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ABSTRACT

Diagnostic assays utilizing fluorescent reporters in the context of low abundance biomarkers for cancer and infectious disease can reach
lower limits of detection through efficient collection of emitted photons into an optical sensor. In this work, we present the rational design,
fabrication, and application of one-dimensional photonic crystal (PC) grating interfaces to accomplish a cost-effective prism-free, metal-free,
and objective-free platform for augmentation of fluorescence emission collection efficiency. Guided mode resonance (GMR) of the PC is engi-
neered to match the laser excitation (532 nm) and emission maximum (580 nm) of the radiating dipoles to arrive at optimized conditions.
The photo-plasmonic hybrid nano-engineering using silver nanoparticles presented >110-fold steering fluorescence enhancement enabling
placement of the sample between the excitation source and detector that are in a straight line. From the experimental and simulation infer-
ences, we propose a radiating GMR model by scrutinizing the polarized emission properties of the hybrid substrate, in accordance with the
radiating plasmon model. The augmented fluorescence intensity realized here with a simple detection instrument provides sub-nanomolar
sensitivity to provide a path toward point-of-care scenarios.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0203999

Many current biosensing technologies that utilize fluorescent
reporters require an optical microscopy setup in which an expensive
objective is used to collect the fluorescence emission.1–3 Photo-
plasmonic interfaces have been developed to augment the performance
of such devices where the effective cost of the fluorescent detection
instrument has been significantly reduced by using functional nano-
engineering approaches and lower numerical aperture objectives.4–6 In
prior reports, we described the design, fabrication, and application of
grating based photonic crystals (PCs) for photonic crystal enhanced
fluorescence (PCEF), for applications that include cancer biomarker
detection and infectious disease diagnostics.7–11 There are many
reports that utilize prism-dependent platforms to collect the highly
directional fluorescence emission that, in turn, enhances the sensitivity
of the instrument.12–14 In the early 2000s, Lakowicz and co-workers
proposed the radiating plasmon model where the radiating dipoles

excite the plasmons.13,15 These excited plasmons radiate to the far-field
by carrying the characteristics of the radiating dipoles (emission attri-
bute) and the plasmons (polarization attribute). Following this revela-
tion, numerous plasmonic metal thin film-based biosensing
approaches have been established rendering high sensitivity due to sig-
nificantly enhanced fluorescence.16–18 However, the plasmonic metal
thin film-based sensing platforms such as surface plasmon coupled
emission (SPCE) suffer from two major drawbacks: (i) parasitic
Ohmic losses in metal-containing structures and (ii) the critical role of
the prism to achieve phase matching conditions in the generation of
propagating plasmon polaritons.19,20 In this Perspective, photonic
crystal Bragg mirrors sustaining Bloch surface waves (BSWs) and
internal optical modes (IOMs) were recently investigated in photonic
crystal-coupled emission (PCCE) technology.21–23 The utility of such
all-dielectric interfaces has facilitated overcoming the first drawback,
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albeit at the expense of using a prism-dependent setup for biosensing
applications. The critical unavoidable role of the prism in
Kretschmann or reverse Kretschmann configuration arises from the
dispersion properties of the metal thin films and Bragg mirrors. High-
end fabrication and exorbitant methodologies dependent metal–
dielectric–metal (MDM) and Tamm state-coupled emission (TSCE)
configurations have been incorporated in the past not only to just
overcome the dependence on the prism but also to realize the quintes-
sential steering emission.24–26 Steering emission is a fluorescence out-
put in which the optical setup is simplified and enables placement of
the sample between the source and the detector in a straight line. We
seek to achieve steering emission and to overcome existing limitations
of the current methodologies.

In this work, we present an all-dielectric Bragg grating-based PC
interface. The properties of the loss-less GMR are exploited to achieve
unique steering fluorescence enhancements. While the prism-
dependent SPCE and PCCE assist in obtaining directional (not steering)
!10-fold27 and !40-fold28 fluorescence enhancement as compared to
the glass interface, a !25-fold enhancement in the “Photonic Crystal-
coupled Enhanced Steering (PCES)” emission is demonstrated for iden-
tical conditions in a prism-free, metal-free, and objective-free setup.
Furthermore, nano-engineering was incorporated to further augment
the fluorescence intensity to >110-fold using cavity-driven photo-plas-
monic hotspots.

In order to accomplish direct comparisons, the conventionally
used fluorescent reporter molecule, rhodamine B, was used as the radi-
ating dipole in all the studies, with a 532 nm continuous wave (c.w.)
laser, 550 nm long wave pass (LWP) filter, and a fiber optic (coupled
to collimating lens) spectrometer (2000þ) connected to Ocean Optics
SpectraSuite software. All the PC substrates were cleaned with piranha
solution (4:1 ratio of H2SO4 and H2O2 solutions) and rinsed with ace-
tone, IPA, and Milli-QVR water before use. The radiating dipoles were
interfaced over the PC substrate using a well-established spin coating
method.19,22,27 Two % PVA polymer spin-coated films applied at
3000 rpm for 1minute yielded!65 nm thin films (degree of hydrolysis
86%–89%; molecular weight 85 000–12000 and 4000 g/mol). All the
PC substrates for fluorescence measurements were fabricated by
embedding the radiating dipoles in the polymer matrix and spin coat-
ing, followed by mounting on a calibrated 360# rotating stage, with
optical configuration shown in Fig. 1(a). Simply put, from the SPR and
SPCE point of view, the instrument can be visualized as a reverse
Kretchmann (RK) configuration without a prism.19,22,27 A scanning
electron microscope (SEM) image of the parent PC (PC1) is shown in
Fig. 1(b) along with its 3D atomic force microscope (AFM) profile.
The AFM top view is presented in Fig. 1(c), along with the correspond-
ing height profile in Fig. 1(d), demonstrating the depth of the grooves
to be !28 nm. The SEM images of all the three variants (PC1, PC2,
and PC3) are presented in Fig. S1.

Numerical simulations by rigorous coupled-wave analysis
(RCWA) were performed to evaluate the thickness conditions for
achieving the desired shift in the resonance of the PC. In order to
accomplish tunable transmittance resonances, the parent PC1 was ini-
tially sputter coated using TiO2 and then spin coated with PVA dielec-
tric [Figs. 1(e)–1(g)]. The 28 and 80nm sputter coated PCs are
referred to as PC2 and PC3 with the transmittance resonances for all
the three variants shown in Fig. 1(h). Spin coating !65 nm thin films
of PVA dielectric over these substrates yielded resonance shifts as

shown in Fig. 1(i). The consistency in the PVA thickness analysis
across all PC variants is presented in the supplementary material (Figs.
S2–S4). These conditions are carefully chosen to comprehensively
scrutinize the coupling characteristics of the radiating dipoles (embed-
ded in PVA matrix) with the GMR of the underlying PCs. While the
!500 nm GMR of PC1 serves as a substrate with a hypsochromic shift
from the absorbance spectrum of the radiating dipole (also where the
laser excitation is executed), the!575nm GMR of PC3 serves as a var-
iant for bathochromic shift from the absorption maximum and excita-
tion laser line (Fig. 1). Although the PC2 presents the GMR at
!530 nm and exhibits ideal characteristics for PCCE on the account of
excellent overlap between the laser excitation and dye’s absorption, the
experimental observations made in this work establish intriguing
observations in line with the radiating surface wave model.13,29 The
transmittance of all the PC variants with and without PVA and input
and output polarizers is discussed in the supplementary material (Figs.
S5–S7). The spectral information of the white light used for all the
transmittance measurements is also presented (Fig. S8).

The experimental fluorescence data for PC3 are overlapped with
the experimental transmittance spectra for unpolarized [Fig. 2(a)], TE-
polarized [Fig. 2(b)], and TM-polarized [Fig. 2(c)] out-coupled light at
0# (the detector and laser are in straight line). We have chosen PC3 for
representation here because this particular variant engendered the
highest fluorescence enhancements among all the three variants. From
Figs. 2(a)–2(c), it is evident that there is an excellent overlap between
the experimental transmittance and fluorescence spectra for all the
polarizations. In other words, the emitted photons from the RhB radi-
ating dipoles are out-coupled to the detector region via the allowed
modes of the underlying substrate. Furthermore, the overlap of the
experimental PCCE at different polarizations of out-coupled emission
is presented in Fig. 2(d), highlighting the high polarization selectivity
of the out-coupled emission. The numerically calculated dispersion
diagram for PC3 is presented in Fig. 2(e), along with the overlap of the
same with the experimental fluorescence data in Fig. 2(f) (the disper-
sion diagrams of experimental fluorescence and simulated results for
PC1, PC2, and PC3 for TE and TM polarizations are presented in Figs.
S9–11). In addition to enabling 0# steering emission, PC3 also demon-
strates high fluorescence counts as compared to PC2 and PC1

[Fig. 2(g)]. The PCCE enhancements calculated as a direct ratio22,23 of
PCCE intensity counts to that of the fluorescence intensity counts over
the glass substrate are shown in Fig. 2(h) along with the percentage
polarization presented in Fig. 2(i), for all the three variants at optimum
outcoupling angle. From the fluorescence intensity counts as well as
the enhancements, it is clear that PC3 yielded highest fluorescence
enhancements among the three variants.

These experimental results, supported by numerical calculations,
present interesting inferences, namely: (i) engineering GMR of PC at
wavelengths far from absorbance and emission spectra of radiating
dipoles yields negligible fluorescence enhancements. (ii) Engineering
the GMR of the PC exactly overlapping the laser line and the absor-
bance of radiating dipoles need not necessitate highest fluorescence
enhancements. This is because the PC is not resonating at the emission
wavelength of the radiating dipole. (iii) Although the GMR is not
directly excited by the laser line in the PC3 variant, the out-coupled
steering emission is highly polarized with boosted fluorescence inten-
sity, presenting highest fluorescence enhancements. This observation
re-emphasizes the understanding that GMR of the PC need not be
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excited directly using a laser line in order to obtain augmented fluores-
cence, rather the emission from the radiating dipoles can accomplish
this objective.2,13 Hence, as long as the radiating dipoles are excited by
a suitable laser line and GMR of the PC matches the emission wave-
length of the radiating dipoles, researchers can realize high fluores-
cence enhancements, in accordance with the radiating plasmon
model.2,13,30,31 These intriguing experimental observations, thus, facili-
tate the proposition of the radiating GMR model, where we state
(through observations made above) that the PCES emission can be
realized with cost-effective platforms by tailoring the GMR of the
grating-based PC to that of the emission wavelength of the radiating
dipoles (excited at appropriate wavelengths), as emitted photons from
the radiating dipoles, in turn, would excite the GMRs without require-
ment of direct laser excitation of GMR. Most importantly, the radiat-
ing dipoles not only carry their spectral signature to the far-field but
also out-couple through the allowed modes of the PC, hence carrying

the polarization selectivity of the underlying PC. Such observations
render the radiating dipole-PC conjugate system as a hybrid radiating
GMR platform. In other words, the photons captured by the detector
in the far-field are not an independent functionality of radiating
dipoles or PC disjointedly, but rather a hybrid manifestation of both of
them, where the “radiating dipole-PC” system itself functions as a
hybrid radiating entity. Although these observations are in accordance
with the radiating surface wave model29 and the radiating plasmon
model,2,13,30,31 it is worth noting that the radiating GMR model pro-
posed in this work demonstrates a prism-free, objective-free, and a
metal-free PCES emission technology. Furthermore, the additional
details pertaining to different input and output polarization dependent
fluorescence signal intensity and related discussions are presented in
the supplementary material (Figs. S12 and S13). The PCCE enhance-
ments and percentage polarization realized for all the variants at 0# are
discussed in the supplementary material (Fig. S14).

FIG. 1. Optical configuration and PC fabrication with electron microscopy, topography, and optical characterization. (a) Conceptual schematic of the optical setup used for
PCCE experimentation. (b) SEM image of the parent photonic crystal (PC1) shown along with the 3D AFM image. (c) AFM top view of the PC1. (d) Height vs distance profile of
the AFM line profile corresponding to (c). (e)–(g) Schematic of the modification of the PC with TiO2 sputtering and PVA coating. Transmittance resonance dips of PC1, PC2,
and PC3, obtained (h) without PVA and (i) with PVA, where (i) captures the laser line, absorbance, and emission of RhB, all collected experimentally.
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Furthermore, scientists in the domain of fluorescence spectros-
copy incorporate numerous approaches to amplify the fluorescence
emission intensity. The two most widely adopted techniques are: (i) use
of myriad optical elements such as focusing lens, prisms, and conical
mirrors in different configurations to improve the overall collection effi-
ciency, albeit at the expense of incorporating exorbitant optical ele-
ments, and (ii) the use of effective nano-engineering approaches to
substantially enhance the photo-plasmonic coupling efficiency at the
micro-nano-interface of different platforms.19,27,32 The second
approach not only renders a cost-effective means to develop a biosens-
ing framework but also supports mass scale production of devices, espe-
cially on the account of the nano-entities utilized that present high
surface-to-volume ratio and robust performance. Cao and co-workers
have explored several such approaches incorporating spacer, cavity, and
extended cavity nanointerfaces in SPCE and PCCE platforms.19,28,33

Our laboratory reported the use of grating-based PCs to realize boosted
fluorescence enhancements for the detection of cancer biomarkers.4,7,34

In this background, to further improve the out-coupled fluorescence
signal intensity, we present the viability of cavity nano-engineering
where the freshly prepared AgNPs (1lg ml$1) are admixed with PVA
and radiating dipoles, and spin coated over the PC surface.19,28,33

The absorbance spectra [Fig. 3(a)], TEM, HRTEM [Fig. 3(b)],
and SAED [Fig. 3(c)] of the synthesized AgNPs are comprehensively
analyzed to validate the synthesis methodology (supplementary mate-
rial, p. S16). Such cavity nanointerface generates myriad regions of
infinitesimal nanogaps between the PC and the AgNPs, where the
radiating dipoles get interfaced.19,27,31 Such nano-regimes experience
high electric field intensity on the account of the hybridized modes
from localized surface plasmon resonance (LSPR) of AgNPs and the
counter-propagating GMR based evanescent field of the underlying
PC.3,27 Consequently, the PCCE enhancements increase from
!25-fold to !110-fold with concomitant reduction in the lifetime of
the radiating dipoles (Fig. S15). While the RhB over glass presented
monoexponential decay with a lifetime of 3.58ns,20,23,32 interfacing the

FIG. 2. Experimental and theoretical analysis of fluorescence coupling with PC, enhancements, and polarization. (a) Unpolarized, (b) TE polarized, and (c) TM-polarized
transmittance spectra of PC3 overlapped with the corresponding PCCE intensity profiles. (d) Overlap of unpolarized, TE-, and TM-polarized out-coupled PCCE intensity.
(e) Computer simulated dispersion diagram of PC3. (f) Overlap of computed dispersion diagram (shown as red dots) with the experimental fluorescence spectra (shown as
shaded region). (g) Fluorescence intensity spectra, (h) PCCE enhancements, and (i) percentage polarization obtained at optimum outcoupling angle for all three variants under
investigation, PC1, PC2, and PC3.
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same over the PC and with AgNPsþPC hybrid yielded monoexponen-
tial 2.05ns and biexponential lifetime contributions (0.14ns, 67.5%
and 2.65 ns, 32.5%), respectively. Hence, we envisage a high radiative
decay rate facilitated by the judicious synergy of plasmonic AgNPs and
underlying PC.20,23,32 Importantly, while metal-dependent SPCE plat-
form renders !10-fold and !60-fold for blank and AgNPs-cavity
interface, respectively, this Letter experimentally validates the preem-
inence of metal-free, loss-less PC based platform for realization of
!25-fold and >110-fold PCCE enhancements under identical condi-
tions. The excellent overlap between the numerically calculated and
experimentally obtained dispersion diagrams is presented in Fig. 3(d).
In order to verify the relevance and robustness of the subject platform
for biosensing applications, the typical SPCE and PCCE reporter mole-
cule, RhB, was studied in the hybrid nanocavity interface at different
concentrations ranging from 1mM to 0.1 pM [Fig. 3(e)]. The platform
demonstrates a large linear sensing regime from 0.1mM to 0.01nM
with high sensitivity estimated as the slope (3172/dec) and !10 pM

limit of detection, with high reproducibility (standard deviation pre-
sented for triplicate measurements) [Fig. 3(f)].

The major breakthroughs in the plasmon-controlled fluorescence
spectroscopy are summarized conceptually in Fig. 3(g). Following the
cogent observations and reports of radiative decay engineering series
1–8 by Lakowicz and co-workers,35–37 a plethora of innovations espe-
cially associated with MDM,24,25 TSCE,26 SPCE,19,38 PCCE,21,23 and
graphene oxide39 based biosensing platforms have been documented
and succinctly captured in Fig. 3(g). The current report demonstrates
the robustness of a highly desirable approach using photo-plasmonic
dielectric-metal hybrid interface for augmenting the fluorescence signal
intensity. In the case of adjacently situated plasmonic NPs and radiating
dipoles, the radiation pattern and intensity of the fluorescence are sig-
nificantly modulated by the plasmonic NPs. Consequently, the system
has been justifiably addressed as plasmophore (plasmonþfluorophore)
as the radiation in the far-field renders photons that carry the character-
istic information of both the plasmons and the radiating dipoles.2,13,30,31

FIG. 3. Nano-engineering plasmonic AgNPs over PCCE substrate for picomolar RhB sensing. (a) Absorbance spectra of AgNPs in duplicates and blank (Milli-QVR water).
(b) TEM image of AgNPs shown with the HRTEM depicting the characteristic lattice fringes of Ag. (c) SAED of AgNPs. (d) Overlap of the numerically calculated dispersion
diagram for PC3 (shown as dotted red line) with that of the experimentally obtained fluorescence intensity (shown as shaded region). (e) Fluorescence intensity spectra and
(f) intensity counts from PCCE incorporating AgNPs, for the detection of RhB molecules at different concentrations. (g) Conceptual schematic of the development of biosensing
platforms based on fluorescence spectroscopy spanning the past !20 years.
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In this scenario, the emitted photons from the excited radiating dipoles
are coupled to the LSPR of AgNPs and GMR of PC, thereby resulting
in a coherent and collective photo-plasmonic coupling efficiency. In
other words, while the AgNPs by themselves foster PCF (through gen-
eration of plasmophore) via occurrence of radiating plasmon, the GMR
of the PC presents augmented and highly polarized fluorescence signal
intensity via the radiating GMR model. Hence, this report presents a
comprehensive understanding of nano-engineering at PC interface,
highlighting the advantages it offers to synergistically understand the
physicochemical interactions of numerous nanomaterials such as ferro-
magnetic, ferrielectric, piezoelectric, transition metal, lanthanide oxides,
and low-dimensional substrates (0D, 1D, and 2D), to name a few from
the perspective of futuristic scope of the work (outlined in Fig. S16).
Such exploration would not only present valuable insights to the opto-
electronic community but also engender the development of myriad
PCES emission biosensing frameworks for the detection of molecular
biomarkers and environmentally relevant hazardous analytes.

In the development of biosensing technologies, there is always a
quintessential requirement to constantly upgrade the performance of
the device with respect to sensitivity, reproducibility, and robustness.
Recently, awareness toward simplifying the optical detection technolo-
gies has been garnering tremendous importance from sustainable mass
scale production perspective vis-!a-vis the scientific rigor-propelled dis-
cipline-driven exploration of cumbersome, exorbitant, and non-user-
friendly platforms that render unprecedented performance. In this
context, this Letter presents an effective nano-engineering method to
generate hybrid radiating GMR platforms, demonstrating high fluores-
cence enhancement and polarization selectivity enabling quantitative
analysis via reliable and reproducible picomolar limit of detection of
target analyte. Our approach supports the development of early diag-
nostic tools, especially in the point-of-care domain catering to the
needs of resource-scarce settings.

See the supplementary material for details on comprehensive
characterization of the substrates under investigation, using AFM,
SEM, FIB-SEM, and TEM; transmittance measurements; and lifetime
analysis. The dispersion diagrams obtained via simulations and experi-
mental fluorescence for all the three variants of PC (PC1, PC2, and
PC3) is discussed for TM and TE polarizations of light. The free space
(FS), PCCE intensity analysis and the transmittance data analysis
under different input and output polarizations (TM and TE) of light
are discussed. The scope and perspectives of the current research are
outlined, presenting opportunities for future work in this direction.
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