first results deal with perturbations of the straight filament adg,—gy. We prove local well-
posedness for arbitrary perturbations in a subcritical space. For small perturbations in a critical
space, we are able to obtain global solutions, which relax to the Oseen vortex. A simplified statement
is as follows:

Theorem 1.1 (Simplified statement). There ezists a scale invariant space X and e(a) > 0 such
that: if |ub||x < e and V - u® = 0 in the sense of distributions, there exists a unique global solution
w to (NS) with data

w(t =0) = adz—oy + (b

which can be decomposed into

0

w(t,z,z) = [?G(I)

+10¢ (logt, L, 2 ) + WO(t, z, 2),
e

o~

where )
= b b
sup | I4€)2 Iz + 4 1w 02| S e lx.
t>0 z e

Furthermore, the map p® — (Q°,w®) is continuous.

Our second main result deals with perturbations of arbitrary vortex filaments. Consider a
closed, non-self-intersecting curve I', and define ® a smooth map from a tubular neighborhood of
{(0,2) : z € T} € R?2 x T to a tubular neighborhood of T' (we refer to the next section for a more
detailed description).

Theorem 1.2 (Simplified statement). For any u’ € Wit satisfying V - u® = 0 in the sense of
distributions, there exists T > 0 and a unique solution w to (NS) on [0,T] with data

w(t =0) = adp + p°

which, in a tubular neighborhood of I', can be decomposed into

((det V&) (V) ™) (w, 2) w(t, B(x, 2)) = az)|* 1ge <logt, = z) Wbt 2),

+IQ

where

1
sup | I1€)20° e 1z + £ ]

4/3] < 0.
0<t<T @

LeL
Furthermore, the map pb — (Q°,wP) is continuous.

We note that in the case of the curved filament we do not expect the above decomposition of
the vorticity to be valid on longer timescales. Indeed, at high Reynolds number, the filament will
evolve in a fully nonlinear manner, e.g. under the local induction approximation and its refinements
[57,62]. A rigorous proof of these dynamics in general remains an important open problem and our
results may be viewed as a first step towards a solution (see [9,43] and the references therein for
progress on the inviscid problem and [28] for the case of vortex rings in Navier-Stokes).



Notations and conventions

Throughout this article we will typically not distinguish the target space of various functions, using
L% to denote the usual Lebesgue space with measure dx for scalar fields, vector fields and tensor
fields alike.

We follow the following conventions regarding vector calculus:
o (aij)ij (aé-)ij, (a'?);; all denote the matrix with line index 4, column index j.
e If a, b are vectors, then a ® b = (a'd?);;.

e If u is a vector field, then Vu = (9;u’);;.

Given a (k x k-)tensor field f (i.e. a k x k matrix-valued function) we write V- f = div f =
(9 f7);, where we use the Einstein summation convention, i.e. 9;f% =", 8; f%

Given two vector fields f and g we define the bilinear operator B[f,g] = div(f ® g — g ® f)

For both vectors and matrices, we denote |v| to be the usual norm induced by the Euclidean
metric.

We denote g < f if there exists a constant C' > 0 such that ¢ < C'f and we use g Sq5,.. f to
emphasize dependence of C' on parameters a, (3, .... We similarly write g &~ f if we have both g < f
and f <g.

As usual we denote Sobolev spaces as (with the usual extension to esssup for p = 0o0)

p

£hws = | X [ 1vesPay)

|or| <k
and Fourier multipliers m(1V)f as m(3V)f(£) = m(§)f(§) (with the usual specialization in the
event that we are only taking the Fourier transform in z). We use (z) = (1 + |z[})¥/2. As is

customary, we subsequently write sup indistinguishably from esssup for notational simplicity.
Finally, the coefficient
a(t)=1—¢"

will be handy in many estimates.

2. Statement of results and outline of the proof

2.1. Function spaces

In order to state our results, it will be useful to first define several function spaces.
To handle the self-similar part of the solution, for 1 < p < oo and m > 0 we define the weighted
Lebesgue space L’g (m) with norm

Vg = [ (1O d.

In order to control the eigenfunctions of several linear operators, we extend this definition to m = oo
by defining the Hilbert space Lg(oo) with inner product

Uz = [ 16T 6O de.

6



where the Gaussian G is defined as in (1.3).
We adopt the following normalization for the Fourier transform in the z-direction:

N 1 —iz
f(C):m/f(Z)e “dz.

To control the regularity in the translation-invariant z-direction, for a Banach space X of functions
defined on R2, we define the X-valued Wiener algebra B,X as the space of functions defined on
R? x R or R? x T with norm

i 1FCOllx d¢,  for (z,2) € R2 x R,

fllB.x = .
7l SIFCOlx,  for (z,2) e R X T.

CeZ

For initial data in ultra-critical spaces one generally cannot expect to have strong continuity
up to time ¢ = 0. As a consequence, given a space of functions X continuously embedded in the
space of tempered distributions ./, we say that w € Cy([0,7]; X) if w € L*([0,T]; X) and for all
to € [0,T] and test functions ¢ € . we have

Jim (w(1). 9) = (w(t0). 9).
te[0,7)

In the case of the straight filament we require function spaces with some additional spatial
summability. For a Sobolev-type space X, and a smooth partition of unity 1 = 3,9z Xar SO
that xp = xar(x) is a smooth, non-negative, radially symmetric, bump function supported in the
annulus {& < |z| < 2M}, we define

(2.1) Il = D IarfI%,

Me2Z

with the obvious modification for p = oco.
Finally, we give a rigorous definition of what we mean by a mild solution of (NS):

Definition 2.1. Let M> be the space of vector-valued regular Borel measures such that

Il 3 = swp {r I (Bly.m)l } < oo
r>0,ycR3

Given a T' > 0, we call a function w € Cw([O,T};M%) a mild solution to (NS) with initial data
wo € M3 provided

(i) the initial data is attained w(0) = wp (hence w(t) —=* w(0) as t N\, 0);

(ii) the equations are satisfied in the sense of Duhamel’s formula (1.2) (and in particular, the
Duhamel integral is well-defined);

(iii) w(t) is divergence free in the sense of distributions for all ¢ € [0, 7.



2.2. The straight filament

We are now in a position to state our main result for critical perturbations of the straight filament:

Theorem 2.2 (Critical perturbations). For any a € R, and any m > 2, there exists g > 0 such
that if u?: R x R — R3 or pb: R?2 x T — R? satisfies V - ub = 0 in the sense of distributions and
the estimate

(2.2) 16 pry + o (1) |l oz = € < eo,

where p® = ((u®)*, (u°)?)T € R? x R, then the following holds:

(i) (Existence) There exists a global mild solution of the Navier-Stokes equation (NS) with initial
data

0
a(SwZO

(2.3 ste=0 = [ |+t

which can be decomposed into

(2.4) w(t,z,z) =

%G (%) + %QC (10gt7 %,2) +wb(t,x,z),
t

where the “core” part Q° and the “background” part w® satisfy the estimates

(1)

<e
B, L3 ™

1
(2.5) sup (7). 2gmy + SUP 5
—00<T<00 £ 0<t<oo

(i1) (Uniqueness) If W' is another mild solution with initial data (2.3) admitting the decomposition

, 0
9= 16 ()

where (Q2°) and (W) satisfy the bounds (2.5), then w = w'.

+ Loy <log t, %, z) + (WY (t,, 2),

(iii) (Lipschitz dependence) The solution map from the data to solution
1 (W', )

is locally Lipschitz continuous if one endows the data space with the norm (2.2) and the
solution space with the norm (2.5). Similarly, the solution also depends on « in a locally
Lipschitz manner.

Remark 2.3. This theorem remains true if B, is replaced everywhere by the space of Fourier
transform of measures M: for a Banach space X, M 2 Xz is the space of Fourier transforms (in z)
of X (in z)-valued measures. The proof is identical. This framework allows data and solutions that
do not decay as z — oc.

Further refinements of Theorem 2.2 have been investigated in [7].

The proof of Theorem 2.2 follows from applying the contraction principle to the equations
satisfied by the core and background pieces. The decomposition is reminiscent of that used in the



proof of uniqueness in [24] and the contraction principle variant thereof used in [8]. In order to
obtain bounds for these pieces we first introduce the self-similar coordinates

T =logt, §= z =z,

where we note that as w9 (defined as in (1.3)) is translation-invariant in z we do not rescale the
z-coordinate. We then define
Q7€ 2) = cTw(e e3E,2),  U(r.€2) = edule’, e3¢, ),

and may write the equation (NS) as

Q+U-VQ—Q-VU = (L+€707)Q,

where the rescaled gradient V and the 2d Fokker-Planck operator £ are defined by,

= Vé _ 1
V—[e;aj, E—Af-l-if'Vg—l-l.

We also note that under this change of variables the Biot-Savart law becomes
U=(-A)"'VxQ,

where the rescaled Laplacian,

Z = Ag + eT(?z.

Finally, we will denote €29 and UY for the rescaled versions of w9 and u9,

O9(r,€,2) = [ G(()g)] U ) = [9(06)} '
The core piece, 2, is taken to satisfy the equation
0:0°+ U - V(¥ + Q) — (a2 + Q) - VU = (L +€702) O,
lim Q¢(7) =0,

T—r—00

In order to construct solutions we first prove estimates for the solution operator Q(7) = S(7,0)Q(0)
of the corresponding linearized equation

0.9+ o[U7 - VQ+U -V — Q- VU — Q9 - VU] = (£ +e702)
U= (-A)"V x Q.

The key to our argument is the observation that, in the limit 7 — —o0, the equations decouple into
a pair of z-independent linear equations, with a coupling (Zf , Z#) which contains ez 0, derivatives
and so is formally time-integrable:

0:Q5 + alg - VeQs — Q8 - Veg] — LOS = aZ8,
OV + alg - Ve — (—Ag) T 'VFQ7 - VeG] — LO = aZ”.

The first of these linear equations appeared in the context of Burgers vortices in [30], whereas the
second is precisely the 2d Navier-Stokes equations linearized around the self-similar solution, which



has been extensively studied in [33,34] (see also [56]). In order to rigorously reduce the full system
to the limiting case 7 = —oo we use translation-invariance in z to take the Fourier transform in z
and estimate frequency-by-frequency. Exponential decay and smoothing estimates for the 2d linear
semigroups defined by the operators on the left and taking advantage of the general structure of the
Z¢ and Z7 terms permits one to obtain uniform-in-frequency stability. The analysis of the linear
propagator S(7,0) is carried out in Section 3.

The background piece, w?, is taken to satisfy the equation

{ O +u - Vwb —wl - Vu = Aw?,
wb(0) = .

Solutions are then constructed by establishing estimates for the solution operator w(t) = S(¢, s)w(s)
for the corresponding linearized equation

Oww + aud - Vw — aw - Vud = Aw.

The analysis in this case is similar to the core piece, taking the Fourier transform in z and treating
the resulting system as a perturbation of a system of 2d equations. The 2d semigroup estimates are
obtained by methods similar to those applied for the 2d case considered in [24]. However, here the
vortex stretching causes additional difficulties in obtaining estimates for the operator S(t,0) that
are not present in 2d. These difficulties are overcome by taking advantage of the special structure
of the equation satisfied by the radial component of the vorticity = - w”®. The analysis of the linear
propagator S(t, s) is carried out in Section 4.

The bulk of the work for the straight filament is to obtain suitable estimates for the linear prop-
agators S(7,0), S(t,s). Given these bounds, the proof of Theorem 2.2 follows from an elementary
application of the contraction principle that we carry out in Section 5.

We remark that closing the contraction in Theorem 2.2 essentially relies on the fact that the
operator S(t, s) for the background piece satisfies the estimate

HS(L 00l _jass < 1.

As usual, if we work with subcritical perturbations of the straight filament the smallness of the data
is replaced by a short-time assumption.

Theorem 2.4 (Subritical perturbations). For any o € R, 1 < p < %, m > 2, and function

P RZ X R = R3 or u?: R2 x T — R3 satisfying V - ub = 0 in the sense of distributions and
(2.6) Ip.zp + o= (0 a0 = K,

-p
zlix

there exists T = T (a, p,m, K) > 0 such that:

(i) (Existence) There exists a mild solution of the Navier-Stokes equation (NS) on the time in-
terval [0,T] with initial data

0
adz—0

(2.7) wte=0 = |+t

which can be decomposed into

w(t,z,z) = + %Qc (logt, %, z) + wb(t,x, z),

0
10 (%)

10



where the “core” part Q° and the “background” part w® satisfy the estimates

wb(s)HBzLi“) = 0.

(i1) (Uniqueness) If ' is another mild solution on the time interval [0,T| with initial data (2.7)
admitting the decomposition

1
2.8 lim sup Q(r 2¢ v+ Sup s4
(28) N0 (—oo<T<1nt|| ( )”BzLﬁ(m) 0<s<t

Wt x,2) =

e <%) + Q) <log t, %,z) + (W) (t, @, 2),

where (Q2°) and (W) satisfy (2.8), then w = W'.
(iii) (Lipschitz dependence) The solution map from the data to solution
u’ e (Wb, Q)

is locally Lipschitz continuous if one endows the data space with the norm (2.6) and the solution
space with the norm appearing in (2.8). Similarly, the solution depends in a locally Lipschitz
manner on o.

2.3. The curved filament

Our second set of results concern the case that I' ¢ R? is a smooth, non-self-intersecting, closed
curve that, after rescaling, may be assumed to have length 27. The key to our approach in this case
is that on sufficiently short timescales, the curvature of the filament is expected to be subcritical.
Making this intuition rigorous is rather involved, however, it ultimately allows us to treat the general
problem as a perturbation of the straight filament by introducing local coordinates near the filament
that “straighten out” the curve and choosing 7" sufficiently small.

We define a unit speed parameterization v: T — R? and an orthonormal frame t,n,b: T — R3
along I' so that t = 4/ is the unit tangent vector and the frame is oriented such that b = t x n.
In the case that I' has non-vanishing curvature, an explicit example is given by the Frenet-Serret
frame,

1

t=9, n= ‘3

for which we have the Frenet-Serret formulas,

b=txn,

//"
t/_ ! !
= Kn, n = —kt+ 70, b' = —7mn,

where k is the curvature and 7 is the torsion.
For each R > 0 we define a tubular neighborhood of I' of radius 32R,

I = {y € R*:dist(y,T') < 32R},
and a corresponding straight tube
Yr={(z,2) €ER* x T: |z| < 32R}.

Choosing 0 < Ry < 1 sufficiently small (depending on the curvature of I') we may view I'p,,
considered to live in the “physical frame,” as the image of the open set X, considered to live in a
“straightened frame,” under the map ®: ¥p, — I'r, defined by

O(z,2) = v(2) + z1n(z) + z2b(2).

11



We define the following mapping, which transforms vorticity defined in the straightened frame back

into the physical frame
(Qam) 0 ® = (det V®) (V) 7.

Further, we define xg to be a smooth, non-negative, radial bump function supported on |z| < 2R

and identically equal to 1 for |z| < R, and take Yz = xg o ®~!. Finally, define the approximate
solution

0

1a (i) ,  w! = Qs (x2r7?).

t= A\t

2R, g,

Figure 1: The mapping ® from the straightened frame to the physical frame.

Theorem 2.5. Let & € R and T' C R3 be a smooth, non-self-intersecting, closed curve. For any
initial condition satisfying

w(t =0) = adr + 4°,

where pub € Wl’%, there is a T = T(a, T, ub) such that

(i) (Existence) There exists a mild solution w of (NS) on [0,T] that admits the decomposition
w = ¢+ w’ satisfying (as mild solutions with u = V x (—A)"'w)

0w + Blu,w’] = AwS,
{ w(t = 0) = adr,
Ow® + Blu,w’] = Aw?,
{ wW(t=0) = p,
such that for any m > 2 and sufficiently small 0 < R < Ry,

m
T

lim sup V¢ <> =L (Nsr (@ — aw? =0,

T\00<t£T ' \/E Q(b (X8R( )) B,L2

) _ dist(y, T)\ ™ -
2.9 lim su ﬁ' 1— < ¢l =0,
( ) N0 0<t£T ( XGR) ﬁ Lg

1
I ¢ ”H —0
T{%OEET “ wy




Further, taking Q¢ to be the self-similar scaling of w® = wW¢ — aw?, there holds the following
decomposition for (z,z) € Tgeq and 0 <t < T

0
(%)

(i1) (Uniqueness) Suppose w' is another mild solution with initial data (2.3), suppose (&W°)
(wW®) are analogous to the definition in (i), and suppose that these satisfy the estimates in
(2.9) for some m > 2 and sufficiently small 0 < R < Ry. Then o' = w.

((det V) (V@) ™) (2, 2) w(t, ®(z,2)) = +10° <logt, — z) + Wb(t, z, 2).

t?

" and

(iii) (Lipschitz dependence) The solution map from the data to solution
b (W40

is Lipschitz continuous if one endows the data space with Hle% and the solution space with
the norm appearing in (2.9) (more precise estimates are available below).

Remark 2.6. We do no;: expect that the requirement pub € Wil s sharp; it would be more
natural to expect p® € L2 to be sufficient, however, this would require some non-trivial technical
refinements. We also do not expect the uniqueness statement in (ii) above to be sharp.

Let us briefly mention some of the difficulties in making the nonlinear perturbation argument for
Theorem 2.5. In Section 6.1, the properties of the coordinate system that straighten the arbitrary
filament are recorded. In particular, we see that all the alterations are either lower order (in terms
of derivatives) or have coefficients with size O(|z|), and hence will be asymptotically small as ¢ \, 0
as the vorticity will be concentrated mostly in a tubular neighborhood of the filament of size O(v/%).
Hence, we can expect all of the curvature effects to be subcritical. There are two major technical
issues with making this rigorous:

(a) In the straightened coordinate system A has been replaced by a second order operator with
variable coefficients, even for top order terms (see Section 6.1). This makes the curvature
effects difficult to treat in a perturbative manner.

(b) The straightened coordinate system only makes sense very close to the filament; away from it,
we cannot use the B,LP spaces, which are closely adapted to the geometry. This is problem-
atic since the natural anisotropic B,LP spaces used in the straight filament assign far more
regularity along the filament than transversally. Making a smooth transition to isotropic regu-
larity is delicate as, heuristically, it requires going up in regularity in the transverse directions
and down in regularity along the filament.

To deal with the difficulty posed by (a), we will decompose the natural analogues of w® and w”
each into two sub-pieces; a primary w*! (for * = ¢, b) which will describe the leading order ‘critical’
behavior near the filament and a secondary w*? which will deal with some of the most problematic
subcritical errors coming from the geometry. The w*? unknowns will live in the original (physical)
variables and are solved using the usual heat semigroup, whereas the w*' unknowns are naturally
formulated in the straightened coordinates and will require the use of the two straight filament
propagators S(7,0), S(t,s). Accordingly the w*! unknowns are estimated in a manner similar to
the straight filament whereas the w*? estimates require different arguments. In order to deal with
the errors in the viscosity term, the w*? unknowns will have slightly lower regularity than the w*!
counterparts.
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In order to deal with (b), we will need two technical ideas. First, we will change the style
of the norms we are using on w’ (relative to the straight filament). In particular, we will be
using a slightly stronger set of norms that are naturally isotropic but are also critical and satisfy
the proper embeddings into the anisotropic spaces. This compromise explains the need to take
perturbations that are more subcritical than what was needed in the straight filament, Theorem
2.4. Second, for w®, which interacts directly with the most singular piece, w!, we will not be able
to avoid transitioning from isotropic to anisotropic. For this we obtain anisotropic estimates near
the filament and isotropic estimates at higher regularity far enough from the filament; the overlap
region is the most difficult. The details of how to carry out the perturbation argument are rather
technical and are left to Sections 6 and 7.

3. The linearized problem in self-similar variables
3.1. Statement of the estimates
In this section we consider the linearization of the equation (NS) about the self-similar solution w9,
Ow + afud - Vw +u - Vw9 — w9 - Vu — w - VuI] = Aw,
{ V-w=0.
Switching to self-similar coordinates we obtain the system,
0, Q8 +alg- Ve — Q8- Vg — €3G UE] = (L +€70?) O,
(3.1) 0,97 + alg- Ve + US - VG — e2GO,U?| = (L + €792) O,
Ve Qf 420,00 =0,
where the Biot-Savart law is given by
US = e20,(—A)"1(Q5)F — VEH(-A) 1z,
U? = Vé (=A)TIQ8.
with the following notations for differential operators in self-similar coordinates:
V = (Ve,e30,)", V=000 (c50.)% i 8= (81, o, ),
divE = dive FS +¢30,F*, A= A¢+e 92
For 7 > o we define the solution operator S(7, ) for the equation (3.1) by
Q1) = S(r,0)Q0).

For the remainder of this section, we adopt the convention that the semigroup S(t,0) is defined for
Q(o) which might have a non-zero divergence (which simply amounts to lifting the last condition
in (3.1)). Notice that the condition that V - Q = 0 is propagated by the flow.

In this section we prove the following result:
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Theorem 3.1. Let o € R and m > 1. Then, for all 0 € R the map 7 — S(7,0) is continuous
as a map from [o,00) to the space of bounded operators on Bng(m). For all v > 0, we have the
estimate

(3.2) 1S(7,0)Fll 5. 12(my < €N F . £2m)-

where the implicit constant depends on o, m,~y.
Further, if o # 0 there exists 1 = p(a) € (0,3) such that, whenever m > 14 2u and F €
Bng(m) satisfies [ F*d¢ =0, we have the estimate,

(3.3) 1S(7,0)Fll 5. 22y < € "N Fll 3. 12(m).

where the implicit constant depends on o, m.
Finally, if o # 0 and m > 1+ 2u where p = p(a) is as above, then for 1 < p < 2 and all
3 x 3-tensors F' € Bng(m) satisfying divdivF = 0 we have the estimates,

_ - (7—0)
(3.4) 1S(r,0)divE g 20y S —<I1F | B.L2(m)>
¢ 3
a(t —o)r
_ e
(3.5) IVS(7,0)divE| g, r20m) S I FlB.c2(m),
¢ + 3
a(t—o)r "2

where a(T) =1 — e~ and the implicit constants depend on o, m,p.

Only estimates (3.4) and (3.5) will be used in controlling the nonlinear problem: the former in the
case of the straight filament (with p = 4/3) and the latter in order to derive fractional regularity
by interpolation, which will be needed to deal with the curved filament. As for estimate (3.2),
it guarantees that the the flow is well-defined on Lg(m) Finally, estimate (3.3) is used as an
intermediary step.

The proof of Theorem 3.1 will follow a similar strategy to the proof of [24, Proposition 4.6], first
proving long-time estimates for the operator S(,0) on Lg (m), and then combining this with short
time smoothing estimates to obtain the estimates (3.4), (3.5). A key difficulty we encounter in 3d
is that the operator is no longer a compact perturbation of the Fokker-Planck operator £, indeed
it is translation-invariant in z. However, we may take advantage of this translation-invariance by
taking Fourier transform in z and then estimating the resulting operator frequency-by-frequency.
In particular, we will show that we may reduce to the linear operator at fixed z-frequency, which is
a compact perturbation of the Fokker-Planck operator L.

3.2. Long time estimates

In this section we prove that the solution operator S(7, o) is well-defined, and satisfies the estimates
(3.2), (3.3).
We start by taking the Fourier transform in z of the equation (3.1) and setting w(7,&,() =

Q(T,ﬁ, ¢) to obtain the system,
(0- +€7|¢]? = L+ al) w* = aZs(w),

(3.6)
(0r +€T|¢]? = L+ al) w® = aZ%(w),

where the linear operators are denoted

I'=g-Ve— Veg, A=g-Ve—VeG-Vi(=Ag) ™,
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and the perturbative terms are given by
Z8(w) = ie3 CGUS
= ie5CG [ieF C(eTICP — A TH(wh) — VE(ETICP - AT
7(w) = ie5(GU* - VG - (€ + VE(-Ag) ')
= ie2(Vg - (G(eT\CI2 - As)”ﬂf&) + VG- (€T = Ag) ™! = (=Ag) ) Vew?.

The existence of the solution operator S(7,0) and the estimates (3.2), (3.3) are given in the
following proposition:

Proposition 3.2. Let m > 1 and ( € R be fized. Then, for all o € R and all w, € Lg(m), there
exists a unique mild solution w € C([o, 00); Lg(m)) of the equation (3.6) satisfying w(o) = wy. For
all v > 0, it satisfies the estimate

(3.7) (™) 2m) S € wall 2m)-

Further, if a # 0 then there exists some 0 < p = p(a) < % so that, whenever m > 14 2u and

We € Lg(m) satisfies [ wZd§ =0, we have the improved estimate

(3.8) () z2my S €l 2y
In both estimates, the implicit constant is independent of (.

In order to prove Proposition 3.2 we first prove estimates for the Biot-Savart operator in self-
similar coordinates:

Lemma 3.3. Let m > 1 and A > 0.
(i) If 1 <r <ooand 0 <4 <min{3,1— 1},
(39) IOZ = 8 Fllg S A2 L2y
(i) f1<r<2and0<§<1-1
(3.10) Ve = Ae) ™ Flly S A2 £ 2 0m)-
(i5i) If 2 < r < oo,
(3.11) IVe(=2¢) 7 g < NN 120m)-
Proof. i) We may write
(=297 116) = [ KOE=m) ) dn,
where K is the 2d Bessel potential. Recalling that K € Lg for all 1 < p < oo and taking %—Fé = 1-1—%,
we obtain ,
02— 87 Tl £ XKl g
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For1<¢g<2andm> % — 1 we have the embedding,
1A llze S 11 22 gm)

In particular, taking ;1) =146 and é =1 —§ we obtain the estimate (3.9).
ii) The estimate (3.10) is similar to (3.9), using that VK € L]g forall 1 <p<2.
iii) We recall that Ve(—Ag)™!f =k * f, where the kernel

L¢
KO = —5 16

As a consequence, we may apply the Hardy-Littlewood-Sobolev inequality to obtain

IVe(=A) " flleg S I 2

LT+*
and then use the embedding Lg(m) C L, O

Applying Lemma 3.3 with A = e%K |, we obtain the following estimates for the perturbative
term:

Corollary 3.4. For allm>1and 0 <§ < % we have the estimate,

(3.12) 121 2 (m) So.m ¢ Pelz 6)THwHL§(m)

Proof. We first observe that when ¢ = 0 we have Z = 0 so it suffices to consider the case { # 0.
Applying the estimates (3.9), (3.10) with r = 2 and A = e2|(| we then obtain the estimate

TTE —25 -6
1022 S 1¢172 e o]l 2omy

The estimate for the £-component, Z¢ then follows from the rapid decay of G.
To bound Z# we first note that ie%CGVé - (€7[¢|* = A¢)"tw® may be bounded similarly to Z¢.

Next we bound ie%TC(VélG) - (€7[¢]? — A¢)"lw® by applying the estimate (3.9) with r» = oo and
again using the rapid decay of V¢G.
For the remaining term we apply the resolvent identity to obtain

Ve (€TI0 = Ag)Thw® = Vg (=49 T = eT[CP(eTIC — A T VEAL .
Proceeding as in the proof of (3.9) we may then bound,

IVE(€TI¢1° = Ag) ™ w? = Ve (=Ag) ™ wlre S ¢ 7| VEAL | =
Le
95 (1_&)r
SISl w2

g(m)’

where the second inequality follows from the estimate (3.11). The estimate then follows from the
rapid decay of VG. O

Using these estimates we may complete the proof of Proposition 3.2:
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Proof of Proposition 3.2. From Proposition B.1 we may define the semigroup

T(L—al') 0
e
T(T) = 0 eT(ﬁ—aA) ’

on Lg(m) and from the estimate (B.1) we have for any v > 0

1T L2 my— 220m) S5 €77

Using the Duhamel formula we then write mild solutions of (3.6) in the form,

w(r) = e_‘<|2(eT_EU)T(T —o)w(o) + « /T e_mz(eT_es)T(T —8)Z(w(s)) ds.

(e

We now take ¢ > 0 and define the map
T C(lo,0 —l—e];Lg(m)) — C([o,0 —|—6];Lg(m)),

by T
T (w) = a/ e [P T (7 — 5)Z(w(s)) ds.

Taking § = i (say) and applying the estimate (3.12) for the perturbative term Z, we may then
bound,

3
[0 2y ds S (7 =)t sup () 520,
T€[o,0+¢]

17 @)z S [

o a(r— s)%

where we recall that a(7) =1 — e~ 7. In particular, by choosing 0 < ¢ = ¢(«) < 1 sufficiently small
(independently of o) we may use the contraction principle to find a unique mild solution of (3.6)
on the time interval [0, 0 + €]. Further, as € is independent of o, we may iterate this argument to
obtain a global solution.

To obtain the a priori estimate (3.7) we use an identical argument to obtain the estimate,

TIA12 a2 — 7 L oG- s[¢?
e€ [q e ’YTHw(T)HLg(m) g ef ¢l e ’YUHw(U)HLg(m) +/ ‘<‘2€(4 ’Y)See <l Hw(S)HLg(m) ds.
o

Applying the integrated form of Gronwall’s inequality to the continuous non-negative function
T = eeTK‘Qe*WHw(T)HLg(m) we obtain,
TIF12 — aglr2 C % 1.7
&P T () 2 my S €719 () 3y P9I CF D),
from which the estimate (3.7) follows.

For the improved estimate (3.8), we first use the estimates (B.2), (B.3) to find 0 < p = p(a) < &
so that for m > 1 4+ 2u we have,

L—al’ — L—aA
(L )HLg(m)%Lg(m) 5 e ', HeT( “

2 oy S

)
e 122 my—12 yom) S €77

where the closed subspace Lgo(m) = {f € Lg(m) : [ fd§ = 0}. Next we observe that the
perturbative term,

77 = Vi (ie3CG(ETICP = A Mwf) + Ve (G ((¢71C12 = A) ™ = (~A¢) ) Véwr)
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so from the estimate (3.12), we see that Z* € Lg o(m). As a consequence, provided [ wZd§ =0, we
may estimate as above to obtain,

T2 o2 T 1 s s| 12
eI ()l S € oz + [ 1€15eE I 0 (5) 13y s,
g

and applying the integrated form of Gronwall’s inequality to the continuous non-negative function
7= I (1) | 2 gy we have,

T 2 o 2 C 1 T _ g
I () 2y S P ()] 3y eI T,
from which we obtain the estimate (3.8). O

3.3. Short time estimates

In order to prove the estimates (3.4), (3.5) we will combine the long time estimates (3.2), (3.3)
with several short time smoothing estimates. We start with the following estimate that we prove
similarly to [24, Proposition 4.6]:

Lemma 3.5. Let 1 < p < 2. Then there exists some 0 < § = d(a) < 1 so that forallo <17 <o+9§
and any 3 x 3 tensor field F satisfying divdivF = 0 we have the estimate

(3.13) 156, VT g_12m) S — 1Pl _120m)

~

(tr—o)r

Further, for T > o there exists a bounded operator R(T,0) on BZLg(m) so that S(7,0)divF =

divR(7,0)F and we have the estimates

1
(3.14) 1R(7, 0) Fllp.r20m) S 22 IF 5. L2 ()
T—o)p 2
_ 1
(315) VR o)l 120m) S ——— 1F 5. 120m)
T—0)r

Proof. Start with the following equation (which can be thought of, formally, as the result of applying
div_" to the equation (3.1))

O F — (L+e9? — 1) F =RHS(F),
(3.16)

divdivF =0,
where, for Q = divF and U = (-A)~!V x divF,

RHS(F) = —a m 20— al ® [g,] —I—a[g] QU+ a0 ® [g].

We then take R(7,0) to be the solution operator for the equation (3.16), which (formally) satisfies
S(r,0)div =divR(T,0).
The solution of (3.16) may be written using the Duhamel formula as
T

F(r) = e TR () o [l () eI RRS (7).

g
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Our strategy will now be to apply Banach’s fixed point theorem to the mapping

F s =0 (£=3)+eTa(r=0)32 p( ) +/ T (£ 3) T RAS(F (5)) ds

(e

in the closed subspace X C C([o, 0 + d]; Bng (m)) with finite norm

1_1 1 —
[F|x = sup (HF(T)”BZLp(m) +(r—0)7 2|[F(T)B.L2(m) + (T—U)PHVF(T)HBzB(m)),
T€[o,0+6] ¢ ¢ ¢

where 6 > 0 will be chosen sufficiently small (independently of o).
Noting, on the one hand, that the operator norm on any LP space of (6562)56

<a(r — O')_g and, on the other hand, applying (B.6), for 3 € N3 and 1 < p < ¢ < co we obtain

eTa(r—0)0? is

—_

B (r—0o eTa(r—o0)0?
(3.17) [V elr= e a2 £ o 1y S ] +@Hfllj_ug(m).

(tr—o)r ‘
(Recall that |7 — 0| < § < 1 hence a(7 — o) =~ 7 —¢.) In particular,
r—o)(L—1 Ta(r—o0)02
Jelr=E=2)+ el p(g) | S |1 (0] g my-
As a consequence, it remains to show that the map

TP / (=) (£=3)+e7 a2 RS (s)) ds

is a contraction on X.
We recall from Lemma A.4 that

0515 S 190 55 S 195,230
Observing that, for 1 < p < 2,

2-p

gl 2o +1GIl & <1,
Lgp L?_lp(m)

we may then apply Holder’s inequality to obtain the estimate,
(3.18) IRHS(F) 5. 22m) S (1011525 + 1905220y ) S 19015 220
where we note that the implicit constant depends on |c|.

Applying the estimate (3.17) for the linear propagator, followed by the estimate (3.18) for
RHS(F) we then obtain

17 g S | IRES(E(S) .50 ds

T 1
< |IF)x / s
(o

(s — o)

1—1
S(r—a) rlFlx,
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Similarly, we have

1 1 [T 1
(- = OV VT (F)lppzom) S (7 — 07 / L RES(F(9) | 5. 2y ds
o (7- — s)p
1 T 1
< (r—o)F|Flx / ds

o (r—8)v(s— o)

1-1
S(m—a) rlFlx,

and an essentially identical estimate yields

1_

1 _1
(r = ) T (Flp.20m) S (7 — ) TF | Fx.
Combining these estimates we obtain
_1
17 (F)llx 67 [IFllx,

so we may choose 0 < § = §(a) < 1 sufficiently small (independently of o) to ensure that 7 is a
contraction on X. The estimates (3.13), (3.14), (3.15) are then a consequence of the bounds for the
solution F'. O

An essentially identical argument applied directly to the equation (3.1) then yields our second
short time smoothing estimate:

Lemma 3.6. There ezists 0 < 0 = () < 1 so that for all o <1 < o+ 0 we have the estimate,

1

(3.19) IVS(r, U)F”BZLg(m) S I 5, £2(m)-
(tr—o0)2 ¢

Proof. We first write the equation (3.1) in the form,
9:Q — (L + €70*)Q = RHS(Q),

where

r €.
RHS(Q) = —Oég'VgQ+Oz62G32U+a[ - Veg ]

_U¢. VG

Following a similar argument to Lemma 3.5 we will solve this by applying Banach’s fixed point
theorem to the mapping,

Q’_>e(T_a)L+eTa(T_a)a§Q(S)+/ e(T—U)£+€TfL(T—5)3§RHS(Q(s))ds,

g

in the closed subspace X C C([o,0 + d]; Bng(m)) with finite norm,

1, —
2l = sup (192 5. £20m + 07 = VA .12 ) -

Applying the estimate (3.17) we see that

— T - 2
e+ | < [IF| 2y,
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So again matters reduce to proving that the map
T Q r—>/ e(T_S)L+eTa(T_S)a§RHS(Q(S))ds

is a contraction on X for § > 0 chosen sufficiently small.
To prove this we first notice that, by Holder’s inequality,

57 _1
lg - VeQ($) 5. r20m) SNV, L20m) S (5 = )29
195(5) - Vel g 20m) < 1203) 1. £26m) < 1€1x,

and applying Lemma A.4 we may similarly bound
s s s _1
1Ge30.U(5) 5, 20y < 1€30-U(5) 15,11 < 11€30-05) 3, 120y < (5 — 0) 22 x,
1US(s) - VeGllp.r2im) S WU )lp.ra S 12815 p2my S 11201

We just proved that
1
IRHS(Q() |5, r20m) S (5 = )72 [[9Q|x-

(1—0)L+e"a(T—0)0?

Thus, we may apply the estimate (3.17) for the operator e = to obtain

T(r-o)

(7= 9T Dl 5 [T

T (r—o):
T — 0
smwx/ ds

(r— 5)%(3 — O')%

NI=[ pof=

IRHES(©(5))]l 5. £2(m) s

S (r—o)2|Qllx,
and similarly,
1
17 .20y S (7= 0)2 2 x-

Overall, we find that
1
|7 x < o2,

so choosing § small enough .7 is a contraction on X, from which the desired estimate follows.

3.4. Proof of Theorem 3.1

From Proposition 3.2 we know that the solution operator S(7,0) is well defined and satisfies the

estimates (3.2), (3.3). Thus it remains to prove the estimates (3.4), (3.5).
We first take 6 > 0 to be the minimum of the ¢’s from lemmas 3.5 and 3.6.

Case 1: 0 <1 <o+ 0. In this regime, a(r — o) = 7 — o; here the estimate (3.4) follows directly
from the estimate (3.13). For the estimate (3.5) we take n = (7 + ¢) € (0, 7) and then apply the

estimate (3.19) on the interval [n, 7] and the estimate (3.13) on the interval [0, n] to obtain
IVS(r,0)divFl| g, 12(m) < IVS(r,m)S (0, 0)diVE | . £2(m)
_1 4
Sa(r—mn) 2 ||S("77U)d1VFHBng(m)

_1 _1
Sa(r—n)"2a(n—o) ”HFHBng(my
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and the estimate then follows since a(7 —n) =~ a(n — o) = a(t — o).

Case 2: T > 0+ 6. We first note that in this case a(7 — o) ~ 1. Next we show that the estimate
(3.5) follows from the estimate (3.4). Indeed, if we assume (3.4) is true, we have

Hvs(ﬂ J)EFHBng(m) = |W5(T7T - %)S(T - %;U)EFHBng(m)
SIS(r - %,U)EFHBng(m)

—p(r—0)
S e TN E g rem)-

It remains to prove the estimate (3.4LHere we first apply Lemma 3.5 on the time interval
(0,0 + 3] and, writing S(c + $,0)divF = divR(c + $,0)F, we may decompose

S(o 4 8,0)divF = hy + €28, h,
where hi, ho are vector fields satisfying the estimates
1ol 20y + 1213220 S 1P 520

and f hid¢ = 0.
For h; we apply the long time estimate (3.3) to obtain

15,0+ Dl c20m) S €T Wl 220m) S €N F L5120

For hy we instead apply the long time estimate (3.2) with the short time estimate (3.19) and the
fact that 0, commutes with S(7,0) to obtain

I1S(r, 0+ §)e20:hall p. 12 (m) = €2 10:8 (1,7 = §)S(r = §,0 + Dol 12(m)

—L(r—0
S e 2TS(r = 8,0+ Dhallp. 12(m)

5 e(v_%)(T_J)HhQHBng(m)
Se o) HFHBng(my

O]

4. Linear estimates for advection-diffusion-stretching by the Oseen
vortex

4.1. Statement of the estimates
In this section, we consider the linear equation,

Ow + afu?d - Vw —w - VuI| = Aw,
(4.1) V.-w=0,

w(s) = ws,

~+

U 4
where 0 < s < T and the velocity u9 = [\ﬁgé\[)] .
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If ws € B, L. satisfies V - wg = 0 in the sense of distributions, we say that w € Cy([s, T]; B,L})
is a mild solution of (4.1) if for all ¢ € (s,T] we have

(4.2) w(t) = )20, — /t =2 diy <u9(0) Rw(o) —w(o) ® ug(a)) do,

s

and (w(t), ¢) — (ws, @) as t \ s for all test functions ¢ € .. We note that the expression (4.2)

converges in B, L} since |[u9(t)|z~ < 2 and

NG

A 1: _1
e p.r2sprn S 1, e div || g1 SE2.

We also note that the divergence-free condition is preserved by the flow, i.e. V -w(t) = 0 (in the
classical sense) for all ¢t € (s,T]. Finally, as w9 is smooth on (0,77, every mild solution of (4.2) must
satisfy w € C([s, T] N (0,T]; B,LL).

We first consider the case that 0 < s < T, where the velocity field w9 is smooth. Here we have
the following modification of [24, Proposition 4.3], which we prove in Section 4.2:

Proposition 4.1. Let 0 < s < t < T. Given ws € B.L. satisfying V - ws = 0 in the sense of
distributions there exists a unique mild solution w € C([s,T]; B,LL) of the equation (4.1).

Taking S(t, s) to be the corresponding solution operator, for any 1 < g < oo and v > 0 we have
the estimates,

_(1-1 t v

(4.3 I5tt.sheullszr < (6= ) 078 (2) ol
_(3_1) [t\”

(1.4 19t sheulg < (6= 9) G (£) fualn,
_(o-1 t\"”

(45) 19s(t sheln < (6= 9) 78 (1) ol

where the implicit constants depend on 7, q, c.
Further, if fs € B,L} is a 3 x 3 tensor field satisfying div div fs = 0 in the sense of distributions,
for any 1 < q < oo and v > 0 we have the estimates,
t Y
J(2) Wl
s

| ¥
(@7) 19t 5)div sz S =) C78) (2) 1l

3_
2

=

(4.6) 1S(t, ) div fullpgg < ()

where the constants depend on 7, q, c.
Finally, the above estimates hold with B, replaced by L’ for any 1 < r < oo.

The main obstruction in extending the solution operator S(t, s) to s = 0 arises from the vortex
stretching term, for which we have the (crude) estimate ||Vu?|r~ < ¢. In order to improve this

bound we will take advantage of the specific structure of the linear equation (4.1). First we observe
that the z-component satisfies a self-contained equation

(4.8) ‘&ng + a(u?)? - Vow® = Aw®.

Next we write

1 lz|?
(u9)® = Vat, where V = Sl (1 - e_4t> ,
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and compute

4.9 Vovel)y = v+ 7Vl 5o
( ,
r
. 0 -1 . —r179  —T3 . .

where r = |z|, the matrix J = and the matrix z—- @ z = 2 . In particular, if

1 0 €7 T1x2
we define

=z w' — 2t0,w",
we may write the equation for the z-component as
(4.10) 0" + a(u?)” - Vow" — aVJw® = Aw” + aW (3 + 2t0.0°), |
where
1 2 L

x 1 |z| =2\ x
4.11 W=90.V— =— 1—11+— 4 —.
1y Vi (- (045 %)

Finally, we turn to deriving the equation on . First, use that differentiation in z commutes with
(4.8) to derive the equation satisfied by —2t0,w?. Second, dot (4.10) with x to derive the equation
satisfied by z-w”. Adding both equations, observe that several terms cancel since V-w = 0, leading
to an equation identical to w?

(4.12) 0 + a(u9)" - Vot = A |

Our strategy will be to first solve for w? and 1, and then solve for w®, where the troublesome
vortex stretching term now appears as an inhomogeneous term depending on . By scaling it is
natural to try and bound + in the space B,L2. However, such an approach does not directly yield
an improved estimate as [[W/||z2 < 1. However, we observe that

. flx] 1
Wit z)| < | A
| (7x)’len{t27|x|3
so taking M € 2%, we obtain

(M1
||W||Lg(|x\zM) < min {152’ ]\42} )
and hence we have the estimate (recalling the notation (2.1))

(4.13) W lgoo 1 ([0,00)522) < 1-

The estimate (4.13) motivates defining the closed subspace Y C Cy([s,T]; B,L.) with finite
norm

Jwlly = HwHLoo([s,T];BZL}C) + WHele([S,T];Bngy

and corresponding initial data space Y; C BZLi with finite norm
lwslly, = llwsll g1 + |2 - wi — 2500 | p. 12,
where we note! that for s = 0 we have
[wollvo = llwoll .y + Iz - willer5.L2-

We then have the following Proposition, which we prove in Section 4.3:

'A modification of the estimate (4.33) below yields the bound llw* ler oo o, 71:B.22) S t_%||w§\|BZL;, which is
sufficient to prove that for any ¢ € . we have (t0,w*(t),$) — 0 as t \, 0.
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Proposition 4.2. Let 0 < s < t < T. Giwen ws € Y satisfying V - ws = 0 in the sense of
distributions there exists a unique mild solution w € Y of the equation (4.1) and we have the
estimate

(4.14) lwlly < llwslly,

where the constant depends on «.
Further, taking S(t, s) to be the corresponding solution operator, for any 1 < g < oo we have the
estimate

—(1-1
(4.15) 18, s)eosllzs < (= ) oy,

where the constant depends on q, «

Finally, we record subcritical estimates, which will be used to prove local well-posedness for
(large) subcritical data (Theorem 2.4).

Proposition 4.3. For any p € (1, %],

_(1_3
18 O)woll . u < ¢ GH) [||wo||Bng+||x-<wo>x|| "

4/3
B.LY B.LZTP

Before turning to the proof of these propositions, we briefly recall some properties of the 2d
scalar advection-diffusion equation,
O + a(u9)* - Vb = Ayb,
(4.16)
b(s) = bs.

We recall that for any 1 < p < oo and by € L%, the equation (4.16) has a unique mild solution
b € Cu([s,0); L) (see, e.g., [8, Section A.3] for details). Moreover, the maximum principle ensures
that the corresponding solution operator is sign-preserving.

From [13, Theorem 5|, solutions of (4.16) satisfy the estimate

(4.17) 1B®llzs < (¢ — )67 byl e,

whenever 1 < p < ¢ < oo. Further, again from [13, Theorem 5] (also see [59]), for any 0 < 8 < 1
we have the estimate

(4.18) bt 51 [ e

4.2. Proof of Proposition 4.1

(y)| dy.

We now prove Proposition 4.1. We first note that the existence of a unique mild solution fol-
lows from an elementary contraction mapping argument on sufficiently short time intervals. As a
consequence, it will suffice to prove the estimates (4.3)—(4.7) for the solution operator S(t, s).

For simplicity we will only present the proof of the estimates for the spaces B,L%. In several
places we will reduce matters to 2d by writing ©(¢,z,() = e*(t*“;)mgb(t,x,() and then consider
estimates for fixed (, where we note that for fixed ¢ the function b is well-defined. In order to
replace B, by L7, we argue similarly, but in physical space (variable z) rather than in frequency
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space (variable (). Namely, we let b satisfy w(t,x,z) = e(t_s)agb(t,x,z), and deduce bounds for
fixed z. The boundedness of the heat kernel (in the z variable) on L7L% concludes the argument.
In order to both state and prove our results it will be useful to recall that the equation (4.1)
decouples as
{ Ow® + af(u9)” - Vaw® —w® - Va(u9)*] = Aw®,

Ow® + a(u9)? - Vyw?® = Aw?,

and hence the solution operator has a diagonal structure,
S* 0
S = .
v s
As in [24, Proposition 4.3] our strategy will be to combine short time smoothing estimates with

long time estimates in the space B,L.. We start with the following a priori estimates that follow
from (4.17):

Lemma 4.4. For any0<s<t<T,1<q<o00 and ws € B,L. satisfying V - ws = 0 in the sense
of distributions we have the estimates

,(1,;) +\ Clol

(1.19) 1520, g 5 =9 07 () putla,
(11

(4.20) 157t ) .z < (¢ — ) 7).

Proof. Taking @(t) = e~ =9)IK*b(¢) we obtain the 2-dimensional equations
L™ + af(u9)® - Vib* — b - Vi (u9)*] = ALb*,
Bb* + a(ud)® - Vub® = Ay

For the z-component, we apply (4.17) to obtain

1@l < (¢ — )~ () 0.

The estimate (4.20) then follows from multiplying both sides by e~ (t=9)* > 0 and integrating in
C.

At least formally, the estimate (4.19) for the z-component is proved similarly, by applying (4.17)
to the equation satisfied by [b*|.

To make this argument rigorous, we introduce

1 __la?
t —et=9)Aey . ©  TA+i)
plt.z) =e ar(l+t—s) ’
1
and for § > 0 take the smooth approximation ¢ = (62¢? + [b"[*)2 to [b®|. Writing b* = (b, b2)”,
we compute

Ae = - (8%00sp + Re(b1Asbs +bAgbs)) — F,

ol
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where the error term
52 _
Fi = =5 (|b1*|Vao* + ¢*[Vabi]* — 2Re (9h1 Vabs - Vo))

52 _
= 5 (2P IVal® + ¢*|Vabal” — 2Re (02Vba - Vap))

1 _
~ 33 (1611*|Vzb1|* — Re (b1V b1 - Vbr))
1 _
~ 33 (|b2]*|Vabal* — Re (3V4ba - Vibs))
1 o _ _
-3 (1b1]%|Vabal® + 522 Vb1 |* — Re (b162V b1 - Vibs + b1boViby - Vb)),

is readily seen to be non-positive. This yields the equation
Oc + a(u?)® - Vye = Age+ F,

where the inhomogeneous term
F = Fl + F27

and, recalling (4.11),
Py = %Re (57 - W) (z - b%)) .

Choosing d-independent C > 0 so that
’Fg‘ S C@C,

we then have

(0 + a(u9)® - Vi — Ay) ((j)ca| c> <0.

As the solution operator of (4.16) is sign-preserving and c is positive, we may apply (4.17) to obtain

1 Clal
ety % =907 () heto)ly

S

Sending & — 0 then yields the estimate

1 Clel
Oy 5 0=97 07 () 1o

Again multiplying by e~ (t=9)I¢I* and integrating, we yield (4.19).

O

In order to improve the power of  in the estimate (4.19) and obtain the estimate (4.3) we
require the following lemma, which relies on semigroup estimates proved in Appendix B using

similar arguments to [34, Section 4]:

Lemma 4.5. For any 0 < s <t < T, v >0 and ws € B.L. satisfying V - ws = 0 in the sense of

distributions we have the estimate,

t ol
(4:21) I8t . % (1) el

where the implicit constant depends on «, .
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Proof. Taking &(t) = e~ =9)¢*p(t) as in Lemma 4.4 we see that it suffices to prove that

(422) Oy 5 (%) 19l

S
Rescaling b* to BE(7,&,¢) = eb%(e™, e7/%¢, ), we obtain

9.B¢ + aI'BS = LB,
where we recall the definition of the operator,

I'=g-Ve—Veg.

From the estimate (B.4), for any v > 0 we have

ler e Dy S €,

el
and hence we obtain the estimate
1BS()lz S € 1BE )5

Returning to the original variables, we obtain the estimate (4.22). O

To prove the estimates (4.4), (4.5) we require a short time smoothing estimate. Here we have
the following lemma:

Lemma 4.6. There exists 0 < § = d(a) < 1 so that for all0 < s <t < (1+4d)s, 1 < g < oo and
ws € B, L satisfying V - ws = 0 in the sense of distributions we have the estimates

_1
(4.23) IVS(t, s)wsllp. g < (¢ =) 2 |lwsllp. g,
(4.24) IV2S(t, $)wsllp.ra S (¢ = 8) " lwsllp. g,

Proof. We define the operator
¢
Kw= / =2 div (! (0) ® w(o) — w(o) @ uI(c)) do,
and the norm

1
lollz = sup (lwllpzg + (= )3 Vel ppg + (¢ = 9) V2wl .11 ) -
te[s,(146)s]

Using the estimates

IMIE

[VFel=)2 div lB.La—p.re S (- 0’)_%_ and  ||[VFu9(0)||p~ < o'_%_g,
for t € [s,(1+9)s] and k € {0, 1,2}, we may bound

t+s

Vk/ T etmA iy (W (o) @w(o) —w(o)@u!(o)) do

B, LY
t+s

2 _1_k _k
5/ (t—0)"2 72 |u?(0)| Lz |w(0) || p. g do S VE(t — 5) 7 |w]| -

s
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Similarly, we have

Vk/ =2 div (1 (0) ® w(o) — w(o) @ u! (o)) do

t+s

2 Bng

t

k
SY [ = o) V) IV () .13 do S V3t~ 5) 7 oz
§=0

2

Combining these bounds, for ¢t € [s, (1 + J)s| we obtain

1

1K@l p.pg + (t = )2 I VEw] p_pg + (t = )V EKwl]|p. g S V]wlz.

Choosing 0 < § <, 1 sufficiently small we may then apply the contraction principle to obtain a
mild solution of (4.1) satisfying the estimate

1
lw(®)llp.s + (t = 9)2[IVw(®)l .2 + (= s)w®)lp.r2 S |wsllp.zs-
By uniqueness of mild solutions in the space B,L% (when s > 0) we obtain the estimate (4.23). O

To prove the estimate (4.6), we follow the argument of [24, Proposition 4.3] and first consider
the equation

Of +aud@divf—divfeud]=Af
(4.25) divdiv f = 0
f(s) = f57

where f is a 3 x 3 tensor field, which is formally obtained by applying div™! to the equation (4.1).
Given 0 < s <t < T and fs € B,L. satisfying divdiv fs = 0 in the sense of distributions, there
exists a unique mild solution f(t) = K(t, s) fs of the equation (4.25). Furthermore, if div fs € B,L},
then S(t,s)div fs = divK(¢, s) fs.

We then have the following short time smoothing estimate that is proved similarly to Lemma 4.6:

Lemma 4.7. There exists 0 < 6 = 0(a) < 1 so that, for any 0 < s <t < (14 6)s and any 3 x 3
tensor field fs € B,L. satisfying divdiv fs = 0 in the sense of distributions, we have the estimate,

. _1
(4.26) [S(t, ) div fsll g,y < (t— )72 || fsllB.L1-

Proof. Arguing as in Lemma 4.6 we may apply a contraction mapping argument to find 6 = §(«) > 0
and a mild solution of the equation (4.25) on the time interval [s, (1 + J)s| satisfying the estimate

1o
| fllB.cy + & —s)2 | div fll,r S 1 fsllB.1-
Using the identity S(t, s)div = divK(¢, s) we obtain the estimate (4.26). O

To complete the proof of Proposition 4.1 we require a long time estimate for the operator
K(t,s) that we prove similarly to Lemma 4.5, again using several semigroup estimates proved in
Appendix B:
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Lemma 4.8. Forany0 < s <t <T,~ > 0 and 3x3 tensor field f; € B, L} satisfying divdiv fs = 0
in the sense of distributions we have the estimate,

t Y
(4.27) Jtt.0) flas % (5) WAl

where the implicit constant depends on «, .

Remark 4.9. We note that although the estimate (4.6) can be viewed as the analogue of the
estimate (3.4), we use a slightly different approach to prove it. The reason for this is most easily
explained by considering the operator £ on L%. In this case the condition [ fd¢ = 0 is insufficient to
ensure a spectral gap and hence we must impose the stronger condition f = div h for some h € Lé.
(Contrast to the case that we consider £ on Lg(m) for m > 1 where the the condition [ fd¢ =0 is
sufficient to ensure a spectral gap.)

Proof. We start by writing the 3 x 3 tensor f, considered as a matrix, in the form
fIfE f"EZ
f = |:(fzx)T fzz:| ’
for a 2 x 2 tensor f¥*, 2-vectors f**, f** and a scalar f**. Recalling the convention that (div f)/ =

0; f we see that the vector

div, f* + 0.

where i
f:c —_ [fxx fxz] , fz — |:§zz:| \

are respectively thought of as a 2 x 3 matrix and a 3-vector.
Taking the Fourier transform in z we obtain the equation

o +out @ (dive 7 +iCF) = (dive [ +iCf) o] = (A0 1) T
We may then decompose this into a system of four equations
0uF +a [(u0)r & (diva Foo +iGF) — (diva P+ iGF) @ (we)7] = (&, - [GP)
OF™ 4 (Vo 72 +iCF ) () = (Aa = [C?) 2,
OuF7 = o (V- 2 +iCF) (u) = (g = [¢[2) F,

atfzz — (Ax _ |<|2) fzz

Next we switch to self-similar variables, letting

~

F(1,6,¢) =2 f(e",e2£,()

to obtain the system

(0, F& 4 ag o (diV5 FE z’e%ngf) . (div§ Fé€ z‘e%CFZf) ®ag= (L3 —€[¢[*) F&,
0. 4 (e ¥ ) = (e - k)

8. F= (Vg P 4 z’e%CFzz) ag= (L -3 —€|¢P?) F*,

| 0-F = (L — 5 —€|¢]?) F=.
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We then consider estimates for F&, F¢% F? F?* in turn:

The zz-component. From the expression (B.5) for the semigroup ™ we obtain the estimate

-1 T—0O zZZ
(4.28) ==y < e 2| F (@)l

The £z-component. For a 2-vector f we define the operator

=Ef = (Ve fg,

and from the estimate (B.4), for any v > 0 we have

Heﬂﬁ_%_aEngaLgfﬂaw_%ﬁ-

Using the Duhamel formula and the estimate (4.28) for F¢¢, we then obtain the estimate

(4.29) 1Pl S 07D (IF(0)lIpy + |1 F=(0) 1)

The zé-component. To bound F* we may simply use the mapping properties of e™ with the
estimates (4.28), (4.29) to obtain

-Hr—0o z 2z
(430)  FE) S € HONPE )|y + 0D (1P o)y + 1 FZ(0)]1)

The £€-component. For a 2 x 2 tensor f we define the linear operator

Hf:g®div§f—div§f®g,
and from the estimate (B.4), for all v > 0 we have,
1 1
le™ QMWM;wgSJWQM
Using the Duhamel formula with the estimate (4.30), we may then bound
(@31)  F€) 0D (|0 + 1P @)l + IFE@)l g + 177052

The estimate (4.27) then follows from the bounds (4.28)—(4.31). O
Using these lemmas we may complete the proof of Proposition 4.1:

Proof of Proposition 4.1. It remains to prove the estimates (4.3)—(4.7).

The estimate (4.3). For the z-component we apply the estimate (4.20). For the z-component we
apply the estimates (4.19) and (4.21) to obtain

IS7(t, $)willp.pa = IIS7(t, 5(t + $)S™(5(t + 5), )i || 5. 1

_(1-% x T
<(t—s) ( q)||S (3(t+5), )5 5.1

=970 () et
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The estimate (4.4). We first choose sufficiently small § > 0 satisfying the hypothesis of Lemma 4.6.

If 0 < s <t < (1+446)s we may apply the short time estimate (4.23) on the interval [1(¢+ s),t] with
the estimate (4.3) on the interval [s, 2 (¢ + s)] to obtain

IVS(t, s)wsllp.a = [IVS(t, 5t + 5))S(5(t + 5), 8)wsll p. 11
_1
S (t—5)72|IS(5(t + 5), 8)wsllp. 19

_(3_;> t\"”
-7 (1) ol

If instead we have (14 0)s < ¢t < T we apply the short time estimate (4.23) on the interval [2%15, t]
and the long time estimate (4.3) on the interval [s, 2%t] (noting that 1%7& < 2%_575 < t) to obtain

IVS(t, s)wsll g, e = IVS(t, 2%(;75)5(2%@ s)wsll g, e

_1
St 2|S(35t s)wsll g 1

,(;,;) t\"7
S(t—s) 2o B lwsll B, L1

where we have used the fact that %t —5> ﬁ(t — s) whenever ds <t —s.

The estimate (4.5). This is proved in an identical manner to the estimate (4.4) using the estimate
(4.24).

The estimate (4.6). By exploiting a similar strategy to the proof of (4.3) it suffices to show that

. AR
150t 5) i llp.ey £ (0=97 (£) Il

We take sufficiently small 6 > 0 as in Lemma 4.7 and if s < ¢t < (1 4+ §)s we may directly apply the
estimate (4.26) to obtain

. _1
[S(t,8)div fsllp,oy < (t— )" 2| fsllB.L2-

On the other hand, if (1+9)s < t < T we may combine the estimate (4.26) with the estimate (4.27)
to obtain

IS(t, s) div fullp.11 S IIS(¢, 5%5t) divK(5%5t, 5) fll B 11

_1
S 2K (535t 8) foll B

BYAAN
<97 () 1oy

The estimate (4.7). This follows from the estimate (4.6) in the same way that the estimate (4.4)
follows from the estimate (4.3).

O]

4.3. Proof of Proposition 4.2

We now turn to the proof of Proposition 4.2. We first consider the z-component and have the
following lemma:
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Lemma 4.10. For any 1 < p < oo and w? € B,L% there exists a unique mild solution w* €
Cuw([s,T); B.LEL) of the equation (4.8) satisfying w*(s) = w?. Further, for all0 < s <t < T and
1 <p < q < oo we have the estimate
: < (-5 G782

(4.32) w2 S E—s) \» ¢/ |willp, e
Proof. Letting &(t) = e~ =9)K”p=(¢), we have

Ot + a(u9)* - Vi b* = Ayb?

bz(s) = "/"E?
which is precisely the scalar advection-diffusion equation (4.16). The estimate (4.17) gives

1_1

1
1@z 5 - 9”5 el
for fixed ¢, from which the estimate (4.32) follows. O

Next we consider ¢ and have the following lemma:

Lemma 4.11. For all s € (! B,L2 C B,L? there exists a unique mild solution 1 € Cy([s,T); B,L2)
of (4.12) satisfying ¥ (s) = 1. Further, we have the estimate,

(4.33) 1Ml o2 oo 1,118 22) S 1Wslle.r2-

Proof. Proceeding as in Lemma 4.10 we take zfp\ = e_(t_s)meC. We then apply the estimate (4.18)
and Holder’s inequality to obtain

MM’ _max{a?. ()2}
borwe®lz £ Y Iarwe@lz + Y To-e @ o Ixarwc(s) .
M'~M M'%M

As a consequence,

MM
IXartl pooqsmyimazzy S D Irdbsllpre + D maX{M2,(M/)2}||XM'¢s||Bng-
Mi~M MM

We may then sum over M € 2% to obtain the estimate (4.33). O
Using these estimates we may solve for w® and complete the proof of proposition 4.2:

Proof of Proposition 4.2. Using Lemmas 4.10, 4.11 we may construct w® and . Thus, it remains
to prove that w” exists, is unique and satisfies the estimate

w1 S llwslly,

The estimate (4.15) on [s,t] then follows from combining the estimate (4.14) on [s, 5] with the

2
short time smoothing estimate (4.3) on [#,¢].

We start by writing w? = e~ (=9I} to obtain the 2d-equation,
Ob + a(ud)® - Vyb —aVJb= Ayb+ aWax - b,
b(s) = bs.
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Proceeding as in Lemma 4.4, for 6 > 0 we take,
1
c= (80" +1b]%)7,

where ¢ = e(t=9)22@3 to obtain the equation

(4.34) oe+ a(ud)* - Vye = Azc+ F,
where F} < 0 and the inhomogeneous term
F=F,+ Fy,

with )
F, = ERe ((b-W)(z-b)).

L

We now replace V by the mollification V() = pe*x V' so that W is replaced by we =9,V

and construct a corresponding mild local solution b®) € C([s,T]; LL). The corresponding quantity

|57|7
&) = (622 + ) \2)% is a non-negative solution of the inhomogeneous equation (4.34) (with b, V, W

replaced by b®), V(€ W) respectively) and hence we may apply the estimate (4.17) with the fact
that the solution operator of (4.16) is sign-preserving to obtain,

t
€O S ey + [ 1Py don

Multiplying by e~ (t=9)IC” > 0, integrating in ¢, and applying the estimates (4.13) for W, (4.33) for
¥ and (4.32) for w*, we then obtain,

t
Jlem @ MEO @)y < Nl P ey + / le” W (0) 1 do
t
+/ He_(t_”)mQW(g)U(Z)E(J)HL1 4d0
s ©

(t—s)lcI?
< Jlemtmole] Cllpy + W | goo 11 (s 77:22) 19 2 £ (577, 1.2

+ [ o) WOl @z do
s
Slle e+ llwslly..
Taking § — 0 we arrive at the a priori estimate,
||e—(t—8)\Cl2b(6) (t)

It , S sl

We now pass to the limit as € — 0 to obtain w® € L*®([s,T); B,L}) satisfying the Duhamel
formula,

W (t) = )BT — o / =8 div (u9)(0) ® w*(0) — W™ (o) @ (u9)*(0)) do,

as well as the estimate
lw* OBy S llwslly,-
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Weak continuity in time then follows from an identical argument to the 2d equation (4.16), so
w® € Cy([s,T); B,LL) is a mild solution of (4.10).

It remains to prove that the mild solution of (4.10) we have constructed is unique. Suppose
that w € Y is a mild solution of (4.1) with initial data ws = 0. From the uniqueness statement of
Lemma 4.10 we then see that w? = 0 = 1. As a consequence, the problem reduces to showing that
there exists a unique mild solution of the equation (4.10) satisfying x - w® = 0 = V,, - w® with initial
data w? = 0. However, if - w* = V- w® = 0, then we may write

el
wx(tal‘,'z) = f(ta |ZL‘|,Z)7.

||

But then f is a solution of the equation,
1 1
onf = (af -0 — 2> f,
r T
where 7 = |z|, whose solution is clearly unique. O

4.4. Proof of Proposition 4.3
Recalling that 1 < p < %, by (4.32), (4.23), and (4.17), we have, for p < ¢,
3_1
Wl 5, pars S5 7l
1 1 1
10w |lp.ra Ste » 2 lwgllp. L,
11
1¥llp.ra Ste ?lle- willp, Lz

Arguing as in the proof of Proposition 4.2 using (4.17) we may bound

le <  b(t)

t
3_1 ~
||L1L4/3 5 tl_g”(‘“gHBng / (t 0—)_%H€_(t_0')|c‘2 l w(o-)HLl ¢ d:
¢ 0 T,

t

+/ (t—0)_i||e_(t_”)|§|2WaCo/J\Z(a)||L1Cda
0 o
3_1
St e |lwgll g, e
t
[ =t (nwa)n s + 0]l ()] zp>da
0 L3p2 B,LZP B.L2Z7P

3_1 t 11
S laz+ [ =) ho s (Lo @l + ol iz ) do

z

1

3_1 3_
S el + 01 (o Gl e+ lnlliz )

z

where we have used that )
Wl e, S0,
xT

which gives the desired result. O
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5. Nonlinear estimates for the straight filament

This section is devoted to the proofs of Theorems 2.2 and 2.4. The proofs of both theorems are
mostly identical, with a few differences which will be made clear.

We start by formally splitting the vorticity

0
(5.1) w(t,z,z) = o (= )|t we(t, x, 2) +wb(t, z, 2)
()
we(t,x, 2)

with corresponding velocity field given by the Biot-Savart law

A (=
u(t,z,z) = aud (t, x, 2) + us(t, z, z) + ub(t, z, 2) with w(t,x,z) = [\/Zg(g\/f>] .
As usual, we capitalize © and w in self-similar variables: for * = b or ¢,
Q" (1,&,2) = tw*(t,x, 2) and U*(1,€,2) = \/fu*(t,x, z).

It remains to define @¢ and w’: they are given by

w4+ u - Vw© — w - Vu = Aw®

:f(t:()):[ 0 }

adz—q

and
{ A +u - Vwb —wb - Vu = Awb

wh(t = 0) = ub.

Recall that S is the semigroup associated to the problem dyw + a[u? - Vw — w - Vud] = Aw, while S
is the semigroup associated to dyw + afud - Vw — w - Vud + u - Vw9 — w9 - Vu| = Aw in self-similar
variables.

Duhamel’s formula then formally gives

t
W) = S(t,0)ub — / S(t, s)V - (u” Quw—uw’® ub> ds
0
t
- / S(t, s)V - <uc QW —w® uc> ds,
0
(5.2) Q1) = —a/ S(7,8)V - (Ub ® Gez — Gez ® Ub> ds
—/ S(r,8)V - <Ub®QC - Q"’®U”> ds
— / S(1,5)V- (U @Q°—Q°U° ds.
Writing ©Q for the above right-hand side, we are looking for a solution of the equation
(W, 09) = (@ (!, 09, @, ) = O, ).
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Taking m > 2, we will solve this fixed point problem by applying the Banach fixed point theorem
in the following ball, for constants M, D > 1 determined by the proof below,

B.r = {(wb, Q°) functions on (0,T) x R? such that V-w® =0, V-Q° =0,

and H (w?, Q°)

1
=M sup 5Ol s+ s 19T g pzm < De-
X te(0,T) B:la TE(—00,logT) B:L (m)

To prove Theorem 2.2 we will verify that, whenever the data satisfies (2.2), the map Q : B, —
B, 7 is a contraction for any 0 < ¢ < g, any 7' > 0 and a judicious of the constants M, D, and €.

Bound for the core. We abbreviate the three summands in the definition of Q° in (5.2) by

Q°(w", Q) = L° + N§ + NY.

By (3.4) and the rapid decay of G,

U'(s)|

. T emnlr=s)
IEOlpazin S [

—oco a(T — s)%

GUb(s)‘

T e—m(r—s)
ds < / _— ds.
Bng(m) oo CL(T _ 8)5 Bng
Note that by scaling and the bound on the Biot-Savart formula in Lemma A.3

— el ub(eT) < sup ¢

b
[v* @), 4
B.L} B.L; ~ o<t<T

WH(t)|

B.LY?’
Hence, with an implicit constant independent of 1" and ¢,

il

HLC(T>HBZL2(m) S M (Wb,QC)

€ X

Using again (3.4), we have

c T eflu‘(T*s)
|waﬂmﬁmﬂs/ prm—

¢ —o0o a(T —s)*

Ub @ 0 H ,
@ () BL¢*(m)

T gnlr—s) .
S [ 0O g 19O 1300 ds

o’

The same proof applies to the nonlinear term N by using Lemma A.3,

1T g, = e [lu(€p.ra S e lw (€D a2 SN B, 120m)-

This completes the proof of the desired estimates near the core.

Bound for the background. We abbreviate the three summands in the definition of Q% in (5.2) by

Q(w, Q%) = L* + Ng + N?.
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By Proposition 4.1, choosing v € (0, %),

t
t1 N{’(t)H s :ti/o HS(t, V- (e P eu)| ., ds

B.L}

<ti/t1 <t)7|| “(s)]l lw®(s)]] d
N — u(s LA w (s 4/3 S
o (-9 \s et |7

2 1/t 1 (t)” 1
ta I E— - ﬁds
X Jo (t—s)1 \5/) s2

2

4
where we used Lemma A.3, scaling, and the inclusion LZ (m) C LE’ to obtain
_1 _1 _Lliop
[ Ol p.rs S W (Ol g, pars = 75 Aog ) 5 a5 S T3 (0g )| 5, r26m) ST H[(w", Q)] x-
4 zHx z 5

The term N can be dealt with similarly.

Proof of Theorem 2.2 The above estimates imply that

1 1
1w, ) |lx SM sup t3||L°||, a8 + 1@ Q) |x + (@, Q)%
te(0,T) bt M

By Proposition 4.2 and the hypothesis (2.2), this implies that for some constant Cy > 1 we have
the estimate

H@Mﬁwxg%MQW\

+ ch (")

CO b c b c\ 12
B.L} w&@)+MWWﬁ”R+%Wwﬂﬂk

C
< CoMe + 11", 2)||x + Coll (", )%

In order for Q to map B, r to itself, it suffices that

C
CoMe + MODe + Co(De)? < —¢.

D
2
This can be ensured by choosing M = 10Cy, D = 10CyM, and g9 < m. A similar argument
shows that Q is also a contraction on B .

Proof of Theorem 2.4 In this case, we take M, D, ey to be chosen as in the proof of Theorem 2.2
and show that for sufficiently small 7" > 0 the map Q is a contraction on B¢, 7. We learn from
Proposition 4.3 that

S _
(5.3) %I\{‘I(l)t4‘|L ”BzLi/s =0.
Thus, it suffices to choose T sufficiently small that the proof of Theorem 2.2 above applies.

Mild solution of Navier-Stokes. Finally, we verify that the solution constructed by the fixed point ar-
gument above does indeed satisfy Definition 2.1. For this we need two things: (a) w € Cy, ([0, T]; M3 ),
specifically also limy g w(t) = ady—pes+pP in the sense of .#/; (b) that the mild form of the equations
(1.2) is satisfied.
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Proposition 4.1, the Duhamel formula (5.2), and our contraction mapping argument ensure that

2
<[

< <1
B.LL

+ H(wb, Q°)

sup [

te(0,T) B:L} X

The embedding B, L. — M then yields the a priori estimate Supye(o,7) llw(?) HM% < 1 and classical

parabolic regularity ensures that w € C((0,T7; M%)

It remains to verify that limy gw(t) = adz—oe3 + 1P in the sense of distributions. For this, first
recall the decomposition (5.1). The term involving G converges to ad,—pe3 weakx, and hence in the
sense of distributions.

Next, observe that (5.3) holds not only in the setting of Theorem 2.4, but also (by approximation)
in the setting of Theorem 2.2. As a consequence, for any ¢ > 0 we may choose T sufficiently small
to ensure that the above contraction mapping argument closes with ¢ replaced by &, regardless of
the size of the initial data. This suffices to show that

. 1/4H b H , (¢ = 0.
iy (2, 0 g 1Ol

Again appealing to the Duhamel formula (5.2), for any ¢ € . we may apply (4.27) (with K defined
as therein) to yield

=— | Vo :K(ts) (ub(s) ® wb(s) —w(s) ® ub(s)> dx
v

$o () [0 g @l (5)
~\ s LeoL4 B.LY?* ™~ \ s

where 0 < v < %, and similarly for the other nonlinear term in the w® equation in (5.2). As a

)

S

1
S2

consequence, w’(s) converges to u’ in .7’ and hence w € C, ([0, T'; M%) attains the initial data.
Finally, we verify that w satisfies (1.2). It follows that w defined via the reconstruction (2.4) is

a classical solution of the 3D Navier-Stokes equations for ¢ > 0. Hence, for all 0 < s < ¢,

w(t) = el=8w(s) — / t A B(Y), w(t)] dt.

s

Due to the self-adjointness of the heat semigroup in L? and continuity of w in .#”’, we can pass to

the limit in the first term: lime g e"9%w(s) = e'*w(0). By the Dominated Convergence Theorem,

we may pass s \, 0 also in the nonlinear term; indeed

t t
NA 1
=ABlu(t), w(t’ ‘ 5 dt/ </ — [u® dt'
e u(t'),w S U w
/0 H [u(t), w(t)] i 0 (t t’)% [ HBZLi

2 [t 1 ,
X> /0 (t—t/)%(t/)%dt'

< (1 + H(wb,QC)

6. The curved filament

We now move to the proof of Theorem 2.5, the case of an arbitrary closed, non-self-intersecting,
smooth filament I' of length 27. In this section we set up the local change of coordinates, describe
and motivate the decomposition of the corrections, and then outline the fixed point argument. In
the following section, we carry out the technical details of this fixed point.
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6.1. A local change of variables

We recall that v: T — R? is a unit speed parameterization of I and t,n, b: T — R? is an orthonormal
frame along I so that t = 4" and b = txn. We recall that for R > 0 we define a tubular neighborhood
of T of radius 32R in the physical frame

I'g={yeR®:dist(y,T') < 32R},
and a corresponding set in the straightened frame
Yr={(z,2) €ER* x T: |z| < 32R}.
By choosing 0 < Ry < 1 sufficiently small we may define the map ®: ¥p, — I'r, by
O(z,2) = v(z) + zin(z) + 22b(2),

so that ®(Xg) =T'g for all 0 < R < Ry.
The Jacobian of ® is

(6.1) J=V®=[n b Dt+ En+Fb],
where we define the Jacobian determinant,
D=detV® =1+ xn - t+ 290" - ¢,

and the remaining coefficients
Gza:Qb’-n, S:mn’-b.

Taking I'r, to be endowed with the Euclidean metric e, the corresponding pullback metric on
YR, is then determined by the matrix,

1 0 ¢
g=Jg=10 1 ¥
¢ F D24+e2432

and hence ®: (Xg,,9) — (g, e) is a smooth isometry. In particular, if we define the function
d: R3 — [0,00) by

d(y) = dist(y, '),
then for all (z,2) € ¥, we have

(do®)(z,2) = |a].

We define the pushforward map Ps: TXr, — TT'r, mapping velocity fields defined in the
straightened frame to velocity fields defined in the physical frame by

(P@U) o® = Ju.

We also define a normalized pushforward map Q¢: 7>, — TT'g,, designed to preserve the
divergence-free condition, that we use to map vorticities in the straightened frame to vorticities
in the physical frame by

(Qan) o ® =D Jn.

Using these definitions we have the following identities:
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Lemma 6.1. Let v,n: g, — R? be smooth vector fields defined in the straightened frame. Taking
r3 = z we have the identities:

(i) Divergence. The divergence operator satisfies
(6.2) V- (Qon) = (D7'V -n)od "
(it) Curl. The curl operator satisfies
(6.3) V x Qon = Qo curlg 1,
where the twisted curl operator is given by
curlpg n =V x 17+Ej8j77—|—F77,

the matrices E7 by

0 0 0 € 3 1445
D D k)
1 _ ¢ § 2432 2 _
E'=|-% b 1—-19g 1, E* = 01 0 % :
0 -1 £ 1-5 0 -5
0o 1-% %
E3=1|1-1 053 &
) D ’
0 0 0

and the matriz F is smooth and bounded.
(i4i) Bilinear operator. The bilinear operator Blv,n] = div(v ® n —n ® v) satisfies

(6.4) B[Psv, Qan] = Qo Blv, 7).

(iv) Laplacian. The Laplacian satisfies
(6.5) AQon = QoAen,
where the twisted Laplacian is given by
Ap = A+ Aijaiaj + Bjaj +C,

the matriz A = (AY);; by

e g _e
D2 3322 D2
A= | & 3 _3
D2 D2 D2 ’
e 514
D2 D2 D2

and the matrices B?,C are smooth and bounded.

Remark 6.2. As a consequence of the above formulas for coordinate changes, and imagining for
a second that ® is defined globally, we can write the Navier-Stokes equation for u = Pgv and

w = Qon:
o+ Blv,n] = Agn, where V-n=0 and v=D(-Ag) ! curlpn.

However, ® is only defined locally, so the above only holds on its domain of definition. This will
complicate the fixed point scheme that we are about to write.

42



Proof. We define the Christoffel symbols
r; =J19;J,
and the associated covariant derivative
D; =0; +T},
so that for Dy = [Dup Doy D3<p] we have
(6.6) VPsp =Py (Dp)J ).
One may verify by direct calculation that
(6.7) (' =hm-5t b5t L,

from which we obtain explicit expressions for the Christoffel symbols

00 -50D 0 0 0,¢— $0,D
Ii=10 0 —500, TIe=1{00 -%3,9 |,
00 LD 0 0 502D
20D e LD DD - LD +FhE — LoD +9;¢ — £8;0
3= 05— 50D 30D —D89+¢h3 - LoD - L0+ 83— £8;0
SOD S00D 5050 + S0 + 9,9

(i) Divergence. Taking the trace of (6.6) yields the expression
(6.8) (V- Ppp)o® =tr(Dp) =DV - (Dgp).
Setting ¢ = D715 then gives (6.2).

(ii) Curl. Using the expression (6.6) we may write

(JDvJ~H3 — (JDvJ1)3
(V x Pyv)o® = |(JDvJ 1)} — (JDvJ )3 | |
(JDvJ1)? — (JDvJ )]

where (JDUJ_1)§- denotes the (i, 7)™ entry of the matrix JDvJ . Next we define (the matrix
M = (M]’),] of column vectors)

Mj = J= T < ],

where we take (J~!)? to be the i*® row of J~! and J; to be the j*! column of J. We then see
that

V x Pyv =Py | > Mj(Dv)! |,
/[:7j
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(iii)

where (Dv)g is the (4,7)'™ entry of the matrix Dv. Using the expressions (6.1), (6.7) we then
compute

70 0 0 |
_ ¢ _3 _@_624-32
D )
o) L4
¢ ¢ eF @2 - ¢ 2, 22
L[ ose s segno@igp] ST R] [0+
M=J"-t-5b En —cet+@+5nm-Lo|= 01 0 0 ;
I e 4] Lo -%
i 5
? o) o
) 0 )
[0 0 0 |

from which we obtain the expression (6.3).

Bilinear operator. Denoting the (i, j)*" entry of the matrix I'y by i ; we see that the matrices

satisfy the symmetry F};j = F;k As a consequence, for vector fields v, we may use the
expression (6.6) to obtain,

P@U-qu)(p—Pq)(p-VP@U:P@(U'V(p—(p'vv).
Taking ¢ = D~ !5 we then use the expression (6.8) to compute,

B[Pqﬂ), Qqﬂﬁ = (V . P@U)Pcpgo — (V . P@@)Pqﬂ) + Psv - VPsp — Ppy - VPpv
=Pp (D'V- (D) p =D 'V (Dp)v+v: Vo —¢-Vv)
= Q‘:I)B[Uv 77]

Laplacian. A computation yields the covariant Laplacian (see for example [55, Lemma 4.8]),
(6.9) APy = Py (g7 (DiDjp ~ Do) ).

where g is the (i, 7)™ entry of the matrix,

2
1+ 5 &
| e 23
I S
D2 D2 D2

Taking ¢ = D17 in the expression (6.9) we then obtain the expression (6.5).

O]

The next lemma is a consequence of the above calculations. It is used in multiple places below
and, moreover, emphasizes why one expects the curvature of the filament to be subcritical.

Lemma 6.3. Provided 0 < Ry < 1 is sufficiently small and (x,z) € T'g,, there holds the following
for all j > 0 and multi-indices o € N3,

]2 1,
0(® - 1)| S5 o
Ve, ®| +|VE,J| +|Ve. D] Sa L,
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the coefficients E', A satisfy the estimates
|IEY| +|0LE?| + |01 B3| + |02 A| <5 |

and similarly the coefficients A, B',C, E', F satisfy the following estimates (where X is any one of
A,BY,C,E"F)

Ve X|Sal.
As a simple application of this lemma we have the following estimate:

Lemma 6.4. Provided 0 < Ry < 1 is sufficiently small, whenever (z, z), (¢/,2') € ¥, we have the
estimate

(6.10) |B(x,2) — ®(2,2")| = |z —2'| + |z — 2|

Proof. Take 6 > 0 and suppose that |z — 2’| < . Applying Taylor’s Theorem and Lemma 6.3 we

obtain )

O(x,2) — B2, 2) = VO(/,2) [z : :,} +0 (6 (lz—a'|+|z— 7)),

where we note that we have used the fact that ® is linear in x. From the definition of ® we may

compute
2

Sl = (e = 2P 12— #P) (L O(Ro)).

o
‘V(I)(SL‘/, 2') [Z _ x/]

In particular, provided 0 < 8, Ry < 1 are sufficiently small, we obtain the estimate (6.10).
Conversely, if |z — 2’| > ¢ then from the definition of ® we see that

B(x,2) = 7(2) + O(Ro).

As T is a simple smooth closed curve we have

whenever |z — 2| > §. Thus, by choosing Ry sufficiently small (depending on §) we obtain the bound
(6.10). O

Finally, for each 0 < R < Ry we define the bump function xyg = xr(z) to be a smooth,
non-negative, radial bump function identically 1 on the set {|z| < R} and supported on the set
{lz| < 2R}. In particular, we will assume that xr(z) > 0 for |z| < 2R. We also define associated
functions X g in the physical frame by X o ® = xr and observe that

XrPo(-)=Po(xr ), XrQo( )=Qa(xr" ),

whenever 0 < R < Ry.

45



6.2. Decomposition of the solution

As discussed after the statement of Theorem 2.5 in Section 2.3, the nonlinear perturbation argument
for Theorem 2.5 is significantly more technical than for Theorems 2.2 and 2.4. In this section we
describe the decomposition; in the following section we describe the norms and the fixed point
scheme. We will construct our solution w in the physical frame by mimicking the straight filament
and decomposing

w =+ uw,

where the core and background pieces satisfy the equations
(6.11) 0,w¢ 4+ Blu,w’] = Aw®,
(6.12) o’ + Blu,w’] = A,
the velocity is defined via the Biot-Savart law as

u=(—A)"'V x w,
and with initial data

w(t =0) = adr, Wit =0) = pl.
To construct the core piece and background piece we will solve a system of 4 equations: 2

equations in the straightened frame to obtain vector fields 7°!, n®! and two equations in the physical

frame to obtain vector fields w?, wb2. We will then construct the core and background pieces as

c2, wb — Q(I’(XZR nbl) _|_Wb27
—_————

bl

¢ = Qa(x2r ) 4w
N

wel w

for sufficiently small 0 < R < Ryp.
As in the case of the straight filament, we take

7t = an? +n°,
where the Gaussian,

ng(tv .CU) =

0
16(5)

We may then write w® = w9 4+ w®, where the vector fields,
w? = Qa(x2rn?), @' =Qa(x2rn™") +w™.
N—_———
wel
We remark that, by an abuse of notation, in the curved case we will use n¢ for the Gaussian
vortex defined in the straightened frame. We will then take w9 to be corresponding vorticity in the
physical frame. It is worth emphasizing a key difference from the case of the straight filament: with

the current construction, w? is no longer an exact solution of (NS).
The equations that define ', w®?, 7®, w2 are given in (6.15), (6.18), (6.20), (6.22) respectively.
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6.2.1. Some definitions

Before proceeding, it will be useful to recall how we transform the various ingredients from the
physical to straightened frame and back.

e Our basic ingredients in the straightened frame are:

0
16(2)
— The core-1 (cl) piece n°! defined by the equation (6.15)

— The background-1 (b1) piece n*! defined by the equation (6.20)

— The Gaussian vortex 1Y =

and in the physical frame are:

— The core-2 (c2) piece w defined by the equation (6.18)
— The background-2 (b2) piece w’? defined by the equation (6.22)

e To transform vorticities from the straightened to physical frame we use the map w* =
Qa(x2rn*) and hence:

W = Qalx2r7"),  w' =Qalxern™), W= Qalx2rn").

e To transform vorticities from the physical frame to the straightened frame we use the map
nt = Q;l(isz*) and hence:

n? = Qg (Narw™), 1" = Qg (Xar w™).

e To define velocities in the physical frame we use the Biot-Savart law:
u* = (=A)7'V x w*.
With this definition,
w=ou? +u +u? +ut + ub?.
—_— ——
uc ub
e To transform these velocities from the physical frame into the straightened frame we use the
map:
v* = Py (Xpu")
Therefore,
v =av?d + v+ v? 4ot 4?2,
~—— Hg_/
ve v

e We will use the explicit velocity field associated to the Gaussian vortex in the straightened
frame and corresponding pushforward to the physical frame, which we denote by:

7905
09 = |Vt 0‘/2 , = Po(xar??).
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o We define the self-similar scalings of our variables in the straightened frame by
H*(r§ 2) = e (€7 e26,2),  V'(1,6,2) = e3v"(e7, e3¢, 2),
(/g — g(é-)
v = 1”8

e Finally, the independent variable is denoted (z,z) in the straightened frame; (&,z) in the
straightened frame after self-similar scaling; and y in the physical frame. We try to keep track
of the space where a function is defined by denoting L% ., L}, etc... for the corresponding
functional spaces.

6.2.2. The approximate solution 79

Due to the radial symmetry of xg we have the equation:

(6.13) ‘815779 + Blaxgrv?,n9] = AnY. ‘

Applying the operator Q4 (x2r - ) to the equation (6.13) we obtain an equation in the physical frame
(see Section 6.1),

(6.14) Ow? + Blaxru?,w9] = Aw? + &9,
where the error term is given by
&%= Qo (x2ar A7 — As(x2r1?)) -
We note that crucially, @9 is not what is obtained by the Biot-Savart law, i.e.
w? # xapu? where ud =V x (—A) 1w,
However, a9 is “close” to u? in a reasonable sense, see Proposition A.6.

6.2.3. The core piece n°!

We take the core piece n°! (defined in the straightened frame) to satisfy the equation

(6.15) o™ + Blo,n + 1] + Blv — axr 07, an?] = An!

(recall that v = Py'(Xgru)). We note that this is an inhomogeneous equation (in the functions
(n°, w?, P, wh2)) with forcing term given by

(6.16) 1 = o?Bv? — xr 07, 19].
Applying the operator Q4 x2r then yields an equation in the physical frame,
(6.17) ow + B[Xru,w] + B[Xg (u — a@?), aw?] = Aw + £°,

for the error term
£ = Qo (x2r A" — Ao (x2rn™)) -
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6.2.4. The core piece w™

The second core piece w (defined in the physical frame) is then taken to satisfy the difference
between the equation (6.11) and the equations (6.14), (6.17),

(6.18) ow + B[(1 — Xr)u, w<] + B[(1 — Xr)(u — at?), aw9] = Aw™ — £ — a &Y.

Once again we note that (6.18) is an inhomogeneous equation with forcing term

(6.19) 2 — 02B[(1 — Xr)(uf — @), w9 + k.

6.2.5. The background piece n"!

We take the background piece 7°! (defined in the straightened frame) to satisfy the equation

(6.20) o™ + Blo, "t + 1% = AnL.

Applying the operator Q4 (x2r-) we then obtain an equation in the physical frame,
(6.21) O’ + BXru,w’] = A + £,

where the error

£ = Qs <X2R A — Ag(x2r 77“)) :

6.2.6. The background piece w’?

The second background piece w®? (defined in the physical frame) is then taken to satisfy the differ-

ence between the equations (6.12) and (6.21),

(6.22) O + B[(1 — Xg)u,w’] = Aw®? — £°.

6.3. Outline of the fixed point argument

As in the straight filament case in Section 5, we will set up a fixed point in a suitable norm. However,
here the norms are more subtle. For estimating the core contributions w°' and w® “near” and “far”
from the filament: for g > 0,

* _ x m B, *
Iz = e VE|()" (Viv)

)

B.L2

m
w*||w = sup \/EH 1—Xer <i> w* .
"l 0<t<T ( Vi L

Note that the self-similar scaling yields the alternative expression for the N? norm:

Il = s [(9PH ()
¢ —oco<7<InT

B.L%(m)
For the background contributions, it turns out to be better to change the framework from that used
with the straight filament. This is due to difficulty (b) discussed after the statement of Theorem 2.5.
We define the following norms
1
+ Ra L3 )

(Vi) (VIV) Vi

I lhes = sup £} (R-i y
b 0<t<T z,z

leo*lle, = sup ¢4 (R |y + BE V| o)
0<t<T Y y
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Notice both the t scaling and the R scaling. In the absence of any filaments, one of the natural critical
3
spaces to close a fixed point with initial data in the scale-invariant space L; is sup, t1 lw(t)|| ;2. By
Yy

interpolation and Sobolev embedding, the following holds (with implicit constants independent of
R and t):

1 1 1 3 1 1 3
(6:23) E 1Al < AL o1 e S 171 IV A1 s S 1,
Y Yy Yy Yy

thus the space Fy is in fact a smaller critical space strictly contained in the natural sup, t1 I fll 2
space. Note that the R dependence in Nbﬂ and Fy is set in the dimension-consistent manner so that
embeddings such as (6.23) are independent of R.

Roughly speaking, the parameter R can be thought of as controlling the error between the
flat and curved Laplacians (see Lemma 6.3). By choosing R small, the curved Laplacian Ag is
well-approximated by the flat A (this is used to control errors in both the dissipation and in the
Biot-Savart law). Indeed, there are a few terms where choosing R small is necessary. However,
choosing R small makes other errors large. This detrimental R dependence is eventually absorbed
by choosing T small, so favorable T' renders this issue harmless in many terms, but there are a
few terms where it is imperative to track the dependence carefully (this also explains why it is
convenient to define F; and Nf with the dimension-consistent scaling in R).

We now choose g € (0, %) to be some fixed constant and for constants M., My, Mps suitably
chosen (depending on R, «) we define the norm on the solution:

[ )| = ™ g+ Me @5 s g + Me ],

+Mb1‘

bl b2
Moz
U HN5+ b2 ||W

b

We remark that we expect to be able to estimate the x1-pieces similarly to the straight filament
case, and the b2-piece will be more straightforward thanks to the subcritical nature of the Fy, N,
spaces. Thus, the most challenging term to control will be the ¢2-piece. Here it is useful to note
that the “worst” contributions to the ¢2-piece are from the w9 and w® pieces that are supported
in the set {d < 4R}. In particular, the Xp-norm is set up precisely so that we control w® in the
anisotropic N? norm in a neighborhood of these terms, {d < 8R}, whereas we measure w® in the
isotropic F. norm in the region {d > 6R}, separated from these terms by a distance of size O(R)
(see Figure 2). This separation of supports allows us to use the smoothing properties of the heat
operator to switch from anisotropic to isotropic spaces, modulo bounded errors.

For a judicious choice of the constants M, and sufficiently small T, R, e, we will apply Banach’s
fixed point theorem in the ball

1 2 bl b2 1 2 bl b2
Ba,T,R,M*:{(nC,wC,n ,w ):H(nc,wc,n W )HX SE}
T

Y

to the mapping Q : w — a, where, by a slight abuse of notation, we take w = (7°!,w, n®, wb?)
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Control of w® in F,

Figure 2: The regions of control of w®. The dark gray area {d < 4R} is the support w®. The
dotted region {d < 16R} is the support of )A{SRwd, controlled in the NY norm. The light gray
region {d > 6R} is the support of (1 — Xgr)w®, controlled in the F. norm. Crucially, we will take
advantage of the fact that there is a separation of size O(R) between the (dark gray) support of w®
and the (light gray) support of (1 — Ygr)w®?, which we control in the isotropic norm F,.

and a = (a', a?,a", a®?) is given by

S(r,s)F(s)ds,
tOO

t sAfc2dS

t
S(t, s)f*1(s)

Clb :6 M_/ tSAbedS
0

%N\,

where A, respectively F°!, is the self-similar scaling of a®!, respectively f¢!, and the perturbative
terms:
=B
=B

[v — at?,n] + Blv,n®] + Blv — av? — (=A)7'V x 9L, an?] + fEL,

[
= B[

[

1 —Xgr)u,w’]+ B[(1 — Xr)(u — au?),awd] + £ + fCQ,
- O“_)gv nbl} + B[,U77762]7

1 — Xg)u,w’] + &,

(
:B(

with the inhomogeneous terms f¢, f¢ defined as in (6.16), (6.19) respectively.
The existence of a solution of (NS) then follows as a consequence of the following Theorem:
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Theorem 6.5. For M., My, My, R, T, ¢ suitably chosen, Q : Be 1 r M, — Berr M, and for
p;7 € Ber rum, there holds the contraction property [|Q(p) — Q(r)|lx,. < e xp- 1t follows
that there ezists a unique fized point Q(w) = w € B 7 r .. More specifically, for all R sufficiently
small, there exists T, e, and M, such that the fized point holds.

In the following section, we will only detail the estimates which give Q : B, 1 r m, = Be1.RrM,;
the extension to the contraction property is straightforward and is omitted for the sake of brevity.
All implicit constants in the following will be independent of T (and any other time variables), R,
My, Meo, My1, My, and € unless otherwise specified (but in general will depend on «, § and m).

In order to simplify the exposition, it will be useful to assume initially that in addition to the
assumption that 0 < R < Ry we have

(6.24) 0<T<RZ?<1,
and that the constants M, are chosen so that
(6.25) 1< M, < RiMy < R1Mp.

In order to clarify the proof of the contraction, we will invoke the assumption (6.24) in the statement
of Proposition 6.6 below. However, in Section 7 we will largely avoid using assumption (6.24) in
order to elucidate the various bounds. The assumption (6.25) will be used throughout.

The proof that Q : Be 7 r.am,. — Be 1 Rr M, is a consequence of the following a priori estimates
for the terms a™*:

Proposition 6.6. Let 8 € (0, i) and m > 2 be fixed. Provided 0 < R < Ry is sufficiently small
and the constants T\, M. satisfy the assumptions (6.24), (6.25) the following a priori estimate holds
for allw € B.7.r M, :

1
(6.26) | S RIn R+ (RhaR‘1 + M> s+e
—1 (> _ ¢2 3 My 2
(6.27) M, ||Qz" (Xsra®™)||no S MR+ <MCR+R4 + M) e+ M.?,
€ b2
(6.28) M, |||, S MeR+ (MoR + RY ) = + Mee?,
My
2 M H MH 1 2
(6.29) b ||a N S RlnR! +Mb2 ete
My
) M, H bZH <M tA b 2
(6:30) 2L e, +Man +Mb1

Further, if w,w" € Be 1 r M. have the same initial data, the differences satisfy the bounds

1
o) - 0y 5 (RInR 7+ €)oo =l

~ M,
M. HQ;1 (XgR (aCQ(w) — acz(w’)))HNg < (M R+ Ri+ Mibl + MCE) lw— & x7,

M, Ha02(w) _ G/CZ(LU/

2/\

e, S (MR + RE + Mcé) oo =l

Ma (@) - @), S (RR 4 G2 +a) T
b
Mb2 sz
M H b2 N b2, 1 —
b2 ||a(w) — a™ (W) Fb Mbl 5 lw — w'llxp

02



Proof of Theorem 6.5. Now let us explain how to set R, T, and M, so that the hypotheses of
the Banach fixed point theorem holds. The most subtle point is choosing M, and R consistently.
First, we set M, such that the third term in (6.26) is consistent; note this requires choosing M,
large relative only to a. Next, set My = R_%Mc (as suggested by the size assumption (6.25))
and My = KMy, for K sufficiently large to ensure that the fourth term in (6.27) and second term
in (6.29) are consistent (it is important that K is independent of R). Next, we set ¢ sufficiently
small to ensure that the O(g?) terms are consistent. Next, we set R sufficiently small to ensure
that all remaining terms, except for the initial data term, are consistent. (Note this requires
RIn R~! < € and so R is small relative to ¢, which is one of the reasons it is important to quantify
R dependence.) Finally, we set T sufficiently small to ensure that both the hypothesis (6.24) is
satisfied and the initial data term is consistent (using Lemma 7.2). This completes the proof that
Q: Be 1R M, — Ber,R M,

The same choices, possibly by adjusting M., K larger and ¢, R,T smaller, also ensures that the
mapping Q is a contraction. The theorem hence follows by the Banach fixed point. O

In Section 7.4 we prove that the solution obtained from Theorem 6.5 is indeed a mild solution in
the sense of Definition 2.1. In Section 7.5 we prove the uniqueness result that follows from Theorem
6.5; unlike in the straight filament case, this requires a short argument, as in order to apply the
Banach fixed point, one must be able to decompose into w¢!, w?, wP!, wb? with the suitable a priori
estimates. See therein for details.

7. Nonlinear estimates with curvature

In this section we prove Proposition 6.6. Here we will only prove the a priori estimates as the
estimates for the differences are similar.

Throughout this section we will assume that the hypothesis of Proposition 6.6, i.e. 8 € (0, %),
m > 2 are fixed, 0 < R < 1 is sufficiently small and the constants T, R, M, satisfy the inequal-
ities (6.24), (6.25). We will also allow constants throughout this section to implicitly depend on
(admissible) values of «, 3, m.

Remark 7.1. Note that obtaining the optimal powers of R is not important in terms containing
positive powers of T' and similarly, as long as the power is positive, the exact power of T is not
important either. Accordingly, we have not always endeavored to maintain the optimal scalings in
RorT.

7.1. Preliminary estimates

Before starting the estimates of the contraction mapping Q, we first outline some of the basic
estimates on the initial data, the solution, and various estimates on the Biot-Savart law.
The first lemma provides the estimates coming from the initial data contribution:

Lemma 7.2 (Initial data bounds). If u’ € WL%, for all R > 0 fized, we have the estimate

=0
Fy

i H tA b‘
Tl{‘I}] e~

Proof. From the mapping properties of the heat operator in R? we have

_1
e 20 s S 31 s

12

The estimate then follows from the density of . in Lj'. [
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Next we establish several auxiliary bounds for the vorticity in the straightened coordinates:

Lemma 7.3 (Vorticity bounds in straightened coordinates). We have the following estimates for
O0<t<T:

(a) B.LY? bounds

(7.1) i, s S 1,

(72) il s S llwllx
(7:3) t 02 + 11 1Q5 Rsrw @) s S M Hwllxy
(7.4) il s S M el
(7.5) g pys +101Q Rane™) g S M el -

(b) B.L. estimates near the core.

(7.6) HXg 7! s < 19l
(7.7) HXg 7 B,L1 S M |wlx, -
(¢) Ly,. bounds.
(7.8) @i, S el
t2 ‘(t_%@mnﬁ 2 S Mc_l HWHXT»
(7.9) |a=xwm?| , ST R el

T,z

Proof. (a) The estimate (7.1) follows from the explicit expression for n9. The estimates (7.2),
(7.3) follow from Holder’s inequality, using that m > 1. For the estimate (7.4) we apply the
Sobolev embedding of Lemma A.2 to obtain

3

1 1 1
il g St 00"

< bl

1
L
The estimate (7.5) is similar after using the estimates for the change of coordinates in
Lemma 6.3.

(b) From Hélder’s inequality we have
1,1
|’X%7701HBZL91: Szt 2a) ™" | g 12,
where we have used that m > 2.

(c) These follow from the embedding B,L? C LS°L? and Holder’s inequality, where we recall that

the curve has length 27.
O
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Next we have estimates for the vorticity in the physical coordinates:

Lemma 7.4 (Vorticity bounds in physical coordinates). We have the following estimates for 0 <
t<T:

(a) L; estimates near the core.

(7.10) Xz w iy S lwllx, -

(7.11) 1% ey € M ol

(b) L; estimates for the core.

1 _1 1
(7.12) t2 || (t72d)"w" g Sllwllx,
1 1 1,1 - _
(T13)t2 || (t72d) " Xapw?|| | +12 || (#72d)" (1 = Rer)w?|| | S M |wllxe
Yy Y
~ cl m=1l . m
(7.14) [0 =Faet]] , ST R el
~ 1pm=l o
(7.15) O S
(c) Lg estimates for the background.
1 _
(7.16) e S My el
1 _
(7.17) 162 2 < M el

Proof.
(a) These follow from the estimates (7.6), (7.7) using Lemma 6.3 to bound the change of variables.

(b) The estimate (7.12) follows from the estimate (7.8) using Lemma 6.3 to bound the change of
coordinates. Similarly, the estimate (7.14) follows from the estimate (7.9).

For (7.13), notice first by the Lemma 6.3 and the definition of NY, there holds

t% <t_%d>m5€83 wCQ

L S M el

The estimate then follows from the definition of the F..

Finally we consider the estimate (7.15). For Xgrw the estimate follows as in (7.14). Away
from the filament, we have

(1 - iﬁR)WQHLg S H(l - %6R)w02<t_%d>m‘

(1= Xr)(t )™

L} L
< M7 RS wlly,

and hence the estimate follows from the fact that 0 < R < 1.
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(c) We observe that by Sobolev embedding and interpolation
1 3
Ifllez S I IV A
Ly Ly
The estimate (7.17) then follows from the definition of the F; norm and the estimate (7.16)
using Lemma 6.3 to bound the change of variables.
O
Next, we prove estimates for the velocity:

Lemma 7.5 (Velocity bounds in straightened coordinates). The following estimates hold for all
O0<t<T:

(a) B,LinN BZI/VQ}A/3 estimates.

7.18 5 ([0, g + 15 (V00 pas S 1,

19 1 [|oe!|

B.1d +ta vadHBzLiB S llwllx,

< M wllx,

1
B.LA + t1 HVUC2| B.LY/3

Pyt (Xrr Ubl))

(

(7
(7
(7.21

)
19)

.20) £ |]o?|
) ti vbl‘ +t1
B.L*
tt1

B.L*

vvb1’

1
s Tt < Myt w
BZLi/S Bngr\J bl H ||XT’

(7.22) t1

052‘

_3 _
5 R 4 b21 ||w”XT °

va2‘

p-1/~ b2
4
B.LY? +t HP‘I’ (X7ru )) B.LA

(b) Estimates for the difference between approximate and actual velocities.

(7.23) t1 ([0 — xR0\ g s + 1 |V (07 = XRO)||, 45 STTR™2 + RIn R,

(7.24) £ [0 = xr(=A) IV x5 S (T%R—% + RlnR—l) ]| -

(c) Estimates away from the core.

(7.25) 101 = xR) |, 11 + V(0= xm)T)| s S B2,

(7.26) 11 = xr)? | 5.2a + | Py (Rer(1 = Xp)u9) | p.pa S B2,

(727) (0= xm)v|pors + [Pe  (Rer(1 = Xe)u)l|p.rs S B2l
(7.28) 11 = xr)vlp.1a + 1Py (Xrr(1 — Xr)u)|p1a S R 2 M wllxy

Remark 7.6. We note that from the assumptions (6.24), (6.25) we obtain from part (a):

1 1
(7.29) tillv — av?|| g, s + 1 V(v — v ; 1as S Jwllxg,
(7.30) tillo — av? = v p s + 11V (0 = av? — v s S M|l
Proof.
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(a) For the estimates (7.18), (7.19), (7.21) we apply the estimate (A.4) together with the estimates
(7.1), (7.2), (7.4) for n9, n°!, n®! respectively.

For the estimate (7.20) we first observe that by Sobolev embedding (in ) we have

25,21 S IV62 5 a5,

so it suffices to prove the estimate for Vu?. Next, we decompose

o2 = Py (Rr(—2) 7'V x (Rarw™)) + Py (Ta(—A) "'V x (1~ Tar)w?).

I Iz

For I we apply the estimate (A.4) to obtain
192l s 105" Ranw™) o

and the estimate follows from (7.3). For Is we first apply Lemma A.2 and Hélder’s inequality
to bound

1 3 3 1 3
19Dl < IV B [0-V I s € B IVE]fx [0-VEollfss

T,z

B, L3

Applying Lemma 6.3 to control the change of variables we may then apply Young’s inequality
with the separation of supports, recalling that 0 < R < 1, to bound, with the help of (7.15)

IVENz S (B Ixuzm Kl + Ixquzm VK ) 10 = Rar)e 2]l
_3 ~
< R0 = Tl a

ST R M w xys

where K(y) = ﬁ% denotes the Biot-Savart kernel and x|, >r; is a smooth bump function
adapted to the set {|y| 2 R}. Similarly,

10:VEll e, S T"5 R73™ M ol
Combining these estimates we obtain the bound for I,

m—1 ___3_ _
VLl pas ST 2 BT M |wllx,-

~

Finally, using the assumption (6.24) and that m > 2 we see that T R-i™ <1.
For the estimate (7.22) we decompose
W = Py (XRV X (—A) ' Xare™) + Py H(XRY < (=A) 71 (1 = Xar)w™) .

I3 Iy

The I3 piece is treated as in (7.20) using the estimates (A.4), (7.5). For the I4 contribution, we
use the same proof as in (7.20), replacing the estimate (7.15) by the estimate (7.17). For the
remaining term on LHS(7.22) we introduce a non-negative, radial function p that is identically
1 on {|z| < 2R}, supported on {|z| < 3L R}, and again denote po ® = p. We then decompose

Pyt (Xrru'?) = Pyt (X7rV % (—=A)'5w™) + Pyt (X7rV x (=A) 711 - p)wb?),

and observe that due to the construction of p, an identical argument applies.
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(b)

Note that
v9 — xr?? = xR (Pp ' (=A) 'V x Qo — (=A) 'V x) 7.

The estimate (7.23) then follows from Proposition A.6. The estimate (7.24) is similar.

The first two estimates follow from the explicit expression for v9. For the remaining bounds,
we first observe that by definition

11 = xr) I5.2a S 1Py (Xer(1 = Xr)u*) |5, L4

For (7.27), we decompose

Pyt (Xrr(1 = Xp)u) = (1 — xg)Pp " ()?m(—ﬁ)_lv x Qa((X2r — X§)081)>
I5
+ (1= xr) Py (Rior(=2)7'V % Qulxan™)) -

-~

Is

For Iy we apply the estimate (A.4) with Holder’s inequality to obtain

_1
15 p.re S II(1— X§)7701||32Li/3 S R2 (0% e

For Is we instead use the separation of the supports to apply the estimate (A.5) and (7.6) to
obtain

_1 _1
sl p.za < B2l gy S B2 [|lw[lgs-

The proof of the estimate (7.26) is identical.
For the estimate (7.28) we take p to be defined as in part (a). We then decompose

Py (Rrr(1 = Xr)u?) = Py (Ren(1 = Xr)(=2) 7'V x (w2) )
I7
+ Pyt (Rrr(1 = Xm)(=2) 719 x (1= p)w?) ).

Ig

For I7 we argue as in the proof of (7.27) using that

1P (p®)llne < 1Py (Xsr w™)lIve.

to obtain )
17l s S R™2Mwllxp-

For Is we proceed identically to the bound for I5, using Sobolev embedding, Lemma A.2,
Holder’s inequality and the separation of supports of X7z and (1 — p) to bound

_s me1 s
Msllp.ra S VIl 5 s S B2 - PPl ST 7 R2"M ! |wlx,

where the final estimate follows from (7.15). The estimate (7.28) then follows from the as-
sumption (6.24) and that m > 2.
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To conclude this subsection we prove estimates for the velocity in physical coordinates:

Lemma 7.7 (Velocity bounds in physical coordinates). The following estimates hold for all 0 <
t<T:

(a) Estimates on the background.

1.1 .
(7.31) Rits < My wllxr,

2
Ll/

L S Mgt llx,.
Yy

=

[

e

4 ti HVuM’

6
Ly

(7.32) Ritt

+
~
NP,

vubQ ‘

th
L

(b) Estimates away from the core.

1 ~ ~ ~ _3
(7.33) R = Xe)ull e + (0~ Rl g + V(0 — Xr)u)] 5 < R,
1 Vi c v c v c -3

RA|(1 = K)o + 11 = Ryt + 19 (1= X)) g S B el

1 ~ ~ ~ _3 .,
(7.34) R [|(1 = Xe)u[| o + (0= Xr)uZ g + IV (1= Xr)u?) Iz S B2 M ol

Remark 7.8. Again we note that from the assumptions (6.24), (6.25) we obtain from part (a) and
(b):
11 ~ 1 ~ 1 -
Rata[|(1 = Xr)(u — aw?)|[ge + #3[[(1 = Xr)(u — aw?)|| g + 13|V ((1 = Xr)(u — au?))] L2

(7.35) L s .
S (THR3 + 0" ) fwllxe

which we note has additional smallness over the estimate (7.29) for the velocity near the core,
provided we choose T' < 1 and Mpy; > 1.

Proof.

(a) We observe that by Sobolev embedding and the boundedness of Riesz transforms on Lg we
have

HUM”ng S HvublHLg S HwblHL§7

and by the Hardy-Littlewood-Sobolev Lemma and Sobolev embedding,

bl bl bl
[ lzge S 1l S 196 -

The estimate (7.31) then follows from the estimate (7.16), the definition of the Nf norm and
Lemma 6.3. Similarly, the estimate (7.32) follows from (7.17) and the definition of the F}
norm.

(b) For estimates (7.33)—(7.34), we first note that by Sobolev embedding, the Lg estimates follow
from the Lg gradient bounds.

Let us first prove these Lg gradient bounds and then return to the Lzlf estimates. For x =
g, cl, c2 we decompose

(1—Xr)u" = (1 - Xr)(—A)7'V x Qa((x2r — xz)y)+ (1= Xr)(—A)7'V x Qa(xrn")-

Iy I3
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For the first of these we use Hélder’s inequality followed by the Hardy-Littlewood-Sobolev
lemma and boundedness of Riesz transforms on L? with Lemma 6.3 to control the change of
variables to obtain

IVITlz S IV(=2)7'V x Qe((x2r — x2)n)zz + BI(=A)7'V x Qa((x2r — x2)17) | 12
SIVE2) TV Qal(xar — xm)n )1z + 1(=2)7'V x Qa((xar — x2)n7) g
S 11Qa((xar = x5)n") L3
S =Xn)w"lzz

We may then apply the estimates (7.14), (7.15) and
k;
2

11— %%)WQHL%; Sk T "R* for any k>0,

in the cases * = c1, 2, g respectively. Using the hypothesis (6.24) with the fact that m > 2 it
is then clear that T R™ < R_%.

For the second term we instead use Young’s inequality to bound

* — * 3~ *
IV 12z S (B xquizm Kllzg + Dequizm VE 22 ) 1Qe Gean iy S R3IXnwllny.

where K(y) = ﬁﬁ;—'ﬁ is the 3d Biot-Savart kernel and x,>g} is a smooth bump function

adapted to the set {|y| = R}. We may then apply the estimates (7.10), (7.11) and
Ixzwlcy S 1,

in the cases * = cl, ¢2, g respectively.

Next, we turn to the Lllf estimates. For the I3 piece we proceed similarly to before, using
Young’s inequality to estimate

T~
1512 S ||X{|y|2R}K||L%,2HQ@(X%U*)HL}! SR 4||X§W*||L§,-
For the I} piece we further decompose as

If = (1 — xer)IT + XerI;-

For the first piece we proceed similarly to the I3 piece, using the separation of supports and
Holder’s inequaity to bound

~ * * —l -~ *
1 =Xor)M T llzge S gz m Kl 1l Qe (Oxer — xm)n7)llzz S R7AI(L = Xr )|z

For the second piece, we instead use Lemmas 6.3, A.7 with the Hardy-Littlewood-Sobolev and
Hoélder inequalities to change variables and bound

~ 1~ 1 ~
eIl S 1Py (RerIllzzrie S Nl (xar = X2)0[l 5 12m S REN(1 = Xz )|z
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7.2. Estimates on the core corrections, w®
7.2.1. Estimates on n°!

In this subsection we prove the estimate (6.26). For convenience, we first decompose f¢! into linear,
non-linear and inhomogeneous parts as

£ = f IR
where
.= aBu — 09,5 + aB[et, 1] + Blo — av? — (—A)7IV x 7, an),
&= Blv — av?,n + 0,

and we recall from (6.16) that
' = B! — xgt?,1p7].

As in the straight filament case (see (6.4) above) under the self-similar coordinate transform
Blf,gl=div(f®g—9g® f)—~div(F® G- G® F) = B[F,G].
As a direct corollary of Theorem 3.1 we obtain the following lemma:

Lemma 7.9. Taking p = p(«) as in Theorem 3.1, the following estimate holds for all —oco < s,7 <
InT:

_ _ e_p“(T_S)
7.36 (%) 5(r,5)BIV. H]| PP —— 7 Hllp 120 -
(7.30) OBV S0 e 1Vl V.

Proof. We observe that for any vector fields F, G we have div B[F,G] = 0. As a consequence, we
may interpolate the estimates (3.4), (3.5) with p = % and apply the product law (A.1) to obtain
the estimate (7.36). O

Applying this bilinear estimate together with Lemmas 7.3, 7.5, we obtain the flollovxlzing lemma, of
which the estimate (6.26) is a direct consequence (after using (6.24) to bound T1R™2 < RIn R™1):

Lemma 7.10. We have the estimates:

(7.37) V) / S(r, 5)FE(s)ds < (78R £ RWRT M) ol x,
—oo Bng(m)

@) @) s < Il
—oo BZLg(m)

(7.39) (V)P / S(r,s)Ff(s)ds <TiR 2+ RInR™!
—oo BZLg(m)

Proof. We prove the estimate (7.37), the estimates (7.38), (7.39) are similar. We will apply the
linear estimate (7.36) with the velocity estimates of Lemma 7.5, noting that by rescaling

1
V(s = trllv* (Ol 5. s

and the estimate
1 5. 2200y + Mol H g 200y < Il
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which follows directly from the definition of the norm.
In particular we may apply the estimates (7.23), (7.25) to bound

IV =V STAR™2 + Rn R,

the estimate (7.18) to bound
Vs S1

and the estimates (7.24), (7.30) to bound
Hv—avw4—ZrWﬂurw&%g(Thr%+3m34+mgﬁnmwr

As a consequence, there holds

Wwﬁl%mﬁ%m

Bng (m)

L 1 1 1 T eflu'(T*S)
< (TZR—5+RlnR‘ +MJ)HWI|XT Sup/ 5.5 s

T J—oo a(T — s)4+§

< (T%R—% +RInR'+ Mc_l> | xp
where we note that the integral converges because p > 0 and 0 < 8 < i. O

7.2.2. Estimates on w

In this section we prove the estimates (6.27), (6.28). Again we start by decomposing into a linear,
nonlinear and inhomogeneous piece,

fP=IE+ IR+ 17
where (recalling the inhomogeneous term from (6.19)),

£ = BI(1 — Tr)ou?, o + ] + BI(1 - Tn)(u — au), awd] + £,
@ = BI(1 - Tr)(u — au?), & + ),
2 — B[(1 — Xr)au?, aw’] + a&Y.

We begin with the estimates on F..

Lemma 7.11. We have the estimates:

t
/0 e(tfs)Aflc/Q(S) ds

t
/Oe(ts)Affv?(S)dS < TiR’2+R*%Mb_11) ol

t
/ =825 ds|| < TiR™2.
0
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Proof. We start by noting the following: if =,y € R?, 0 < s < t we have for any ¢ > 0,

()" = 5 ()"

which, combined with Lemma 6.4, will allow us to freely pass the spatial weights through the heat
propagator.

Using this we consider the error terms £¢ and £9 that are supported in the set {d < 4R}. As
they are supported near the filament, there will be a significant gain from the separation of supports
(see Figure 2). From the definition we observe that

Qg & = —[As, xar1" — Xx2r (Ao — A)n™.
From Lemmas 6.1, 6.3 we then see that it is possible to write
(7.40) Qg'E =V, (Cn™),

where the summation is taken over multi-indices v € N satisfying |y| < 2 and the smooth matrix-
valued functions C, are supported in {|z| < 4R} and satisfy

(7.41) VE.Col SRV, Wi Co| SRV VELCol S RTPTI,

for all multi-indices ;1 € N3, where we use O3 to denote all terms with |y| = 2, etc. Due to the
separation of the support of £ and (1 — Xggr) as well as the assumption that 0 < R < 1 we have

the estimate
t
/ e(t—s)AgcdS
0

¢
= sup t2 H<t_;d>m(1>z6R)/ elt=9)Ageds

F. t€[0,T] 0 L3
1 t —9 _1 _1 1
< sup t2/ R™“(t—s) 2 ||(s 2d)"w" ds
tejo,r]  Jo L

3 -

where the last inequality follows from the estimate (7.12). For clarity, we illustrate this bound in
more detail with the v = 0 term:

t t 2
haym [t n Con)as| 5 [ oot o hayncu, as
0 3 Jo L3.:
¢ _9 _1 _CLQ _1 1
5/ R™“(t—s) 2e “t=s ||[(s72a)"n° ds.
0 L3,

Consider next the remaining terms in fEQ. First turn to the contribution of w®. Here we apply
the estimate (7.33) for u¢ to bound

t
/ cE=DABI(1 — Y p)ul, w?] ds

0 F.
1 t _3 ~ _1 1~
S sup ob [ (t=9) 0= Tl 5 Ea)Qp )|, ds
te[0,T) 0 v Ll
1 ¢ 3 - 1 -
+osup th (=o)L= TRy | (5 ) (1 - R, ds
0

t€[0,T] Y

S (THRTT 4+ THR3) M7 Jwly,
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where to treat the first term we used from Lemma A.8 (and Lemma 6.3), followed by Holder’s
inequality,

H (=3 d)metIAB[(1 — Yp)u, ;z()-ch?]‘

Ly
< (t—g) 1 ~3p\mp-l] _ g —lr~ 2
< (t — —% Pfl 1— g —% my—li> c2
S( s) H ® [( XR)U ]HL?I (s7zx) Q(b [X6RW] roor2

We note that this estimate is likely suboptimal, but it is immediate from the Biot-Savart law in
physical variables, whereas the optimal estimate would likely require a more delicate argument.

Next consider the contribution of w9. Recalling that w9 is supported in the set {d < 4R}, hence
using the separation of supports as above and the estimate (7.35) we obtain

t
/ DA B[(1 — Xr)(u — auf), aw?] ds
0

F.

) ds
Ly

¢
S sup / R73(t— )71 (1 - Xa)(u— auf)|
te[0,7) 0 Y

<s_%d>mwg‘

< (Ti}ﬁ + R—%Mb;l) lwllx -

Finally, the term involving w®! is similar, using the estimate (7.33) and the separation of supports
to obtain the bound

Using the assumption that 0 < T, R < 1, this completes the treatment of fEQ.

Next turn to the nonlinear contributions ff\? Similar to above, the w®' contribution is easier
due to the separation of supports, hence, we only consider the w® contribution. Here we may argue
as before and apply the estimate (7.35) to bound

A
STTR™|lwllx,

t
/ e=9AB[(1 — Xp)u?d, w] ds
0 F.

t
/ eDAB[(1 — Xr)(u — aufd),w?] ds
0

F.

t
< sup 1 / (t— )% (1 = %) (u — ) |
te[0,7) 0 Y

1 -~ C
(s722)" Qg (Norw Q)HL?L% ds

<s*%d>m(1 — Xer)w|| ds

t
+osup ¢4 [ (=571 = R - au?) g
0

te[0,7] Ly

S (PR TR M) Ml
Using the assumption (6.25) and that 0 < R < 1, this completes the treatment of f$2.
Finally, consider f¢?. The estimation of £9 is similar to the treatment of £ and the B[(1 —
Xr)ud,wI] is estimated as the corresponding terms in ff?. This completes all of the requisite

estimates.

O]

We next turn to the estimate of w®® in NU.
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Lemma 7.12. We have the following estimates:

(i) If f1 is supported in {|x| < 16R} then:

t
HQ;l <5<'8R /0 "2 (Qq div f1(s) + div f2<s>> ds)

(7.42) N

3 _1 3 _1
< sup (s3G5 fi()pars + T2 (5)]z)
0<s<T zlig

(i) If v € N® is a multi-index satisfying |y| < 2 and f is supported in {|z| < 4R} then:

0

t
(7.43) Hqu <>?sR / e(t‘S)AQWZ,Zf(s)ds>H ST 3|l
N

Proof.

(i) We may directly apply Lemma A.8 to bound f, so it suffices to assume that f; = 0.

From Lemma A.2 we have the estimate
1 1
lolls.z2 < lollZa_No-gllZ
Using Lemma 6.3 to bound the change of coordinates,
1., -1
S (=) 2[sT>2d)™ f(s)] 2

S (=) I(s72d)™ £(s)l 2,

H (t32)mQ5! (ySRe@—S)A div f(s)) )

H(t_%:@m@ngl (%gRe(t_S)A div f(s)))

2
Lac,z

2
Lz,z

and hence

[t 22) " xsrQg e~ 2 div £(s)[| p.rz S (t—s) 7

(s~5a)™f(s)|

Integrating, we obtain the estimate (7.42).

(ii) The estimate (7.43) is easily proved for v = 0; for |y| > 1, we apply Lemma A.8 and interpo-
lation to obtain the bound
Y
-8
(52) 1l

whenever 0 < s < t < T, which we may then integrate in s, where the integral converges using
the fact that 0 < 8 < i.

ol

I 32)" Q5" (Rne™™2QeVILf(5)) Ip.rz S (L —5)" s~

[NIE

O

We now apply these linear bounds to control each of the terms, using the estimate (7.43) to
control the terms £9,£¢, and the estimates (7.42) to control the remaining terms.
The estimate (6.27) follows from the following lemma:
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Lemma 7.13. We have the estimates:

t

05! (m [ ds>
t

Qp' <>?8R/O A 0) d3>

t
Q' <>~<8R / ell=9)A €2 () ds> <R+TIR2
0 NO

c

P _ _3
S (R+THR7 4 My + RIMRY) |wllx

S (THR73 4+ Myt + RTEMRY) [l

Proof. First consider the error terms £¢ and £9. Consider only £¢; the £9 term is treated similarly.
Estimating using (7.43) together with (7.40) (and (7.41)), we see

t
H@;l <Y8R/ e(t—s)Agc(S) d8>
0

This suffices to treat £¢.
Next we consider B[(1 — Xg)ud, w + w]. First recall that

S (R+TER 4+ TR??) o,
N

B[(1 - Xr)u?,w] = Qo B[Py ' (Xar(1 — Xr)u?), 11,
and that by Holder’s inequality and the estimate (7.26) we have
3,1 1~ - 3. 1~ - _1
t3)(t"22)" Py (Xar(l — Xr)u9) ® 7761”BZL;1:/3 S|Py (Xar(1 = Xr)u?) | pora 1t 22) ™ 0 | 5. 12
1 1
STiR™ 2wl x,-

Applying the estimate (7.42) with fo = 0 we then obtain

The contribution of Yz w is treated similarly, where we note that Y7z = 1 on the support of X¢rw
and hence the estimate (7.26) may still be applied to bound the velocity. For the contribution of
(1 — Xer)w we instead apply the estimate (7.42) with f; = 0, using the estimate (7.33) to bound

t
Q5 <>78R / e“—smB[(lzR)ug,wd]ds) TYR H|wx,
0

~Y
N?

3
ta

(t2d)™(1 — Yor)w™>

(78 )™ (1= Xt © (1= om)e) |, < 1311 = K)o

STIR™EMI ||y, -

L3
The remaining terms are treated similarly, where we note that by applying the estimates (7.27),
(7.28), (7.21), and (7.22) we may bound
Lo 1~ ~ 11 _ 3.
t1)| Pyt (Xrr(1 — Xr)(u — au?))||p,1a < <T4R 2+ M' +R 4szl> !l x7-

Using the assumption (6.25) and that 0 < 7', R < 1, this completes the proof of Lemma 7.13. [

The estimates (6.27), (6.28) follow as a consequence of Lemmas 7.11, 7.13 and the hypotheses
(6.24), (6.25).
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7.3. Estimates on the background, w’
7.3.1. 7’ contribution

In this section we prove the estimate (6.29). Once again we decompose
bl bl bl
=01+
where the linear and nonlinear terms are given by

Y= aBv? — 59, 0" + aBw?, n*?]

¥ = Blo— av®,n 407
To control these terms we use the following corollary of Proposition 4.1

Lemma 7.14. We have the following estimates for all v € (0,1) and 0 < s <t < T:

t—s ;

1 s VAN
T8 DSBS 0o (75) 7 () 1 m.ralal

B
1 st Nz [(t)”
145) N vPvsie s Bl < -9 (25) 7 (5) 1941, 0009l

s
Proof. We prove the estimate (7.45); the estimate (7.44) is similar and is omitted for the sake of
brevity. We observe that div B[f,g] = 0 so we may interpolate the estimates (4.4) and (4.5) to

bound,
B
t \2 /t\"
(:55)" (5) 18l o,

IBUF, 0l 375y, S .2 lIV 8l s + 1V AL g_pass ] ars

]

[(629)7VS(t, ) BLS. glll s o (= 5)

Applying Holder’s inequality we obtain,

The estimate (7.45) then follows from Sobolev embedding. O
We may then apply these estimates to obtain the following:

Lemma 7.15. There holds

t M,
(7.46) ‘ / S(t, s)ffM(s)ds|| < My " (TiR—% +RInR '+ Mbl> ]|z
0 N{j b2
! bl 1 2
aan | [seamean] b,
N

b

Proof. We prove the estimate (7.46), the estimate (7.47) is similar. Estimates (7.44) and (7.45) give

S sup (407 = o0l 05 + 5H IV 07 = 00) o) [

/tS(t, ) fel(s)ds
0

Nf T 0<s<T Ny
1 1
+ sup (sl vd + 54 ||Vo? / > Hwa‘ :
S 109l . Vo9l g pass -
Then (7.46) follows from the estimates (7.18), (7.25), (7.23) . O
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7.3.2. W' contribution

In this section we prove the estimate (6.30). We start with a set of estimates for the heat propagator:

Lemma 7.16. For 0 < s <t <T we have:
s _3
(7.48) [ BIf, gl ass S (= 5) 411 lLzg ol /o,
Y Y
s _3
(7.49) IVe“2BIf, gl o S (= 5)7F (IF g + 19711z ) g1l /0.
Y Yy

Further, for multi-indices -y € N3 satisfying |y| <2, 0 < 3 < |y|, and f supported in {|z| < 4R},

B
_S)A~ i ft—=s\2 1
(7.50) e T T Il G M (0

Proof. The estimates (7.48), (7.49) follow from the explicit expression for the heat kernel. The
estimate (7.50) follows from properties of the heat kernel using Lemma 6.3 to bound the change of
variables. O

Again we will decompose the error term into linear and nonlinear parts as
2= g+ 18,
where
2 = aB[(1 — Yg)u’, " + wb?] + £°,
N = Bl(1 -~ Xr)(u— au?), o + .
We then have the following lemma:

Lemma 7.17. There holds

t
(7.51) ‘/ 1A [ (s)as| S My (R+ TR wo]x.
0 F,
¢ —s — A1 _
(7.52) ‘/0 el )Af]l{?(s)ds‘ S Myt (THRE 4 01 ) 1wl
Fy

Proof. Again we will just prove the linear estimate (7.51) as the nonlinear estimate (7.52) is similar.
First, (7.48) and (7.49) together with the change of variables Lemma 6.3 give

which we may then bound using the estimate (7.33). The corresponding w®? term is similar.
It remains to bound the error £. However, as in Lemma 7.11 we may write

t
/ eU=9AB[(1 — Xp)u?, w"]ds

1 ~ ~
S swp st(II(1 = Xr)u?ll o + 91 = Xr)u?]l2) o]
0

F, 0<s<T

0
Nb

Q;lgb = V’:I):/,z (C’anl) )
where the coefficients C, are compactly supported in the set {|z| < 4R} and satisfy the estimate
(7.41). The desired bound then follows from the estimate (7.50) and the assumption that 0 <
T, R<1. O
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7.4. Mild solution

With the above a priori estimates established, we are now in a position to verify that the solution
constructed in Theorem 6.5 satisfies Definition 2.1.
We first recall the definition of the space MY (1 < g < p) of functions f € L{  with

loc

1
3_3 1
lolpe == sup 7o / wtdy)| b < oo
4 >0, yER3 B(y,r)

3 . .
where we note that M7 C M%, where M3 is defined as in Definition 2.1 (recall that M3 contains
measures, not just locally integrable functions). Further, we recall the mapping properties of the
heat operator (see [38, Proposition 3.2])

la|

(7.53) IV ooy pgae ST2

Similarly, we point out the following useful embeddings: (recall 1 < g < p),

3q
P c M, B.LIC M,
which are used several times below. We then have the following Proposition:

Proposition 7.18. The solution constructed in Theorem 6.5 is a mild solution of the 3D Nawvier-
Stokes equations as in Definition 2.1 (with w constructed from w®,w® as described above in Section
6.2) and satisfies the estimates

1 1
(7.54) o)l g2 + 3 lw®llgz  + 22 u®llpeg S 1-

Proof. We will prove the estimate (7.54). The fact that w is a mild solution in the sense of Defini-
tion 2.1 may then be proved by a variant of the argument used for the straight filament in Section 5.
Note that by Holder’s inequality and the estimate (7.53) we may bound the nonlinear terms by

[

=2 Blu(a), w(o)]|

t
_1
o 1% / (t — o) H (o)L leo(0) ez, do

(7.55)
1 1
< (supefutollag ) (sup e ot )
t t /3
To obtain the estimate on the velocity in (7.54) we apply Holder’s inequality and Lemmas 6.3, 6.4
to bound the change of coordinates to obtain

lullpag S IR mul g + 110 = Xl g S lollazs + (1 — Reulzg-
The M§ estimate for u then follows from Lemmas 7.5, 7.7. Similarly, we may bound

lollae , < IRzwlpe, + 110 = Ka)wl e

s Slxanly o+ 10— Xa)wl s,

and the M? estimate for w follows from Lemmas 7.3, 7.4.
3

Tt remains to establish the M2 estimate for w. First we observe that by arguing as in the
straight filament case in Section 5, using estimates for S(7,0), S(t, s) in BZL%, B.L! respectively,
we obtain the estimates

VY H g gy + 12V P gy S 1.
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Using the embedding B,L. C M? and Lemmas 6.3, 6.4 to bound the change of coordinates we
obtain the estimate

(7.56) 162 V) w9 a2 + (162 V)P | ugore + 1182 V)P | pgare S 1.

~

Next we note that (see [63, Theorem 3.8]) that the estimate (7.53) extends to fractional derivatives
and hence we may argue as in Lemma 7.11 using the estimate (7.56) to obtain

t
‘/ e(t—s)Ag*(S)
0

for * = ¢,g,b. Finally we use the estimate (7.55) to bound the remaining nonlinear contributions

to w, wb2, and the estimate

t 8 _p
5/(75—5)_1"'25_2 ds <1,
M3/2 0

e 1% agere S N8 pare S 1 lppraazss,
to bound the initial data. Thus, we obtain the estimates
(| pgs/2 + Nl psr2 S 1,

as required. 0

7.5. Uniqueness

In this section we prove the following uniqueness criterion, which is a natural corollary of our proof.

Theorem 7.19. Let w € C?((0,Ty) xR3) be another mild solution. Define &¢ and w® as the solutions
{ 0w’ + Blu,w’] = Aw®,

wc(t = 0) = aép,
{ O’ + Blu,w’] = Aw?,

Suppose that for sufficiently small R > 0 we have

(7.57) Jim (HQ; (R (@ = aw?)|gg + 157 = aw? g, + Q3" (Rsre”)

li + Hwb)
T

)-o
Fy

where, as before, we take w9 = Q;l(fngﬁg). Then w is necessarily the solution constructed above
in Theorem 6.5.

I
Ng

Proof. We start by choosing 5, m, e, M, as in the proof of Theorem 6.5. Take w® := w® — w9 and let

ol := Qe (Rsrw)lng + lulle, + || @5" (Rsr®) |, + ]
c NY F,

so that from (7.57) we have limp\ o [|w|| = 0.

Our goal is to find a suitable decomposition of w€, w® so that by choosing sufficiently small R, T >
0 sufficiently small, the decomposed solution lies in the ball B. 7 g ar,, in which the contraction
mapping argument guarantees uniqueness. We are able to do this thanks to two key observations.
First, the equations (6.15), respectively (6.20), for n°!, respectively 1°!, depend on w€, w® rather than
their decomposition. This will enable us to make a decomposition that matches the one outlined in
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Section 6. Second, in the proof of Theorem 6.5 we first fix M,, e (recalling that the M, ~ ngMC),
then choose R > 0 sufficiently small, and finally choose T' > 0 sufficiently small. Thus, provided we
choose R > 0 sufficiently small before choosing T > 0 sufficiently small, the contraction mapping
argument still applies.

We now proceed to carry out this approach. We first define 7! to be a mild solution of the heat
equation

o — Ayt = =Bl 1] = Blv — axzv?, an’],

with initial data 7°!(0) = 0, where 7° = Q3" (Y2rw®) and v = Py' (Yr(—A)7!V x w). Switching
to self-similar variables we obtain

g — _/ e(T—8)L+(e7—e*)02 (B[V, H°| + B[V — aXRefsngaaHg]) ds.

— 00

By definition we may bound
IH 5, £2m) S Ml

Decomposing V = aV?9 4+ V¢ + V? where V* is the self-similar scaling of v* = Py ! (xrw™), we may
apply the estimate (A.4) to bound
IVlp.rs < ol

and similarly, using the Sobolev estimate (A.2),
IV lp.re < lwll -
Further, we may apply the estimate (7.23) to bound
V9~ Xpesr2Vlprs < TiR™ 2 +RInR".
Consequently, we apply (B.6) to obtain the estimate

= 11 _
I lne = sup ||<V>5H61||Bng(m) Sllwll + wl*+ T3R 2 + RnR™".
—oo<7<InT

We define n®! to be the mild solution of the heat equation

O™ — AnPt = —Blv, "),

with initial data n®'(t = 0) = 0, where Qb = Q;l ()ZQwa). Using the self-similar scaling we may
write

Hbl _ _/T e(T—s)E—&-(e"—eS)@fﬁ[‘/’ Hb] ds.
—00 7
By definition we may bound
REH| s + REVH| s < ]
£z £,z
Further, applying the estimate (7.18) for V9 together with the estimate (A.4) for V¢, V* we may

bound

WVilp.zg + 1VVp, s S 1+ el
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As a consequence, we obtain the estimate

3 = 1 — A—
Maal gy =M sup (RN E o+ RUETH ) Moo+ M o

—oco<7<InT

Next we define the remainders
w?:i=w’ = Qa (xorn), wW?i=w’— Qs <X2R77b1> 7

and observe that as v is supported on the region on which ysr = 1, for * = ¢, b the corresponding
n* = le(ing*Q) + n*! satisfies Blv,n*] = B[v,n*]. In particular, we may replace n* by n* to
see that n°!, respectively n®!, satisfy (6.15), respectively (6.20). It is then clear that we?
solution of (6.18) and that w®? is a mild solution of (6.22).

To complete the proof we use the triangle inequality to bound

is a mild

M, Q5 (Rors™) g < Me Q5" (o) + Me 1 gy < Mool + Ml e
Further, by definition we have
Me [lw ||, = Me |lw¥llp, < Me [l
Similarly, we may bound
My lle, S Miallwll + Moo [0 -
b

Combining these bounds we obtain
cl , 2 bl b2 < 2 11 1
||(7I YW1, W )HXT N(1+Mc+Mb1+Mb2) HW||+||W|| +(1+Mc) TiR 2+ RInR .

To complete the proof, we first recall that M, is chosen independently of R > 0. Thus we may
choose R > 0 sufficiently small to ensure the contribution of (1 + M.)RIn R is sufficiently small.
The remaining terms are all o(1) as 7'\, 0 and hence we may choose T" > 0 sufficiently small to
ensure that

1t w2, W) xp < e

A. Analysis in B,[? spaces
A.1. Basic inequalities

Lemma A.1. If1 <p,q,r < oo and % :;1)4- é, then

(A1) ||fg||BZL;, S HfHBzLI; ”g”Bng'

Proof. We consider the case that z € R, the case that z € T is similar. Applying Minkowski’s and
Holder’s inequalities,

FoteOllzs: < [[ [Fa.)], [P = ¢)

e o AT @ Ol 1 Ollyss.
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Lemma A.2. If1 < p <2 we have the estimate,

1—1 1
(42 1A lmazz S 1A 1012

z

Proof. We consider the case that z € R, the case that z € T is similar and assume f # 0. We take
%—k 1% = 1 and for a real number A > 0 to be chosen shortly we apply Holder’s inequality to obtain,

~ 1~ 1~ 1
/ VPOl dc S AV S AT 0 S AF £l
[¢]<A [ e

where we note that reversing the order of integration is justified as p’ > p and the final inequality
is proved using the Hausdorff-Young inequality for a.e. = € R2.
Similarly we may bound,

—~ 1 ~ 1
/ 17Ol ¢ S APHCTN o S AP 0L F Ny
[¢|>A ¢

We then choose A = ”ﬁ}'# to obtain the estimate (A.2). O

Lemma A.3 (Boundedness of the Riesz transforms). There holds for all 1 < p < oo,
Hv2fHBng Sp HAfHBzLI;. :

Proof. Let a,b > 0 with a + b = 2; we claim the following holds independently of (,

et = a9, )

The case b = 2 follows from the Calderén-Zygmund theorem applied to the Bessel potential. The
cases a = 1,2 follows by scaling and that the kernels of (1 —A;)™! and V,(1—-A,) tarein L. O

S 18Ol

A.2. Biot-Savart law in physical coordinates

Lemma A.4.

(A.3) |V x (=A) ' f|

B, L4 SJ ||fHBzLi/3 :

Proof. By scaling it suffices to prove that

IVa(l = D)™ fllzs SUFllpas, 1= B2) 7l S IFN s
This follows from the the Hardy-Littlewood-Sobolev, Young’s inequality, and fact that the kernel
of V(1 — A,)"!isin L>* and the kernel of (1 — A,)~!isin L% O

A.3. Biot-Savart law in straightened coordinates
Our main goal in this section is to prove the following pair of propositions:

Proposition A.5. Let n be supported in {|x| < 16R}. Then, provided 0 < R < 1 is sufficiently
small, the following holds with constants independent of R:

(A4) HXSRPq:l(—A)*lV X Qq)nHBng -+ HV(XRP(;l(—A)flv X Q@T])HBZLi/g S HnHBzLi/S’

(A5) | @ = xrxsrPs (=2)7'V x Quxzn)|

_1
LSBTl

Z2Hx
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Proposition A.6. Let m > 1, 0 < R < 1 be sufficiently small, n be supported in {|z| < 16R} with
corresponding self-similar scaling H(7,€,z) = e"n(e”, 655, z) and

v=xrPy 'V x (=A) ' Qan.
Then, whenever 0 < v/t < R < 1 we have the estimates,
1 _ S _
(A.6) th o=V x (=) l| gy S (eFR73 + R BT [H(D)ll 5. 120m)

(A7) t1 ||V (v =V x (=A)"1p)]

gt S (€TR73 + RnR™) I H() | 120
The proof of both propositions rely on the following lemma:

Lemma A.7. Let T be a translation-invariant operator with kernel k € C°°(R3\{0}) satisfying the
estimate

95 k()| <y~

for some 1 < n <3 and all multi-indices o € N3. Then, the corresponding kernel K of the operator
]:le)?mRTquwR}'_l, where F is the Fourier transform in the z-variable, satisfies the estimate

o — M= ()7 n=23,

(A8) |K(.’L’,C,l' 7< )‘ S {(1 +1H|.’L‘ _ l’/’) <C _ CI>—27 n = 1

Proof. From Lemmas 6.3, 6.4 it suffices to prove that the approximate kernel
(A.9) K(z, ¢ 2, () = / / X16r(2)X16R(2 ) k(P (2, 2) — B(2', 2'))eF' ¢ =) dz d2,

satisfies the estimate (A.8). To prove this bound we integrate by parts repeatedly with the help of
the formula .
S—, W, WA P CA S
iy o)
and observe that by Lemmas 6.3, 6.4 there holds
1

|z —2/|" + |z — 2|7

‘(82 + 8z/)NK(<I>(x, 2) — &2, z/))’ <N
Recalling that z, 2’ € T, we may dyadically decompose the integral into sets {2F < |z — 2/| < 22F},
for all N > 0, and estimate

I
~N - |C_</|N‘x_m/|n_|_2nk'

INCARNS

Choosing N =0 for ¢ = ¢’ and N = 2 for { # ¢’ then leads to the estimate (A.9). O

Proof of Proposition A.5. From Lemma 6.3, the Hardy-Littlewood-Sobolev and Young inequalities,
to prove the first inequality in (A.4) and (A.5), it suffices to show that the kernel K of the operator

FQgp X16r(—A) 'V x Qox16rF,

satisfies the bounds
‘K(x’ Cvx/7 gl)’ S |$ - I/’71<C - </>727
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which follows directly from Lemma A.7.
Next, consider the second inequality in (A.4). Write

¥ = xsrQg (—A) ' Qan.
We observe that, from Lemma 6.3 and Lemma A.7 we have

1

1
(A.10) R Rl [¥llB.za + VY[ B.Lt + §|W¢HBZL§/3 Sl g, passs

and from the identity (6.5) we have
X2r(—Aa)Y = X2rN.
Computing further gives
—AV*xarth = V2(x2rn) — V(A = M) x2rt? — Vi [xar, (— Q)]0
Lemma A.3 gives
IV20ceri)l| 5y S Ixarely_pars + 1A = Aa)xardll 5_pass + lxas (—Aa)ll 5_a
By Lemma 6.3, (A.10) and Holder’s inequality,

I(A = Aa)x2r¥ ]l a5 S RIVZO2rd)|| 5y + IVO@rE) 5 s + Ixertl s
S./ R HVZ(XQRQb)HBzL‘L/3 + ”n”BzL‘;/3 .

x

Similarly, using Lemma 6.3 and (A.10),

1
s (~A)al8l5, o5 5 5 19055 S Wl g
Therefore, we conclude, for all R sufficiently small, that

HV2(X2R¢)HBZL‘;/3 S Hn”BzLi/i’) .

This estimate (and the first inequality in (A.4) together with Lemma 6.3) then implies the second

inequality in (A.4).

The proof of Proposition A.6 is a tiny bit more involved, but again essentially follows from

Lemma A.7:

Proof of Proposition A.6. We prove the estimate (A.6); the proof of the estimate (A.7) is similar.

As in the proof of (A.4), write
¥ = xsrQg (—A) "' Qa,

and recall that, applying Lemma 6.3 to the operator FfoplXlgRVQ(—A)*IQq)XlGR}", we have

(using also Proposition A.5),

1

1
T =t Wls.cs + VOB Ls + HIVYI g pars + HV%HBZLL;/?: S lnll g, passs

and from the identity (6.5) we have

X2r(—As)Y = x2r7, x2r® ! curlg 1 = v.
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Next, we decompose the difference

V=V x (=A)"'n=xr (D eurle —Vx) 1+ xrV x (¥ — (—A)'n)
T1 }g
+(1—xr)V x (=A)"'n.

T3

To bound the first term we use the expression (6.3) and Lemma 6.3 to bound

L 1 1 1,1
t7| Tl g, s S RET|VYl g ra + 7|0 g, s S RIn Rt 1l g pass-

To bound the second term, we apply Lemma A.4 followed by the identity (6.5), and the estimates
on Y and its derivatives above to obtain

1 1
t4 | Tallp.rs S t3lIxer (A = Ae) Yll 5 4/
19 1 1
<RV s + 65 V0l s + 30 s
SRRt |l passe
To bound the final term we estimate

1 1 — 1 —
t4] Tl p.rs S I = xR)V X (=) (xan)llp.os + 1V x (=) 71 = xz)n) 514

e4
< ﬁHHHBZLg(m)a

where we have used the separation of the supports and Young’s inequality to bound the first term,

and the estimate (A.3) with the fact that m > 1 and 0 < v/t < R to bound the second. O

A.4. The heat equation

Lemma A.8. Let f be supported in {|z| < 16R} and 1 < r < 2. Suppose further that 0 < R < 1
and 0 < s <t < R%. Then for all multi-indices v,y € N® there holds

/ IvI+17/1 1
At bzt (Rune 20 Qe )| S - b oshang]|
(A1) [|6 307 Q5! (Rane2v1QuV 1), S 6= s)d R sy
and B, can also be replaced by L.
Furthermore, there holds: for 1 <p < g < oo,
1 mz= (t—s)A 1 -1 \m
(A.12) H(t xd)™xsre Q ) 5)%4‘%_% (s"2x) f‘Lng

Proof. We consider (A.11); the proof of (A.12) is a straightforward variant. We consider only the
case v,7" = 0 the case |7y],|7'| > 0 follows similarly, using Lemma 6.3 to replace the heat kernel by
a similar, rapidly decaying kernel.

Consider the operator

1®@(2,2) =P (! )2
Tf =t 2 //XlGR X16R /) 4t f(:n’,z’) dl’ldzl.
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The change of variable estimates of Lemmas 6.3, 6.4 and Young’s inequality imply

| saymry|| st @ daymy

Ly

The corresponding estimate follows for the heat operator (again from Lemma 6.3).

To obtain the estimates in the case L!, it suffices to prove that (where C' > 0 denotes a fixed
constant independent of the parameters of interest)

t,z)— t ,,z/ 2 v ,
W Ni6r(VEE) yior (Vg e~ *XEITIEE 4020 1, 41| < Vig(VE(C — ¢'))eCIEEP,

with ¢ € L'. We integrate by parts repeatedly using the formula

]. ; v ; 1~
9, + 0,)e!F'¢=20) = i/ =20)
oyt o ‘
and keep in mind that (for constants C' > 0, not necessarily the same in each inequality or each
term),

|®(VEg,2) -~ (Vig' 2|2
Nef At N

P(Vte,2)—D VE /,z, 2 _ ‘Z*Z/‘Q
<t7%eicl (Vt€,2) t( &2 <t7%eic|§7§/‘26 C

~ ~

](az 0,

Dyadically decomposing the integral into sets {2¥ < |z — 2/| < 271}, the integral above can then
be bounded by (possibly different constants)

|B(Vie,2)—o(vVEe' 22 . s
‘//XIGR(\/Eg)XIGR(\/if,)6_ B T ¢ =20) g5 4

_o2?k g2
kg-CEE —Cle—¢|

1
< -
- zk: (V¢ = ¢ DN
< Le—clﬁ—ﬁ’ﬁ
(V¢ = ¢ DN
Choosing N =0 for ( = ¢’ and N = 2 for ¢ # ¢’ leads to the desired estimate. O

B. Two-dimensional semigroup estimates

B.1. Statement of the estimates

In this appendix we prove several estimates for compact perturbations of the semigroup ™. For
concreteness we recall several linear operators defined in the main body of the article:

o If f is a 2-vector we define
Uf=g-Vef —f-Veg

o If f is a scalar we define

Af=g-Vef = (=8¢) Vi f-Ved

o If f is a 2-vector we define
2f = (Ve -y
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e If fis a 2 x 2 tensor we define
IIf = g®dive f —dive f ® g.

Our main results in this section are as follows.
Proposition B.1 (Semigroups on Lg(m)) For all o € R and m > 1 the operators L —al', L —al

define strongly continuous semigroups e™(£—0T)  eT(L—ah) op LQ(m) so that for all v > 0 we have

Selm.

(L (L—ah)
(B.1) leT(£eT) HLg(m)%Lg(m) Ser, e (£ ”L2 Y L2(m) S

If a # 0 there exists some 0 < p = p(a) < % so that, whenever m > 142, we have the estimate
ﬁ —
(B.2) ™ CYF)||L2 (m)—L2(m) S € -

Ing,o( m) ={f € L2 ): [ fdé =0} and m > 1+ 2u for some 0 < p < 2, then we have the
estimate

(B.3) le™~~ aA)HL W —L2 o (m) S €T

Proposition B.2 (Semigroups on Lg). For all o € R the operators L —al', L —a=, L — oll define
strongly continuous semigroups e™(E—oT)  eT(L=a8) = oT(L=all) 4y, L% so that for all v > 0 we have
the estimates

L—al (L—aZ L—all
(B.4) HeT( “ )||L%—>Lé Se’, He o= HL%—>L% Se’, H@T( “ )HL%—>Lé Sell.

The proof of Propositions B.1 B.2 essentially follows the argument of [33], using additional
estimates from [30], [24]. The general strategy of the proof for x = ', A, E,II is summarized as
follows:

e Step 1: Prove that all eigenvalues of £ — ax* are in the Gaussian-weighted space Lg(oo).
e Step 2: Use symmetries of the operators in Lg(oo) to obtain bounds on the eigenvalues.

e Step 3: Use the fact that e”(“~*) is a compact perturbation of €™ to deduce the corre-
sponding spectral radii.
B.2. Properties of the Fokker-Plank operator

Before proceeding, it will be useful to collect some properties of the Fokker-Planck operator £. We
first recall (see e.g. [33, Theorem A.1]) the explicit expression

TE e’ *% Z et de’
(B5) f_ 47_[_a( ) € f(62£) g?
which immediately implies, if 1 < p < ¢ < o0,
r(1-1)
T € p
IV7e Ef”Lg(m) S Tpﬂ”f”%’(m)
B a(T)r a2
(B.6) 67(1’%)6—@
HeTEVBf”Lg(m) S ﬁ”f”ﬂg(m)
a(t)r etz

Further, on Lg (m) we have the following proposition:
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Proposition B.3 ([33, Theorem A.1]). Let m € [0,00] and L be considered to be an unbounded
operator on Lg(m) defined on its mazimal domain D(m).

1. The spectrum of L is given by

o(ﬁ):{)\eC:Re(A)g1_m}u{—§:keN}.

2. If m > 1 then 0 is an isolated eigenvalue of L, the corresponding eigenspace is spanned by the
Gaussian G. Further, the corresponding spectral projection on Lg(oo) s given by

Pof:G/RQfdf.

3. If m > 2 then —% 1s an isolated eigenvalue of L and the corresponding eigenspace is spanned

by {%§1G, %@G}. Further, the corresponding spectral projection on Lg(oo) s given by
1 1
Pif =546 [ &rde+ 36 [erde
]RQ

B.3. Construction of the semigroups
The semigroups that are the object of this section, namely on the one hand e™(£=21) and em(£—oA)
on Lz(m), and on the other hand e™(£—0l)  ¢7(£=08) g m(£—all) op L%, can be constructed by a
straightforward fixed point procedure.

We illustrate this for e”#=T) on Lg(m) For fy € Lg(m)7 let 7 be the operator

Tf=c“fo—a / T-ED F (o) dor
0

Using the estimates (B.6), it is easy to check that, for § sufficiently small, 7 is a contraction on
c([0, 3], L(m)).

This procedure gives strongly continuous semigroups; it also specifies a domain for the operators
L—al’ and L—aA on Lg (m) (abusing notations, we denote them indistinctly by D(m)), and similarly

for the operators on L% (which we denote by D;). Whenever the spectrum (or essential spectrum,
etc...) of these operators is discussed below, it is with respect to this domain.

B.4. Gaussian decay of eigenfunctions

In order to control the eigenvalues, we first show that they have Gaussian decay. We first consider
the operator £ — ol

Lemma B.4. Let a € R and f be an eigenfunction of L — al’ with eigenvalue A. If one of:
1. f€D(m), A ¢ Oess(L — al') and Re A > 5™ for m > 1,
2. f€D1, A& 0ess(L —al') and Re X > 0,

hold, then fkvgf € Lg(oo) for all integers k, £.
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Proof. We follow the argument given in [34, Lemma 4.5], although we note that an alternative proof
for case 1 is given in in [30, Proposition 3.4].
Suppose that (£ — aol')f = Af and switch to polar coordinates, taking
- rcos f"| | cosf sind f
~ |rsin@|’ o1~ |—sinf cosf| "
Using the formulas g - Vf = V(9pf" — e, + V(99 f% 4 fT)eg and f - Vg = f70,(rV)eg — V fe,,
we obtain the system

1 1 1 1 2
M +aVopfr =02+ -0 + 502+ =10, +1— = | 7 — 001",
r 72 2 r2 r2

1 1 1 1 2
MO+ aVofl —ard, V= 02+ -0, + =02 + =10 +1— = | f'+ 001",
r r2 2 r2 72

where

1 12
V(r) = Py (1 —e 4" > .

The decomposition of f in angular harmonics is given by f = ZnEZ ?;eme; the crucial obser-
vation is that the projectors on angular harmonics commute with £ — al'. If ﬁ was non-zero for
infinitely many n, then the kernel of £ — al’ would contain all the linear combinations of the Eeme,
and hence be infinite-dimensional, which would contradict A\ ¢ gess(£ —al’). Therefore, only a finite
number of ﬁ are non-zero, and thus it suffices to prove the result when f contains a single angular
harmonic.

: o — |fn
Taking & = ¢, = |~
fn

" r 1N 14w 2info —1] 0 0 _
<I>—|—<2—{—r><1>+<1 A 2 +7“2 1 0 ianV + ardV 0 o =0.

, we obtain the equation

Changing variables by taking p = irQ we obtain the ODE
1 1—A
" + (1+> ' + (—A(p)) ® =0,
p p

where the coefficient

1+ n? in |0 —1 am -~ 0 0
Ap)=—5 ~ 352 [1 0 ] t gy l—e) —a [Hjﬁpﬁ 0
p

is such that |A(p)| < 4.
P

Taking ¥ = [(I),

} we obtain the first order system

(b e 3L D

The sum of the two first matrices above has the eigenvalues py = % +0 (p%) and p_ = —1— % +
o (p%), with eigenvectors [1 0 p+ O]T and [0 10 ui]T. Therefore, it is possible to write

0 I 0 . )
[O —I} * [A;l[ _;I] = Sdiag(pur, iy, p— i) S,
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where the matrix S = S(p) has a nonsingular limit and satisfies |S"(p)| < p%. Thus, we may apply
(the proof of) [17, Theorem II1.8.1] to obtain linearly independent solutions satisfying

1 0
0 A—1 1 A—1
Q O p 9 \II O p )
10 10
[1 [0
0 x 1l oy,
\\ 1P e \\ olP e
| O |—1

as p — +oo. In particular, as r — +o00 eigenfunctions must satisfy
fw r2(A=1) o J?N r_2)‘e_%r2,
and we readily see that r2(A—1) ¢ Lg(m) if Re A > 1_Tm and 21 & L% if ReA > 0. O
For the operator £ — aA a similar argument yields the following:

Lemma B.5 ([34, Lemma 4.5]). Ifa € R, m > 1 and f € D(m) is an eigenfunction of L— oA with
eigenvalue A satisfying Re A > PTT” and X\ ¢ 0ess(L — al), then §kV§f € Lg(oo) for any integers
k..

For the operator £ — o= we have the following result, which follows from [24, Proposition 4.3]:

Lemma B.6 ([24, Proposition 4.3]). If « € R and f € Dy is an eigenfunction of L — o= with
eigenvalue A satisfying Re A > 0 and A &€ oess(L — =), then fk’Vé(Vg -f) e Lg(oo) for all k, £.

Proof. If f € L% satisfies
(L —aB)f = Af

then we claim that it belongs to the Schwartz class. Indeed, write

o
f= —a/ e~ el fdt.
0

Note Z=f = dive(f ® g) — f - Veg, hence by the decay of g, we have
Il S [ e
B~ a(t)?

By bootstrap it follows that f € L'(m) for all m > 0. From there a bootstrap argument (going say,
1/2 a derivative at a time) gives that V’gf € L'(m) for all k > 0 and all m > 0; this implies that f
belongs to the Schwartz class. Hence, taking the divergence,

(L—ag-Ve)(Ve- )= —3)(Ve f)

1
dt||fllp S [Re N Il

In particular, V¢ - f € L% is an eigenfunction of £ — ag - V¢ with corresponding eigenvalue A — %

From [24, Proposition 4.3] we then see that V¢ - f € Lg(oo). O

Finally, a similar argument yields the following;:
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Lemma B.7. Ifa € R and f € Dy is an eigenfunction of L — oIl with eigenvalue \ ¢ oess(L — ll)
satisfying Re A > 0 then §kV§ dive f € Lg(oo) for any integers k, £.

Proof. If f € D; satisfies
(£ —oll)f = Af,

then its divergence F' = div¢ f satisfies

(£~ aT)F + (Ve - F)g = (A %)F,

and following a similar argument to Lemma B.6 we see that V’gF € Lg(m) for all k,m > 0.
Following the argument of Lemma B.4, we switch to polar coordinates and expand in angular
A’I“

harmonics to obtain and equation for & = ¢,, = [ﬁz . Using that

n

1 1
V.- (Fre, + Flep) = 0, (rF") + ;89F9,

we obtain the equation

v, (T 1 0 0]\4 , (3 | 1+n° 2inf0o -1 —ianV 0]\ o _
(I)+<2+r+[aﬂ/ 0]>¢+<2 A r2 +r2 1 0 +a8T(rV) 0 ¢ =0

r

Switching to the variable p = ZQ and letting ¥(p) = [g,} , we find the equation

0 0
1 i

and |B(p)| < p%. Theorem II1.8.1 in [17] does not quite apply, since the matrix M(p) is not

~

diagonalizable. However, it can be put in Jordan normal form: denoting its eigenvalues

1 1 1\? 4)-6
pr(p)==-1-1—-=+ <1+> + )
(°) 2 p \/ p p

and switching to the basis

U+ (M(p) + B(p)) ¥ =0, where M(p) = [

o
|
~
—
_|_
S
—~
>
|
N

0 1 0 1
1 0 1 0
€1 = €y = , Caq = , eqs =
apy apy
M+ Ir(1+p+2up) H— dr(T+p+2u—p)
it becomes »
+
Bt Tmirprzass O 0
0 I 0 0
ap_
0 0 H=" m@tpt2u_p)
0 0 0 L
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3
A3
o

—A
p

Noting that u4(p) =

+0 (p%) and p_(p) = -1+ 2

to errors of order O (p—lg), can be written

+ 0 (p—lg), the Jordan blocks above, up

=2 a(n-32 .Y

3 (47r02) —1+ 29 430
3 and 1_y

2 _ 2

5 0 1+ 7

Solving f' = Pf for each of these two matrices, one obtains solutions with the asymptotic behavior
p/\_%(A + Blogp) and p%_)‘e*f’(C + Dlogp) (for constants C' and D), respectively. Since the
matrix S = [61 ey e3 64] has a nonsingular limit, and satisfies S’(p) < %, this conclusion can
be transferred to the full system. In r coordinates, this means that a basis of solutions has the

asymptotics

-2

(e1,e2)r*3(A+ Blogr) and (es,eq)r' e 7 (C + Dlogr)

However, as F' = divg f for f € L% we see that a behavior ~ 72273(A + Blogr) is excluded

whenever Re A > 0. Indeed, for R > 0 take yg € C°(R?) to be a bump function supported on
{|¢] < 2R} and identically 1 on {|{| < 1}. Then,

‘ / <£>xR<§>Fds‘ = ‘ [t dive fdlf’ < [1r1de

hence F' ~ r2*~3(A 4 Blogr) is excluded whenever Re A > 0 as the left hand side would diverge as
R — 00, leading to a contradiction. Therefore, fk’VgF € Lg(oo) as required. O

B.5. Upper bounds on the eigenvalues

As the eigenfunctions of the operators L—al', L—aA, L—aZ=, L—all have Gaussian decay whenever
Re A is sufficiently large, we may now use the fact that these operators exhibit certain symmetries
with respect to the natural inner product on Lg(oo) to obtain bounds on the eigenvalues.

We first consider the operator £ — al™:

Lemma B.8 ([30, Proposition 3.5]). If a # 0, then there exists 0 < p(a) < 3 so that: if f such
that fkvgf € Lg(oo) for all k, 0 is an eigenfunction of L — ol with eigenvalue A, then Re A < —p.

Proof. Let f satisfy the hypotheses of the theorem, in particular
(L—al')f = \f.
We then compute
1
L€ f) =5 ) =2Ve- f—ag-Ve(€- f) =L f,
1
(B.7) LV f)+5(Ve- f) —ag-Ve(Ve- f) = AVe - f.
Integrating by parts then yields the identities,
1
(B9)  ReAl€- flzoe) = (L€ 1€ Frzeo — 316 320y — 2Re(Ve £.6- 1200y

1
(B.10) ReA|[Ve - f||%§(oo) = {LVe 1), Ve Flrzeo + 51Ve fllLzeo):
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where the smooth function p(§) = —ﬂ|2|4 (1- e*i‘gp) + 471,‘15'267&'5'2 so that (c.f. (4.9))

Veg = p(€) (ﬁL ® §) - 27T|1§‘2 (1 - e*ilé?) [(1) —01] .

Case 1: V¢ - f #0. Here we observe that the projection Py(Ve¢ - f) = 0 so we may apply the
identity (B.10) to conclude that ReA < 0. If ReA = 0 then from the properties of £ we have
Ve f € Span{&1G, G}, However, we may explicitly verify that if V¢ - f satisfies (B.7) with A =0
then V¢ - f & Span{{1G, &G}, As a consequence, we must have Re A < 0.

In order to prove the existence of u, it remains to rule out the possibility that there exists a
sequence of eigenvalues {\;} so that Re\; /0 and |Im\;| — oco. If ReX > —% then integrating
by parts in the second term in (B.10) we have

2 _ (3 _ 2 2
IVe(Ve - f)HLg(oo) = (5 —Re N[V fHLg(oo) <2V fHLg(oo)-

Further, a similar computation to (B.10) yields

[T ] (Ve - £y = lal Tmlg - Ve(Te - 1), Ve oo
< o] lglag I Ve(Ve - F)ll 2o IVe - Fllzzioo
2
S lal 196 fI2(ey:

As the (discrete) spectrum of £ — ol on Lg(oo) consists only of isolated points, it is then clear that

there exists some 0 < p < % so that
Re ) < —pu.

Case 2: V¢ - f=0,&- f#0. Here we may use the identity (B.9) with the fact that

to show that Re A < —%.

Case 3: V¢ - f=0=¢- f. If A = 0 then from the identity (B.8) and the properties of £ we have
f € Span{G}, which is a contradiction as V¢ - f = 0. Otherwise we may integrate the equation
(L —al')f = Af to show that Pyf = 0 so from the properties of L,

<£fa f>Lg(oo) < _%anig(oo)

We may then apply the identity (B.8) to again conclude that Re A < —%. O
Next, we consider the operator £ — aA:

Lemma B.9 ([34, Proposition 4.1)). If f such that §kV€f € Lg(oo) for all k, 0 is an eigenfunction
of L — al with eigenvalue X\, then Re A < 0. Further, if fRQ fdé =0 then Re X < f%.

Proof. A short computation shows that A is skew-adjoint on Lg(oo). As a consequence,
Re Al £ 172 (o0) = Re(LS, £)-

The result then follows from Proposition B.3. 0
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Next, we consider the operator £ — o=, and have the following:

Lemma B.10. If [ such that ka f e L2( ) for all k,¢ is an eigenfunction of L — o= with
etgenvalue X\, then Re A < 0.

Proof. We recall that for F' = V¢ - f we have
(L—ag-Ve)F =(A—3)F.
As PyF' = 0 we may then use Proposition B.3 to obtain
(ReA = DIFIR ) = (CF, Frzy < ~3 1 Fl220
and hence Re A < 0. ]

Finally, we consider the operator £ — all:

Lemma B.11. If f such that fkvgf € Lg(oo) for all k, ¢ is an eigenfunction of L — oIl with
etgenvalue A\, then Re A < 0.

Proof. We recall that F' = dive f satisfies the equation
(L—al)F +a(Ve-F)g=(A—3)F.

Arguing as in Lemma B.8 we see that {- F, V¢ - F € Lg(oo) satisfy the equations

L(§-F) =46 F) =2V F—ag V(€ F) = (A= $)(¢ - F),
L(Ve-F)+5(Ve F)=(A=35)(Ve- F)
Integrating by parts then yields the analogues of the identities (B.8)—(B.10):
(B11)  ReA|Fliz) = (F F) 2(0) + SIF Iz + @ Re(p - F + Ve - €+ F) gz,
(B12) ReAlg - Fll2y) = (£(€- F), € F)pzoe) — 2Re(Ve - F,E F)
(BA3)RA|Ve - FI12,) = (£(Ve F), Ve Py + Ve - FI2,

(00)>

(o0)

where the functions p = —

11¢12 _11#2 2
|£|4(1_e il 4W‘1§|2€ il g = |£|2(1_e 1lél ).

Case 1: V¢ - F # 0. We observe that Py(V¢-F) = 0 and as F' = dive f we also have P;(V¢- F) = 0.
From Proposition B.3 we then have,

(L(Ve F), Ve F)zoe) < ~IF Iz

so from the identity (B.13) we obtain Re A < 0.
Case 2: V¢ - F =0, &- F # 0. Here we simply apply the identity (B.12) to obtain Re A < 0.

Case 3: V¢ - F =0=¢- F. Here we apply the identity (B.11) and use the fact that PyF' = 0 to
obtain

(LF. F) 13(00) + 31330y 0.
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B.6. Essential spectrum and growth bound

Given a bounded operator T' on a Banach space X, its essential spectrum o,s5(7") is the set of A € C
such that 7' — X is not Fredholm. The essential spectral radius is then given by

Tess(Ty X) = sup{|Al, A € 0ess(T)}.
Lemma B.12. With the previous definition,

Tess(eTE70T), Lg(m)) = Tess(eT(ﬁ_aA),Lg(m)) —e 27,

Tess(eT(E_aF), L%) _ ress(er(ﬁ—oﬁ)’ L%) _ Tess(eT(ﬂ—aH)7 Lé) -1

Proof. The essential spectrum is stable by compact perturbations. Relying on [33, Theorem A.1],
33, Proposition A.2], the result follows from the fact that e™“=°1) and e7(£=2A) are compact pertur-
bations of e™£ on Lg (m), and similarly that eT(L=al) or(£=aB) om(L=all) 416 compact perturbations
of e™* on L%. O

Using the previous estimates we may now complete the proof of Propositions B.1, B.2:

Proof of Proposition B.1. By [20, Definition IV.2.10], the essential growth bound of the semigroups
eTf=el) and em(6=M) on Lg(m) is wess = 152, By [20, Corollary IV.2.11], we learn that o(£ —
al)N{A| ReX > 152} and o(£ — aA) N {A | Re A > 152} only consist of eigenvalues.

Lemmas B.4, B.8 show that all eigenvalues of £ — al’ on Lg(m), with m > 1, satisfy Re A < 0;
with the improvement if m > 1 + 24 that Re A < —p, for some = p(a) € (0, 3] whenever a # 0.
Similarly, Lemmas B.5, B.9 show that all eigenvalues of £ — aA on Lg(m)7 with m > 1, satisfy
Re A < 0; with the improvement Re A < —p on Lg(l +2u), with 0 < pu < %, whenever [ f*d¢ = 0.

Applying [20, Corollary IV.2.11] once again gives the desired growth bounds of both semigroups,
since for m > 1 + 2u, we have e #7 > e

O]

Proof of Proposition B.2. Applying an identical argument to the proof of Proposition B.1 we see
that the essential growth bound of the semigroups eT(L—al) o7(£—0F) or(L-all) oy L% i8S Wess = 0.
Further, applying Lemmas B.4, B.8 for £L—al’, Lemmas B.6, B.10 for £—aZ= and Lemmas B.7, B.11
for £ — oll we see that all eigenvalues of the corresponding operators satisfy ReA < 0. The
corresponding growth bounds for the semigroups then follow from [20, Corollary IV.2.11]. O
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