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The space of embedded minimal surfaces of
fixed genus in a 3-manifold V; Fixed genus

By ToBias H. CoLDING and WILLIAM P. MiNicozz1 11

Abstract

This paper is the fifth and final in a series on embedded minimal surfaces.
Following our earlier papers on disks, we prove here two main structure
theorems for nonsimply connected embedded minimal surfaces of any given
fixed genus.

The first of these asserts that any such surface without small necks
can be obtained by gluing together two oppositely-oriented double spiral
staircases.

The second gives a pair of pants decomposition of any such surface when
there are small necks, cutting the surface along a collection of short curves.
After the cutting, we are left with graphical pieces that are defined over a
disk with either one or two sub-disks removed (a topological disk with two
sub-disks removed is called a pair of pants).

Both of these structures occur as different extremes in the two-parameter
family of minimal surfaces known as the Riemann examples.
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The two main structure theorems for nonsimply connected surfaces:

One of the “pair of pants” (in bold).

-

// A o
/

The curves that we cut along.

Figure 1. Absence of necks: Figure 2. Presence of necks:
The surface can be obtained by The surface can be decom-
gluing together two oppositely- posed into a collection of pair
oriented double spiral stair- of pants by cutting along short
cases. curves.

0. Introduction

This paper is the fifth and final in a series where we describe the space of
all properly embedded minimal surfaces of fixed genus in a fixed (but arbitrary)
closed 3-manifold. We will see that the key is to understand the structure of an
embedded minimal planar domain in a ball in R?. Since the case of disks was
considered in the first four papers, the focus here is on nonsimply connected
planar domains; the two main structure theorems of this paper are illustrated
in Figures 1 and 2.

We will first restrict to the case of planar domains, i.e., when the surfaces
have genus zero. In particular, the main theorems will first be stated and proved
for planar domains. We will see that the general case of fixed genus requires
only minor changes. The necessary changes to the main theorems and the
modifications needed for their proofs will be given in Part VII.

Sequences of planar domains that are not simply connected are, after pass-
ing to a subsequence, naturally divided into two separate cases depending on
whether or not the topology is concentrating at points. To distinguish between
these cases, we will say that a sequence of surfaces X2 C R? is uniformly locally
simply connected (or ULSC) if for each compact subset K of R3, there exists
a constant ro > 0 (depending on K) so that for every z € K, all r < ro,' and
every surface X;,

(0.1) each connected component of B,.(z) N Y; is a disk.

1f each component of the intersection of a minimal surface with a ball of radius rg is a
disk, then so are the intersections with all sub-balls by the convex hull property (see, e.g.,
Lemma C.1 in [CM04e]). Therefore, it would be enough that (0.1) holds for r = rg.
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For instance, a sequence of rescaled catenoids where the necks shrink to zero
is not ULSC, whereas a sequence of rescaled helicoids is.

Another way of locally distinguishing sequences where the topology does
not concentrate from sequences where it does comes from analyzing the singular
set. The singular set S is defined to be the set of points where the curvature
is blowing up. That is, a point y in R? is in S for a sequence 3; if
(0.2) sup |A|? = co as i — oo for all 7 > 0.

Br(y)NZ;
We will show that for embedded minimal surfaces, S consists of two types of
points. The first type is roughly modelled on rescaled helicoids and the second
on rescaled catenoids:

e A point y in R? is in Sy if the curvature for the sequence ; blows
up at y and the sequence is ULSC in a neighborhood of y.

e A point y in R? is in Spee if the sequence is not ULSC in any neigh-
borhood of y. In this case, a sequence of closed noncontractible curves
~v; C X; converges to y.

The sets Speck and Syl are obviously disjoint and the curvature blows up at
both, s0 Speck U Suise € S. Proposition 1.0.19 of [CM04d] implies that, after
passing to a further subsequence, each point y € S\ Speck has a radius r, > 0
so that each component of B, (y) NY; is a disk for every j. In other words,
this proposition implies that S is given as the disjoint union

(03) S = Sneck U SulSC‘

Note that Specx = 0 is equivalent to that the sequence is ULSC as is the case
for sequences of rescaled helicoids. On the other hand, Sy = () for sequences
of rescaled catenoids. These definitions of Sy and Spec are specific to the
genus zero case that we are focusing on now; the slightly different definitions
in the higher genus case can be found around equation (VII.1.2).

We will show that every sequence 3; has a subsequence that is either
ULSC or for which Sy is empty. This is the next “no mixing” theorem. We
will see later that these two different cases give two very different structures.

THEOREM 0.4. If ¥; C Bg, = Bg,(0) C R? is a sequence of compact
embedded minimal planar domains® with 0%; C O0BRr, where R; — o0, then
there is a subsequence with either Sysc = 0 or Speck = 0.

In view of Theorem 0.4 and the earlier results for disks, it is natural to
first analyze sequences that are ULSC, so where Syecc = (), and second analyze
sequences where Syisc is empty. We will do this next.

2The theorem holds also for sequences with fixed genus; see Part VII.
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As already mentioned, our main theorems deal with sequences ¥; C Bgr, =
Bg,(0) C R? of compact embedded minimal planar domains with 9%; C O0BRp,
where R; — oco. We will assume here that these planar domains are not
disks. (Recall that the case of disks was dealt with in [CM04b]-[CM04e].) In
particular, we will assume that for each 7, there exists some y; € R3 and s; > 0
so that

(0.5) some component of By, (y;) NY; is not a disk.

Moreover, if the nonsimply connected balls Bs, (y;) “run off to infinity” (i.e., if
each connected component of By, (0)NY; is a disk for some R; — 00), then the
results of [CM04b]-[CM04e] apply. Therefore, after passing to a subsequence,
we can assume that the surfaces are uniformly not disks — namely, that there
exists some R > 0 so that (0.5) holds with s; = R and y; = 0 for all 7.

In general, we will allow our sequence of surfaces to have bounded genus.
Recall that for a surface 3 with boundary 0%, the genus of ¥ is the genus of
the closed surface 3 obtained by adding a disk to each boundary circle. The
genus of a union of disjoint surfaces is the sum of the genuses. Therefore, a
surface with boundary has nonnegative genus; the genus is zero if and only if
it is a planar domain. For example, the disk and the annulus both have genus
zero; on the other hand, a closed surface of genus g with any number of disks
removed has genus g.

Common for both the ULSC case and the case where Sy is empty is
that the limits are always laminations by flat parallel planes and the singular
sets are always closed subsets contained in the union of the planes. This is the
content of the next theorem.

THEOREM 0.6. Let 3; C Br, = Bg,(0) C R3 be a sequence of compact
embedded minimal planar domains® with 90%; C O0BpR, where R; — oo. If

(0.7) sup A2 = oo,
B1NY;

then, after a rotation of R3, there exists a subsequence Y, a lamination L =
{73 = t}yery of R? by parallel planes (where T C R is a closed set), and a
closed nonempty set S in the union of the leaves of L such that

(A) For each 1> a >0, ¥;\S converges in the C*-topology to the lamination
L\S.

(B) supp, (2)ng; |A|? = 00 as j — oo for allr > 0 and x € S. (The curvatures
blow up along S.)

3The theorem holds also for sequences with fixed genus; see Part VII.
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Before discussing the general ULSC case, it is useful to recall the case of
disks. One consequence of [CM04b]-[CMO04e]| is that there are only two local
models for ULSC sequences of embedded minimal surfaces. That is, locally in
a ball in R?, one of following holds:

e The curvatures are bounded and the surfaces are locally graphs over a plane.
e The curvatures blow up and the surfaces are locally double spiral staircases.

Both of these cases are illustrated by taking a sequence of rescalings of the
helicoid; the first case occurs away from the axis, while the second case occurs
on the axis. Namely, recall that the helicoid is the minimal surface ¥ in R3
parametrized by

(0.8) (scost, ssint,t) where s, t € R.

If we take a sequence X; = a; ¥ of rescaled helicoids where a; — 0, then the
curvature blows up along the vertical axis but is bounded away from this axis.
Thus, we get that

e The intersection of the rescaled helicoids with a ball away from the vertical
axis gives a collection of graphs over the plane {z3 = 0}.

e The intersection of the rescaled helicoids with a ball centered on the vertical
axis gives a double spiral staircase.

Loosely speaking, our next result shows that when the sequence is ULSC
(but not simply connected), a subsequence converges to a foliation by parallel
planes away from two lines &1 and Ss; see Figure 3. The lines & and S
are disjoint and orthogonal to the leaves of the foliation and the two lines are
precisely the points where the curvature is blowing up. This is similar to the
case of disks, except that we get two singular curves for nondisks as opposed
to just one singular curve for disks. (The precise statement for disks is recalled
in Part I.)

Limit foliation by planes.

\

A —

Singular lines S; and So.

Figure 3. Theorem 0.9: Limits of sequences of nonsimply connected,
yet ULSC, surfaces with curvature blowing up. The singular set con-
sists of two lines 1 and Ss, and the limit is a foliation by flat parallel
planes.
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THEOREM 0.9. Let a sequence ¥;, limit lamination L, and singular set S
be as in Theorem 0.6.* Suppose that each ¥; satisfies (0.5) with s; = R > 1
and y; = 0. If every 3; is ULSC and

(0.10) sup |A|? = oo,

BiNY;
then the limit lamination L is the foliation F = {x3 = t}; and the singular set
S is the union of two disjoint lines S1 and Sy such that

(Cuise) Away from S;USs, each ¥ consists of exactly two multi-valued graphs
spiraling together. Near 81 and Sa, the pair of multi-valued graphs form
double spiral staircases with opposite orientations at S1 and Ss. Thus,
circling only S1 or only S results in going either up or down, while a
path circling both S1 and Sa closes up (see Figure 6).

(Duse) S1 and Sy are orthogonal to the leaves of the foliation.

Notice that Theorem 0.9 shows that if the fixed genus ULSC surfaces
>; have curvature blowing up, then they essentially have genus zero. More
precisely, given an arbitrarily large ball Bg C R?, then BpN >, has genus zero
for j sufficiently large. To see this, combine the double spiral staircase structure
near the two singular curves that holds for ULSC sequences (cf. Figure 6) with
the smooth convergence elsewhere.

Despite the similarity of Theorem 0.9 to the case of disks, it is worth noting
that the results for disks do not alone give this theorem. Namely, even though
the ULSC sequence consists locally of disks, the compactness result for disks
was in the global case where the radii go to infinity. One might wrongly think
that Theorem 0.9 could be proven using the results for disks and a blow up
argument. However, local examples constructed in [CMO04a] show the difficulty
with such an argument.® We shall explain this further later together with what
else is needed for the proof.

When the sequence is no longer ULSC, then there are other local models
for the surfaces. The simplest example is a sequence of rescaled catenoids; the

4The theorem holds also for sequences with fixed genus with one minor change in the
conclusion and one in the hypothesis. The change in the hypothesis is that we do not assume
(0.5). The change in the conclusion is that there might be either one or two singular curves.
Hypothesis (0.5) is used in the genus zero case to show that there cannot be just one singular
curve. The reason that we will not assume (0.5) in the fixed genus case is that there can be
either one or two singular curves in this case regardless; see Part VII.

°In [CMO04a], we constructed a sequence of embedded minimal disks 3; in the unit ball
B1 with 9%; C 0B1 where the curvatures blow up only at 0. This sequence converges to
a lamination of B \ {0} that cannot be extended smoothly to a lamination of Bi; that is
to say, 0 is not a removable singularity. This should be contrasted with Theorem 0.9 where
every singular point is a removable singularity for the limit foliation by parallel planes.
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catenoid is the minimal surface in R? parametrized by

(0.11) (cosh s cost, cosh s sint, s) where s, t € R.

A sequence of rescaled catenoids converges with multiplicity two to the flat
plane. The convergence is in the C*®°-topology except at 0 where |A|?> — oco.
This sequence of rescaled catenoids is not ULSC because the simple closed
geodesic on the catenoid — i.e., the unit circle in the {z3 = 0} plane — is
noncontractible and the rescalings shrink it down to the origin.

One can get other types of curvature blowup by considering the family of
embedded minimal planar domains known as the Riemann examples.® Modulo
translations and rotations, this is a two-parameter family of periodic minimal
surfaces, where the parameters can be thought of as the size of the necks and
the angle from one fundamental domain to the next. By choosing the two
parameters appropriately, one can produce sequences of Riemann examples
that illustrate both of the two structure theorems (cf. Figures 1 and 2):

(1) If we take a sequence of Riemann examples where the neck size is fixed and
the angles go to 7, then the surfaces with angle near 5 can be obtained
by gluing together two oppositely-oriented double spiral staircases. Each
double spiral staircase looks like a helicoid. This sequence of Riemann
examples converges to a foliation by parallel planes. The convergence is
smooth away from the axes of the two helicoids. (These two axes are the
singular set S where the curvature blows up.) The sequence is ULSC since
the size of the necks is fixed and thus illustrates the first structure theorem,
Theorem 0.9.

(2) If we take a sequence of examples where the neck sizes go to zero, then we
get a sequence that is not ULSC. However, the surfaces can be cut along
short curves into collections of graphical pairs of pants. The short curves
converge to points, and the graphical pieces converge to flat planes except
at these points, illustrating the second structure theorem, Theorem 0.12
below.

With these examples in mind, we are now ready to state our second main
structure theorem describing the case where Syisc is empty.

6See http://www.msri.org/publications/sgp/jim/geom /minimal /library /riemann /index.
html for a description, as well as computer graphics, of these surfaces.
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THEOREM 0.12. Let a sequence ¥;, limit lamination L, and singular set
S be as in Theorem 0.6.7 If Sysc = 0 and

(0.13) sup A2 = oo,
B1NY%;

then & = Speck by (0.3) and

(Check) Each pointy in S comes with a sequence of graphs in X; that converge
to the plane {x3 = x3(y)}. The convergence is in the C*°-topology away
from the point y and possibly also one other point in {x3 = x3(y)} NS.
If the convergence is away from one point, then these graphs are defined
over annuli; if the convergence is away from two points, then the graphs
are defined over disks with two subdisks removed.

Theorem 0.12, as well as Theorem 0.4, are proven by first analyzing se-
quences of minimal surfaces without any assumptions on the sets Sy and
Sheck- In this general case, we show that a subsequence converges to a lam-
ination £’ divided into regions where Theorem 0.9 holds and regions where
Theorem 0.12 holds. This convergence is in the smooth topology away from
the singular set & where the curvature blows up. Moreover, each point of S
comes with a plane and these planes are essentially contained in L'; see (P)
below. The set of heights of the planes is a closed subset Z C R but may not
be all of R as it was in Theorem 0.9 and may not even be connected. The
behavior of the sequence is different at the two types of singular points in § —
the set Speck of “catenoid points” and the set Sy of ULSC singular points.
We will see that Sy consists of a union of Lipschitz curves transverse to the
lamination £. This structure of Sysc implies that the set of heights in Z that
intersect Syisc is a union of intervals; thus this part of the lamination is foliated.
In contrast, we will not get any structure of the set of “catenoid points” Speck;
see (D) below. Given a point y in Syeck, we will get a sequence of graphs in X;
converging to a plane through y; see (C1) below. This convergence will be in
the smooth topology away from either one or two singular points, one of which
is . Moreover, this limit plane through y will be a leaf of the lamination L.

The precise statement of the compactness theorem for sequences that are
neither necessarily ULSC nor with Sysc = 0 is the following (see Figure 4):

"The theorem holds also for sequences with fixed genus with one small change in (Check)-
Namely, the number of points in (Check) is bounded by two plus the bound for the genus; see
Part VII.
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THEOREM 0.14. Let ; C Bg, = Bg,(0) C R? be a sequence of compact
embedded minimal planar domains® with 0¥; C O0BRr, where R; — oo. If

(0.15) sup A2 — oo,
B1NY;

then there is a subsequence ¥j, a closed set S, and a lamination L' of R3\ S
so that

(A) For each 1 > a >0, ¥;\S converges in the C“-topology to the lamina-
tion L'.

(B) supg, (o)ns, |A|? = 00 as j — oo for allm > 0 and v € S. (The curva-
tures blow up along S.)

(C1) (Check) from Theorem 0.12 holds for each point y in Speck. Further, the
possible second singular point in the plane is also in Speck-

(C2) (Cusc) from Theorem 0.9 holds locally near Sys.. More precisely, each
point y in Suysc comes with a sequence of multi-valued graphs in ¥;
that converge to the plane {x3 = x3(y)}. The convergence is in the
C™>-topology away from the point y and possibly also one other point in
{zs = x3(y)} N Susc. These two possibilities correspond to the two types
of multi-valued graphs defined in Section 1.

(D) The set Sysc is a union of Lipschitz curves transverse to the lamination.
The leaves intersecting Suse are planes foliating an open subset of R3
that does not intersect Speck. For the set Speck, we make no claim about
the structure.

(P) Together (C1) and (C2) give a sequence of graphs or multi-valued graphs
converging to a plane through each point of S. If P is one of these planes,
then each leaf of L' is either disjoint from P or is contained in P.

Note that Theorem 0.14 is a technical tool that will be used to prove the
main compactness theorem in the non-ULSC case, Theorem 0.12. In particular,
Theorem 0.14 itself will be superseded by the stronger compactness theorems
in the ULSC and non-ULSC cases, Theorems 0.9 and 0.12. This is because
eventually we will know by the no mixing theorem that either Speac = @ or
Suse = 0, so that these cover all possible cases. Moreover, the assertions in
Theorems 0.9 and 0.12 are stronger than those in Theorem 0.14.

After proving Theorem 0.14 in Part IV, we will be ready in Part V to
prove the no mixing theorem, Theorem 0.4.

In Part VI, we will then complete the proof of Theorem 0.12. The main
point left, which is not part of Theorem 0.14, is to prove that every leaf of the
lamination £ in Theorem 0.12 is a plane. In contrast, Theorem 0.14 gives a

8The theorem holds also for sequences with fixed genus; see Part VII.
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Foliated regions of the lamination L.

RN

Sulse consists of curves.

~<

/7/
No structure for points in Speck.

Figure 4. Theorem 0.14: Limits of sequences of non-ULSC surfaces
with curvature blowing up. The limit is a lamination of R?\ S. The
singular set S consists of two types of points — the ones in Spec and
the ones in Syjsc. Note that the set Speci is automatically closed, while
the set Syisc is not. The set Sy is a union of Lipschitz curves; the
injectivity radius goes to zero at the endpoints of these curves, so these
endpoints are in Syeck. Finally, the part of the lamination containing
Suse 18 foliated by planar leaves.

plane through each point of Speqc but does not claim that the leaves of £ are
planar.

Finally, since the no mixing theorem implies that Theorems 0.9 and 0.12
cover all cases, Theorem 0.6 will be a corollary of these two theorems.

We refer to the introduction of [CM04e] and the surveys [MP04], [P05],
and [Ros03] for related results, including applications of the results of [CM04b]—
[CMO4e] as well as the results of this paper. There is much current research
on minimal surfaces with infinite topology. Some of the results of the present
paper were announced previously and have already been widely used to study
infinite topology minimal surfaces; see, e.g., [MP04], [MPRO04a], [MPRO04b],
[MPR], and [P05].

These results have more recently been used by Meeks, Perez, and Ros in
their important paper on the uniqueness of the Riemann examples, [MPR15].

0.1. Brief outline of the paper and overview of the proofs. In Section 1,
we will define the two notions of multi-valued graphs that will be needed to
explain and prove the two main theorems.

Part I is devoted to recalling some of the earlier results for disks given
in [CM04b]-[CM04¢] and [CMO08]. The first of these shows that embedded
minimal disks are either graphs or are part of a double spiral staircase. The
second result that we recall is the one-sided curvature estimate. Finally, we
will recall the chord-arc bound for embedded minimal disks proven in [CMO08].

In Part II, we will first define the singular set S and prove the convergence
to the lamination £ away from S. The rest of the part focuses on describing
a neighborhood of each point in the ULSC singular set Sy and the leaves



FIXED GENUS 13

of £' whose closure intersects Sys.. A key point will be that the results of
[CMO04b]-[CMO04e] for disks will give a sequence of multi-valued graphs in the
¥;’s near each point x € Sysc. Moreover, these multi-valued graphs close up
in the limit to give a leaf of £’ that extends smoothly across z. Such a leaf is
said to be collapsed; in a neighborhood of x, the leaf can be thought of as a
limit of double-valued graphs where the upper sheet collapses onto the lower.
We will show that every collapsed leaf is stable,” has at most two points of
Suise in its closure, and these points are removable singularities. These results
on collapsed leaves will be applied first in the USLC case in the next part and
then later to get the structure of the ULSC regions of the limit in general, i.e.,
(C2) and (D) in Theorem 0.14.

In Part III, we prove Theorem 0.9, which gives the convergence of a
ULSC sequence to a foliation by parallel planes away from two singular curves.
Roughly speaking, there are two main steps to the proof:

(1) Show that each collapsed leaf is in fact a plane punctured at two points of
S and, moreover, the sequence has the structure of a double spiral staircase
near both of these points, with opposite orientations at the two points.

(2) Show that leaves that are nearby a collapsed leaf of £’ are also planes
punctured at two points of S. (We call this “properness.”)

In Part IV we consider general sequences of minimal surfaces that are
neither necessarily ULSC nor with Sy = () and we prove the general com-
pactness theorem, Theorem 0.14. Recall that this theorem asserts that the
limit lamination £’ can be divided into two disjoint sub-laminations, one of
which is the support of a region where (a subsequence of) the surfaces are
ULSC and all of the results about ULSC sequences from Part III hold, such
as the structure of the singular set and the multi-valued graphs structure. In
the other region, curvature blowup comes exclusively from neck pinching and,
thus, in this region there are no helicoid-like points. The key steps for proving
the general structure theorem are the following;:

(1) Finding a stable plane through each point of Spee. This plane will be a
limit of a sequence of stable graphical annuli that lie in the complement of
the surfaces.

(2) Finding graphs in ¥; that converge to a plane through each point of Syeck.
To do this, we look in regions between consecutive necks and show that in
any such region the surfaces are ULSC. The one-sided curvature estimate
will then allow us to show that these regions are graphical.

(3) Using (1) and (2) we then analyze the ULSC regions of a limit. That is,
we show that if the closure of a leaf in £’ intersects Sy, then it has a

IMore precisely, it is stable if it is orientable; otherwise, it has a stable double cover.
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neighborhood that is ULSC. This will allow us to use the argument for the
proof of Theorem 0.9 to get the same structure for such a neighborhood
as we did in case where the entire surfaces were ULSC.

In Part V, we will use the structure obtained in Theorem 0.14 to show
the no mixing theorem; Theorem 0.4. The key here is to show that if Sy is
nonempty, then Sy cannot stop.

In Part VI, we will complete the proofs of Theorems 0.6 and 0.12. The
only thing that remains to be proven is that every leaf of the lamination £’
is contained in a plane. We have already proven that the leaves of £’ are
planes when the sequence is ULSC; thus, by the no mixing theorem, the only
remaining case is when S = Specc # 0. We will divide the proof that the leaves
of £ are contained in planes into two cases, depending on whether or not the
leaf is complete. In both cases, we will use a flux argument to rule out a nonflat
leaf of £L’.

In Part VII, we describe the necessary changes to the main theorems and
the modifications needed for their proofs when the sequence has positive genus.

Finally, we would like to thank the referee for an extremely careful reading
and many useful comments that improved the paper.

1. Multi-valued graphs

To explain the theorems stated in the introduction and their proofs, we will
need two notions of multi-valued graphs — namely, the one used in [CM04b]—-
[CMO04e| and a generalization.

In [CMO04b]-[CMO04e], we defined multi-valued graphs as multi-sheeted
covers of the punctured plane. To be precise, let D, be the disk in the plane
centered at the origin and of radius r, and let P be the universal cover of the
punctured plane C \ {0} with global polar coordinates (p,6) so p > 0 and
0 €R. Given 0 < r < s and #; < 05, define the “rectangle” Sf’ls’(’? C P by

(1.1) SPLP = {(p,0) |r < p <, 61 <6< 06}

An N-valued graph of a function v on the annulus D, \ D, is a single valued
graph over (see Figure 5)

(1.2) Se NN = {(0,0) |1 < p < 5, 6] < N 7).

(Ef}s’% will denote the subgraph of ¥ over the smaller rectangle Sf}s’e?.) As in
the earlier papers in the series, the multi-valued graphs that we will consider
will never close up; in fact, they will all be embedded. Note that embedded
corresponds to that the separation never vanishes. Here the separation w is
the difference in height between consecutive sheets and is therefore given by

(1.3) w(p,8) =u(p, 0 +2m) —u(p, ).
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T3-axis

Figure 5. A multi-valued graph over the singly-punctured plane.

In the case where ¥ is the helicoid (i.e., ¥ can be parametrized by (s cost,
s sint,t) where s, t € R), then

(1.4) 2\ 23 — axis = £y U S,

where 31, ¥y are oco-valued graphs. 3 is the graph of the function uy(p, ) = 6
and Yo is the graph of the function uy(p,d) = 6 + 7. In either case the
separation w = 2.

Locally, the above multi-valued graphs give the complete picture for a
ULSC sequence. However, the global picture can consist of several different
multi-valued graphs glued together. To allow for this, we are forced to consider
multi-valued graphs defined over the universal cover of C\ P, where P is
a discrete subset of the complex plane C (see Figure 6). We will see that
the bound on the genus implies that P consists of at most two points. The
basic example of such a multi-valued graph comes from the family of minimal
surfaces known as the Riemann examples.

Part I. Results for disks from [CM04b]-[CMO04e¢]

The results for nonsimply connected minimal surfaces that are proven in
this paper rely on the earlier results for disks given in [CM04b]-[CMO04e]. For
completeness and easy reference, we start by recalling those.

I.1. The lamination theorem and one-sided curvature estimate

The first theorem that we recall shows that embedded minimal disks are
either graphs or are part of double spiral staircases; moreover, a sequence
of such disks with curvature blowing up converges to a foliation by parallel
planes away from a singular curve §. This theorem is modelled on rescalings
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Locally graphical except over two points;
those points correspond to the two axes.

The spiral staircases around each of the axes connect to
each other between the axes.

Figure 6. A multi-valued graph over the doubly-punctured plane. The
spiral staircases near each puncture are oppositely-oriented.

of the helicoid, and the precise statement is as follows (we state the version for
extrinsic balls; it was extended to intrinsic balls in [CMO08]):

THEOREM 1.1.1 (Theorem 0.1 in [CMO04e]). Let ; C B, = Bg,(0) C R3
be a sequence of embedded minimal disks with 0¥; C OBR, where R; — oo. If

(I1.1.2) sup |AI? — oo,
BiNY%;

then there exists a subsequence, ¥;, and a Lipschitz curve S : R — R3 such
that after a rotation of R3,

(1) z3(S(t)) =t. (That is, S is a graph over the x3-axis.)

(2) Each ¥; consists of exactly two multi-valued graphs away from S (which
spiral together).

(3) For each 1 > a >0, ¥; \ S converges in the C*-topology to the foliation,
F ={x3=t}, of R3.

(4) supg, (s()ns; |A|? = oo for all v > 0, t € R. (The curvatures blow up
along S.)

The second theorem that we need to recall asserts that every embedded
minimal disk lying above a plane, and coming close to the plane near the
origin, is a graph. Precisely, this is the intrinsic one-sided curvature estimate
that follows by combining [CMO04e] and [CMO08]:
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THEOREM 1.1.3. There exists € > 0 so that if
(1.1.4) ¥ C {z3>0} CR?

is an embedded minimal disk with the intrinsic ball Bop(x) C X\ 0% and
|z| < eR, then

(I.1.5) sup |Ag|* < R72
Br(z)

Theorem 1.1.3 is in part used to prove the regularity of the singular set
where the curvature is blowing up.

Note that the assumption in Theorem 1.1.1 that the surfaces are disks is
crucial and cannot even be replaced by assuming that the sequence is ULSC.
To see this, observe that one can choose a one-parameter family of Riemann
examples that is ULSC but where the singular set S is given by a pair of
vertical lines. Likewise, the assumption in Theorem 1.1.3 that X is simply
connected is crucial, as can be seen from the example of a rescaled catenoid;
see (0.11). Under rescalings the catenoid converges (with multiplicity two) to
the flat plane. Thus a neighborhood of the neck can be scaled arbitrarily close
to a plane but the curvature along the neck becomes unbounded as it gets closer
to the plane. Likewise, by considering the universal cover of the catenoid, one
sees that embedded, and not just immersed, is needed in Theorem I.1.3.

Finally, we recall the chord-arc bound for embedded minimal disks proven
in Theorem 0.5 of [CMOS]:

THEOREM 1.1.6. [CMOS]. There exists a constant C > 0 so that if ¥ C R3
is an embedded minimal disk, Bap = Bagr(0) is an intrinsic ball in ¥\ 0% of
radius 2R, and supg, |A|? > 7“52 where R > rg, then for x € B, the intrinsic
distance is bounded from above by the extrinsic distance as follows:

(I.1.7) Cdisty(x,0) < |z| + ro.

Part II. The singular set S and limit lamination £’

The three main results of this part are the convergence to the lamination
L' away from a singular set S, the description of a neighborhood of each ULSC
singular point, and the description of the leaves of £’ whose closure intersects
Sulse- We will explain these in a bit more detail next.

We start by defining the singular set S; roughly speaking, S is the set
of points where the curvature blows up (see Definition/Lemma II.1.1). The
definition of S will immediately imply that S is a closed subset of R3. We
next show that in the open subset R?\ S, a subsequence of the sequence of
embedded minimal surfaces converges to a minimal lamination £’ of R3\ S
(see Lemma I1.1.2).
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The results of [CM04b]-[CM04e] give a precise description of a neighbor-
hood of each point in Sy.. Namely, for j large, 3; must be a double-spiral
staircase near each point in Sy and the set Syisc must satisfy a local cone
property that gives the regularity of the set. The description near a singular
point and local cone property are given in Lemma I1.2.3. We also recall in
Lemma I1.2.3 that, as j — oo, this sequence of double-spiral staircases near a
singular point x closes up in the limit to give a leaf of £’ that extends smoothly
across x. We will say that such a leaf is collapsed; in a neighborhood of z,
the leaf can be thought of as a limit of double-valued graphs where the upper
sheet collapses onto the lower.

Finally, we will show that every collapsed leaf is stable, has at most two
points of Sysc in its closure, and these points are removable singularities. The
key for proving stability is to use the separations of the limiting multi-valued
graphs to construct a positive Jacobi field in the limit. The limit Jacobi field is
not a priori well defined, but is instead well defined on a covering space of the
collapsed leaf. However, we show in Appendix A that stability of a covering
space implies stability of the surface itself as long as the covering space has
sub-exponential area growth. We apply this to show that every collapsed leaf
is stable. We will also use the fact that the surfaces ; have bounded genus
to show that each collapsed leaf has at most two points of Sys in its closure.

These results on collapsed leaves will be applied first in the USLC case in
the next part and then later to get the structure of the ULSC regions of the
limit in general, i.e., (C2) and (D) in Theorem 0.14.

I1.1. The singular set S

To define the singular set, recall from [CMO04e] that for any sequence of
surfaces (minimal or not) in R3, after possibly going to a subsequence, then
there is a well-defined notion of points in R3 where the second fundamental
form of the sequence blows up. The set of such points will be referred to
below as the singular set S and is given by an elementary and straightforward
compactness argument.

DEFINITION/LEMMA II.1.1 (The singular set; Lemma 1.1.4 in [CMO04e]).
Let ¥; C Bp, with 0¥; C 0Bg, and R; — oo be a sequence of (smooth)
compact surfaces. After passing to a subsequence, ¥, we may assume that for
each © € R3, either of the two following properties holds:

¢ SUPB, (2)nx; |A|? — oo for allr > 0. (The set of such points x will be denoted
by S.)
® Sup; SUPR, (z)n3; |A|? < oo for some r > 0.

I1.1.1. Convergence away from S. The first result that we will need is
that in the open subset R3\ S, a sequence of embedded minimal surfaces has
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a subsequence that converges to a minimal lamination £’ of R3\ S. This is
an easy consequence of that the curvature is bounded on compact sets in the
complement of S and is proven in the next lemma.

LEmMMA II.1.2. Suppose that ¥; and S are as in Lemma I1.1.1. If in
addition the ¥;’s are minimal and embedded, then there exists a subsequence
(still denoted by ;) and a lamination L' of R*\ S so that the following hold:

e X; — L' on compact subsets of R3\ S.
e The leaves of L' are minimal.

Proof. For each compact subset K of R3\ S, then Lemma II.1.1 gives an
open covering of K by finitely many balls where the curvatures of the 3;’s are
bounded (independent of j) in the concentric double balls. Both claims now
follow from Proposition B.1 in [CM04¢| and a diagonal argument. O

As in [CMO04e], convergence to £’ in the above lemma means that if we
think of the embedded surfaces X; themselves as laminations, then the coor-
dinate charts for these laminations converge in the C*-norm for any o < 1
and the leaves converge as sets. The convergence is actually C*°-tangentially,
meaning that if we write a leaf locally as a graph, then a sequence of local
graphs in X, converges smoothly to this leaf. This tangential regularity fol-
lows from the C'*-convergence and elliptic estimates. However, easy examples
show that the convergence in the transversal direction may only be in the
Lipschitz topology; cf. [Sol86].

Throughout the rest of this paper, we will assume thalt ¥; C Bg; with
0%j C OBR; and R; — oo is a sequence of (smooth) compact embedded mini-
mal surfaces that converges off of a singular set S to a lamination L' of R3\ S
with minimal leaves. The lamination L' is given by Lemma 11.1.2. In order to
obtain additional structure of S and L', we will need to also make topological
assumptions about the surfaces X;. We will always assume that the ¥X;’s have
bounded genus. In Part 111, we will assume that the surfaces ¥; are ULSC, i.e,
that Speck = 0; in Part IV, we will consider the other case where Speac 7 0.

I1.2. The local structure of £ near a point of Sy

We will eventually show that all of the leaves of the lamination £’ are flat
(see Theorem 0.6), but we will need to first establish some initial structure of
L'. The first step will be accomplished in this section where we describe the
local structure of £’ near a point in Syjec.

The next lemma is going to show that each ULSC singular point lies in
the closure of a leaf of £’ that extends smoothly across the singular point and,
furthermore, ULSC singular points are leaf-wise isolated and they satisfy a
local cone property. To state this cone property, let Cs(z) be the (convex)
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double cone with vertex z, cone angle (7/2 —arctan §), and axis parallel to the
xs-axis. That is (see Figure 7),

(I1.2.1) Cs(2) = {z € R?*| (23 — 23)> > 6% (21 — 21)* + (22 — 22)°)}.

The local cone property is now defined as follows. Given § > 0 and
ro > 0, we will say that a subset Sys. C R? has the local cone property if Syise
is nonempty and

(I1.2.2) if z € Syise, then By (z) N Syse C Cs(2).

As in [CMO04e], we will see in Section II1.2 that this local cone property directly
gives Lipschitz regularity of the subset Sygc-

S Cs(2)

Figure 7. It follows from the one-sided curvature estimate that the
ULSC singular set Sysc has the local cone property and, as we will
see, this gives Lipschitz regularity.

We can now state the lemma that gives the regularity of the leaves through
Suise and the local cone property for Sysc. (For a surface I', np is its Gauss
map.)

LEMMA I1.2.3. Given a point x € Syisc, there exists ro>0 so that By, (x)NL'
has a component I',, whose closure T, is a smooth minimal graph containing x
and with boundary in OBy, (z) (so z is a removable singularity for T';).

Furthermore, T, NS = {z} and, after rotating R so that ny—(r) =
(0,0,1), the set Sy satisfies the local cone property (11.2.2) for some 6 > 0 and
the above ro. The rotation may vary with x, but the dependence is Lipschitz.

Proof. For simplicity, translate so that x = 0. Since 0¢ Speck, there exists
some 79 >0 so that the components of B, (0)N%; are disks for every j; cf. (0.1).

The first two properties follow immediately from Theorem 5.8 in [CM04c].
(This theorem combines the existence of multi-valued graphs near a blow up
point and the sublinear growth of the separation.) Namely, since 0 € S, we
first get a sequence of points y; € ¥; with |A|*(y;) — oo and y; — 0. Since
the component of B, (0) N X; containing y; is a disk, Theorem 5.8 in [CMO04c]
then gives the following two properties:
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e There is a rotation of R? and a subsequence so that ), contains a 2-valued

minimal graph X4 ; C X; defined over an annulus D, '\ D;; where r; — 0.

e As j — oo, the 2-valued graphs close up in the limit to converge with

multiplicity two to a graph I'; over D, /¢ \ {0} with x € T..

Since any subsequence of a convergent sequence has the same limit, we conclude
that T'; is contained in a leaf of £’. Finally, x is a removable singularity for I';,
by a standard removable singularity result for minimal graphs.

The cone property follows easily from Corollary 1.1.9 in [CM04e], which
gives a constant dyp > 0 so that if By M X; contains a 2-valued graph in
{3 < 65 (x1+23)} over Dg\ D,, and with gradient < &y, then each component
of

(11.2.4) Brja N3\ (Cg, (0) U Bar,y)

is a multi-valued graph with gradient < 1. After possibly shrinking the radius
above given by Theorem 5.8 in [CM04c], we can assume that I', is a graph
with small gradient, and hence Corollary 1.1.9 in [CMO04e] applies. It follows
that

(IL.2.5) Byy(z) N Sue C Cs, (@)

Finally, the embeddedness of the X;’s implies that two limit minimal graphs
through nearby singular points must be disjoint. It is now easy to see that the
map that takes a singular point y to the tangent plane of the limit minimal
graph through y is Lipschitz, giving the last claim. (]

Lemma I1.2.3 shows that each point x € Syjsc is a removable singularity for
a component 'y of By, (z) N L' for some ry > 0. Furthermore, the local cone
property implies that the intersection of B, (x) N ¥X; with the complement
of (a tubular neighborhood of) a cone Cg () (for some § > 0) consists of
two multi-valued graphs for j large. (The fact that there are exactly two is
established in Proposition II.1.3 in [CMO04e].) However, it is worth noting that
these two properties alone do not imply that z is a removable singularity for
the lamination £’, but rather there are two possibilities:

(P) The multi-valued graphs in the complement of the cone Cg(z) close
up in the limit.
(N-P) These multi-valued graphs converge to a collection of graphs (such as
I';) and at least one multi-valued graph that spirals infinitely'® on one
side of I',.

10y, may happen that a multi-valued graph spirals into I'; as in the example in [CM04a].
It is also possible that there is a gap between I'; and the spiraling multi-valued graph (e.g.,
if it spirals into a different graphical component as in examples constructed in [HW11] and
[Kle12]).
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In the first case (P) (we will call this “properness” below), the sequence con-
verges to a foliation in a neighborhood of . The second case (N-P) (“not
proper”) is illustrated in [CM04a] by a sequence of embedded minimal disks
Y; in the unit ball By with 9%; C dB; where the curvatures blow up only at
0 and

(I1.2.6) ¥i\ {z3 =0}
converges to two embedded minimal disks

(I1.2.7) YT C {xz3 <0},
(I1.2.8) ¥t c {x3 > 0},

each of which spirals into {x3 = 0} and thus is not proper. Thus, in the
example from [CM04a], 0 is the first, last, and only point in Sy and the
limit lamination consists of three leaves: ¥, X7, and the punctured unit disk
By n{x3 =0} \{0}. In this example of (N-P), the limit lamination cannot be
extended smoothly to any neighborhood of 0.

To summarize, [CM04a] shows that (N-P) can occur for a sequence of
disks ¥; C Br, with 0%; C 0Bpg,; however, [CM04¢| shows that (N-P) cannot
occur for disks if the radii R; go to infinity.

I1.2.1. Collapsed leaves of L'. One of the difficulties is that the leaves
of the lamination £’ may not be complete; this occurs at points of S. We
will begin by analyzing a particular type of incomplete leaf that we will call
collapsed.

To define this, note that Lemma I1.2.3 shows that each point z € Sy 18
a removable singularity for a component I'; of B, (z) N L. We will say that
the leaf I of £’ containing I, is collapsed:

Definition 11.2.9. A leaf T" of L is collapsed if there exists some x € Syjsc
so that I" contains the local leaf I'; given by Lemma I1.2.3.

It follows from Lemma I1.2.3 that every collapsed leaf is a limit leaf of £'.
For a sequence of rescaled helicoids converging to a foliation by parallel planes
away from an axis, every leaf is collapsed. We will eventually show that every
leaf of £’ whose closure contains a point of Sy is collapsed. However, it is
worth pointing out that this is not obvious. For example, in case (N-P) of the
previous section, we get leaves of £’ that spiral infinitely into the collapsed leaf
but are not themselves collapsed. (We will eventually rule out this possibility
using that the sequence of outer radii is going to infinity.)

We will describe the structure of the collapsed leaves in the rest of this
part. It is useful to first define the closure I'cos of a leaf T of £’ to be the
union of the closures of all bounded (intrinsic) geodesic balls in I'; that is, we
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fix a point zr € I' and set

(11.2.10) Taies = | Br(ar),

where B, (zr) is the closure of B,(xr) as a subset of R3,
Clearly, a leaf I' is complete if and only if ', = I' and we always have
that

(I1.2.11) Tows \T' C S.

The incomplete leaves of £’ can be divided into several types, depending on
how I'os intersects S:

e Collapsed leaves, defined in Definition I1.2.9, where I'cjos N Sulse contains
a removable singularity for I'.

e Leaves I' with T'gjos N Suse # 0, but where T' does not have a removable
singularity. This would occur, for example, if I' spirals infinitely into the
collapsed leaf through I'cjos N Syise as in (N-P). (We will eventually show
that this does not occur.)

e Leaves I' where I'cjos \I' C Sheck; these will not be considered until Part IV.

I1.3. The structure of the collapsed leaves of L’

In the rest of this part, we will describe the structure of the collapsed
leaves of £’ defined in Definition I1.2.9. The most important properties of
a collapsed leaf I' are given in Proposition I1.3.1 below, which describes a
neighborhood of the points of Syisc in I'. The proposition shows that such a I’
is stable and that the closure of I' intersects Sy in at most two points. These
results apply without additional assumptions on the sequence X;; we will see
in the next part that I' has more structure when we assume, in addition, that
the sequence is ULSC.

The next proposition establishes the key properties of a collapsed leaf in
the general case.

PROPOSITION I1.3.1. FEach collapsed leaf T of L' has the following prop-
erties:

(1) Given any y € I'cios N Sulse, there exists 1o > 0 so that the closure (in R3)
of each component of By,(y) NI is a compact embedded disk with boundary
in OBy, (y).
Furthermore, By, (y)NI' must contain the component I'y given by Lemma
I1.2.3 and Ty is the only component of By, (y) NI with y in its closure.
(2) IfT' is oriented, then it is stable. (Otherwise, its oriented double cover is
stable.)
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(3) Tclos intersects Sysc in at most two points. If Tcies N Suise contains two

points, then the multi-valued graphs in the X;’s spiral in opposite directions
around the two corresponding azes (see Figure 8).

A double-valued graph in ;.

Oppositely oriented spiral staircases near p and q.

Get two disjoint graphs after circling both p and gq.

Figure 8. The multi-valued graph converging to I" in Proposition II.3.1.

Properties (2) and (3) in Proposition I1.3.1 are self-explanatory. However,
to appreciate property (1), it may be useful to observe one implication of
(1) and to also see an example of what it rules out. First, (1) implies that
Tclos N Suise consists of a discrete set of points and each of these points is
a removable singularity. Second, recall from (N-P) — “not proper” — that
a priori there may be multi-valued graphs in By, (y) N L’ that spiral infinitely
into I'y; (1) above says that these “infinite spirals” are not contained in any
collapsed leaf.

Throughout this section I' will be a collapsed leaf of £’. By definition, a
leaf T" is a connected open surface but may not be complete. (And, in fact,
collapsed leaves are incomplete by definition.) We will let K C I' denote
a connected open subset with compact closure in I'. Finally, T'(K,¢) is the
e-tubular normal neighborhood of K i.e.,

(I1.3.2) T(K,e) ={z+snr(z) |z € K, |s| <e}.

I1.3.1. Proving property (1) of Proposition 11.3.1: Isolated removable sin-
gularities. To prove (1) of Proposition I1.3.1, we will show the following claim:

CLAIM. If x € Susc s a singular point in the closure I'cios of a collapsed
leaf T, then there exists 1o > 0 so that the component of By, (z) NT containing
x 15 the one from Lemma 11.2.3.
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Property (1) then follows from the following two properties of the compo-
nent I', from Lemma I1.2.3:

e ', U{x} is a smooth minimal surface.
e I, NS ={z}.

Thus, we will have at the same time shown that each ULSC singular point in
the closure of I' is a removable singularity and has a neighborhood in I where
there are no other singular points, as desired.

Lemma I1.3.3 below establishes the above claim about the singular points
in the closure of a collapsed leaf. The lemma is best illustrated using the “not
proper” example in (N-P). In (N-P), a sequence of embedded minimal disks
converges in B; \ {0} to a lamination with three leaves: the punctured disk
T'g = Dy \ {0}, I'" spiralling into T'g infinitely from above, and I'~ spiralling
into I'g infinitely from below; see Figure 9. Notice that all three leaves contain
0 in their closure. The leaf I'j is collapsed at 0 (so 0 is a removable singularity
for ['y), but I't and '™ cannot extend past the singularity 0. The conclusion of
Lemma II.3.3 is that 't and I'™ cannot be contained in any collapsed leaf of £'.

't spirals infinitely from above.

Iy is punctured at O. /

The intersection of I'" with a vertical line gives a
discrete infinite set of points limiting down to a point in I'y.

Figure 9. The “not proper” example (N-P): The sequence of disks X;
converges in By \ {0} to a lamination with three leaves: the punctured
disk 'y = D1\ {0} (dotted), I'" spiralling into I'y infinitely from above,
and I'~ spiralling into Ty infinitely from below (not pictured). The
collapsed leaf I'y is not discrete but '™ and I'~ are.

The above example from (N-P) also serves to illustrate the idea of the
proof of Lemma I1.3.3. Namely, a key distinction between the collapsed leaf
Iy versus I'™ and '™ is that I'" and '~ are not limit leaves; rather, they are
discrete in the following sense:
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Given any point y in I'" or ', there exists s > 0 so that Bs(y) N L’
has only one connected component (i.e., the one containing y).

On the other hand, since I'" and I'~ spiral infinitely into I'g, the leaf I'y is not
discrete in this sense. Likewise, the description of a neighborhood of a point
in Sy shows that a collapsed leaf is never discrete.

LEMMA I1.3.3. Suppose that x € Sysc and I is a component of By, (z)NL'
with x in its closure I7. If I' is contained in a collapsed leaf of L', then T
must be the component I';, given by Lemma 11.2.3.

Proof. Since the component I of B,,(z) N L' contains the point = € Sysc
in its closure, embeddedness and the cone property imply that IV has one of
the following two properties:

(L1) T"is the component I';, given by Lemma I1.2.3 and hence extends smoothly
across .
(L2) T is not the component I, given by Lemma I1.2.3.

In Lemma I1.3.4 below we will prove that the leaves satisfying (L2) are discrete
in the following sense:

Given any point y in a leaf of £ satisfying (L2), there exists s > 0
so that Bs(y) N £ has only one connected component (i.e., the one
containing y).

Completing the proof assuming discreteness. Suppose now that I' is col-
lapsed, y € I, and the ball B,(y) is disjoint from S. Let Iy s be the component
of Bs(y) NI containing y. It follows from the Harnack inequality (since the
curvature is locally bounded on I') that I'y  is the limit of distinct leaves of
Bs(y) N L. In particular, T' is not discrete and hence does not contain any
leaves of By, (z) N L' that satisfy (L2). This completes the proof of the lemma
modulo Lemma I1.3.4 below. U

The next lemma shows that we always get discreteness for leaves of L’
that have a point of Sy in their closure but are not collapsed at this point.
(Cf. the picture for I'* and I'~ in Figure 9.)

LEMMA I1.3.4. Given any point y in a leaf of L' satisfying (L2), there
exists s > 0 so that Bs(y) N L' has only one connected component (i.e., the one
containing y).

Proof. Suppose that a component I of B,,(z) N L' contains the point
T € Syise in its closure but is not equal to I';. It suffices to find one point in
I'" where the leaf is locally discrete. (Since the leaf is connected, the Harnack
inequality then implies that every point is discrete.) We will next outline
the argument to find this discrete point. The key will be to find a sequence
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of curves 7; C ¥; with uniformly bounded length, where one sequence of
endpoints converges to a point in I, the X;’s are uniformly discrete at the
second endpoint of 7;, and the 7;’s stay away from the singular set S. These
properties are made precise in (G1)—(G4) below; see Figure 10. Since the ~;’s
stay away from S and have bounded length, a subsequence of the v;’s will
converge to a curve v in some leaf of £’. However, one sequence of endpoints
converges to a point in IV and so the whole curve v is in I'. Finally, the second
endpoint of v will give the desired discrete point in I".

One endpoint of v; is close to y.

¥; is uniformly discrete at the
Qacond endpoint.

/ By(z) Nv; = 0.

The (punctured) graph I'; in B, (z) N L.
Figure 10. The curves v; in ;.

Before making this precise, we need a few simple preliminaries. First, since
', U{z} separates the ball B, (x) and I C By, (z)\('z U {z}) is connected, we
may assume that I' is contained in the component B! () of By, (z)\(I'z U {z})
that is above I';. Second, after shrinking rg, we can assume that

(I1.3.5) B (z)NS =0.

Namely, there would otherwise be a sequence of points in S approaching x from
above with corresponding separating graphs converging to I'; from above, but
this would contradict the spiraling.

As mentioned, the key point is to find a sequence of curves «y; parametrized
by arclength

(I1.3.6) 75 [0,4] = Bt (z) NS5

with the following properties (see Figure 10):

(G1) The endpoints v;(0) converge to a point y € I".

(G2) The lengths ¢; are uniformly bounded; i.e., ¢; < ¢ for every j.

(G3) The minimal distance between ~y; and S is at least u > 0.

(G4) The 3;’s are “uniformly discrete” at the endpoint ~;(¢;); precisely, there

exists 6 > 0 so that Bs(v;(¢;))NX; is a (connected) graph over its tangent
plane at v;(¢;) with gradient bounded by one.
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The discreteness follows immediately from (G1)—(G4). Namely, (G2) and (G3)
imply that a subsequence of the curves «y; converges to a curve 7 contained
in a leaf of £'. Since the endpoints 7;(0) converge to the point y in the leaf
I, the entire curve v must be contained in I'. Finally, (G4) implies that I
is discrete at the second endpoint of v and, hence, discrete everywhere by the
Harnack inequality.

Before establishing (G1)—(G4), we need to recall the following two addi-
tional facts:

(1) Ewzistence of nearby points of large curvature. Given any constants C and
Cy, there exists € > 0 so that for any s > 0 and every j sufficiently large
(depending also on s), there is a point

(113.7) 4j € By(@) N5\ Bey(a)
so that ¢; is above I'; U {z} and ¢; satisfies
(I1.3.8) |A]2(gj) > CaCr |z — g4 2.

(2) Curvature bound away from z. Given any p > 0, there exists a constant
C3 so that if y is any point in B;f (z) N X; \ By(x), then

(IL3.9) A12(y) < Co.

Property (1) was proven in Corollary II1.3.5 in [CM04d]. Property (2) follows
easily since the singular set S does not intersect Bt (z) by (IL.3.5). (The proof
of (2) can be made precise using Lemma II.1.1 and a covering argument.)

To complete the proof of discreteness, it suffices to establish (G1)—(G4).
We will do this next. First, fix a point y € I'' in a small ball By (z) about z.
(h will need to be sufficiently small relative to 9 but otherwise does not mat-
ter.) Since y € I, we can choose a sequence of points y; € 3; that converge
to y. Now choose a constant s > 0 with s much smaller than |y — x|.

Observe that property (1) gives points ¢; € Bs(x)\ Bes(x) in 3; satisfying
(I1.3.8). A simple blow up argument (e.g., Lemma 5.1 in [CMO04c]) then gives
points p; € X; near ¢; and radii r; so that

(11.3.10) sup  [A] < 4]AP(p) = 4Crrj?,
BT]' (pj)NE;
and
(I1.3.11) By, (pj) C Bajr—g;1(q))-
Vi

In particular, by taking Cy large in property (1), we can assume that the ratio
rj
pj — 2|

(11.3.12)



FIXED GENUS 29

is as small as we want and, hence, also that
(11.3.13) Brj (pj) C BQS(LL‘) \ Bs s/z(x).

We called the pair (pj,r;) a blow up pair in [CMO04e]. The point about such a
pair is that Theorem 0.7 in [CM04e] gives multi-valued graphs

(11.3.14) 29 C ¥y

defined outside of a disk of radius r; centered at p; and whose initial separation
is proportional to r;. On the other hand, since p; ¢ B./2(x), property (2)
implies that there is a uniform upper bound for |A|?(p;) — and, thus, a uniform
lower bound for the initial scale 7;.

We will also need a positive lower bound for the minimum distance be-
tween Z? and . The argument for this is very similar to an argument in
Section III.2 of [CMO04e]. We will sketch the argument next. The lower bound
follows easily once we have a lower bound for the distance from B, (p;) to I',.
Since p; ¢ B.,/2(z), the one-sided curvature estimate gives a lower bound for
the distance from p; to I';. (Otherwise p; would lie in a narrow cone about I',,
and the one-sided curvature estimate would contradict (I1.3.10).) Using this
and the fact that r; is small relative to [p; — x| (see (I1.3.12)) then gives the
desired lower bound for the distance from B, (p;) to I';. We leave the details
to the reader.

To summarize, we have established a positive lower bound for the distance
from E? to x and for the initial scale r;. This lower bound on the initial
scale also implies a lower bound for the separation between the sheets of E? At
Moreover, Proposition II.1.3 in [CMO04e] says that 3; contains exactly two
(oppositely-oriented) multi-valued graphs in this region; the uniform curvature
upper bound given by (2) then also implies a uniform lower bound for the
distance between these two multi-valued graphs.

As a consequence of these uniform bounds, a (sub) sequence of the two
(oppositely-oriented) multi-valued graphs is guaranteed to converge (with mul-
tiplicity one) to two multi-valued graphs in B} (x) N £, and these limit multi-
valued graphs will satisfy the same lower bounds. Fix a point z in one of the
limit multi-valued graphs. We will now find the desired curves ~; from y; to
points converging to z. ((G1) and (G4) will then automatically be satisfied.)
We use two facts to find these curves. First, the chord-arc bound of The-
orem 1.1.6 allows us to connect y; to the multi-valued graph E? by a curve
7;-“ C X; with length at most C3 h and, furthermore, we can assume that vf

HThe existence of some lower bound is easy and almost obvious; a fairly sharp lower
bound is proven in Lemma IIL.1.6 in [CMO04e].
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is above E? 12 Now that fyf connects y; to the multi-valued graph, we can use
a curve 7]9 in E? to connect the endpoint of fy;-r to points z; € E? converging
to z; the ,ng ’s automatically have uniformly bounded length and also stay uni-
formly away from x. This completes the proof of (G1)—(G4) and, consequently,
also completes the proof of discreteness. O

I1.3.2. Each leaf is a limit of multi-valued graphs in the ¥;’s. Recall that,
throughout this section, I is a leaf of £’ and K C T is a connected open subset
that has compact closure in I'.

We will first show in Lemma I1.3.15 that the X;’s are locally graphical over
I" in a tubular neighborhood of K. Corollary I1.3.18 uses the local description
of Lemma I1.3.15 to construct multi-valued graphs Z]g» C X; converging to K.
Both Lemma I1.3.15 and Corollary 11.3.18 apply to any leaf I' and do not
require I' to be collapsed.

The next lemma shows that X; is locally graphical over I' in a small
tubular neighborhood of K.

LEMMA 11.3.15. Given any 6 > 0, there existe > 0 and J so that if j > J
and x € T(K,e) N Xj, then B:(z) C X; is a graph over (a subset of) I' with
gradient bounded by 0.

Proof. Since I is a leaf of L', it is disjoint from the singular set S. There-
fore, for each point y € T', the convergence of the X;’s to the lamination £’
away from S gives a ball B, (y) and a J, so that if z € B, (y) "% for j > J,,
then B, (x) C X; is a graph over (a subset of) I' with gradient bounded by 4.

However, the closure K of K in I' is compact, so it can be covered by a
finite subcollection of the half-balls, i.e.,

(I1.3.16) K C U™, Bey; (yi) -
2
It is then easy to see that this implies the lemma with

(I1.3.17) e=1/2 miin Ey;- O

The next corollary uses Lemma I1.3.15 to get multi-valued graphs Z? C X
over K; see (A) below. Furthermore, (C) below shows that E? contains a point
p; far from the boundary 93¢ of the multi-valued graph. More precisely, 9%
divides naturally into two parts, depending on whether or not it projects to
O0K; (C) shows that the point p; is far from the part of 023(-’ that is not over 0K.
We will later use (C) to get multi-valued graphs with many sheets converging
to a collapsed leaf.

2N\ ore precisely, the curve does not go below the union of E? and the extrinsic ball
BTJ‘ (pj)'
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The corollary will be used to produce spiralling multi-valued graphs, but
it allows the possibility that the multi-valued graphs are in fact single-valued
and, thus, just ordinary graphs; this occurs, for instance, if K is a disk. In the
trivial single-valued case, 82? is a graph over 0K and (C) below is trivially
valid. On the other hand, when %7 is multi-valued, then (C) gives that the
number of sheets is large.

COROLLARY 11.3.18. Fiz a point pg € K. Given any (small) constant
d > 0 and a (large) constant N, there exist ¢ > 0 and J so that for each j > J,
we get the following:

(A) There is a connected open subset E? C T(K,e) N E; so that, for each
x € X, the intrinsic ball B(x) is a graph over (a subset of ) T with gradient
bounded by 6.

(B) The normal exponential map from K x (—e,¢e) gives a diffeomorphism to
T(K,e). LetIl : T(K,e) — K denote the projection to K and Il; the
restriction of II to .

(C) There is a point pj € Z? with I1;(p;) = po satisfying

(11.3.19) distys (pj, 0% \ II;'(0K)) > N.

Proof. Lemma I1.3.15 gives € > 0 (depending only on §) so that for every
point z in T'(K,e) N X; the intrinsic ball B.(x) is a graph over (a subset of) I'
with gradient bounded by §.

Since K has compact closure in the (open) surface I', we can shrink £ > 0
so that the normal exponential map from K x (—¢,¢) gives a diffeomorphism
to T'(K,¢).

Furthermore, since the ¥;’s converge to £’ in a neighborhood of the point
po € T', there is a sequence of points p; € 3; converging to py. (In fact,
there are many such sequences; just pick one.) Let E? be the component of
T(K,e) N ¥; containing p;.

It remains to prove that (C) holds for J sufficiently large. We will do
this by contradiction, so suppose that no such J exists for some fixed N. In
particular, we get infinitely many j’s where there exist curves v; C X; with
the following properties:

e 7; starts at p; and ends at a point in 0T (K, €) that is distance ¢ from K.
e The length of v; is at most N.
e v, is contained in T'(K,¢).

After passing to a subsequence, the 7;’s must converge to a curve v C T'(K ¢)
that is contained in some leaf of £'. (We are using here that ; stays away
from S.) Since the p;’s converge to pg, the curve v starts at pg € K and, hence,
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we have
(11.3.20) vCK.

However, this is impossible since the second endpoints of v; are all distance
from K and, thus, could not have converged to a point in K. This contradiction
completes the proof. O

I11.3.3. Property (2) of Proposition 11.3.1: Each collapsed leaf is stable.
The main result of this subsection is that each oriented collapsed leaf of £’ is
stable. The proof of stability has the following three main steps:

e Corollary I1.3.18 gives multi-valued graphs Z? C X; converging to K with
large multiplicity. The 2? ’s can be thought of as single-valued graphs over
a (subset of a) covering space K over K.

e Corollary II.3.21 describes the covering spaces K; by analyzing the “holo-
nomy” action of 71 (K) on the fibers. (The holonomy is defined below.)

e Lemma II1.3.22 then shows that a subsequence of the Kj’s satisfies (G1)
and (G2) in Appendix A, so we can apply Corollary A.20 to see that K is
stable.

Since this applies for any such K, and I' can be exhausted by such K’s by
Lemma I1.3.25 below, we conclude that T" itself is stable.

The next corollary describes what the multi-valued graphs E? look like
as we follow them around a simple closed curve + in K. Obviously, the pre-
image H;l('y) consists of a disjoint union of connected simple curves in the
topological annulus I17!(v); see Figure 11.

I1~1(y) is a cylinder.

Components of 324 in this cylinder.

Figure 11. Each component of Hj_l(’y) is locally a graph over ~.
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Some of the components of Hj_l('y) are more important than others. To
distinguish the components, we will say that one of these components is “short”
if it has two endpoints contained in the same boundary circle of II~*(y); oth-
erwise, we will say the component is “long” (so a long component either has
no boundary, or it has endpoints in distinct boundary circles of II"*(v)). The
corollary describes these long components:

COROLLARY I1.3.21. Suppose thatI1; : Eg — K is as in Corollary 11.3.18.
If v C K is a simple closed curve, then either (1A) or (1B) holds:
(1A) Each long component of Hj_l(’y) is closed and is a graph over 7y; see
Figure 12.
(1B) The long components of Hj_l(’y) are disjoint simple curves spiralling to-
gether from one boundary circle of II71(v) to the other; see Figure 13.
If, in addition, K contains a simple closed curve o that circles p € T'cros N Sulse
but is contractible in T' U {p}, then
(2) Hj_l(a) has a single long component;™® this long component spirals from
one boundary circle of the topological annulus II=1(c) to the other.

Schematic picture of Corollary 11.3.21
(the two boundary circles of II~!() are dotted):

Short component.

Short components.

Long
Long components. components.
Figure 12. Case (1A): The long  Figure 13. Case (1B): The long
components of Hj_l('y) are graphs. components of Hj_l('y) are multi-

valued graphs spiralling together
from one boundary circle of [T~ ()
to the other.

I3Note that even though H;l (o) is all of where TI™! (o) intersects the multi-valued graph,
Hj_l(a) is not all of I (o) N T;. At the least, there must be another oppositely-oriented

component of II"*(o) NS, that spirals together; cf. the example of rescaled helicoids.
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Proof. Since we are working in the compact embedded surface ¥; and not
in the limit, each component of Hj_l(’y) is a simple curve with compact closure.
In particular, these curves cannot spiral infinitely. Moreover, since Hj_l(’y) is
contained in the multi-valued graph, each component of Hj_l(fy) is also locally
a graph over 7.

If any long component is closed (and hence a graph over «), then it sep-
arates the two boundary components of the topological annulus II=!(v) and,
by embeddedness, every long component must be a closed graph over +; this
is Case (1A). Suppose, on the other hand, that one (and, hence, every) long
component connects the two boundary components of II=!(y). In this case,
the embeddedness of Hj_l('y) forces all of these curves to spiral together; this
is Case (1B).

Suppose now that a simple closed curve o C K circles p € I'cios N Sulse
but is contractible in I' U {p} and, in particular, does not circle any other
points in I'cios N Suise. It follows from Lemma I1.2.3 (and its proof) that the
long components of H;l(o') do not close up and, hence, we are in Case (1B). It
remains to see that there is just one long component. This follows immediately
from Proposition 1I.1.3 in [CMO04e], which shows that II"!(c) N E; consists of
exactly two oppositely oriented double spiral staircases.'® Since E? is a multi-
valued graph over the connected set K, and hence can achieve only one of these
orientations, it can contain only one of these. O

We will say that K is sufficiently large when it contains a simple closed
curve o that circles exactly one point p in I'gles N Suise but is contractible in
I'n{p}, i-e., when (2) applies in Corollary I1.3.21. We will assume in the rest
of this section that K is sufficiently large.

LEMMA I1.3.22. If the ;s are planar domains, K is sufficiently large, and
v C K is a simple closed curve, then there can be only one long curve in (1B)
of Corollary 11.3.21 for j sufficiently large. More generally, when the X;’s have
bounded genus, then we get a bound for the number of distinct curves in (1B).

Proof. We will give the proof for genus zero, i.e., when the ¥;’s are planar
domains; the easy modifications needed for the general case are left to the
reader.

Let 0 € K be a simple closed curve circling p € I'cios N Sulse, and so o
is contained in a small neighborhood of p. (This exists since K was assumed
to be sufficiently large.) Let v C K be a second simple closed curve. After
possibly perturbing o slightly, we can assume that it is disjoint from ~. Fix

14Technically, this description applies only when o is in a neighborhood of p. This is
sufficient for us since our ¢ is homotopic to a curve in a neighborhood of p and EJQ is locally

graphical over K.
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points x € 0 and y € v, and let n C K be a simple curve from z to y. Again,
after perturbing things, we can assume that 7 intersects o and = only at its
endpoints x and y; see Figure 14.

Figure 14. The proof of Lemma I1.3.22: The curves o, n, and v in K.

Suppose now that ng C XJ; contains two distinct long curves, v and vz,
in Hj_l(fy) that spiral together; see Figure 15. We will show that this leads to a
contradiction by constructing two simple closed curves, ;11 and p9, in X; that
have linking number one in ¥;. This is impossible for a planar domain. (It
implies that the genus is at least one.)

We will first construct the curve ps C X; out of four parts; see Figure 16.
The first part of uo is a 1-valued graph over « that is contained in 2 and has
both of its endpoints over y. These two endpoints are distinct since they are at
different heights over y. The next two parts of u9 are graphs over n that connect
these two endpoints to two distinct points over x € ¢. Finally, we close the
curve up by connecting the two points over x by a multi-valued graph over o.
Here, we have used that H;l(a) has ezactly one long component to show that
these endpoints can be connected and to see that the curve connecting them
is at least 2-valued. Furthermore, we have also implicitly used that j is large
to ensure that we can find the graphs over 1 and to ensure that the endpoints
of these over z lie in a long component of Hj_l(a). (We will use that j is large
in the same way later in the paper, usually without mentioning that we are
doing so.)

The curve p1 C X; is constructed similarly, with two notable differences;
see Figure 17. First, the 1-valued graph over 7 is chosen to be in 7; this time,
as opposed to 9 before. Consequently, the one-valued graphs over v in
and pg are disjoint and, furthermore, the graphs over n are at four distinct
heights. Second, instead of closing @1 up with a multi-valued graph over o, do
it over a slight outward perturbation of o (see Figure 17). This makes the two
“closing up” curves for u; and uo disjoint. However, since there is just one
long component over o (and also over its slight outward perturbation), we see
that the “closing up” curve for u; must cross one of the graphs over n in us.
Moreover, this intersection is transverse and the curves are otherwise disjoint.
This implies that ;11 and p have linking number one in ¥;, which gives the
desired contradiction. O
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The proof of Lemma 11.3.22:

4 graphs over 7.

n

Y2 One spiral over o.

Figure 15. Two curves 7; and 72 in X; spiral together over v, but only
one curve spirals over o.

Point y; € ;1 between the sheets of ~s.

Figure 16. The (dashed) simple closed curve po in ¥; has four parts: a
1-valued graph over «y in ~9; a multi-valued graph over o; two graphs over 7.

The contradiction for the proof of Lemma 11.3.22:

Only one point of intersection for p; (solid)
and o (dashed).

Four different sheets over n (at four
different heights).

Figure 17. Repeating the construction with ~; in place of s gives a second
simple closed curve pj. Perturbing the 1-valued graph over o slightly
outside of o, p1 and ps intersect in exactly one point and do so transversely.
Hence, 1 and po have linking number one, which is impossible in the

planar domain ;.
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Each E? is a multi-valued graph over K but can be thought of as a single-
valued graph over a domain K in some covering space of K. However, this
covering space may depend on j. Therefore, in order to apply the results of
Appendix A, we need to pass to a subsequence so that

e The Kj’s all lie in the same covering space K (independent of j).

e The Kj’s exhaust K.

e The holonomy group of the covering space K is Z. (The definition of the
holonomy group is recalled below.)

In order to achieve these three points, we need a few elementary facts
about covering spaces. First, recall that a covering space II: K - K with
base point x € K is uniquely determined by the holonomy homomorphism
Hol from m(K) to the automorphisms of the fiber II"!(z). To define this
homomorphism, suppose that

(11.3.23) v:[0,1] = K

is a curve with v(0) = v(1) = z and # is a point in II~!(z). The lifting property
for covering spaces gives a unique lift!®

(I1.3.24) ve: 0,1] = K

of v with 7;(0) = &. We define Hol()(Z) to be the endpoint v;(1). Finally,
define the holonomy group to be the image Hol(m(K)).
We will use the following elementary lemma in the proof:

LEmMA I1.3.25. Given a connected surface I' without boundary, there ex-
ists a sequence of connected open sets K; with compact closure that exhaust I.
That is, we have I' = U2, K and K; C Kj1 for every j.

Proof. This follows immediately from the existence of a complete metric
proven in [NOG61]. O

We are now ready to prove that each oriented collapsed leaf is stable.

Proof of (2) in Proposition 11.3.1. We will show that any connected open
subset K C I' that has compact closure in I" and is sufficiently large must
be stable. Since I' can be exhausted by such K’s by Lemma I1.3.25, we will
conclude that T itself is stable.

Fix a point z € K. By repeatedly applying Corollary I11.3.18 with 6 = 1/j
and passing to a subsequence, we get a sequence of connected multi-valued
graphs E? over K, covering spaces II; : Kj — K, domains K; C Kj, and

15Recall that vz is said to be a lift of v if v = o ~z. The lifting property for covering
spaces says that we get a unique lift of « for each choice of point & with ﬁ(i) = .
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functions u; : K; — R with

(I1.3.26) luj| + [Vu;| < 1/7,

so that there is a bijection from Kj to Zg given by

(11.3.27) z — IL(z) + uj(z) np(I1;(x)).

Furthermore, (I1.3.19) gives a point z; € Ejg with II;(z;) = z satisfying
(11.3.28) distys (a7, 9% \ I (0K)) > j

We must do two things in order to apply Corollary A.20 in Appendix A.
Namely, we must pass to a subsequence so that the Kj’s all sit in the same
covering space K and we must show that the holonomy group of K is Z. Once
we have done these, (I1.3.28) will imply that the K;’s exhaust K.

We will deal with the second one first; i.e., we will show that the holonomy
group is always Z. This follows immediately from Corollary 11.3.21. Namely,
(2) in Corollary I1.3.21 implies that the fiber over « in each K; can be identified
with Z and the holonomy from circling the point p € Sysc is just n — (n + 1)
or n — (n — 1), depending on whether the multi-valued graph spirals up or
down. Suppose now that ~ is a simple closed curve through x representing a
homotopy class [y] in 71 (K). Furthermore, (1A) and (1B) in Corollary I1.3.21
imply that either

e If (1A) holds, then Hol([7]) is the identity map; i.e., n — n.
e If (1B) holds, then Hol([y]) maps to n — (n £ k), where k is the number of
disjoint curves spiralling together in (1B).

In particular, the image of the holonomy is always in Z in either case.
Finally, we will use Lemma I1.3.22 to prove that only a finite set of dis-

tinct covering spaces arise as one of the K ;s and, consequently, one of the

K j's occurs infinitely many times. We have already established that each ho-

lonomy group is Z, but the covering space is determined by the holonomy

homomorphism (and not just the group). Each holonomy homomorphism

(11.3.29) Hol; : 7 (K) — Z

is determined by the image of a fixed (finite) set of generators 7i,...,vm of
m1(K), so we need only to show a uniform bound for Hol;(v,) for every j and n.
However, (1B) in Corollary I1.3.21 implies that Hol;(7y,) is just the number of
disjoint (long) curves spiralling together in H]-_l(fyn) and Lemma I1.3.22 bounds
this uniformly, completing the proof. ([

Remark 11.3.30. We have assumed throughout this subsection that the
leaf T" is oriented. When this is not the case, the same argument applies to
show that the oriented double cover is stable.
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I1.3.4. Property (3) of Proposition 11.3.1: Opposite orientations at distinct
points Of Ccros N Sulsc-

Proof of (3) in Proposition 11.3.1. We must show that if p and ¢ are dis-
tinct points in I'clos M Sulse, then the multi-valued graphs in 3; near p spiral
in the opposite direction as the ones near ¢. Since there are only two possible
directions, this implies that I'cjos N Syise contains at most two points. (If there
were three such points, then two would have to be oriented the same way,
which we will show is impossible.)

We will argue by contradiction, so suppose that the multi-valued graphs
near p and ¢ have the same orientation. In this case, we can choose a closed
“figure eight” curve ; in ¥; with the following properties (see Figure 18):

e 7, is a graph over a fixed (immersed) figure eight curve v in I" that circles
p and ¢ in opposite directions. Let r € v be the double point where ~ is
not embedded.

e The two points in v; above the double point r are in distinct sheets of X;;
hence v; is embedded.

Curve v; in X;.

\

(1) Stable surface I'; leaves ;.

i -

(2) Pinching makes I'; very flat.
Distinct sheets of 3, (3) Unique continuation keeps it
so y; embedded. very flat.
Figure 18. The figure eight Figure 19. The stable surface I';
curve 47 in 2. would be forced to cross an axis.

The second condition has a very useful consequence. Namely, the unit
normal to X; is always either upward or downward pointing along ~y; since X;
is graphical along «;; therefore, elementary topology implies that

e The two points in 7; above r are separated by an oppositely-oriented sheet
of Ej.

We will now use these properties of the v;’s to find stable minimal surfaces I';
disjoint from the X;’s that contain a graph near either p or ¢, contradicting
that these points are in Syisc. Since ¥; has genus zero, the curve 7; separates
in ¥;; let Zj be one of the two components of %; \ ;. Since Bg; \ X; is mean
convex in the sense of Meeks-Yau, the existence theory of [MY82b] gives a
stable orientable embedded minimal planar domain

(I1.3.31) I'7 C Bg, \ ¥; with oI’} = 0%
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Let I'; be the component of Fj with «; C OI';. Using estimates for orientable
stable surfaces ([Sch83al; cf. [CM02a]) and the fact that v; is a figure eight, it
is now not hard to see that I'; must contain a graph near either p or ¢ (see
Figure 19). This can be seen as follows:

(1) After leaving the upper portion of v; over r, the stable surface I'; is sep-
arated from the lower portion of «; by an oppositely-oriented sheet of X;
and, hence, I'; has an a priori curvature bound there by [Sch83al; cf.
[CMO02a)].

To see that I'; does indeed leave the upper portion of v; over r, intersect
I'; with a large transverse'S ball Bg(z) to get a collection of closed curves
and one segment o; where o; connects the upper and lower portions of +;
(see Figure 20). Since these are separated near r by an oppositely-oriented
sheet of 3;, the segment o; moves away from +; as desired.

(2) Away from the singular points p and ¢, the surface I'; is locally pinched
between sheets of ¥;. Combining this pinching with the curvature bound
from (1) implies that I'; — I' away from p, ¢, and ~;. (Here, “away” is
with respect to distance along paths in Bg; \ ¥;.)

(3) Combining the a priori bound of 1. with the flatness given by (2), unique
continuation forces I';j — I'cjos €ven as it approaches p or ¢. (This unique
continuation argument is spelled out in Lemma I1.1.38 in [CM04d].) How-
ever, the one-sided curvature estimate, i.e., Theorem I1.1.3, would then
apply to the 3;’s near p or ¢, contradicting that |A| — oo near p and gq.

This contradiction shows that the multi-valued graphs near p and ¢ are oppo-
sitely-oriented, completing the proof of (3). O

This completes the proof of Proposition 11.3.1.

The two parts of 7; do not connect near 7;
hence, dBr(z) NT'j moves away from ~;.

Figure 20. The stable surface moves away from its boundary near 7.

167he application of transversality uses the regularity of f‘j up to the interior of 4. Local
boundary regularity was established for two-dimensional minimal surfaces in [Hil69].
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Remark 11.3.32. The genus bound on the X;’s can be used to directly see
that I'cies N Sulse cannot contain three points. To see this, suppose that p, q,
and r are three distinct points in I'cles N Suise and 7, is a geodesic in I' from p
to g. For j large, Theorem 1.1.6 allows us to find simple closed curves ng C X
with the following properties:

° fygq is contained in the e-tubular neighborhood of 7.
. /qu \ (B:(p) U B:(q)) consists of two graphs over 7,, that are in distinct
sheets of ¥;.

Since X; has genus zero, the curve 'ygq must separate X; into two distinct
components. However, it is easy to see that this is impossible by using the
local connecting property near the third point r. Namely, we can take two
points near p on opposite sides of ng and connect each of them to B.(r) by
curves in X; that do not intersect 77,. These two curves can then be connected
to each other in B.(r) N X;, giving the desired contradiction.

Part III. When the surfaces are ULSC: The proof of Theorem 0.9

In this part, we will prove Theorem 0.9, i.e., the main structure theorem
for ULSC sequences where Speac = 0. The key will be to analyze the ULSC
singular set Sy and, in particular, the collapsed leaves of £'. Although the
emphasis will be on the ULSC case, many of the arguments will actually apply
to a neighborhood of a collapsed leaf whose closure does not intersect Speck.
This will be used later when we analyze the general case.

In the previous section, we showed that a collapsed leaf I" of L' is a stable,
incomplete minimal surface with isolated removable singularities at points in
Sulse- In general, I' may have worse singularities at points of I"cios N Sneck, but
we will assume that I'cjos N Speck = @ in this part.

In addition to what we have shown in the previous section, we need to
establish two facts to complete the proof of Theorem 0.9. First, we must show
that every collapsed leaf is a plane. (It then follows easily from embeddedness
that all of these planes are parallel.) Since we have shown in Proposition 11.3.1
that the collapsed leaves are stable with isolated removable singularities at
each point of Syjs, this follows easily from the Bernstein theorem for complete
stable surfaces in R3. The second additional fact that must be established is
the “properness” of the limit in the sense of [CM02b]. Roughly speaking, the
local cone property already implies that the closed set S is contained in two
Lipschitz curves each of which is transverse to the limit planes. The properness
consists of showing that S actually fills out these curves completely; i.e., there
cannot be a first or last point in S. See (x) in Section IIL.1 for the precise
statement. As in [CMO02b], we will prove properness by showing that the
vertical flux of a potential nonproper limit would have to be positive, which is
impossible by Stokes’ theorem.
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All of this will show the following (after a rotation of R3):

e The ULSC sequence of surfaces converges to the foliation by parallel planes
(I11.0.1) F={zs =t}

away from the singular set S.
o (Cylsc) from Theorem 0.9 holds.
e (D!,..): S consists of two disjoint Lipschitz graphs &; : R — R3 and
Sy : R — R3 over the x3-axis.
From this, it follows immediately from the main theorem of [Mee04] that S;
and Sy are in fact straight lines orthogonal to the leaves of the foliation, giving
(Dysc) from Theorem 0.9 and completing the proof of Theorem 0.9.

Recall that collapsed leaves are the leaves of £’ that “go through” a point
of Suise, i-€., that contain the local leaf ', given by Lemma I1.2.3 for some z €
Suise; see Definition I1.2.9. The next proposition establishes the key properties
of a collapsed leaf in the ULSC case.

PROPOSITION II1.0.2. Suppose that " is a collapsed leaf of L. If Tcios N
Sneck = 0, then

(1) Tcues is a plane.
If, in addition, Speck = 0 (i.e., the sequence is ULSC), then

(2) Dcios intersects Syse in exactly two points and the multi-valued graphs in
the ¥;’s spiral in opposite directions around the two corresponding azes
(see Figure 8).

This proposition will be proven over the rest of this section.

I11.0.5. Property (1) in Proposition 111.0.2: Collapsed leaves are planar.
To prove that I is flat, we first use property (3) in Proposition I1.3.1 to see that
T'clos 18 the union of I' together with at most two points in Syjsc since we are
assuming that I'cjes N Speck = @. In particular, since each point in I'clos N Sulse
is a removable singularity by (1) in Proposition I1.3.1, we conclude that I'cjes
is a smooth complete surface without boundary.

Assuming first that I" is oriented, (2) in Proposition I1.3.1 implies that I is
stable. We can then use a standard logarithmic cutoff argument at each point
in Tcpes \ T to conclude that T'qyeg is itself stable. The Bernstein theorem for
stable complete minimal surfaces, [FCS80], [dCP79], then implies that I'cyes is
a plane, as desired. When I' is not oriented, the preceding discussion applies
to show that its oriented double cover is flat — and hence so is I'. The obvious
details are left to the reader.

I11.0.6. Property (2) in Proposition 111.0.2: Ruling out just one point of
Sulse i a leaf. In contrast to property (1), we will need to use that the sequence
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is ULSC in order to prove (2). We will later see that this assumption can be
removed. However, the argument we will give to prove (2) in general will use
the ULSC case that we are proving now. (This is why we are not proving the
general case directly.)

We have shown in property (3) of Proposition I1.3.1 that the closure of
a collapsed leaf contains at most two ULSC singular points and that the ¥;’s
spiral in opposite directions around two such points. Hence, to prove (2) in
Proposition II1.0.2, we must show that I'cjos cannot intersect S in just one
point.

Before proving (2), we need to recall a useful property of stable minimal
surfaces. Namely, the following lemma shows that a stable surface that starts
out on one side of a plane where the interior boundary is in a small ball is
graphical away from its boundary (see Figure 21).

LEMMA II1.0.3. There exists a small constant 0 < § < 1 so that if ro <
0 Ry and I’ C Bp, is a connected embedded stable minimal planar domain with
nonempty inner boundary v = OI' \ 0BR, contained in the small ball By,
outer boundary OT' \ Bs,, nonempty, and

(I11.0.4) B, NT'N{z3 =0} =0,

then I' contains a graph over the annulus Dspg, \ Dy, C {z3 = 0}. Moreover,
this graph can be connected to the inner boundary v by a curve in By, NT.

Inner boundary .

Stable I' (dotted) becomes graphical.

Figure 21. Lemma II1.0.3: The stable surface I' starts off close to —
but above — a disk and is forced to become graphical.

Proof. The proof has two steps. Namely, we first show that I' contains
an initial graph over a small annulus on the scale of d rg. The next step uses
the initial graph to apply the “stable graph proposition” — Proposition C.2
in Appendix C — to get the desired graph over the large annulus Ds g, \ Dy,.

Producing the initial graph. Given a point y € I with 2drg < |y| < Ry/4,
the estimates for stable surfaces of [Sch83a] gives C so that sup Bl /3() |A] <

Cs|y|~'. Since 3 is a positive harmonic function on T, the Cheng-Yau gradient
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estimate then gives C’ so that

(II1.0.5) sup |Vas| <’ &,

B|y|/4(y) ‘y|
where y3 is the x3 component of y. Moreover, the Harnack inequality gives
that

(I11.0.6) sup x3 < Cyys.
By /4(y)

Thus, when y3 < |y|/C’, then (II1.0.5) implies that B,,4(y) is a graph. Fur-
thermore, (II1.0.6) gives a constant 8 > 0 so that if y3 < f|y|, then we can
iterate the Harnack enough times to get a graph over Dy, \ D)y all the while
keeping x3 less than |y|/C’; this is a graph and not a multi-valued graph since
I' is embedded and does not spiral infinitely.

In order to implement this argument, we have to find some “low point”
y where y3 < fly|. This is given by a standard catenoid barrier argument
(Lemma 3.3 in [CM02c]): Given any 8 > 0, there is a constant C} so that
0Bc,5r,NI' contains such a low point and, moreover, it is in the same connected
component of Byc, 5r, NI that contains the inner boundary. Let I'Y be the
graph in I" over the annulus Do, 5+, \ Dy 67 -

Applying Proposition C.2 to get the graph from roy to § Ryg. Let 4 be the
graph in I'Y defined over the inner boundary 0D¢, 5, The simple closed curve
4 separates the planar domain I' into two components; let I'g be the “outer”
one, so that v is not in OI'g. Since the tubular neighborhood Ang, 5.,(%) of
radius Cy d g of 4 in I'g is contained in the graph I'Y, we get uniform bounds
for the area and total curvature of Anc, 5r,(%). Now apply Proposition C.2
to 4 to get a graph in I' defined over the annulus Dg /., \ Dwcy 6ry- Finally,
we fix § > 0 less than w™! and (Ciw)™! so that Dpryjw \ Doy 6y contains
Dsgy \ Dy, - O

We note next that the local cone property has two important consequences
for the singular set Sy and, in particular, for how the singular set changes as
we move from one collapsed leaf to the next:

(S1) Susc cannot run off to infinity.
(S2) Distinct points of Sy in a collapsed leaf cannot combine in another
collapsed leaf.

Proof of property (2) in Proposition 111.0.2. To prove that I'cles N Sulse
contains exactly two points, suppose for a moment that there was only one
singular point. (There is always at least one by definition.) In particular, after
a translation and rotation of R3, we may suppose that

(I11.0.7) Lcios N Swse = {0},
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and the collapsed leaf through 0 is the punctured horizontal plane {x3 = 0}
\ {0}. We will show that (II1.0.7) implies that every leaf of £’ is a plane
with one point removed, these planes foliate R?, and as a consequence the
intersection of any fixed ball with the surfaces X; is simply connected for j
sufficiently large. However, this is impossible since we have assumed an upper
bound for the injectivity radii of the X;’s in Theorem 0.9, so we conclude that
(I11.0.7) cannot hold.

Properness. We will show next that every open neighborhood of {z3 = 0}
contains points of Syjsc both above and below {3 = 0}; the proof will use only
that T'clos NSpeck = 0. We called this properness in [CM04e], and the argument
is essentially the same, with one caveat: [CMO04e] argues for embedded minimal
disks, whereas presently we only know that the ¥;’s are ULSC near 0. The
disk hypothesis was used for two things in [CM04e]:

(D1) The ¥;’s are multi-valued graphs in the cone {|z3| < p|z|} for some
w>0.

(D2) The portions of these two multi-valued graphs in a fixed ball combine to
be part of a single embedded minimal disk in this small ball. (This disk
property was used in [CMO04e| to apply Stokes’ theorem.)

The second fact (D2) holds in this case since 0 € Syisc. The first fact (D1) will
follow immediately from the one-sided curvature estimate once we establish
the following scale invariant ULSC property:

(D) There exists 7 > 0 so that, for z € {x3 = 0} and j large, each component
of Br|;/(z) N ¥; that connects to the multi-valued graph in X; is a disk.

We will next prove (D) by contradiction, using a variation of the “between
the sheets” estimate of [CM04b]. To do this, assume that 7 > 0 is small and
z € {x3 = 0} is the first time that (D) fails (i.e., |2| is minimal); obviously,
we must have |z| > ry since the 0 € Sy Fix a sequence of simple closed
noncontractible curves v; C B, /(2) N ¥;. We will see that this leads to a
contradiction:

(1) See Figure 22. The existence results of Meeks-Yau, [MY82b], gives stable
embedded connected minimal surfaces I'; C Bpg, \X; with oI';\ 0B R, =
and OI'; NOBg,; # (.17 Since these stable surfaces start out on one side of,
but close to, the multi-valued graphs in 3; converging to {z3 = 0} \ {0},
Lemma II1.0.3 implies that the I';’s quickly become graphical.

(2) See Figure 23. The portion Ej of ¥; between 0B, N {z3 = 0} and the
graph in I'; must be simply connected in extrinsic balls of radius 7 |z|/2
since it is trapped “between the sheets” of the multi-valued graph in ¥; and

17 This is a standard application of [MY82b]; see, e.g., Lemma 3.1 in [CMO02¢] for details.
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Noncontractible curve ;.

F .
Noncontractible curve «;. ]\ X’
x e I
0 i ] Second stable surface fj would be
\—JBTM(Z) forced to cut either I'; or ¥;.

Figure 22. The stable surface Figure 23. X; is simply con-
I'; is dotted. nected between the multi-
valued graph in X; and the

graph in I';.

the graph in I'; (and these two can be connected). Namely, if E;r contained

a noncontractible curve in an extrinsic ball of radius 7 |z|/2 centered there,

then we could apply [MY82b] to get a second stable surface T'; disjoint from

both X; and I';. The surface fj would be forced to become graphical (again
by Lemma III1.0.3) but would then have to cross the curve in ¥; UI'; that

connects the two graphical regions. (Compare the proof of Theorem 1.0.8

in [CMO04b].)

(3) Since each ball of radius 7|z|/2 centered on E;r is simply connected by
(2), the set E;’ is locally graphical by the one-sided curvature estimate
and, since it contains a multi-valued graph but cannot pass through I';, it
spirals infinitely. This is impossible since each 3; is compact, giving the
contradiction needed to establish (D).

Now that we have established (D), we can argue precisely as in [CMO04e]
using [CMO02b] (see Lemma I.1.10 there) to prove that every open neighborhood
of this plane contains points of Sy both above and below this plane.

It follows easily from this properness — as in Lemma 1.1.2 of [CM04e] —
that an entire slab {—¢ < z3 < €} must be foliated by (the closures of) planar
leaves of £'. In order to extend this foliated structure to all of R?, we will
need to use the ULSC assumption next.

Using the ULSC hypothesis to repeat the argument. Since the set Syigc is
automatically closed and transverse to these planes (by the one-sided curvature
estimate), we see that a neighborhood of this plane is foliated by parallel planes
and, in this neighborhood, Sy is a single Lipschitz curve. However, since the
constant 7 > 0 was uniform and did not depend on the particular singular
point, we can now repeat the above argument to extend the set of foliated
planes to the whole of R3. Once we have the foliation by parallel planes,
the ULSC condition and one-sided curvature estimate imply that Sy is a
discrete collection of transverse Lipschitz curves. The transversality implies
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that each curve hits every leaf and hence there is only one curve. In sum, the
sequence is converging to a foliation of R? by parallel planes away from a single
Lipschitz curve Sy transverse to the planes. (This was exactly the result of
[CMO04b]-[CMO04e] for sequences of disks.) This has two consequences:

e Near Syisc, the sequence looks like a double spiral staircase.
e Away from Sys, the sequence is locally converging (with bounded curva-
ture) to a foliation by parallel planes.

The second fact allows us to extend the double spiral staircase structure away
from the singular curve Syisc, so that we get a sequence R;- — 0o where the
component of B N Y; intersecting BR; /¢ is a double spiral staircase. In
particular, this component is also a disk. Since we have assumed that no such
sequence of expanding disks in X; exists, we rule out (II1.0.7) as promised. [

III.1. Properness and the limit foliation

We have now shown that each collapsed leaf is a plane that is transverse to
Suise (with a definite lower bound on the angle of intersection). As in [CMO04e],
we must show that nearby leaves are also planes; we call this properness of the
limit foliation. Since each singular point in Sy has a plane through it, this
properness will follow from showing that there cannot be a first or last such
singular point. In fact, it is not hard to see that these properties are equivalent.
Namely, a planar leaf nearby a collapsed leaf must also contain singular points
since otherwise the one-sided curvature estimate would give a curvature bound
at the singular point in the collapsed leaf. In [CMO04e], a similar properness
for disks (where each plane had only one puncture as opposed to the current
situation of two) was proven using [CMO02b].

Before giving the precise statement of properness, observe that we can
rotate R3 so that the closure of each collapsed leaf of £’ is a horizontal plane,
i.e., is given by {z3 = t} for some ¢ € R. This is because the closure of each
collapsed leaf is some plane by Proposition I11.0.2 and these planes must all
be parallel since the surfaces ¥; are embedded. With this normalization, the
precise statement of properness is

(x) If t € 23(Suise) and & > 0, then SN {t < 23 < t + ¢} # 0 and
Sﬂ{t—5<l‘3<t}7&®.

We should point out that when the sequence is ULSC, (x) automatically
implies that {z3 = t} N Sy contains at least two points (cf. (S1) and (S2)).
Namely, once {x3 = t} N Sysec contains one point p’, then Proposition II1.0.2
implies that there is a second point ¢’ € {x3 =t} N Sy so that

(IIL.1.1) {zs =3\ {p', ¢'}

is a collapsed leaf of £’.
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I3 = ¢
Double spiral staircases near p and gq.
A/ No points of S in
— the open slab.

7 p o 73 =0

¥ spirals infinitely into {z3 = 0}.

Low ends of ¥ will be graphs.
Figure 24. The limit ¥ when properness fails.
As in [CM04e] and [CMO02b], the key to proving (*) is a careful analysis

of the vertical flux of the multi-valued graphs. Recall that if ¥ is a minimal
surface and o C X is a simple closed curve, then the vertical flux across o is

63:3
I11.1.2 —_—
( ) o an7
where %irf is the derivative of x3 in the unitary direction normal to ¢ but

tangent to ¥. By Stokes’ theorem, the integral (III.1.2) depends only on the
homology class of ¢ since the coordinate function 3 is harmonic on a minimal
surface.

We will prove (x) by contradiction as we now outline: If (x) does not hold
for t = 0, then we can assume, after possibly reflecting across {zs = 0}, that

(II1.1.3) SN{0<zz<e}=0.

We will use this to show that there is a unique leaf ¥ of £’ that spirals into
the plane {x3 = 0} from above and this leaf is a multiplicity one limit of the
¥;’s. Moreover, near the singular points in {z3 = 0}, ¥ will be a double spiral
staircase that spirals infinitely into the plane, with the two spirals oppositely-
oriented (see (3) in Proposition I1.3.1); see Figure 24. The ends of ¥ coming
from circling both double spiral staircases will be graphs lying above the plane
{zxs = 0}; we will see that this implies that each such end has nonnegative
vertical flux. This structure of the ends also allows us to cutoff ¥ below a
carefully chosen horizontal plane {z3 = ¢}; it will be almost automatic that
the boundary curve produced has positive vertical flux. Using the fact that
the plane {z3 = 0} contains two points of Sy, we will find a sequence of
separating curves in X whose vertical flux goes to zero. This gives a sequence
of compact domains in ¥ bounded at the top by a curve in the plane {z3 = ¢}
with positive flux, bounded at the bottom by curves with flux going to 0, and
with boundary curves on the sides with nonnegative flux. Combining all of
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this will give the desired contradiction since, by Stokes’ theorem, the total flux
of any compact domain must sum to zero.

There are, in general, two ways to show that the vertical flux in (III.1.2)
is small; one can either show that the curve o is short (since |Vxz| < 1) or
show that |Vz3| is small and the length of ¢ is bounded. Since the length of
any closed noncontractible curve near {z3 = 0} is bounded away from zero, we
must take the second approach here to bound the flux of the bottom boundary
curves. (We will use the first approach in the next part near points in Speck-)
In our application, the harmonic function x5 will be positive on the surface X
and the estimate on |Vz3| will follow from the gradient estimate.

I11.1.1. Establishing properness: The proof of (x). The next lemma shows
that (%) holds as long as we have properties (1) and (2) in Proposition II1.0.2.
In particular, since these properties always hold when the sequence is ULSC,
we get (%) in the ULSC case.

LeMmMA II1.1.4. If (1) and (2) in Proposition 111.0.2 hold, then (x) holds.
That is, if the horizontal plane {x3 = t} is the closure of a collapsed leaf
satisfying (2) in Proposition 111.0.2, and € > 0, then

(IT1.1.5) Sn{t<ag<t+et£0Dand SN{t—ec<wz3<t}#0.

Proof. For simplicity, we will assume that the X;’s have genus zero. The
general case follows with easy modifications.

We will argue by contradiction, so suppose that Sysc N {z3 =0} = {p, ¢},
e > 0, and

(I11.1.6) SN{0<z3<e}=0.

Fix a radius R > 0 so that the disk Dr C {z3 = 0} contains both p and gq.

We will first record four consequences of (I11.1.6) that will be proven below
and then use these properties to rule out the possibility of such a nonproper
limit (see Figure 25):

(P1) There is exactly one leaf ¥ of £" in {x3 > 0} whose closure intersects the
plane {3 = 0}. This leaf ¥ is a multiplicity one limit of the ¥;’s. Fur-
thermore, after possibly reducing € > 0, the leaf X is proper in compact
subsets of {0 < x3 < €}.

(P2) Each “low” end of ¥ is an asymptotic graph with nonnegative vertical
flux. Here “low” will be made precise below but roughly means starting
off close to {z3 = 0} over the disk Dg containing p and q.

(P3) Intersecting ¥ with a carefully chosen horizontal plane where x3 is con-
stant will give a vertically separating curve v, C X with positive vertical
flux. Here vertically separating means that if a curve in ¥ is over Dy and
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intersects both of
(I11.1.7) {z3 =0} and {z3 = ¢},

then the curve also intersects ..
(P4) There is a sequence of vertically separating curves v; C By N'Y with
x3(y;) — 0 and vertical flux going to zero.

(P3): Intersecting with a plane between two ends gives a curve
~v4+ that is vertically separating and has positive flux.

(P4): ~;’s circle p and ¢; z3(7;) — 0 and the flux of 7; — 0.

(P2): The region bounded from above by 4 and below by ~;
will have ends that are graphs with nonnegative flux.

Figure 25. Properties (P2)—(P4) of ¥ when properness fails.

The proof of (P1). Since p and ¢ are locally the last points in Sysc,
we are in case (L2) in the proof of Lemma II.3.3 near p and ¢. (Cf. the
“not proper” example (N-P).) Consequently, Lemma II.3.4 implies that near p
and ¢, but above {z3 = 0}, the ¥;’s converge with multiplicity one to double
spiral staircases that spiral infinitely into {z3 = 0}.1% More precisely, let
Qp, Qy C {z3 > 0} be the convex cones with p and ¢ as their vertices where the
one-sided curvature estimate does not apply. Then near p, above {z3 = 0},
but away from €2, we know that £’ has exactly two leaves that spiral together
infinitely into {z3 = 0}. Furthermore, the same is true for ¢ (though the
spirals have the opposite orientation there). Finally, we also know that are
multiplicity one limits and that they are isolated (i.e., not limit leaves).

The next step is to prove properness. Namely, we show that there exists
some g¢ > 0 so that ¥ is proper in compact subsets of

(111.1.8) {0 <x3 < 60}.

This properness will follow by combining the two following facts:

(Fact 1) There exists some €1 > 0 so that £ does not contain any horizontal
planes in the slab {0 < z3 < e1}.

18This is proven within the proof of Lemma II.3.4.
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(Fact 2) There exists e2 > 0 so that if y € {0 < 23 < g2} is an “accumulation
point” of ¥, then the leaf of £’ containing y is a horizontal plane.
A point y is said to be “accumulation point”!? of 3 if there exists a

sequence of points y; € X so that

(I11.1.9) li)m distgrs(y,y;) =0,
j—oo

(I11.1.10) lim distx(y1,y;) = oo.
j—00

Obviously, the two facts together easily imply the properness of £’ in the slab
between 0 and the minimum of £ and es.

To prove (Fact 1), observe that the spiraling leaves go from some positive
height all the way down to {z3 = 0} and the leaves cannot cross.

(Fact 2) follows easily from the proof of Lemma 1.3 in [MRO05]. (In fact,
one can even take g9 = &£ but we will not need this.) We will give the proof
next for completeness. Suppose therefore that a leaf ¥ accumulates at a point
ye{0< a3 <ey}inaleaf ¥ e L. (yisin a leaf since the union of the
leaves of L' is a closed subset of R?\ S and S does not intersect the open
slab {0 < z3 < £}.) We can use the Harnack inequality to extend the local
sequence of graphs converging to 3 to graphs over a sequence of expanding
subdomains of 3, eventually obtaining a positive Jacobi field on the universal
cover of 3 (cf. Lemma 2.1 in [CMO04c]). In particular, the existence of such
a positive Jacobi field implies stability of the universal cover of . (See, e.g.,
Proposition 1.26 in [CM99]; it is not needed here, but in fact one could pass
only to a double cover by [MPR10].) There are now two possibilities: either
S is complete (which is good) or it has singularities at p and/or ¢. In the
second case, Lemma A.35 implies that these singularities are removable and,
thus, 3 is contained in {x3 = 0}; since this is impossible, we conclude that N
is complete and

(IIL.1.11) N {xs =0} = 0.

Combining the local curvature estimate for stable surfaces, [Sch83a], [CM02a],
with the gradient estimate and (III.1.11) gives €2 > 0 (depending only on &)
so that

(I11.1.12) {23 < g2} N3 is locally graphical over {x3 = 0}.

(See, e.g., Lemma 1.0.9 in [CMO04Db] for a detailed proof of (II11.1.12).) However,
the theory of covering spaces (see Lemma 1.4 in [MRO05]) now implies that each
component of {x3 < ey} N S is globally a graph of a function u with 0 < u < &5
over a domain £ C {z3 = 0} with boundary values u|spg = 2. However,

19T hese are often referred to as “limit points” of a leaf in the literature.
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the proof of the strong halfspace theorem of Hoffman-Meeks, [HM90], implies
that such a u must be identically equal to its boundary values and, by unique
continuation, we see that 3 is a horizontal plane as claimed. This completes
the proof of (Fact 2) and, hence, also of properness.

We now completely understand what is going on near p or ¢ and away from
2, and €, and we have proven properness even in these bad regions (above the
vertices). The next step is to see that there are no leaves of £’ that live entirely
in one of these bad regions. Because of the strict convexity and properness,
there cannot be any complete leaves. It remains to show that there cannot
be a leaf that has p or ¢ in its closure. However, since we have properness,
this is ruled out immediately by a catenoid barrier argument (Lemma 3.3 in
[CMO02c]) that gives the existence of low points.

The next step is to understand a neighborhood of p and ¢g. Since we
have properness, the two separately spiraling multi-graphs must combine in
the bad region to form a single double-spiral staircase; this is for topological
reasons since we must have an oppositely-oriented component between the two
consecutive sheets in a single multi-graph. Thus, there is only leaf leaf that
spirals in {z3 = 0} near p and ¢; we will call this 3.

Finally, it remains to show that if ¥’ C {z3 > 0} is a leaf of L that
contains a point ¢’ € {3 = 0} in its closure ¥/, then ¥/ = X. This has already
been established when ¢’ is near p or ¢ since there is only leaf there (cf. the
chord arc property of Theorem 1.1.6). However, this easily gives the general
case. Namely, first fix a compact disk

(I11.1.13) Dg = {22 + 23 < 5?}n{x3 =0}

containing p, ¢, and ¢. Since, by assumption (see (1) in Proposition II1.0.2),
we have that Dg N Specc = 0, an easy compactness argument and the convex
hull property give some r; > 0 so that

(II1.1.14) each component of B, (y) N X; is a disk for every y € Dg.

Hence, by the one-sided curvature estimate, the ¥,’s are locally graphical in
a cylindrical slab about {x3 = 0} and over Dg, as long as we stay away from
p and ¢. If we now choose a point g in ¥/ with |g — ¢/| sufficiently small
(depending on both |[p—¢’| and r1), then we can repeatedly apply the Harnack
inequality to connect ¢ by a curve in ¥/ back to a small neighborhood of p.
Therefore, since 3 is the only leaf in {3 > 0} that intersects a sufficiently
small neighborhood of p, we conclude that ¥/ = X.

The proof of (P2). The proof of the asymptotic graph structure in (P2)
will be similar to the proof of property (D1) in Section II1.0.6. First, we fix a
large constant 2 > 1 and some disk Dr C {xz3 = 0} containing both p and q.
Since {zg = 0} \ {p, ¢} is a leaf of L’ (and, in particular, disjoint from §), an



FIXED GENUS 53

easy covering argument gives an arbitrarily small constant &’ > 0 and constants

ua >0 and Cy4 so that

(I11.1.15) sup |A|? < Ca.

{0<az<pa}n{zi+23<4Q2 R2}\(B./ (p)UB./(q))

The gradient estimate and (III.1.15) then give a constant x> 0 (and less than

i) so that
See Figure 26. Each point y € {0 < z3 < pu} NX over dDp is contained
in a graph ¥, C X over the annulus Dog \ Dg with ¥, C {0 < z3 < €}.
Furthermore, the graph X, extends over (a large part of) Dg as a graph,
connecting to the two double spiral staircase structures near p and q.

Double spiral staircases near p and gq.

(

R )

Tr3 = 0
Graphs over the annulus Dggr \ Dg.

Figure 26. The graphs I'; in .

This allows us to make the notion of a “low” end precise. Namely, a low end
is the component of ¥ \ ¥, — with 3, as above — whose closure does not
contain the boundary graph over 0Dg.

It remains to show that each of the graphs X, extends as a graph in-
definitely, i.e., past dDqr. This is where we argue as the proof of (D) in
Section II1.0.6, proving the following scale invariant ULSC property:

(D’) There exists 7 > 0 so that, for z € {z3 = 0} \ Dg and j large, each
component of B, |;(z) NX; that connects to the multi-valued graph in ¥;
is a disk.

Once we have shown (D’), then the one-sided curvature estimate and gradient

estimate will allow us to extend X, as a graph indefinitely. We will leave this

easy extension argument to the reader.

We will next prove (D’) by contradiction; suppose therefore that some
3, connects outside Dp to a component of B Z|(z) M X, which is not a disk.
(Here and below we are identifying 3, with the portion of the ¥;’s converging
to it. This identification should not lead to confusion since we have already
shown that the convergence is multiplicity one.) We observe that this “nondisk
component” leads to a contradiction, roughly following the proof of (D) in
Section II1.0.6 as follows:

e See Figure 27. A curve ; that is noncontractible in BT‘Z|(z) N X; is also
noncontractible in 3; by the convex hull property. We can therefore apply
[MY82b] to find a stable surface I'; C Bpg, \ ¥; with interior boundary ~;
as in (1) in Section II1.0.6. As before, using the plane {x3 = 0} allows us to
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conclude by Lemma I11.0.3 that these stable surfaces quickly become graphs
as we move away from the interior boundary ;.

See Figure 28. Fix a graph X,/ above ¥, and let o, be the component of
0%, over 0Dg. As in (2) in Section IIL1.0.6, we could then apply [MY82b]
to put in a second stable surface T'; C B r; \(I';UX;) with interior boundary
equal to o,. Furthermore, this surface also quickly becomes graphical by
Lemma II1.0.3. Finally, the graph in fj must start off between the two
graphs ¥, and I'; because (1) its interior boundary o, was chosen to be
above ¥, and (2) every point near Dg in ¥ that connects back to the
multi-valued graph in ¥ must be below I';.

This easily gives the desired contradiction: The construction of I'; guar-
antees that there is a curve in X; UT'; connecting ¥, to the graph in I'; and,
moreover, is a graph over the xi-axis except for in a small neighborhood
of z. The graph in fj is consequently forced to intersect this curve, giving
the desired contradiction.

The final part of (P2), i.e., the nonnegativity of the vertical flux of the

low ends, follows immediately since the ends are asymptotic to planes (vertical

flux zero) or upper—halves of catenoids (vertical flux positive). This is because

the only other possibility would be an end asymptotic to the lower half of

a catenoid, which is impossible since one of these would eventually go below
the plane {z3 = 0}. (Recall that any embedded minimal end with finite total
curvature is asymptotic to either a plane or half of a catenoid by Proposition 1

in

[Sch83b].)

Noncontractible curve.
Stable I'; is dotted.

Double spiral staircases near p and gq.

Graphs over the annulus Dqpr \ Dg.

Figure 27. The proof of (D’): Constructing I';.

~ Stable I'; is dotted.
Stable I'; also dotted. \

Graphs X, above ¥,,.

Figure 28. The proof of (D'): T; must intersect T'; U %;.
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Ends of ¥ are asymptotic to graphs.

\ o Vertical\ly separating v .
N\ X V
_____________ )OG —_—— - - - =

Positive distance between consecutive ends allows us to
find transverse (dotted) plane between two.

Figure 29. The vertically separating curve ~..

The proof of (P3). To prove (P3), recall first that there is a positive
distance between consecutive ends by the maximum principle at infinity of
[LR88]. This positive distance allows us to intersect ¥ with a horizontal plane
that intersects Y transversely between the heights of two consecutive ends,
giving a finite collection 4 of disjoint simple closed curves separating these
ends; see Figure 29. This finiteness follows from the compactness of the level
set that in turn used the properness of 3. Since we will be considering the part
of ¥ below this plane, the outward normal derivative of x3 is nonnegative at
every point along v, . However, this plane was chosen to be transverse to the
surface, so this derivative must in fact be pointwise positive along v4. That
is, the flux integrand is pointwise positive along vy so the vertical flux across
v+ is clearly positive.

Finally, we will sketch briefly why the fact that ¥ has genus zero implies
that we can choose a single component of 4" that is vertically separating. We
must show that only one component of ¥\ v* connects y* to the “the ceiling”
{z3 = €}. The point is that if there were two such components of ¥ \ ¥,
then we could solve a sequence of Plateau problems to get a stable surface I't
between them with the following properties:

e OI't C 4T is a finite collection of disjoint simple closed curves in a plane.

e I'" does not go below the plane containing 7.

e I'" is above one of the components of 3 \ v* and below the other.

It is not hard to see that this is impossible. The connectedness of y* is not

actually necessary for the proof, so we will leave the details for the reader.
The proof of (P4). The last claim (P4) essentially follows from the de-

scription of ¥ near the plane {x3 = 0} and the gradient estimate. To see this,

let

(IT1.1.16) Ypq C {x3 =0}

be the line segment from p to ¢. Using the description of ¥ near {z3 = 0} and
the chord arc bound of Theorem I.1.6, we can find simple closed curves v; C ¥
with the following properties (see Figure 30):

® 7; is contained in the g;-tubular neighborhood of 7,4 where ¢; — 0.
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Plane x3 = 0.

Away from p and ¢, the closed curve «; has two components;
these lie in oppositely oriented graphs in X.

Figure 30. The separating curves ~;.

e v \ (Be,(p) U B, (q)) consists of two graphs over 7,, that are in oppositely-
oriented sheets of 3.
e The length of (B, (p) U Be,(¢q)) N is at most C'e; for a fixed constant C.

It is easy to see that the ~y;’s are vertically separating since the sheets con-
taining

(I11.1.17) i \ (Be;(p) U B, (q))

are oppositely-oriented (meaning that the unit normals point in nearly opposite
directions). Namely, if we fix a spiralling curve in either of the two multi-valued
graphs near either singular curve, then the third component to the unit normal
to ¥ does not change sign along this curve. Consequently, such a spiralling
curve intersects exactly one of the v;’s and does so exactly once. It follows
that the v;’s are vertically separating as claimed.

We can now use the gradient estimate to bound |Vz3| along ~; away from
p and g to see that the vertical flux on

(I11.1.18) i \ (Bs(p) U Bs(q))

goes to zero for any fixed 6 > 0. To get this bound, note first that the height
function x3 is positive and harmonic on the multi-valued graphs in ¥ that spiral
infinitely into {x3 = 0} and these graphs have bounded curvature away from
p and q. Therefore, the gradient estimate (for positive harmonic functions)
implies that

(II1.1.19) sup |Vaz| — 0 uniformly as i — oo.
7i\(Bs(p)UB;(q))

Combining this gradient bound with the bound on the length of

(I11.1.20) (Bs(p) U Bs(q)) N

gives the last claim. This completes the proof of the properties (P1)—(P4) of 3.



FIXED GENUS 57

Using (P1)—(P4) to deduce a contradiction. We now see that these proper-
ties are contradictory. Namely, by Stokes’ theorem, the total flux across v;, v+,
and the “ends” of ¥ between ~; and 4 must sum to zero. However, the flux
across v+ is positive and every other flux is either nonnegative or approaches
zero. This contradiction shows that (III.1.6) could not have held, proving the
lemma. O

II1.2. Completing the proof of Theorem 0.9

We will now use the properties of the singular set Sy and lamination
L' to show that £’ is a foliation by parallel planes with two Lipschitz curves
removed, thereby completing the proof of Theorem 0.9. The two main steps are

e using properness (Lemma I11.1.4) to see that the (collapsed) planar leaves
of £’ intersect every height,
e using the local cone property to get regularity of Sysc-

Proof of Theorem 0.9. Lemma I1.1.2 gives a subsequence X;, singular set
S, and lamination £’ of R?®\ & with minimal leaves. The set S = Sy is
nonempty by assumption.

For each point x in Sy, properties (1) and (2) of Proposition II1.0.2 give
a (collapsed) leaf of £’ that is a plane with two points removed. (z is one of
the two points.) It follows easily from the convergence to these planes and the
embeddedness of 3; that all of the limit planes are parallel so, after a rotation
of R?, we can assume that these planes are horizontal, i.e., given as level sets
{z3 = t}. Furthermore, since Sysc C R? is a nonempty closed set, the local
cone property implies that z3(Susc) C R is also closed (and nonempty).

We will show first that the collapsed leaves (or, rather, their closures)
foliate R — more precisely, that

(IH.Q.I) wg(SulsC) = R.

To prove (II1.2.1), we assume that {x3 = to} N Sysc = 0 for some t5 € R
and will see that this leads to a contradiction. Namely, since x3(Sysc) is
closed, there exists ts € x3(Suse) which is a closest point in x3(Sysc) to to.
The desired contradiction now easily follows from Lemma III.1.4 since either
{ts < 23 < to}NSusc Or {to < x3 < ts} NSuisc is empty. We conclude therefore
that z3(Susc) = R.

Finally, the Lipschitz regularity of the curves now follows as in Lemma
1.1.2 of [CM04e]; the same argument applies with obvious minor modifications
to deal with the fact that each horizontal plane now contains two singular
points as opposed to just one in [CMO04e]. O
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II1.3. Sequences with fixed genus

Most of the arguments in the preceding sections have assumed that the
surfaces ¥; have genus zero as opposed to just some fixed finite genus. The
arguments for the genus zero case are slightly simpler, however, the modifica-
tions needed for the general case are straightforward. The key point is that
the infinite multiplicity of the multi-valued graphs converging to a collapsed
leaf means that there is an arbitrarily large number of disjoint curves to choose
from that “circle both axes” and thus have the desired properties for the pre-
ceding arguments. In the general case of finite (but nonzero) genus, we can
therefore follow the preceding argument using the following lemma:

LEmMA II1.3.1. If X is oriented with genus g and o1,...,0441 C X are
disjoint simple closed curves, then ¥\ U;o; is disconnected.

Proof. The first integral homology group of ¥ is 2¢g-dimensional, and the
intersection form is a bilinear form of full rank (cf. Lemma 1.0.9 of [CMO04d]).
Therefore the maximal subspaces on which the intersection form vanishes have
dimension g. Consequently, there is a nontrivial linear (integral) relation be-
tween the 0;’s and the lemma follows easily. (]

II1.4. An application: A one-sided property for ULSC surfaces

The compactness theorem for ULSC sequences, Theorem 0.9, can be used
to prove estimates for embedded minimal surfaces that have a lower bound on
their injectivity radius. We will prove several such estimates in this paper, in-
cluding Lemma III.4.1 in this section. This lemma proves a one-sided property
for nonsimply connected surfaces on the smallest scale of nontrivial topology,
showing that an intrinsic ball in such a surface cannot lie on one side of a plane
and have its center close to the plane on this scale. This result requires that
we work on this scale since, after all, large balls in the catenoid can be rescaled
to lie above a plane and yet come arbitrarily close to the plane.

The proof of the lemma divides naturally into two extreme cases, depend-
ing on whether the (inverse of the) curvature is comparable to the injectivity
radius or is much larger. In the first case, the surface looks more like a catenoid
while in the second it looks like a pair of oppositely-oriented helicoids joined
together. In the first case, the lemma essentially follows from the logarithmic
growth of the ends of the catenoid; the second case follows from the fact that
these double-helicoids converge to a foliation of all of R? by the compactness
theorem for ULSC sequences, Theorem 0.9.

LEmMA II1.4.1. Given any H > 0, there exists C1 > H so that if ¥ is
an embedded minimal planar domain with 0 € ¥, Bay, (0) C X is not a disk,
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Beyr, (0)NOX =0, and B, (x) is a disk for each x € Be, r,(0), then

(I11.4.2) sup 3 > Hry.
Bcl 1 (0)
Proof. After rescaling, we can assume that r; = 1. We will argue by

contradiction, so suppose that 3; is a sequence of embedded minimal planar
domains containing 0 with

(I11.4.3) B;(0) C (3;\ 8%;) N {zs < H},
(I11.4.4) B4(0) is not a disk,
(I11.4.5) Bi(x) is a disk for each x € B;(0).

Observe first that Lemma B.1 in Appendix B gives a sequence R; — 00 so
that the component ¥ R; of B R; NX; containing 0 is compact and has boundary
in OBg; .20 Replacing the sequence ¥j by Yo, r; gives a ULSC sequence — still
denoted Y; — of embedded minimal planar domains in extrinsic balls whose
radius goes to infinity. We will now divide the proof into two cases depending
on whether or not the curvatures of the sequence blows up.

Case 1. Suppose first that sup |A|> — oo in some fixed ball of R? (for
some subsequence). We can then apply the compactness theorem for ULSC
sequences, Theorem 0.9, to get a subsequence of the X;’s that converges to a
foliation by parallel planes away from two lines orthogonal to the leaves of the
foliation. Since the foliation is of all of R3, this contradicts the upper bound
for z3 in (111.4.3).

Case 2. Suppose now that |A|? is uniformly bounded on compact subsets
of R3 for every 2;. In this case, a subsequence of the XJ;’s converges smoothly
to a minimal lamination £ of R3 by Proposition B.1 in [CMO04e]. We will first
see that (II1.4.3)—(II1.4.5) imply that there is a nonflat leaf T of £ satisfying

(I11.4.6) I C {23 < H},

(I11.4.7) Bi(zx) is a disk for each z € T.

To see this, first note that (II1.4.4) implies that each B4(0) C X; cannot be
written as a graph over any plane and hence contains a point y; with |A[?(y;) >
dg for some dg > 0. A subsequence of these points converges to a point y in
some leaf — call it I' — of £ with |A|?(y) > dp. Thus I is not flat. Equation

(I11.4.6) follows immediately from (II1.4.3).
Observe next that the leaf I'

e is a multiplicity one limit of the ¥;’s,

20This will be needed later to apply the compactness results for ULSC sequences.
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e is locally isolated in £ in the sense that each point y € I' has a neighbor-
hood B, (y) so that B, (y)N L consists only of the component of B,(y) NT
containing y.

If either of these were not the case, then the universal cover of I' would be
stable and, hence, flat; cf. the proof of Corollary A.20 for more details. As
a consequence, if K is any compact subset of I', then for j sufficiently large
(depending on K'), 3; contains a normal graph K over K; as j — oo, the Kj’s
converge smoothly to K. Using this convergence and the convex hull property,
it is easy to see that (II1.4.5) implies (II1.4.7). Moreover, this convergence
and the fact that the ¥;’s are planar domains implies that I' is also a planar
domain. To see this, suppose instead that I' contains a pair of nonseparating
curves v and 4 that have linking number one (i.e., so they are transverse and
intersect at exactly one point). Then for j large, we would get a similar pair
of curves in X;; since this is impossible for planar domains, we conclude that
I’ is also a planar domain.

We have shown that I is a planar domain satisfying (II1.4.6) and (I11.4.7).
We can assume that H = supp z3. Recall that [MRO5] gives
(II1.4.8) sup |A|? = cc.

TN{H—-1<z3<H}

Namely, by the first paragraph of the proof of Lemma 1.5 in [MRO05], if instead
we had

(I11.4.9) sup |A? < oo,

'n{H-1<z3<H}
then I' = {z3 = H}. However, I is not flat, so we conclude that (II1.4.8) must
hold.

We will now use (II1.4.8) to define a new sequence of planar domains where
we can argue to a contradiction as in Case 1. (Alternatively, we could apply
(4.b) in Theorem 4 in [MRO06].) Namely, (II1.4.8) gives a sequence of points
pn €I'N{H — 1< z3 < H} with

(I11.4.10) |A* (pn) — 0.

By (I11.4.7), we can apply Lemma B.1 to conclude that the component I'y,, ;, of
By, (pn) NT containing p,, is compact and has boundary in 9B, (p,). Translate
Iy, »n by moving p,, to the origin to get a ULSC sequence

(111411) Fn = Fpn,n — Dn

of compact embedded minimal planar domains with Iy, C B,,, dI';, C 0B, and
|A]2(0) — co. As in Case 1, a subsequence converges to a foliation of all of R3
by parallel planes away from two lines orthogonal to the leaves of the foliation.
However, by (I11.4.6), the translated surfaces I';, are in the half-space {z3 < 1}.
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This contradiction completes the proof of the lemma in Case 2, completing the
proof of the lemma. O

Remark 111.4.12. Using this one-sided property, we can go back and prove
a stronger version of Lemma B.1. This stronger result gives that ULSC surfaces
are proper — as opposed to just knowing that each component in a ball is
proper.

Part IV. When the surfaces are not ULSC: The proof of
Theorem 0.14

We will now turn to the case where the sequence is not ULSC and there
is consequently no longer a lower bound for the injectivity radius of the ¥;’s
in compact subsets of R3. As we did in the ULSC case, we will initially argue
for the genus zero case and then explain the easy modifications needed for the
general case of fixed finite genus.

We have already defined the singular set S in Definition/Lemma II1.1.1 to
be the set of points where the curvature blows up. Furthermore, Lemma I1.1.2
gives a subsequence X; that converges to a minimal lamination £ of R3\ S.
This gives (A) and (B) in Theorem 0.14.

In the ULSC case, every singular point was essentially the same; namely,
in a neighborhood of each singular point, the surfaces were double-spiral stair-
cases. However, we now have the possibility that the injectivity radius of the
¥;’s is going to zero at the singular point. This occurs, for example, by taking
a sequence of rescalings of a catenoid or one of the Riemann examples. Re-
call that the Riemann examples are singly-periodic embedded minimal planar
domains that are topologically — and conformally — equivalent to an infinite
cylinder with a one-dimensional lattice of punctures.

For the sequence of rescaled catenoids, the singular set S consists of just
the origin and we get C'°° convergence to a single plane with multiplicity two
away from the origin. Rescaling one of the Riemann examples gives a line of
singular points and convergence to a foliation by parallel planes away from this
line. By choosing different sequences of rescaled Riemann examples, we can
get different singular sets — but we always get a foliation by parallel planes.

The local behavior of the surfaces near a singular point is quite different,
depending on whether or not the injectivity radius is going to zero there. To
account for this, we define the subset Specc C S to be the set of points where
the injectivity radius goes to zero. By Proposition 1.0.19 of [CMO04d], after
passing to a further subsequence, S is given as the disjoint union

(IVOl) S = Sneck U SulSC'

Recall that S5 was defined in the introduction to be the set of points where
the curvature blows up but where the sequence is locally ULSC.
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An overview of this part. In Section IV.1, we prove the main structure
result for the non-ULSC part of the limit lamination £’, i.e, (C1) in Theo-
rem 0.14. Namely, we show that for each point y in Syeck, We get a sequence
of graphs in the ¥,’s that converges to a plane through y. These graphs will
be defined over a sequence of expanding domains and the convergence will be
smooth away from y and possibly one other point in the limit plane. In the
process of proving this, we will also establish (P) in Theorem 0.14.

In Section 1V.2, we prove the main structure results for the ULSC part of
the lamination, i.e., (C2) and (D) in Theorem 0.14. Namely, we show that this
part of the lamination is actually a foliation by an open set of parallel planes
in R3, the ULSC singular set Sy is a collection of Lipschitz curves transverse
to these planes, and Speqc does not intersect these planes.

In Section IV.3, we combine all of this and complete the proof of Theo-
rem 0.14.

Remark IV.0.2. Theorem 0.14 gives a flat leaf of £’ through every singular
point in S but does not show that all of the leaves of £ are flat. This will be
proven in Part VI.

IV.1. Proving (C1) in Theorem 0.14:
A plane through each point of S,

For each point y in Speck, we will prove in this section that there is a
sequence of graphs in ¥; converging to a plane through y. The graphs converge
smoothly to the plane away from y and possibly one other point. (The other
point is also in Speck-)

The key tool in this section is Proposition IV.1.1, which allows us to
decompose an embedded minimal planar domain ¥ C B,, with 0¥ C 0B,, by
“cutting it” inside a small ball B,,, whenever some component of B,, C ¥ is not
a disk. Moreover, the proposition uses a barrier construction to find a stable
graph disjoint from ¥ so that the pieces of ¥ are on opposite sides of this graph;
see Figure 31. The basic example to keep in mind is the catenoid: Cutting
the catenoid along the unit circle in the {z3 = 0} plane gives two pieces; these
pieces are on opposite sides of the stable graph {z3 = 0} N {z? + 22 > 1}.

ProprosITION IV.1.1. There exists a constant C' > 1 so that the following
holds:

Let ¥ C By, be an embedded minimal planar domain with 0¥ C 0B,, and
0€X. If B, CX isnot a topological disk for some 11 < ro/C?, then there
exists a stable embedded minimal surface I' C By, \ ¥ with OI' C 0By, U Baor,
and satisfying the following properties:

(A) A component L'y of By /c NT'\ Bey, is a graph with gradient bounded by

one and so that Oy intersects both B, and dBcy, .
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The part ¥ above Iy is in bold.

The part X~ below I'y.

Figure 31. Proposition IV.1.1: A stable graph 'y separates ¥ into
parts above and below the graph.

(B) There are distinct components HY and H~ of B, o\ (I'o U Bcr,), @
separating curve & C Boy, N'Y, and distinct components X7 and ¥~ of
B,yjc NS\ G so that * C H* U Bgy, and 6 = 05T N9x™.

Figure 31 suggests that the separating curve & is also the inner boundary of
I", but we are not claiming this in general. Rather, we will first choose an inner
boundary curve in the very small ball B, , use this to produce a stable graph
that separates in B, /¢ \ Bey, with components of 3 on both sides, and then
choose the curve o to separate these upper and lower pieces of ¥ in B, /C\Bcrl.

As mentioned above, Proposition IV.1.1 will be the key tool for getting
the limit plane through each point of Syeck that was promised in (C1) in The-
orem 0.14. To see why, we will first use Proposition IV.1.1 to get a sequence of
stable graphs that are disjoint from X; and converge, away from y, to a plane
through y. Since the outer radii R; go to infinity, applying Proposition IV.1.1
to the sequence X; will give a sequence of stable graphs that are disjoint from
¥; and defined over larger and larger annuli centered at y. As j — oo, the
inner radii of these annuli go to zero and the outer radii go to infinity. Conse-
quently, the stable graphs will converge (subsequentially) to a minimal graph
over a plane punctured at y and this graph will have y in its closure. By a stan-
dard removable singularity theorem, this limit graph extends smoothly across
y to an entire minimal graph and, hence, is flat by the Bernstein theorem. The
easy details will be left to the reader.

Now that we have this stable limit plane through y € Syeck, the proof of
(C1) in Theorem 0.14 will consist of two main steps. We will sketch these two
steps next. (They are proven in Sections IV.1.2 and IV.1.3, respectively.)

(1) Decomposing ¥; into ULSC pieces. Let E; be the portion of X; above
the stable graph. (We argue similarly for the part below.) There are two
possibilities:

° Z;‘ is scale-invariant ULSC away from y. Namely, there exist C’ > 0
and a sequence r; — 0 so that if = ¢ Bev Tj(y), then each component
of Bly_y|/cr(7) N Zj is a disk. (This intersection is empty when |z| is
larger than C' R;.)
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e Otherwise, we can apply Proposition IV.1.1 to cut along a second
noncontractible curve; see Figure 32.

In the second case, we replace Zj by the portion Ej_ of Ej that is below

the second stable graph. After repeating this a finite number of times, we

will eventually get down to a scale-invariant ULSC subset of X; with two
interior boundary components (one component for the cut near y and one
component for the last cut that we make).

(2) The ULSC pieces contain graphs. In either case, Lemma 3.3 in [CMO02c]
will then give low points in ¥; on either side of these stable graphs (see
Figure 38). Here “low points” roughly means points close to the stable
graph but away from its boundary. The one-sided curvature estimate?!
from [CMO4e] and the gradient estimate will imply that the low points in
the resulting ULSC subsets of X; are graphical. Piecing this together will
easily give the desired global graphs.

In the first case in (2) above, the graphs in the ¥;’s will be defined over
annuli; in the second case, the graphs will be over pairs of pants, i.e., over
disks with two subdisks removed. We will refer to the second case as a “pair
of pants” decomposition; see Figure 32.

A “pair of pants” (in bold).

Graphical annuli (dotted) separate
the “pairs of pants.”

Figure 32. A pair of pants decomposition near a point where the in-
jectivity radius goes to zero.

Steps (1)—(2) above are modelled on similar arguments for topological
annuli in [CM02c]. Some new complications will arise here because of the
more complicated topological types of the surfaces, especially in the second
case in step (2).

IV.1.1. The proof of Proposition IV.1.1: A decomposition near each point
of Sneck- The next lemma will first give stable surfaces disjoint from ¥ and
with “interior boundary” contained in a small ball. In order to prove Propo-
sition IV.1.1, we will later show that these stable surfaces contain the desired
graphs. More precisely, the next lemma assumes that a component of a min-
imal planar domain ¥ in a small ball is not a disk so that it must contain a

21The one-sided curvature estimate is recalled in this paper in Theorem 1.1.3.
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simple closed curve 4 separating two components o1 and oy of 9%. The lemma
then uses the separating curve 4 as “interior boundary” for a Plateau problem
to get a stable minimal surface “between” o1 and o2; see (C) in Lemma IV.1.2.

LEMMA IV.1.2. Let ¥ C B, be an embedded minimal planar domain with
0¥ C 0B,,. If 1 < ro and a component ¥,, of By, N3 is not a topological
disk, then the following four properties hold (see Figure 33):

(A) X\ X,, has at least two connected components; each of these components
has at least one component of 0% in its closure.

(B) If 01 and oy are components of 0¥ that are separated by 3., (i.e., o1
and og are in the closure of distinct components of ¥.\ 3,,), then we can
choose a simple closed curve

(IV.1.3) ¥ C 0%, C OB,

that separates o1 and oo in 2.

(C) There is a component Q2 of By, \X and an embedded stable minimal surface
I' C Q with interior boundary OI'\ 0By, equal to 7, and so that " separates
o1 and oq in Q.22

(D) T is area-minimizing amongst surfaces in Q with boundary equal to OT.

01

02

Figure 33. Lemma IV.1.2: If the planar domain ¥ contains a closed
noncontractible curve in the small ball B, , then ¥ has distinct bound-
ary components o1 and o9. Moreover, there is a stable surface I' that
is disjoint from ¥ and separates o1 and o2 in a component 2 of B, \ X.
The boundary of I' has two parts, an outer boundary in 0By, and an
inner boundary curve ¥ C 0B,, N X.

220ne must be careful interpreting this “separation” since OI' may intersect o1 or o2. In
this case, we mean that ' separates points in the interior of ¥ that are arbitrarily close to
01 and g2.
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Proof. The first two claims, i.e., (A) and (B), follow from the fact that ¥ is
a planar domain and, by the maximum principle, any homologically nontrivial
curve in X, is also homologically nontrivial in .

We will next solve the Plateau problem to get the desired stable surface
in the complement of ¥. To do this, we need to choose the boundary of the
stable surface and decide which of the two components of B, \ ¥ that we will
solve in.

To get the boundary, simply let ¥y be the component of ¥\ 4 that con-
tains o1 in its boundary; we will minimize area among surfaces with boundary
equal to

(IV.1.4) 0%0.

Note that 0% has “interior boundary” equal to 4 and o3 is not in 9.

We will use a simple linking argument to choose the domain €2 to solve
in. First, fix a smooth curve n C ¥ from o; to o2 that intersects 7 exactly
once and does so transversely. (Such a curve exists since 4 separates o1 and
o9 in X.) Since ¥ is compact and embedded, we can “push 7 off of ¥” — on
either side of ¥ — to get curves n™ and i~ that are disjoint from ¥ and in
distinct components of By, \ X. It follows that the (mod 2) linking numbers
of nt and 7™, respectively, with 4 differ by one.?® In particular, one of these
— say 1~ — has linking number 1 (mod 2) with 4. Let € be the component
of By, \ T that contains the other curve n*.

It follows that we have the following three properties:

e The domain € is mean convex in the sense of [MY82b].

e 0% is contained in 0f) and bounds the planar domain ¥ in 0f).

e 7 = 0% \ 0By, has linking number 1 (mod 2) with the curve n~ that is
not in €.

Using the first two properties, a result of Hardt-Simon, [HS79], gives an em-
bedded minimal surface I' C  with OI' = 9%y and so that I" minimizes area
amongst surfaces in I' with the same boundary.?* In particular, I' must be
stable.

23Recall that if 1n C By is a curve with endpoints in 0B, and v C B, is a closed curve,
then their linking number is defined to be the number of times (mod 2) that n intersects a
surface I' C B, with 9" = . As usual, we assume that I" and 7 intersect transversely when
counting intersections. The point is that this number does not depend on the particular
choice of bounding surface T".

24We could of course have applied a result of Meeks-Yau to get a stable planar domain.
However, this planar domain would have minimized area only amongst planar domains. We
will later use this minimizing property to bound the area of I' by constructing comparison
surfaces. It will be convenient not to have to restrict the topological type of the comparison
surfaces.
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The surface I' may have several components. We will use the third prop-
erty above to show that the component I' containing 7 in its boundary separates
o1 and oy in Q and, hence, satisfies (C). First of all, 4 alone cannot be the
entire boundary of OI'; indeed, any surface I'y C B, with dI'; = I would be
forced to intersect the curve n~ that is not in ). Therefore, we must have that

(IV.1.5) OBy, N OT # 0.

A similar use of the linking condition implies that I" separates o1 and o9 in 2,
giving (C). O

The minimizing property given in (D) will be used to give an upper bound
for the area of I' by constructing comparison surfaces with the same bound-
ary. To carry this out, we will need two elementary lemmas. The first is a
simple topological lemma showing that any collection of disjoint simple closed
curves in a planar domain is homologous to a collection of distinct boundary
curves. Moreover, together the initial curves and the boundary curves bound
a subdomain of the planar domain. The second lemma uses this to construct
comparison surfaces and hence, using (D), deduce an area bound for the surface
I" above.

LEMMA IV.1.6. Let P be a (possibly disconnected) compact planar do-

main with boundary OP. Given any collection o1,...,0, of disjoint simple
closed curves in P, then there is a subdomain Py C P with

(IV.l.?) 0Py = (U?:ldi) U (U;ilm) ,

where N1, ..., Nm are distinct components of OP.

Remark IV.1.8. Before giving the proof of Lemma IV.1.6, it may be help-
ful to make two remarks. First, it is possible that m = 0 in IV.1.7, i.e., that
0Py = U]"_,0;. Second, notice that all of the above curves — both the 0;’s and
1;’s — are thought of as unoriented curves.

Proof of Lemma IV.1.6. Since we can consider each connected component
of P separately, we may as well assume that P C R? is connected. The set Py
will be given as the level set f~1(1) of a map

(IV.1.9) [P\ (ULioi) = {-1,+1}.

To define f, first fix a point pg € P\ (U-,0;). For each point p € P\ (U ,0;),
choose a curve v, C P from pg to p that is transverse to the o;’s and let n(p)
be the number of times that 7, crosses (Uj_,0;); see Figure 34. It follows from
elementary topology that n(p) (mod two) does not depend on the choice of the
curve 7, and, hence, we can define the function f by

(IV.1.10) f(p) = (=1)"@),
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f changes sign each time we cross a (dotted) o;.

Figure 34. The proof of Lemma IV.1.6: The curves o; are dashed while
OP is solid. After fixing a basepoint py, we define a function f(p) to be
+1 or —1, depending on whether you have to cross an even or odd number
of the o;’s to get from pg to p. The domain P, is then defined to be the
level set where f is +1. In the example pictured, Py has two components.

Define Py by

(IV.1.11) Py={p|f(p) = +1}.

It follows easily that f changes sign as we cross each o; and, therefore, each
o; C 0P, as desired. O

LEMMA IV.1.12. Given a constant Cy, there exists Co > C so that if
Y C By, 7, and I’ C Q C By, \ ¥ are as in Lemma IV.1.2 and for some r
between ro and r1 we have

(IV.1.13) r~! Length(0B, NY) < Oy,
then we get an area bound for B, N T’
(IV.1.14) 772 Area (B, NT) < Cy.

Proof. Note first that (IV.1.13) and Stokes’ theorem (using that div(V|z|?)
= 4 on a minimal surface) give

(IV.1.15) 72 Area (B, N'¥) < (27) ' Length(dB, N %) < Cy/2.

The minimizing property (D) in Lemma IV.1.2 implies that B, NT is itself area

minimizing among surfaces in its homology class in 2. It will suffice therefore

to construct a comparison surface in Q with bounded area. This follows from

the following steps:

(1) The outer boundary of B, NI — i.e., (0B,) NI" — sits inside the (possibly
disconnected) planar domain 2 N dB,. Consequently, Lemma IV.1.6 gives
a subset Py of the planar domain 2 N 9B, with

(IV.1.16) (0B, NT) C OPy and 9Py \ (9B, NT) C (8B,) N X.

Note that Py has bounded area since it is contained in 0B,.
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(2) Let ¥ denote the component of B, NY containing 7, and let Eg be one
of the components of Xy \ 7. Note that X has bounded area by (IV.1.15).

(3) By the previous two steps, the boundary of PyUX{ contains all of 9(B,NT)
(both 4 and the outer boundary). Ideally, we would have that d(PyUX]) =
d(B,NT) so that PyU X would be a valid comparison surface. However,
this does not have to be the case since d(PyUX{) may have some additional
components. We can therefore assume that

(IV.1.17) O(PyUSI)\ (B, NT) # 0.

(4) Observe that d(PyUX{) \ O(B, NT) is itself the boundary of a surface in
Q, namely of the surface Py UX$ U (B, NT). We can therefore solve the
Plateau problem for a surface I' in B, N ) with

(IV.1.18) L =9d(PyUX{)\d(B-NT) C (0B,) N Y.

The length bound on (0B, )NY and the isoperimetric inequality for minimal
surfaces then give an area bound for I'.
(5) Finally, it follows that

(IV.1.19) A(PyUXJ UT)=9(B,NT),

so that PyUYJ UT is the desired comparison surface.?> This gives (IV.1.14)
since each of the three pieces of the comparison surface has the desired area
bound. 0

The next lemma gives an area estimate for the components of the stable
surface constructed in Lemma IV.1.2 on the largest scale r; where 3 is ULSC.
Recall that ¥ contains a noncontractible curve 4 in 0B,,, so ¥ is not ULSC
on scales larger than r1. On the other hand, assumption (IV.1.21) below gives
that ¥ is ULSC on this scale.

LEMMA IV.1.20. Given a constant C1 > 8, there exists Cy > Cy so that if
0€XC By, 7, andT' C Q C By, \ X are as in Lemma IV.1.2 with r1 < r9/Ca
and, in addition,

(Iv.1.21) B, /a(x) C ¥ is a disk for every x € Boyry,

then each component TV of Boyr, N T\ Bsy, that can be connected to 7 by a
curve in Bi7,, NT satisfies

(IV.1.22) Area (T') < Cori.

Proof. Observe first that the chord-arc bound for ULSC surfaces, Lemma
B.1 in Appendix B, shows that the ULSC hypothesis (IV.1.21) also holds for

25This surface is not embedded and it may not even have the same topological type, but
it is nonetheless a valid comparison surface.
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z in the component of ¥ containing 0 in an extrinsic ball By, where CY goes

1
to infinity as C does. In particular, after replacing 3 by this component, we

may as well assume that
(IV.1.23) B,,/4(x) is a disk for every z € .

The proof of (IV.1.22) will be by contradiction, using a compactness argu-
ment. Suppose therefore that X;, I'; is a sequence of counter-examples where
(IV.1.22) fails with Cy = j — oo. After translating and rescaling, we may
assume that r; = 4.

We will consider two cases depending on whether |A|? — oo on a compact
set for the sequence X;.

Case 1. Suppose first that |A|?> — oo in some fixed ball of R? (for some
subsequence of the ¥;’s). We can then apply the compactness theorem for
nonsimply connected ULSC sequences, Theorem 0.9, to get a subsequence of
the X;’s that converges to a foliation by parallel planes away from two lines
orthogonal to the leaves of the foliation.

Observe that both of these orthogonal “singular” lines intersect the leaf
through 0 inside the ball By since XJ; is assumed to be nonsimply connected in-
side that ball. It follows easily from the description of the convergence near the
lines (as oppositely-oriented double spiral staircases) that any such component
I, is sandwiched between the almost planar leaves of the foliation (for j suf-
ficiently large). This sandwiching, together with interior curvature estimates
for stable surfaces, implies that F;- is itself a graph and hence has bounded
area as desired.

Case 2. Suppose now that |A|? is uniformly bounded on compact subsets
of R? for every ¥;. In this case, we will get uniform area bounds for the
surfaces ¥; in the ball By¢,. Once we have these area bounds for the 3;’s,
then the comparison argument in Lemma IV.1.12 will give a uniform bound for
area of the I';’s in the same ball. However, we assumed that there was no such
area bound for I';’s. This contradiction will complete the proof of the lemma.

Therefore, to complete the proof of the lemma, it suffices to bound the
area of X; in Byc,. This area bound follows immediately from combining the
following two facts:

e By Lemma B.3 in Appendix B, the uniform curvature bound implies uni-
form area bounds for each component of ¥; in extrinsic balls. (The bound
depends on the ball but not on j.) More precisely, if ¥; g is a component
of BR N X;, then Lemma B.3 implies that

(IV.1.24) Area (%) < C. R?,
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where the constant C, depends only on the supremum of |4|? on B¢, rpNY;.
The constant Cy here is universal and does not depend on the upper bound
for the curvature.

e Even though each intrinsic ball of radius one in ¥, is a disk, there is a com-
ponent of B4NY; that is not a disk. Therefore, it follows easily from a bar-
rier argument and the one-sided lemma for nonsimply connected surfaces,
Lemma II1.4.1, that there exists R > 4 C; so that only one component of
Bgr N X intersects By, for j large.

This follows exactly as does the analogous result for disks given in Corol-
lary 0.4 in [CM04e]. Namely, if there were two such components, then we
could put a stable surface between them. As R gets larger, this stable
surface must be very flat and, thus, we have that each component of the
Y;’s in a large ball Bps (for R’ > R) is essentially contained on one side
of a plane. Furthermore, this plane passes through Bsc,. However, the
one-sided lemma for nonsimply connected surfaces, Lemma II1.4.1, with
r1 = 1 implies that the nonsimply connected component must grow out of
this half-space in a ball of a fixed radius R” that depends only on C;. This
gives the desired contradiction for R sufficiently large, so we conclude that
there could not have been two such components. [l

The last result that we will need to recall before proving Proposition IV.1.1
is the following elementary property of connected planar domains:

LEMMA IV.1.25. Let ¥ be a connected planar domain and o1, ...,0, the
components of 0X. Given k < n and a collection {o;,,... 04}, there is a
simple closed curve 6 C ¥ that separates Uj<yo;; from 0% \ Uj<k0i;-

Proof of Proposition IV.1.1. We will first use a rescaling argument to lo-
cate the smallest scale of nontrivial topology, choose a noncontractible curve -y
on this scale, and then solve the Plateau problem with ~ as interior boundary.
We will then obtain an area bound for the components of I on this scale. This
area bound will allow us to apply the “stable graph proposition,” Proposi-
tion C.2, to get the graph 'y C T and thus prove (A). Finally, in the last step
of the proof, we will find the separating curve & and prove (B).

Blowing up on the smallest scale of nontrivial topology. Fix a large con-
stant C7 > 5 to be chosen. Applying the blow up lemma, Lemma D.1 in
Appendix D, at 0 gives an intrinsic ball

(IV.1.26) Beys, (y1) € Bscy s

so that Bas, (y1) is not a disk but B, (y) is a disk for each y € Beys, (y1). We can
now use this topologically nontrivial region of ¥ to solve a Plateau problem.
Namely, applying Lemma IV.1.2 to the component of By, (y1) NY containing
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Bis,(y1) gives a simple closed noncontractible®® curve v C Byg, (y1) N Y, a
mean convex domain © C By, \ 3, and a stable embedded minimal surface

(IV.1.27) I cQ,

with interior boundary OI' \ 0B,, equal to . Moreover, there are distinct
components o1 and oy of 0¥ C 0B, that are separated in ¥ by v and separated
in Q by I'. Finally, I' is area-minimizing amongst surfaces in 2 with boundary
equal to OI'.

An area estimate on the smallest scale of nontrivial topology. Suppose that
I is a component of Bagg, (y1) NT'\ Bss, (y1) that can be connected to v by a
curve in Byyg, (y1) NI If the constant C; from the previous step is sufficiently
large (independent of ¥ and T'), then Lemma IV.1.20 gives a constant Cy so
that

(IV.1.28) Area (T') < Cy 57,

Finding the graph in I'. Using the area bound (IV.1.28), we can apply
Proposition C.2 to get that each component of B, /, N T\ Baowr, is a graph,
where the constant w > 1 comes from Proposition C.2 and we have used that
4s1 < 2077 to estimate the inner radius.

A linking argument as in Lemma IV.1.2 then implies that one of these
components ['g has the property that I'gU Bagwr, separates B, /¢ into compo-
nents Ht above and H~ below Iy where o0y ¢ H and oo ¢ H=.27

Finding the separating curve. To complete the proof, we need only find
the separating curve & C ¥ and prove (B). In doing this, we will increase the
inner radius and decrease the outer radius.

The key to this step is to prove that there is a constant C' > 20w so that

IvV.1.29 only one component of Be,, N'Y intersects both H™ and H ™.
( y p o

Before proving (IV.1.29), it may be helpful to make a few remarks. First, it is
not hard to see that (IV.1.29) is necessary to establish (B).?® Second, it is easy
to see that there must be at least one component of Be,, N X that intersects
both H* and H~. This is because ¥ has boundary components o1 C H' and
o2 C H™ and the only way to connect these without crossing the annular graph

26Since ¥ has nonpositive curvature and + is noncontractible in the intrinsic ball By s, (1),
it is also noncontractible in 3.

27Technically, this is not quite right since 9% is contained in the boundary of the larger
ball B,,. Rather, the linking argument gives two components — call them &, and 62 — of
0B,,,c N X that are separated by I'o.

28Namely, if there were two distinct components of Bo,r, NY that each connected HT and
H™, then it would be impossible to find a single connected curve in Ber, N Y that separates
HY and H™.
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T'g is to go through the “hole” in the middle. Finally, the basic idea behind
(IV.1.29) is that if there were two components passing through the “hole” in
Ty, then a barrier argument would also give a stable surface between the two
components that also passes through the hole. However, such a stable surface
would have to be very flat if C' is much larger than 20w, so it cannot pass
through this hole. This is essentially the argument that we will give below,
but it will take a little work to make it precise.

Once we establish (IV.1.29), the rest of the proof of the proposition will
follow easily. Namely, if we let 3 be the component of Bgy, N X intersecting
both HT and H~, then Lemma IV.1.25 gives a simple closed curve & C )
separating H* N 9% from H~ N d%. In particular, the components $F of
B,y/c N X\ & that intersect S must satisfy ©* ¢ H* U Be,,.

Finally, to complete the proof of the proposition, it remains only to prove
(IV.1.29). We will do this by contradiction, so suppose that 31 and 3o are
distinct components of By, N'Y each of which intersects both HT and H~.
We will show that this is impossible for C' large enough.

Since the only “hole” in the graph I'g is in Bagur,, there must be com-
ponents ii C EA?% of Bygwr, MY each of which intersects all three of H, H™,
and Bagwr,; see Figure 35. Label these components so v N 532 = (). To get the
contradiction, we will solve a Plateau problem to get a second stable graph
that is between the ¥;’s and also disjoint from the graph T'g; such a graph
would be forced to sit on one side of I'j and hence would not allow both of the
3,’s to get to both H* and H~; see Figure 36.

To set this up, note first that we can assume that I'g is a graph with
arbitrarily small gradient — say at most § > 0 — after possibly increasing
C. This follows from estimates for minimal graphs; see Proposition 1.12 in
[CMO1]. After a rotation of R?, we can assume that I'g is a graph over the
horizontal plane {z3 = 0}.

Stable graph I'g is dashed.

Almost vertical segment 7y,, 4, .

Figure 35. The key step in finding the separating curve: Ruling
out that two components of Boyr, N2 both intersect both H+
and H~.
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Second stable graph is forced to cross 3.

Figure 36. The contradiction: We cannot have a second stable
graph that is between the two components of ¥ and on one side
of Fo.

Fix a point y; in Bagyr, N 21, and choose a point g9 in ig so that the
segment vy, ,, from y; to y2 is “almost vertical”; see Figure 35. More precisely,
applying Lemma A.8 of [CMO04b] (as in (1.0.20) of [CMO04b]) gives yo € ¥g with

(IV.1.30) (y2 = y1)| < |y2 — y1 cos by,

where II is orthogonal projection to the horizontal plane and the constant 6y is
defined in the appendix of [CM04b]. It now follows that there is a component
Q of Boy, \ (TUX) so (some subsegment of ) 7, 4, is linked with 83 in Q. Note
that Q is mean convex in the sense of [MY82b]. A result of [MY82a]-[MY82b]
gives a stable embedded minimal surface

(IV.1.31) Mcq

with A0 = 9335. Now, we choose the constant C large (depending only on w)
so that the curvature estimates [Sch83a|, [CM02a] for stable surfaces with
the fact that I'0 is disjoint from the graph I'g implies that each component
of Bioowr, N [0 that intersects Yyr,y» Must be a very flat graph that does so
exactly once (see (IV.1.30)). Since 93 and Yyr o are linked in Q, a component
I of Bloowl NTO intersects Voyr,y0 b least once. In particular, FO separates PR
and 22, forcing one of these to lie on the same side of 'y as does 10, This
gives the desired contradiction; see Figure 36. Consequently, we conclude that
Bey, (1) NYE contains only one component 3. that intersects both H 1 and Hy;
i.e., (IV.1.29) holds. O

IV.1.2. Step (1): Decomposing ¥; into ULSC pieces. Suppose now that
0 € Speck, so that Proposition IV.1.1 gives

(1) A sequence of stable graphs I'; that are disjoint from ¥; and that converge
to a punctured plane through 0; after rotating R3, we can assume that the
stable graphs converge to {z3 =0} \ {0}.
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(2) A sequence of closed curves 6; C B, N%; with r; — 0 and so that &;
divides ¥, into a component Ej above {z3 = 0} and a component X
below.?

We will show next that each E; contains a large scale-invariant ULSC
piece Zju.lsc' Before stating this precisely, it may be helpful to recall two simple
examples:

e If we consider a sequence of shrinking catenoids, then 0 is the only point
in Speck and each half of the catenoids is easily seen to be scale-invariant
ULSC. (In fact, given any point x # 0 in one of the catenoids, the ball
B (x) has two simply connected components.)

° Cognsider now a sequence of rescalings of one of the Riemann examples. In
this case, Speck 18 a line through the origin and Ej is not scale-invariant
ULSC. However, if we cut E;’ along a second short curve (the “neck”
immediately above the first curve), then the resulting “pair of pants” is
scale-invariant ULSC with respect to the distance to the closer of the two
necks.

The precise statement of the decomposition into ULSC pieces is given in
the next lemma. For simplicity, we will suppose that 0 € Specx, Zj C X, are
as above, and the constant C is given by Proposition IV.1.1.

LEMMA IV.1.32. Let f];' denote the connected component of BRJ./(QC)HZ;'
with ¢; in its boundary, and fix a constant o > 1. For each j sufficiently large,
one of the following two cases holds:

(1) ij is scale-invariant ULSC: Given any x ¢ By cr;, then each component
?f B|z\/(aC) ()N i;r s a disk.
(2) Zj contains a noncontractible curve (}j in a ball By, (y;) with

(IV.1.33) lyj| > aCrj and sj < |y;|/(Ca),

so that the component E‘jlsc of ij \ &j with ¢ in its boundary is scale-

invariant ULSC: Given any = ¢ (Bac,q]. U Bacs, (yj)), then each compo-

nent of
(IV.1.34) Buinglal, la—y;11 (%) N zye
Ca
s a disk.

Proof. The key for establishing this lemma is that the decomposition into
a Zj and a ¥ can be repeated anywhere that the topology is concentrating.

29More precisely, there are shrinking extrinsic balls B, so that Ej \ By, is above I'; and
similarly for 3.
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Namely, suppose that (1) does not hold and, hence, there exists some z; in
Brg, /20 \ By ¢r; so that some component of

(IV.1.35) B\z1|/(a0)(zl) N ij

is not a disk. We can repeat the argument of Proposition IV.1.1 to get a second
stable graph I';, separating curve ¢, and components E;r+ and Ej_ of Zj \ 7%
that are above and below, respectively, the graph I‘;; see Figure 37.3° Observe
that the “middle component” E;rf is between the two stable graphs and has
only two components in its interior boundary. If Ej_ satisfies (2), then we are
done. Otherwise, there is a third noncontractible simple closed curve. We can
repeat the argument to cut E;i to get an even lower component E;ﬁ*. The
key point is that this new surface Zj" also has only two components in its

interior boundary. Since ¥; is compact, this process must eventually terminate
to give a lowest component Ejf'"* that satisfies (2). O

Graphical annuli (dotted) separate
at each “neck”.

Eventually get down to a lowest component;
this must be scale-invariant ULSC (or we
could cut again).

Figure 37. Cutting repeatedly to get the pair of pants decomposition.

Remark IV.1.36. The reader may find the constant a in Lemma IV.1.32
somewhat mysterious. The point is that taking « large forces the two interior
boundary components in case (2) to be relatively far apart. This will be used
to guarantee that the ULSC piece is sufficiently large, i.e., goes all the way out
to the outer boundary in 9B R;/(20)-

IV.1.3. Step (2): The ULSC pieces of ¥; contain graphs. We will next
find the graphs in ¥; converging to the plane {z3 = 0} away from 0 and
possibly one other point. The argument for this is slightly simpler in Case
(1) where f)j is itself scale-invariant ULSC and we do not need to cut along

30Proposition IV.1.1 directly gives the second stable graph disjoint from ¥ ;. However, the
proposition does not explicitly give that the two stable surfaces can be chosen to be disjoint.
This is easy to achieve since the components of Bgr; \ (£; UT;) are also mean convex in the
sense of Meeks-Yau.
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a second curve, but this simpler case already illustrates the key ideas. The
argument follows a similar one in [CMO3].

Suppose now that Case (1) in Lemma IV.1.32 holds for (a subsequence of)
the ¥;’s. The existence of the graphs in the f);”s converging to {zz = 0} \ {0}
follows immediately from combining three facts:

e As j — oo, the minimum distance between 9B; N ij and {z3 = 0} goes to
zero. This was actually proven in Lemma 3.3 of [CMO02c|, which gave the
existence of low points in a connected minimal surface contained on one side
of a plane and with interior boundary close to this plane.3! We will recall
this lemma from [CMO02c] next.

LEMMA IV.1.37 (Lemma 3.3 in [CMO02c]; see Figure 38). If0 < e < 4r¢/5
and ¥ C By, is a connected immersed minimal surface with B- N X # (),
Y\ B: #0, and

(IV.1.38) 0¥ C B, U (0B, N{x3 > —3r9/5}),

then
IV.1.39 min x3 < 4de cosh™(3rg/e) < 4e log(6rg/e).
( ) Sn{e?-+23> (4r0/5)2} 3= (3ro/e) g(6ro/e)

A minimal surface > above a plane and with 0%
intersecting a small ball.

Y must contain points near the plane but far out.
Figure 38. The existence of low points near a plane.

In fact, we will use a slight variation of this that follows from the same
proof. Namely, under the same assumptions, we get that

(IV.1.40) aBrgir%E x3 < 4e cosh™ (3rg/e) < 4¢ log(6ro/e).

e The one-sided curvature estimate and the scale-invariant ULSC property
give a scale-invariant curvature estimate for the Z;”s in a narrow cone about

31The argument for this was by contradiction. Namely, if there were no low points, then
we would get a contradiction from the strong maximum principle by first sliding a catenoid
up under the surface and then sliding the catenoid horizontally away, eventually separating
two boundary components of the surface. Here the strong maximum principle is used to keep
the sliding catenoids and the surface disjoint. See, for instance, Corollary 1.18 in [CM99] for
a precise statement of the strong maximum principle.
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the plane {x3 = 0}. Here we have used that the i;”s stay on one side of the
graphs I'; converging to {x3 = 0} \ {0}. Similarly, this curvature estimate
and the barrier limit plane imply that the ij’s are locally graphical in a
slightly narrower cone about {z3 = 0}.

e The first step gives a sequence of points in the i;”s converging to a point in
0B1N{x3 = 0}. The second step allows us to apply the Harnack inequality
to build this out into expanding, locally graphical, subsets of the ij’s that
are converging to the plane.

These locally graphical regions piece together to give graphs over expand-
ing annuli; the other possibility would be to form a multi-valued graph, but
this is impossible since such a multi-valued graph would be forced to spi-
ral infinitely (since it cannot cross itself and also cannot cross the stable
graph I';).

Finally, we will briefly describe the modifications needed for case (2) in
Lemma IV.1.32 when the Z}-‘ISC’S have two interior boundary components. The
complication arises in the second step. Namely, we can no longer locally extend
the graph over {z3 = 0} \ {0}; this is because f]j is not scale-invariant ULSC
in the second ball B;,(y;). To deal with this, we will consider several different
cases.

The two simplest possibilities are when the points y; go to either zero or
infinity. When y; — 0, then we can replace the radii r; by another sequence
7% > max{r;, [y;|} where r; — 0; with the new choice of r, the new i;”s are
ULSC and we can proceed as in Case (1). On the other hand, when |y;| — oo,
we can replace the outer radii R; by |y;| and the new sequence of f];r’s will
again be scale-invariant ULSC.

Suppose therefore that the points y; converge to a finite point y # 0. We
will consider two separate subcases here (we can reduce to these after taking
subsequences):

e Suppose first that s; goes to 0. In this case, the one-sided curvature estimate
gives estimates for the E;ISC’S as long as we stay away from the points 0 and
y. We can then argue as in (1) to get the desired graphs — these graphs
converge to {z3 =0} \ {0, y}.

e Suppose now that liminf s; = s, > 0. In this case, the sequence is ULSC
away from 0 but not scale-invariant ULSC. (That is, the injectivity radius
stays away from zero, but it does not necessarily grow as we go away from 0.)
To make this precise, we will need an additional property of the balls Bs, (vj)
that was not recorded in Lemma IV.1.32 but follows easily from its proof.>?
Namely, we can assume that s; is the “smallest scale of nontrivial topology.”

325ee “Blowing up on the smallest scale of nontrivial topology” in the proof of Proposi-
tion IV.1.1.
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More precisely, we can assume that the component of B;; (y;)NE; containing
the second interior boundary curve has injectivity radius at least §s; for
some fixed constant 8 > 0. In particular, since liminfs; > 0, the one-
sided curvature estimate gives uniform estimates on these components of
Bs;(y;) NX;. We can now argue as in (1) to get the desired graphs; this
time the graphs converge to {z3 = 0} \ {0}. In particular, this contradicts
the existence of the second separating curves in Bj,(y;) and, thus, shows
that the case liminf s; = s, > 0 does not occur.

This completes the proof of (C1) in Theorem 0.14.

1V.2. The ULSC regions of the lamination:
(C2) and (D) in Theorem 0.14

In this section, we will prove that the ULSC regions of the lamination have
the same structure as in the globally ULSC case of Theorem 0.9. Namely, we
will prove that

e The leaves intersecting the ULSC part of the singular set Sy are parallel
planes. Each plane intersects Sy at two points.

e Sulsc 18 a union of Lipschitz curves transverse to the leaves. The leaves
intersecting Syisc foliate an open subset of R? that does not intersect Speck.

The key for the proof of these two properties will be to show that each
collapsed leaf has a neighborhood that is ULSC; this will be done in Propo-
sition IV.2.2. Recall that a leaf I' of £’ is said to be collapsed if its closure
I'cles contains a point in Syee and this point is a removable singularity for I';
see Definition 11.2.9. We have already established a great deal of structure for
collapsed leaves in Proposition I1.3.1, and much of this will be used below.

Here, and elsewhere in this section, the closure I'cjos of a leaf I is defined
to be the union of the closures of all bounded geodesic balls in I'; that is, we
fix a point zr € I' and set

(IV21) Fclos == UBT('%'F) 9

where B,(zr) is the closure of B,(zr) as a subset of R3. Eventually we will
show that, for a collapsed leaf, I'cios is a flat plane and hence, in particular,
I'cios = I'. However, a priori I' may not be proper, and thus the two notions
could a priori differ.

The main result of this section is Proposition IV.2.2 below showing that
I'cios does not intersect Speck. Since Speck is a closed subset of R3, it follows
that every compact subset of I'cios has a neighborhood in R? that does not
intersect Speck-

PROPOSITION IV.2.2. IfT is a collapsed leaf of L', then T clos NSneck = 0.
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The rough idea of the proof is to first show that I'cjes \I' consists of exactly
two points (this is analogous to each leaf having at most two singular points
in the ULSC case); see Corollary IV.2.6 below. Consequently, the union of I'
and the given point in ['gles N Suise Will give a stable surface that is “complete
away from a point” and, hence, flat by Lemma A.26. Finally, once we know
that I' is flat, it will be easy to check that I'clos N Sneck = 0.

Before we can get into the proof just outlined, we will need to recall a little
of the structure that has already been proven. We will do this in the next two
subsections. The next subsection establishes a key property of the stable limit
planes that we get through each point of Syeqc. The second subsection below
reviews the properties of a general collapsed leaf of L'

IV.2.1. The leaf T' cannot cross the limit planes. The structure result
(Check) from Theorem 0.12 gives graphs f];r and f]; in 3; that converge to
a plane P, through each point z € Speci; see Figure 39. The graphs f]j’ con-
verge smoothly away from z and possibly one other point (call it 2T); this
second point must also be in Speq. Similarly, the ij_ converge away from z
and possibly a point z7 € Spec. Furthermore, f);r and EN]; are separated in X;
by the curve Jj.33 One expects that the limit plane P, should be the closure of

a leaf of £, but this is not a priori clear; for instance, S might even be dense
in P,.

f];r and f)j_ are graphs away from a ﬁ/ﬁite set P.

The multi-valued graphs are contained in the dark regions.

Figure 39. The structure near z: The two graphs f];r and i; are
separated by curves o; shrinking to z. The multi-valued graph E?
comes near z.

Using this structure, the next lemma proves that the leaves of £’ do not
cross any of these limit planes. This is almost obvious since the stable surfaces

33Prope]rty (Check) from Theorem 0.12 holds at z by (C1) in Theorem 0.14; this was
proven in Section IV.1. The last “separation” claim is not explicit in (Check) but follows
immediately from Proposition IV.1.1; using the notation from the fact that proposition, we
have that f];r - Zj+ and f); cxy.
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converging to the limit plane are disjoint from the ¥,’s that are converging to
the leaves of £'. The only possible difficulty comes from that the convergence is
only away from the singular set S, but this will be easy to handle. The lemma
applies to an arbitrary leaf T of £’; i.e., we do not need T" to be collapsed.

LEMMA 1V.2.3. Suppose that T is an arbitrary leaf of L', collapsed or not.
If z is any point in Sheck and P, is the corresponding limit plane through z,
then I' does not cross P,.

Proof. Fix an open connected set K C I'" with compact closure in I', and
recall that the X;’s contain

e Graphs ij and f]j_ that both converge to P, away from a finite set P of
points; see Figure 39. Moreover, f];r and EN]; are separated in X; by curves
o shrinking to z.

e Connected subsets E? C X given by Lemma II.3.15 that are locally graphi-
cal over K and that converge with multiplicity to K. These locally graphical
subsets might globally be graphs or multi-valued graphs over K.

We will show first that the E? ’s cannot intersect both E;L and f]; First,
using that z is not in I' and K C I' has compact closure, we can fix a ball
Bs(z) so that

(IV.2.4) Bs(z)NE =0

for all j sufficiently large. On the other hand, the curves o; separating ij
and E; are shrinking to z. Therefore, the curves o; do not intersect Z‘? when
7 is large and, hence, the connected set E? cannot intersect both f]j and i]]_
Without loss of generality, we can assume that

S+
(IV.2.5) INSE =0.

We will next use (IV.2.5) to show that the two smooth open surfaces P,
and K do not have any points of transverse intersection. Namely, if P, and
K have points of transverse intersection, then, since the singular set P for the
convergence to P, is finite, P, \ P and K would also have points of transverse
intersection. However, this contradicts (IV.2.5) since f];r — P, smoothly away
from P and X — K.

Finally, recall that if a connected minimal surface intersects both sides of a
plane, then the surface and plane must have a point of transverse intersection;
this follows from the local structure of the nodal set of a harmonic function —
see, e.g., Lemma 4.28 in [CM99]. Therefore, since K is connected and does not
intersect P, transversely at any point, we see that K must be on one side of
P,. Since this holds for every such K and these exhaust I' by Lemma I1.3.25,
we see that I' also lies on one side of P,. O
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Throughout the rest of this section, I' will be a collapsed leaf of L.

IV.2.2. The properties of a collapsed leaf I'. Before getting into the proof,
it may be useful to recall the properties of the leaf I'. Eventually, we will use
these properties to show that I'cs is a plane.

e [' is by definition an injective immersion of a connected surface without
boundary, but not necessarily complete. Furthermore, the immersion is not
necessarily proper.

e Since I' is a leaf of £, it follows that I does not intersect & — and hence,
since S is closed (as a subset of R?), each point in I' has a neighborhood
where the curvatures of the ¥;’s are uniformly bounded.

e The following local structure of I' near a point of I"c1osNSuise Was established
in (1) in Proposition I1.3.1:

(Loc) Given any y € I'clos N Suise, there exists rg > 0 so that the closure
(in R3) of each component of B,,(y) NT is a compact embedded disk
with boundary in 0B;,(y). Furthermore, B,,(y) NI must contain the
component I'y given by Lemma I1.2.3, and I'y is the only component
of By, (y) N T with y in its closure.

o I' (or its oriented double cover) must be stable by (2) in Proposition II1.3.1.

o I'(yos intersects Syise in at most two points by (3) in Proposition I1.3.1.

These properties will be essential for proving Proposition 1V.2.2. The
main difficulty will be that I' is not complete. This occurs where I'cjos inter-
sects S; see Figure 40 for such an example. By (Loc), the points in I'cjos N Sulse
are isolated removable singularities of I' and thus are easily dealt with. Con-
sequently, the first step will be to control the number of points of I'cios N Speck
when T is collapsed. This will be done in the next subsection.

A point yr in Syec. A point z in Speck-

=

Each point in OI' is in S.

Figure 40. A priori I' could be a punctured disk in a plane.

IV.2.3. T'cios \ I' consists of exactly two points. The next corollary is the
first step needed for the proof of Proposition IV.2.2, which gives I'cios M Sneck
= (). This corollary shows that if T'clos N Speck 7 0, then T'cpes \ I' consists of
exactly two points.
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COROLLARY IV.2.6. Let T be a collapsed leaf of L. If T'clos N Sneck 7 0,
then T'cies \ I' consists of exactly two points with one each in Syisc and Speck-

This will be an easy corollary of Lemma IV.2.7 below, which shows that
the sheets of the multi-valued graphs over I' connect in a small neighborhood
of any singular point. Previously, we used the one-sided curvature estimate to
establish a similar connecting property near a point of Sysc-

Before making this connecting property precise, we need to set up some
notation. Recall that if K is a “sufficiently large” open connected subdomain
of I' with compact closure in I', then Corollary 11.3.18 gives a sequence of multi-
valued graphs Z? C 3; that converges to K with infinite multiplicity. Since I
can be exhausted by a nested sequence K; of such K’s by Lemma II1.3.25, we
can assume that the following holds (after passing to a subsequence):

(Graph) X; contains a j-valued graph ng» over Kj of a function whose values
are bounded by 1/j and whose gradient is bounded by 1/j. Here
K; C T' is a nested sequence of connected open sets with compact
closure in I' with I' = U; Kj;.

We actually know a good deal more about these multi-valued graphs, but this

additional structure will not be needed until the proof of Corollary IV.2.6.

LEMMA IV.2.7. The sheets of the multi-valued graph E? connect near
2z € T'clos N Sneck; see Figure 41. Precisely, given any r > 0, there exist § > 0
and J so that if v € Bs(z) NI, j > J, and

(Iv.2.8) z]+ and z; are points in the multi-valued graph E? over x,

then z;-r and z; are in the same connected component of B,.(z)N%;.

Proof. We will argue by contradiction, so suppose there exists some r > 0
so that for every § > 0, there exists x € Bs(z) NI and infinitely j’s so that
B,(2) N ¥; has (at least) two distinct components that both contain points

Distinct sheets of Z?. B;s(2)

The sheets all intersect the same component of Bs(z) N'X
for j sufficiently large.

Figure 41. Lemma IV.2.7: The sheets of the multi-valued graph E?
must connect near z € I'¢ios N Sneck-
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in Ejg» over x. After passing to a subsequence, we can assume that there is a

sequence of points zj+ and z; in Z? with

(Iv.2.9) z;r and z; converging to z,

so that z;r and z; are in distinct components of B,.(z) N X;.

We will use the ¥;’s as barriers for a Plateau problem to construct stable
surfaces fj between these distinct components. Before constructing the stable
surfaces f‘j, recall the following useful consequence of the interior curvature
estimates for stable surfaces of [Sch83a], [CM02a] (see, e.g., Lemma 2.2 in
[CM99)]):

(Stab) There exists a positive constant o < 1 so that if I'; is a stable embedded
minimal surface with 0I'y C 0Bg, then each component of B, g NI is
a graph over some plane with gradient bounded by one.

Set
(Iv.2.10) r=ar.

The properties of the stable graphs fj. Below we will find (stable) graphs
I'; between these distinct components so that the following three properties
hold:

(IV.2.11) [; C By(2)\ B; with 0T'; C 9B (z).
(IV.2.12) Be;(2)N T; # ) where ¢; — 0.
(IV.2.13)  The multi-valued graph X in ¥; intersects both sides of T;.

Recall that a properly embedded (connected) surface in R? will automatically
have two sides. Properties (IV.2.12) and (IV.2.13) will follow from a standard
linking argument.

Constructing the stable graphs f‘j. We will construct fj in two steps, first
finding stable surfaces f? in the larger ball B,(z) and then letting fj be an
appropriate component of B,/(z) N fQ where 1/ is given by (IV.2.10).

To construct f’g, first let E+~ and 2, ; be the distinct components of
B,(z) N'¥; that contain z;r and z;,
connecting zJr and z;; see Figure 42. Fix a component 50 of £\ (E+ Ux, ;)

respectlvely. Let /; be a line segment

that also connects E+ and X but intersects E+ and X~ only at its endpomts
(. The surface E+ sits in the boundary of two components of Br(2)\¥; —
one component on each side of .7 j.34 Let €2; be the component that Eg points

341 the simplest case where Ei ; and X are the only components of B,.(2)NE;, we would
choose §2; to be the component of B,(z) \ X; between them, i.e., the component containing
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fg is dashed.

Bold ¢; connects the two components E:fj and X, of B, (2) NE;

Figure 42. We argue by contradiction to show that the sheets connect
near z. Assuming that they do not, we first construct stable sur-

faces f‘j .

into as it leaves Ej,j; i.e., let ©; be the component of B,(z) \ ¥; with

(IV.2.14) SFC 09 and ;N (69 \ 069) # 0.

The point of choosing €2; in this way is that the curve f? has linking number

one with 8Ej7 ; in ;. The domain €; is mean convex and, hence, [MY82a]-

[MY82b] give a stable embedded minimal surface f? C §; with Bf‘g = GZ:J-.
Since 8f‘? has linking number one with E? in Q;, the endpoints of Eg-)

are separated in B,(z) by r ?. However, the endpoints of E? connect to the

endpoints of ¢; by curves in Zj’j and X, ; these curves do not cross f? and,

consequently, the endpoints of ¢; are also separated in B,(z) by f?. We can

therefore choose a component fj of B/(z) N fj that separates the endpoints

of ¢;; so

(IV.2.15) T;Nne 0.

Since z;r and 2 go to z, it follows that each /; is contained in a ball B, ()

where €; — 0. In particular, (IV.2.15) gives (IV.2.12). Since the endpoints of
¢; are both in the multi-valued graph, we also get (IV.2.13).

Using the stable graphs f‘j to show that I' C P,. Now that we have con-
structed the f‘j’s, we are ready to return to the proof of the lemma. The first
step will be to show that a subsequence of the fj’s converges to a subset of
P,. First, by (Stab), the surface fj is a graph with gradient bounded by one.
After passing to a subsequence, we can therefore assume that f‘j converges to
a minimal graph T. Since g; — 0, I contains z. On the other hand, the graph
f];“ C 3; given by Theorem 0.12 (see Figure 39) does not intersect the graph

the interior of Zg. In general, there are other components of B, (z) N X, intersecting K? SO we
cannot do this. This slightly complicates the choice of €2;.
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fj; since f]j converges to P, away from a finite set, we conclude that T' must
be on one side of P,. Since I is on one side of P, and intersects it at z, the
strong maximum principle implies that [ is contained in P., as desired.

We will next show that

(IV.2.16) I'cP.

First, by (IV.2.13), there is at least one sheet of the multi-valued graph E? on
each side of the graph fj for every j. Since both of these sheets converge to
I’ by (Graph), we can fix a point ¢ in B,/(z) N T that is both a limit of points
g]j € X% above T; and a limit of points g; € X7 below T;. For each j, the line
segment connecting gj;-r to y; must intersect f‘j at a point g;. The sequence
of points g; € fj must also converge to the common limit § of Q}L and ;. In
particular, we conclude that § € P, NI, so that I' C P, by Lemma IV.2.3 and
the strong maximum principle.

The contradiction: We cannot have I' C P,. To complete the proof of the
lemma, we explain next how (IV.2.16) leads to a contradiction. Since we will
need the same argument later, it will be useful to isolate it out as a claim:

CramM. (IV.2.16) cannot hold; i.e., we cannot have T' C P,.

Proof of Claim. We will argue by contradiction, so suppose that I' C P,.
Since I'ges is contained in the closure of I', it follows that I'cyes C P, as well.
Since I' is collapsed, I'cjos contains a point

(IV.2.17) yr C Suse N Leios C Ps.

Both of the graphs f]j and flj_ are converging to P, away from punctures in
Sheck, S0 we get sequences of points y;r € f];r and y; € f]j_ with

(IV.2.18) y;r — yr and y; — yr.

We will next use the one-sided curvature estimate to prove that y;-r and
y; can be connected in X; in any small neighborhood of yr as j — oo. To see
this, note first that yr is in Syisc and hence each component of B, (yr) N %; is
a disk for some r > 0; after possibly choosing r smaller, we can assume that
lyr — z| > r. If there were at least two of these disks in B, (yr)N3; intersecting
the concentric sub-ball Bew . (yr) where C” > 0 is a sufficiently small constant,
then the one-sided curvature estimate would give a uniform curvature bound
for each component of XJ; in this sub-ball.?® Since no such curvature bound

35We actually use a corollary of the one-sided curvature estimate recorded in Corollary 0.4
in [CM04e]. This corollary states that if there are two disjoint embedded minimal surfaces
in a ball in R3, both intersect a sufficiently small ball around the center, and one is a disk,
then we get an interior curvature estimate for the disk-type component.
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holds near a point of S by definition, we conclude that the points yj and y;
must be in the same connected component of B, (yr) N%; for all j sufficiently
large.

This local connectedness near yr will easily lead to a contradiction. This
is because yj and y; were proven to be separated in X; by the curve o; and
the o;’s are shrinking to the point z # yr. This contradiction completes the
proof of the claim and hence of the lemma. O

Dashed T'; is between two components of B, (2) N X;.

! Point y; € fj.

B, (2)

Figure 43. The points g];r and y; converge to a point y € I' from
opposite sides of the graph f‘j. Thus, the points g; € fj between
them also converge to § € I', giving Lemma IV.2.7.

Proof of Corollary IV.2.6. By assumption, ' NS contains at least one
point in each of I'cios N Sytse and I'glos N Sneck- We will argue by contradiction
to prove that I'cles NS cannot contain a third point. For simplicity, we will
assume that the ¥;’s are planar domains; the general finite genus case follows
with easy modifications.

The proof follows the argument given in Remark I1.3.32 and the basic idea
is simple:

Suppose that p, ¢, and r are distinct points in I'cjos N'S. The local

connecting property near each point of § allows us to construct closed

noncontractible curves in the ¥,’s that converge with multiplicity two

to a curve in I' connecting p and ¢q. These curves must separate in the

planar domain ¥;. However, if we connect points on opposite sides of

these curves to the third point 7, the local connecting property near r

gives a contradiction.

The only difficulty in carrying out this argument will be that the surface I' is
not complete.
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Step 1: Choosing the singular points and curves in I'. We will first choose
the points p, ¢, and 7 in I'ges N'S. Let p be the given point in 'cles N Sulse,
and then let ¢ be a closest point in I'cios NS to p. (A priori there may be
many possible choices.) Since we are arguing by contradiction, there is a third
distinct point r € I'clos N S.

By our choice of ¢, there must be a minimizing geodesic 7,4 : [0, L] = I'clos
parametrized by arclength and with the following properties:

® Ypq(0) = p and ype(L) = g.
e The interior of ,, is contained in I'.

Since the closed geodesic 7,, is compact, we must have
(IV.2.19) distgrs (Ypq, ) > 0.

Since p € Syisc and I is collapsed, property (1) in Proposition I1.3.1 gives a ball
Bs(p) and a component I'y, of Bs(p) NT" so that I', U {p} is a smooth minimal
graph. Since 7,4 is minimizing, it is not hard to see that OI', intersects 7, in
a single point p'.

Fix a constant ¢ > 0 that is much smaller than the distance from r to
Ypq- By the definition of I'¢jes, there must be a point 7" in I' that is distance
¢ from r. Since I' is connected, we can choose a compact curve ¥,,s that is
contained in I" and connects p’ to 7’. The curve 7,/,» may intersect v,y many
times, so we replace it with the component of 3y, \ ¥pq with 7 in its boundary.
This gives a curve in I' from 7,4 to 7’ and whose interior does not intersect v,q.
After adding a subsegment of 7,, and perturbing the resulting curve slightly
off of 7,4, we get a compact curve v,,» C I' from p’ to 7’ and whose interior
does not intersect 7,4; see Figure 44.

The point about the curve 7, is that it will give a way to connect points
near p’ to 7’ in I' \ 7,4; see Figure 44. This will be especially useful since the
curve OI', allows us to connect points near p’ that are on the opposite sides

of Ypg-

Step 2: Choosing the curves in the X;’s. We can now argue as in Re-
mark I1.3.32. The key point is that Theorem 1.1.6 and Lemma IV.2.7 imply
that the X;’s are locally connected in a small neighborhood of any of the sin-
gular points in I'cios N'S. These connecting properties allow us to find simple
closed curves fygq C X; with the following properties:

e 7}, is contained in the e-tubular neighborhood of 7.
e v, \ (B:(p) UBc:(q)) consists of two graphs over v,, that are in distinct
sheets of 3J;.

Step 3: The contradiction. Since X; has genus zero, the curve fygq must
separate X, into two distinct components. However, it is easy to see that this
is impossible by using the local connecting property near the third point r.
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S - _7 "yp/,r/ \ R P
Figure 44. The curves v, and 7,/

Namely, we can take two points near p on opposite sides of 'ygq and connect
each of them to r’ by curves in X; that do not intersect vlj;q. One of these
connecting curves will be a graph over ~,/,» while the other is a graph over
OI'y U vpypr. These two connecting curves can then be connected to each other
in Bo(r) NY;, giving the desired contradiction. O

IV.2.4. The proof of Proposition IV.2.2. We can now use Corollary IV.2.6
and the properties of a collapsed leaf to prove Proposition IV.2.2. Recall that
this proposition claims that I' cjos NSneck = @ whenever I is a collapsed leaf of £’.

Proof of Proposition IV.2.2. We will argue by contradiction, so suppose
that T" is a collapsed leaf of £" and T'cjos N Sneck # 0. By Corollary 1V.2.6, we
know that I'cles \ I' consists of one point y in Sy and one point z in Speck.
Furthermore, property (1) in Proposition II1.3.1 implies that the point y is a
removable singularity for " so that I' U {y} is smooth and complete away from
the point z.

We will show next that I is flat. The starting point for this is that I' (or
its oriented double cover) is stable by property (2) in Proposition II.3.1. A
standard “logarithmic cutoff function” argument then implies that I' U {y} (or
its oriented double cover) is also stable; we leave the simple argument to the
reader. If I' U {y} had been complete, then the Bernstein theorem for stable
surfaces would have implied that it was flat. However, even in this case where
I'U{y} is complete away from the single point z, Lemma A.26 in Appendix A
implies that I' is flat.

We have now established that I' is a plane with two points removed and
one of these points (namely z) is in Speck. Since I' cannot cross the limit plane
P, through z by Lemma IV.2.3, it follows that

(IV.2.20) I'cP.
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However, we already saw in the claim at the end of the proof of Lemma IV.2.7
that (IV.2.20) is impossible. This contradiction completes the proof of the
proposition. O

IV.2.5. The proof of (C2) and (D) in Theorem 0.14. We can now argue
as in the ULSC case of Part III to prove (C2) and (D) in Theorem 0.14. As
we saw in Part III, the argument requires that we establish the following four
properties of an arbitrary collapsed leaf I of £’

(O) I‘Clos N Sneck = @

(1) Tcres is a plane and I'ces \ I' contains at most two points.
(2) T'cres \ I' contains exactly two points.

(%) If t € x3(Suisc) and € > 0, then

(IV.2.21) SuseN{t<axz<t+e}#0and Sysc N{t —e < x3 < t} # 0.

Once we show that (0), (1), (2), and (%) hold, then (C2), and (D) in Theo-
rem 0.14 follow exactly as in Part III; we will not repeat the argument here.

It suffices therefore to check that (0), (1), (2), and (%) hold in this setting.
The first two are quite easy: (0) is exactly the conclusion of Proposition IV.2.2
and (1) follows from (0) together with (1) in Proposition III1.0.2.

We will prove (2) by contradiction, so suppose that I'cios N Suse = {0}
It follows immediately that the 3;’s contain multi-valued graphs over (subsets
of) the punctured plane I' = {x3 = 0} \ {0} that converge to I with infinite
multiplicity. Moreover, (D) in the proof of property (2) in Proposition I11.0.2
gives the following scale invariant ULSC property:

(D) There exists 7 > 0 so that, for z € {x3 = 0} and j large, each component
of B |,/(2) N ¥; that connects to the multi-valued graph in X; is a disk.

Note that the proof of (D) did not use that the sequence was ULSC. It follows
from (D) and the one-sided curvature estimate that the multi-valued graphs
in ¥, converging to I' spiral through an entire cone about I'. Note that the
>;’s are assumed to be uniformly nonsimply connected. Therefore, Propo-
sition IV.1.1 gives stable graphs I'; that are disjoint from ¥;. The I';’s are
graphs with bounded gradient that start out in a fixed ball and are defined
over annuli with a fixed inner radius and with outer radii going to infinity.
Standard results for exterior graphs then imply that the I';’s grow sublinearly.
Consequently, the I';’s are eventually contained in the narrow cone that the
multi-valued graphs in the X;’s spiral through. However, this is impossible
since the two are disjoint. This contradiction completes the sketch of the proof
of (2); we leave the details to the reader.

RemarkIV.2.22. The argument that we gave here is actually simpler than
in the ULSC case; cf. (2) in Proposition II1.0.2. However, we could not yet use
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this argument for the ULSC case since Proposition IV.1.1 relies on the ULSC
case.

Finally, (%) follows from (1) and (2) together with Lemma III.1.4, which
proved (%) in the ULSC case. However, Lemma III.1.4 did not actually require
the sequence to be ULSC, but rather required only that (1) and (2) above hold.
This completes the sketch of (C2) and (D) in Theorem 0.14.

IV.3. Putting it all together: The proof of Theorem 0.14

We have now completed the proof of all six of the claims in Theorem 0.14
over the course of this part. (The six claims are (A), (B), (C1), (C2), (D), and
(P) in Theorem 0.14.) For the reader’s convenience, we will review next where
each was proven.

Proof of Theorem 0.14. The singular set S is defined in Definition/
Lemma II.1.1, where we also prove property (B). Lemma I1.1.2 gives a subse-
quence X; that converges to a minimal lamination £’ of R3\ S, thus giving
(A). Property (C1), which describes the points in Speck, is established in Sec-
tion IV.1. Properties (C2) and (D), which describe the points in Sy, are
established in Section IV.2. Finally, Property (P), which shows that the leaves
of £’ do not cross the limit planes given by (C1), is proven in Lemma IV.2.3. 0O

Part V. The no mixing theorem, Theorem 0.4

This part is devoted to the proof of the no mixing theorem, i.e., The-
orem 0.4. Recall that this theorem asserts that the singular set & consists
of either exclusively helicoid points or exclusively catenoid points, i.e., either
Sneck = 0 or Syise = 0. We have already shown in (D) of Theorem 0.14 that the
leaves intersecting S foliate an open subset of R3 that does not intersect
Sneck- Using in part that S is closed, we will show that the closure of this
foliated region will also intersect S; therefore, the boundary of the foliated
region must intersect Speck = S \ Suise- We will prove the no mixing theorem
by showing that also the closure of this foliated region does not intersect Syeck
and, hence, the foliated region is either empty or all of R3. The argument for
this will be very similar to the one that we used earlier to show that the leaves
intersecting Syisc do not intersect Speck.

Proof of Theorem 0.4. Suppose that Sy #0; we will show that Speac=10.
By (D) of Theorem 0.14, the set Syjs is a union of Lipschitz curves transverse
to the leaves of the lamination and the leaves intersecting Syjsc foliate an open
subset of R? that does not intersect Speck; we will call this foliated region the
“ULSC region.” Moreover, each connected component of the ULSC region
contains exactly two curves in Sy and each of these two curves intersects
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Foliated ULSC region of the lamination L.
N\

A 7
Endpoint z.
Sulse consists of two vertical lines in

each ULSC region.

Figure 45. A limit lamination where the ULSC region has nonempty
boundary; we will rule this out.

Stable graph I'; is dashed!
Ball Bas(z) hits only one axis.

Figure 46. Properties of a sequence X; that converges to a lam-
ination where the ULSC region has nonempty boundary.

each leaf exactly once. We will prove the theorem by showing that these ULSC
leaves foliate all of R?. It is easy to see that this is equivalent to showing that
a curve in Sy cannot just stop.

Note first that each curve in Sy is in fact a line segment orthogonal to
the leaves of the lamination. This follows from the main theorem of [Mee04]
since we have already proven here that the ULSC regions are foliated.

Suppose now that one of the line segments in Sy does stop, i.e., has an
endpoint z. Since the set S is closed and Syisc is open in S, the endpoint must
be in Speck. To complete the proof, we will use the properties of the sequence
¥; to show that having z in Spcq leads to a contradiction. This contradiction
follows from the following four steps:

(1) Since z € Speck, Proposition IV.1.1 gives a sequence of stable graphs I'; C
Bg, \ X; converging to a horizontal plane through z; this convergence is
smooth away from the point z. Proposition IV.1.1 also gives separating
curves v; C X, with 7; — 2z where 7; divides X; into a component Z;‘
above I'; and a component ¥ below.20  After possibly reflecting about

36When we say that “E;r is above I';,” we have to be a little bit careful since each I'; is
defined only over an annulus. The precise statement is given in Proposition IV.1.1: There
are shrinking balls B,;(z) with r; — 0 so that I'; U B, (z) divides Bg,,c into components
Hj+ above I'; and H; below I';; we then have that E].+ is contained in H;’ U By, (2)-
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the horizontal plane through z, we can assume that the segment in Sy
lies above the plane.
(2) Since z is in the closure of Syisc, (C2) of Theorem 0.14 gives double spiral
staircases in Zj above the horizontal plane through z. More precisely, fix a
ball Bys(z) that intersects only one of the two vertical line segments in Sysc
approaching the plane through z from above. After possibly shrinking s, we
can also assume that Bag(z) N {x3 > x3(2)} is contained in one connected
component of the ULSC foliated region. Then, by (C2) of Theorem 0.14, in
each compact subset of Bas(2) N{x3 > x3(2)}, Z;‘ will consist of a double
spiral staircase for all j sufficiently large. This will be used in (4) to pull
the double spiral staircases into an appropriate region near the plane.
(3) We will show next that Ej must be ULSC away from z. Namely, we will
show that

e There exists some € > 0 so that if y € (Bas(2) \ Bs(z)) N{z3 = x3(2)},

then each component of B (y) N E; is a disk for j sufficiently large.

We will prove this by contradiction, so suppose that there is a sequence
of noncontractible curves 4; in B.(y) N E;r; the constant € will be given
by Proposition IV.1.1. Applying Proposition IV.1.1 to the 7;’s will lead
to the desired contradiction. Namely, Proposition IV.1.1 gives a second
stable graph fj that is disjoint from both ¥, and I';. Since fj starts off
from 7;, we see that T; is above T';. However, it follows from (1) that
the axis of the double spiral staircase in E;r can be connected to I'; by a
short curve o; in ¥;; here short means that the length of o; goes to zero as
J — oo. In particular, the short curve o; does not pass through the “hole”
in the annulus f‘j. Therefore, the graph f’j must intersect X; UT';, which
is a contradiction.
(4) Finally, (3) will allow us to apply the one-sided curvature estimate3” to
show that the E;”s continue to spiral as graphs below the plane {x3 =
x3(z)}, contradicting (1). To do this, suppose that y is any given point
in (Bas(z) \ Bs(z)) N {x3 = x3(2)}. Observe that (1) gives the sequence
of stable I';’s disjoint from E;r converging in B(y) to the horizontal disk
Bs(y) N {x3 = z3(2)}. It follows from this and (3) that we can apply the
one-sided curvature estimate to get that each component of B 4(y) N %;
is a graph for j large; here ¢ > 0 depends on ¢ and the constant from
the one-sided curvature estimate. Since these components are graphical
for every such point y and start out as part of a multi-valued graph, there
are now two possibilities:

e The multi-valued graph can be continued down to x3 = xz3(z) — &’ s.

37The one-sided curvature estimate from [CMO04e] is recalled in Theorem 1.1.3.
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e The multi-valued graphs spiral infinitely into some horizontal plane
above 3 = x3(2) — &’ s.

The latter is impossible since each XJ; is a compact surface. This completes

the proof of the fourth step and, hence, gives the promised contradiction

to (1). O

Part VI. Completing the proofs of Theorems 0.6 and 0.12

The only thing that remains to be proven is that every leaf of the lamina-
tion £3® is contained in a plane. This is the remaining claim in Theorem 0.6
(the planar lamination convergence theorem). We have already proven that
the leaves of £ are planes when the sequence is ULSC; thus, by the no mixing
theorem, the only remaining case is when S = Specx 7 0.

Recall that each point in Syecx comes with a plane through it that is a
limit of stable graphs in the complement of the sequence ;. Since Speck 7# 0
by assumption, there is at least one such plane and, hence, every leaf of £ is
contained in a half-space (by Lemma IV.2.3). We will divide the proof that
the leaves of £’ are contained in planes into two cases, depending on whether
or not the leaf is complete. Recall that a leaf I' is complete when I'glos = T,
where the closure I'cjos is defined by fixing a point zp € I' and setting

(VLO.1) Laios = (JBr (1) ;

see (I1.2.10). Lemma VI.2.1 proves that complete leaves of L's are planes; the
incomplete leaves will be shown to be planes in Lemma VI.3.1.

It may be useful to give an example of the kind of thing that we need to
rule out and a rough idea of why it cannot happen. Suppose therefore that a
leaf " of £’ contains infinitely many necks, one on top of the next, and that
these necks “shrink” to a point p € Syeck. It follows that we have a limit plane
through p and that I" is contained on one side of this plane. We will use a flux
argument to rule out such an example. Roughly speaking, we will find a “top”
curve with positive flux and then find a sequence of “bottom” curves shrinking
to p whose flux goes to zero. We will then show that all of the ends of T’
between these curves are asymptotic to planes or upward sloping catenoids —
and hence make a nonnegative contribution to the total flux. This will give the
desired contradiction since Stokes’ theorem implies that the total flux is zero.

VI.1. Blow up results for ULSC surfaces

We will later need to analyze the structure of the sequence ¥, in Theo-
rem 0.6 (the planar lamination convergence theorem) near points where the

38Recall that £’ is a lamination of R? \ S given in Lemma I1.1.2.



FIXED GENUS 95

topology is concentrating. In doing so, it will often be useful to work on the
smallest scale of nontrivial topology. (This is similar to blowing up on the scale
of the curvature in the ULSC case; cf. the notion of blow up pairs in [CM04e].)
This can be achieved using a simple rescaling argument given in Lemma D.1
in Appendix D.

The advantage of working on the smallest scale of nontrivial topology is
that we can use the compactness theorem for ULSC sequences — Theorem 0.9
— to prove a great deal of structure for the surfaces on this scale. We will use
two such structure results below:

e Lemma III.4.1 proves a one-sided property for nonsimply connected sur-
faces on the smallest scale of nontrivial topology. This shows that an
intrinsic ball in such a surface cannot lie on one side of a plane and have
its center close to the plane on this scale; in the extreme case as the radius
of the intrinsic ball goes to infinity, the surface would be forced to grow
out of any half-space.

e Lemma VI.1.1 finds short curves on the smallest scale of nontrivial topology
separating the ends. These short curves will be used in the flux argument
for the main results in this part.

VI.1.1. Finding short separating curves. The next lemma finds short sepa-
rating curves and stable graphs near points with small injectivity radius. These
curves will separate the surface into two parts: a part ¥ above the graph and
a part X~ below the graph; cf. Figure 31. Earlier, in Proposition IV.1.1, we
found separating curves contained in small extrinsic balls; in fact (1) and (2)
below are proven in Proposition IV.1.1. The new point here is the bound on
the length of the curves in (3) below. To prove this length bound, we will work
on the smallest scale of nontrivial topology.

LEMMA VL.1.1. Let ¥ C B;, be an embedded minimal planar domain with
0¥ C 0By,. Suppose also that B,, C ¥ is not a disk and I' C By, \ ¥ is the
stable surface given by Proposition IV.1.1.3  The following three properties
hold (the first two are just Proposition IV.1.1):

(1) Given T > 0, there exists C > 1 so that a component I'g of B,,,cNI'\ Ber,
is a graph of a function v with |Vv| < 7 and 0Ty intersects both 0B, c
and 0Bcry, .

(2) There are distinct components H* and H™ of B, o\ (To U Bory), @
separating curve & C Bgy, N'E, and components ¥ of By jc N \ G so
that ¥* ¢ H* U Bo,, and 6 C X7,

390 is given by solving a Plateau problem using a noncontractible curve in B,, C ¥ as
“interior” boundary.
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(3) There exists Cy so that if ro > C1r1 and B, /4(z) is a disk for each x €
Bcy vy, then & is homologous to a collection of curves whose total length is
at most Cyr1.

Remark V1I.1.2. We will call this the “short curve lemma” and call the sep-
arating curve & the “short curve.” Of course, ¢ itself may not be short; rather
it is homologous to a collection of curves whose total length is at most C} ry.

Proof. Claims (1) and (2) are proven in Proposition IV.1.1. We will prove
the last claim by contradiction, so suppose that (3) fails with C; = j for a
sequence Z;. After rescaling, we can assume that r; = 4.

Observe first that Lemma B.1 in Appendix B gives a sequence R; — oo
so that the component X; of Bg; OZ; containing 0 is contained in the intrinsic
ball By; and, hence, each intrinsic ball of radius one in }; is a disk. The
¥;’s therefore give a ULSC sequence of embedded minimal planar domains in
extrinsic balls whose radii go to infinity. As in the proof of Lemma II1.4.1, we
will now divide into two cases depending on whether or not the curvatures of
the sequence blows up.

Case 1. Suppose first that there exists some R so that

(VL.1.3) limsup sup |A|? = cc.
j—oo  BpNY;

We can then apply the compactness theorem for ULSC sequences, Theorem 0.9,
to get a subsequence of the XJ;’s that converges to a foliation by parallel planes
away from two lines orthogonal to the leaves of the foliation. It follows easily
from the description of the convergence near the lines (as double spiral stair-
cases) that we get a uniform length bound for the separating curve. This length
bound is proven in “The proof of (P4)” within the proof of Lemma III.1.4 and
will not be repeated here.

Case 2. Suppose now that |AJ? is uniformly bounded on each compact
subset of R? for the sequence ;. The length bound in this case follows by
combining three facts:

e By Lemma B.3 in Appendix B, the uniform curvature bounds implies uni-
form area bounds for each component of ¥; in extrinsic balls. (The bound
depends on the ball but not on j.) More precisely, if 3; g denotes the
component of Br N X; containing 0, then Lemma B.3 implies that

(VL.1.4) Area (X Rr) < C. R?,
where the constant C. depends only on

(VL.1.5) sup  |A]%

BCO RﬂZj
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The constant C here is universal and does not depend on the upper bounds
for the curvature.

e The area bound (VI.1.4) and the co-area formula give uniform length
bounds for the boundary 03; g for most values of R. Precisely, at least
one half of the R’s between Ry/2 and Ry must satisfy

(VI.1.6) Length (9%, z) <2C. Ry <4C.R.

e In the proof of Proposition IV.1.1, the components of 0%; p were divided
into two groups, depending on whether they connected to Z;r or ¥;; the
separating curve o; was then chosen to separate these two groups.*? How-
ever, if we do not ask for a single connected separating curve, then we can
instead use either of the two groups to separate. Finally, (VI.1.6) gives a
uniform bound for the total length.

Therefore, in either case, we get uniform length bounds, hence proving
the lemma. O

VI.2. Complete leaves of [’

We will show next that any complete leaf T' of the lamination £’ is a
plane. (£’ is the lamination of R?\ S given in Lemma I1.1.2.) Such a leaf I is
a complete embedded minimal surface in R?, but is not a priori known to be
proper.

LEMMA VI.2.1. Suppose that I is a complete leaf of the lamination L';
i.e, suppose that I'cios = 1'. Then I' must be a plane.

Proof. We will assume that I" is not a plane and show that this leads to a
contradiction. The ULSC case was already completed in Theorem 0.9, so we
can assume that

(VI1.2.2) S = Sneck #

by the no mixing theorem (Theorem 0.4). Recall that, by Proposition IV.1.1,
each point in S comes with a plane through it that is a limit of stable graphs
in the complement of the sequence Ej.41 Furthermore, by Lemma IV.2.3, the
leaves of £’ do not cross any of these planes. Since there is at least one such

40This is described in more detail in the proof of Proposition IV.1.1.

U\More precisely, repeatedly applying Proposition IV.1.1 gave a sequence of stable graphs
defined over larger and larger annuli, and this sequence converges to a limit graph over a
punctured plane. The limit graph is bounded at the puncture and extends smoothly across
the puncture to an entire graph; consequently, the limit graph is a plane by the Bernstein
theorem.
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plane, I' is contained in a half-space. After a translation and a rotation, we
may assume that I' C {z3 > 0} and

(VI.2.3) irllf x3 = 0.

Cram. IfT satisfies (V1.2.3) and is not a plane, then there is a sequence
of points p, € I satisfying

(V1.2.4) i(pp) — 0,
(VI.2.5) x3(pn) — 0.

Here i(py,) is the injectivity radius of T at p,. Since I is a complete smooth
surface, (V1.2.4) immediately implies that

(VI.2.6) distr(p1, pn) — oc.

Proof of Claim. Since T" satisfies (VI.2.3) but is not a plane, [MRO05] (see
the first paragraph of the proof of Lemma 1.5 there) implies that for any ¢ > 0,
we have

(VI.2.7) sup AP = .
I'n{o<zs<e}

Therefore, we get a sequence of points p, in I' satisfying (VI.2.5) and with
(VI.2.8) |A2(pn) — oo.

Equation (VI.2.4) then follows immediately from this and the one-sided cur-
vature estimate. QED of Claim

Return to the proof of the lemma. We will use the claim above to deduce
a flux contradiction (similar to the proof of (x) in the ULSC case given in
Section III.1.1) as follows:

(a) The leaf T' must be a multiplicity one limit of the ¥;’s. To see this, observe
that if this were not the case, then the universal cover of I' would be stable
and, hence, flat; cf. the proof of Corollary A.20 for more details.

(b) Blowing up at py to get a separating curve. Fix a large constant C; > 1.
(It will be chosen depending on both Lemma VI.1.1 — the “short curve
lemma” — and Lemma II[.4.1 — the “one-sided lemma” for nonsimply
connected surfaces.) Applying the blow up lemma, Lemma D.1, at p;
gives an intrinsic ball

(VI.2.9) Beys, (y1) C B5cli(p1)(p1)a

so that Bas, (y1) is not a disk but B, (y) is a disk for each y € Beys, (y1)-
Taking C; sufficiently large, it follows that Bc,s, (y1) satisfies the hy-
potheses of both Lemma VI.1.1 and Lemma III.4.1 (where the constant H
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in Lemma II1.4.1 is set equal to a large constant Cy > 1). Hence, the short
curve lemma, Lemma VI.1.1, gives an initial short separating curve

(V1.2.10) M C By, (1) NT
and a stable graph
(VI.2.11) Iy C R\ T.

Since the surface I' is not known to be proper in all of R3, the graph Iy
would at first appear to be defined only over a bounded annulus. However,
the multiplicity one convergence of (a) implies that the short curve v C T
is actually a smooth limit of curves 71 ; contained in the proper surfaces
Y;. We can therefore apply the barrier construction to these curves in
Y; and take the limit of the resulting stable graphs to get the desired I'g
as a graph defined outside the ball Beg, (y1). It follows that the graph
I’y is asymptotic to either a plane or an upward sloping half-catenoid.
(The other possibility would be a downward sloping half-catenoid, which
is clearly impossible since I' is above {z3 = 0}.)

Moreover, since I' C {z3 > 0}, the one-sided lemma for nonsimply
connected surfaces, Lemma II1.4.1, guarantees that

(V1.2.12) Ca s1 < z3(y1),

where Cy > 1 is a large fixed constant. (We can make Cy as large as we
want by increasing C.) By the same argument, the extrinsic ball B¢y, s, (1)
does not intersect any of the horizontal planes associated to the singular
set S.

Finally, since x3(p,) and i(p,) both go to zero, we can pass to a subse-
quence of the p,’s so that

(VI.2.13) suprs > sup s,
r Bc sy (y1)

and then for n > 1,
(VI.2.14) inf 3> sup x3.
Bc s, (yn) BCsn+1 (Yn+1)
(c) T is the only leaf of L' that intersects Bcs,(y1). A barrier argument and
the one-sided lemma for nonsimply connected surfaces, Lemma I11.4.1, give
C > C so that if ¢y > C, then only one proper component of Bs (y1)nL'
intersects Bcs, (y1).*? Here C depends only on C.

42This follows exactly as does the analogous result for disks given in Corollary 0.4 in
[CMO04e]. Namely, if there were two such components, then we could put a stable surface
between them. Interior estimates for stable surfaces then imply that each of the original
components lies on one side of a plane that comes close to the center of the ball. However,
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H+
Stable graph I’y is dashed. I'p is dashed.
\ ) (

2 == SRR Q===
/ Bes, (y1) Bas, (y1)

The short curve ;. -
Figure 47. (b): Lemma VI.1.1 Figure 48. (¢/): R3?\ (I'o U
gives a short curve v; C I and Bes, (y1)) has components H
a stable graph I'y. above and H~ below 'y U

Bes, (y1). T is the only leaf of
L' intersecting both HT
and H~.

To complete the argument for (c¢), we need to verify that each component
of any leaf of £ in Ba, (y1) is proper. Fortunately, this will follow directly
from Lemma B.3, which gives the compactness of each component of an
embedded minimal surface in a ball Bg if there is some curvature bound in
the fixed larger ball B¢, p.** Namely, (V1.2.12) implies that B, 0, G s (Y1)
is disjoint from S so long as Cs is sufficiently large and, thus, every leaf of
L' has bounded curvature in BCd G s (y1), although the bound may be very
large. However, Lemma B.3 requires only some curvature bound to get
that each component of B (y1) has bounded area and compact closure.

(c) T is the only leaf of L' that intersects both sides of Bes,(y1) U Ty. Since
the graph I'g is a limit of surfaces that are disjoint from the 3J;’s, it follows
that none of the leaves of £’ can cross I'g. However, I'y is a graph over
an annulus, so the leaves of £’ may “go through the hole” to get from one
side of I’y to the other; this is exactly what I" does. However, by (c), I is
the only leaf that intersects B¢, (y1), so we conclude that I' is the only
leaf of £’ that intersects both sides of B, (y1) U .

(d) Repeating (b) at each p,. Using (VI.2.4), we can argue as in (b) at each
point p, to get shrinking curves

(VL.2.15) Yn C Bas, (yn) where Beys, (yn) C Bsc, i(pn)(pn)

as well as stable graphs that are defined outside B¢, (y,) and are disjoint
from T'. Since i(p,) — 0, Lemma VI.1.1 gives that the flux across 7, also
goes to zero. Furthermore, (VI.2.6) guarantees that the shrinking curves
are separated; the points p, may be close in R? but they are far apart in I'.

this would contradict the one-sided lemma for nonsimply connected surfaces, Lemma I11.4.1,
so we conclude that there could not have been two such components.
43Clearly, it is crucial here that Cy does not depend on the bound for the curvature.
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Let I',, denote the connected component of I'\ (71 U~,) containing both
~1 and 7, in its boundary. Note that we used that v; and -, are separating
to guarantee that such a component exists.

Finally, let E,, denote the “sandwiched” region in R? that is between
the stable graphs associated to p; and p,, together with the balls Bc, s, (y1)
and By, s, (Yn). We will need the following two properties of E,,:

(V1.2.16) [, CE,and E,NS = 0.

The first property follows immediately from (2) in Lemma VI.1.1. To see
the second, note that a point of S in F,, would come with a horizontal plane
through it that is disjoint from I'; this is impossible since the connected
leaf T' intersects both above and below E,,.

(e) Ty, is properly embedded. We will prove this by contradiction, so suppose
that some I',, is not proper. In this case, we would be able to choose a
sequence y; € I',, with

(VI.2.17) distr, (y1,yj) = oo and |y; —y| — 0 for some y € T',, C E, .

Since the union of the leaves of £’ is closed in R3\ S and E, NS = 0, the
point y must be contained in some leaf T' of £/. As we have used several
times, this implies that the universal cover of [ must be stable; cf. the
proof of Corollary A.20 for more details. Since I' is not stable (see the
proof of (a)), it follows that T" T

We claim that

(V1.2.18) I is complete.

Proof of (V1.2.18). We know from (c) that ' is the only leaf of £’ that
intersects Bo s, (y1) U Bes,, (Yn), SO

(V1.2.19) y ¢ Bes,(y1) U Bes, (Yn)-

It is also easy to see that the stable graphs that form the top and bottom
of the boundary of E, cannot be contained in leaves of £4*, so we must
have that

(V1.2.20) y € By \ (Bes, (y1) U Bes, (yn))-

However, (¢/) then implies that the entire leaf I' must be trapped inside of
E,. Since E, NS = 0, it follows that I" must be complete.
QED of (V1.2.18).

44T hese stable graphs were obtained using limits of solutions to Plateau problems using
the 3;’s as barriers.
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Now that we have established (VI.2.18), the Bernstein theorem for sta-
ble surfaces implies that T is a plane. Since I does not cross {zg =0}, it
must be a horizontal plane. However, this is impossible since T N T = ()
and I' intersects both above and below FE,. Therefore, we conclude that
I',, must be proper.

(f) The ends of Ty, are graphs. We claim next that for each fixed n, there is
a constant r,, so that

(V1.2.21) T, N {x?+ 23 > r2}

consists of a finite collection of graphs over {x3 = 0, 2% + 22 > r2}.

We will show first that T';, N {z? + 23 > r2} is locally graphical. The
starting point is to observe that I';, is contained in the sandwich E,, and the
height of this sandwich grows at most logarithmically. Therefore, by the
one-sided curvature estimate, it suffices to prove that I';, is scale-invariant
ULSC with respect to the distance to 0; see, for instance, (D) in Sec-
tion IT1.0.6. This follows from the “between the sheets” argument that we
have used several times already, so we will just sketch the proof this time.
Namely, since I, is connected, we can fix a curve o,, C I';, that connects
Y1 to v,; we will choose r;, so that

(V1.2.22) on C{x? + 22 < r2/4}.

If T, N {23 + 23 > r2} were to contain a scale-invariant small neck, then
a barrier argument would give a stable surface ['paprier in the complement
of I';, that is also sandwiched in F,,. This sandwiching and the curvature
estimates for stable surfaces imply that the stable surface I'yarrier is graphi-
cal away from its boundary. Since the curve o, is away from the boundary
of the stable surface and connects the top and bottom of the sandwich,
the stable surface T is forced to intersect the curve oy, giving the desired
contradiction.

After increasing r,, we conclude that T';, N {z? + 22 > 72} is locally
graphical and hence a union of graphs over {r3 = 0, 22 + 23 > r2}. (The
other possibility is that it could contain a multi-valued graph; as we have
argued before, this is impossible since such a multi-valued graph would
have to spiral through the separating plane.) The properness of I';, proven
in (e) implies that there can only be finitely many such graphs.

Note that, by the isoperimetric inequality, this gives area bounds for I,
in compact subsets of R3.

(g) Slicing T',, with a plane to get the top curve. Each graphical end of each '),
is above {x3 = 0} and, consequently, is asymptotic to either a plane or to
an upward sloping half-catenoid. Since there are only finitely many such
planes for each n, we can choose a height h between sup,, z3 and inf,, x3
that misses all of the heights of the planar ends for every I',, and so that the
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plane {x3 = h} intersects I" transversely. It follows that {z3 = h} intersects
each I';, transversely in a finite collection of simple closed curves. Note that
this plane separates 7, from 7, (and, in particular, does not intersect 9I'y,).
Let I'/, denote the component of {z3 < h} NI, with -, in its boundary.
(h) The flux contradiction. The boundary of each I" consists of a “bottom
curve” ~y, together with a collection of closed “top curves” in the plane
{zs = h}. The collection of top curves is “increasing” in the following
sense:

(VI.2.23) {3}3 = h} nor,, C {.%'3 = h} Nl 1.

Generally, one might expect equality in (VI.2.23); however, if I, 11 con-
tained a catenoidal end that was not in I'j,, then we would have a strict
containment.

The integrand for the vertical flux is pointwise positive along the in-
creasing boundary in {x3 = h} and, hence, the vertical flux of T/, across
{xs = h} is positive and nondecreasing as a function of n. On the other
hand, the flux across the bottom curve 7, goes to zero as n — oo by (d).
We can therefore fix some large n so that (the absolute value of) the flux
across v, is less than the flux across {z3 = h}. Since I"} has only finitely
many ends and each of these ends has nonnegative flux at infinity, the total
flux of I, is positive. This gives the desired contradiction since, by Stokes’
theorem, the total flux of I/, must be zero. O

Remark V1.2.24. The above argument did not really need that the leaf I"
was complete in order to conclude that it must be flat. Rather, we showed that
I" must be flat as long as there exists a sequence of points p, € I' satisfying

i(pn)
diStFCms (pnv S)

where Cj is a fixed constant that does not depend on I'. This will be useful
when we consider incomplete leaves in the next section.

(VI.2.25) x3(pn) — 0, i(pp) — 0, and < (Y,

VI.3. Incomplete leaves of £’

It remains to show that each incomplete leaf I' of £’ also must be flat. We
do this in the next lemma.

LEMMA VI.3.1. Suppose that I is an incomplete leaf of the lamination
L' i.e, suppose that T'clos # I'. Then T is contained in a plane.

As proven earlier in Theorem 0.9, every leaf of £’ is flat when the sequence
is ULSC. Therefore, by the no mixing theorem; i.e., Theorem 0.4, we can
assume that Syee = 0 and S = Speck.
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Before getting into the proof, it is useful to consider an example of what a
possible incomplete nonflat leaf I' of £’ would have to look like. By assumption,
Caios \ T # 0 and, hence, T'cios N Speck 7 0. Since each point of I'cjos N Sneck
comes with a plane through it and none of the leaves of £’ can cross these
planes, such a I' would be contained in either

e an open slab between two singular planes, or
e an open half-space bounded by a singular plane.

Note that, by the strong maximum principle, I' cannot intersect a singular
plane and, hence, we can take the above slab and half-space to be open. We
will see in the next subsection that I'cios NS consists of only one point in the
boundary plane(s).

The basic idea behind the proof of Lemma VI.3.1 is again that a potential
counterexample would lead to a flux contradiction. Much of the argument is
very similar to the complete case:

e " will be scale-invariant ULSC away from the singular points.

e [ will be proper in an open slab or open half-space.

e The ends of I' will be asymptotic to planes or upward-sloping catenoids.

e We will slice between two planar ends to get a “top curve” with strictly
positive flux.

e We will find a sequence of “bottom curves” where the flux goes to zero.

The main difficulty lies in finding the sequence of “bottom curves” where the
flux goes to zero. One expects that the injectivity radius of I' goes to zero
as we approach the singular points. However, the rate at which it does so
may be quite slow, so we cannot find large regions in I' “on the smallest scale
of nontrivial topology” as the injectivity radius goes to zero. The key for
overcoming this will be to get some additional control over I' near a singular
point; in particular, we will prove scale-invariant curvature and area bounds
for I' near each singular point. Once we have this, we can use the co-area
formula to find a sequence of “bottom curves” whose length goes to zero.

VI1.3.1. If T is not flat, then I'cios NS consists of at most two points. As
mentioned, we have already shown that the complete leaves of £ must be flat,
so the remaining case is when

(VI.3.2) T cios N Sneck 75 .

Each point of I'cios N Sneckk comes with a plane through it and none of the
leaves of £’ can cross this plane. Hence, by the strong maximum principle,
this plane does not intersect any of the nonflat leaves of £’. The starting point
for Lemma VI.3.1 is to show that this plane contains exactly one point of
Tclos N Sneck; see Lemma VI.3.3 below. It follows immediately from this that
T'clos N'S consists of at most two points for any nonflat I'.
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LEMMA VI.3.3. Suppose that T' C {x3 > 0} is a nonflat leaf of L' with
0 € Tcios N Sneck and {x3 = 0} is the associated stable limit plane through 0.
Then we must have

(VI.3.4) Lcios N {z3 = 0} = {0}.

In fact, if I" C {3 > 0} is any nonflat leaf of L with T, N {z3 = 0} # 0,
then

(VL3.5) 0 N {23 = 0} = {0}.

Proof. We will first argue by contradiction to prove (VI.3.4). Suppose
therefore that there exists p # 0 with

(V136) p € cios N {:C3 = 0}

We begin by constructing a curve v in I' that connects I' to 0 — or a
singular point near 0 — and stays away from p. Precisely, v will have the
following properties:

(VL.3.7) ~v:[0,1) = B‘p|/3 nr,
(VL.3.8) Length(v) < |p|/3,
(VI1.3.9) lim 5(#) € Tcios N {23 = 0}

To construct -, first use the definition of I'cyes to choose a point y € I' so
that the closure of By, /6(y) C I' contains 0. Then choose a sequence of length
minimizing curves in I' that start at y and whose second endpoints converge
to 0. The Arzela-Ascoli theorem gives a subsequence of these curves that
converges to a curve 7y that starts at y, ends at 0, and is contained in B /6(Y)-
Finally, let v be the component of I' N4 that starts at y.

Note that the curve 4 might hit another point of & before it gets to 0.
However, this point must be close to 0 and, hence, far from p; this is all that
the argument will use. For simplicity, we will assume that 0 was the first point
of § hit by 4 so that limy_,; y(t) = 0.

Since « is contained in I', we get a sequence of curves v; : [0,¢;] — X;
with t; — 1 and so that the 7;’s converge to 7. In particular, v;(t;) — 0.

CLAIM. The injectivity radius of ¥; at v;(t;) must go to zero.

Proof of Claim. Proposition IV.1.1 gives a stable graph disjoint from X;
for each j, and this sequence is converging to {z3 = 0}\ {0} as j goes to infinity.
Moreover, exactly one component of ¥; in a small ball near 0 intersects both
sides of the stable graph. The injectivity radius of this component (obviously)
goes to zero as j goes to infinity. It follows that every other component sits
on one side of this stable graph; see (B) in Proposition IV.1.1. In particular,
if the component of B, N'X; containing v;(¢;) were a disk for some fixed ¢ > 0
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and all sufficiently large j, then the one-sided curvature estimate would imply
that this component was graphical in a neighborhood of 0. Moreover, by the
strong maximum principle, this sequence of graphs would have to converge to
a subset of {x3 = 0}. However, these graphs contain subsets of 7; that are
converging to (a component of)

(VI1.3.10) B.NvycCT.

It follows that {x3 = 0} would have to contain a (smooth) point of the leaf I',
violating the strong maximum principle. QFED for Claim

We can repeat the construction of « near p to get curves ’y} : [0, t;] — 2
converging to a curve 9/ : [0, 1) — I" so that the endpoints 7}(t}) converge to a
singular point near p. For simplicity, we will assume that this second singular
point is actually equal to p. Arguing as in the claim, we see that the injectivity
radius of 3 at ;(t}) also goes to zero.

We can now apply Proposition IV.1.1 to shrinking balls centered at v;(t;)

and 7;(t;) to get disjoint stable graphs I'; and I'; that are disjoint from %;,
and so
(VL.3.11) I'j = {z3=0}\ {0} and F;- — {x3 =0} \ {p}.
Since I'; and I‘; are disjoint, one must be above the other. After passing to
a subsequence (and possibly switching I' and I"”), we can assume that T'; is
always above F;. It follows easily from the barrier construction used for the
proof of Proposition IV.1.1 that the curve ’y} must also be below the graph Fj.45
However, this forces ’yg to converge to a curve in {x3 = 0}, contradicting the
strong maximum principle as in the proof of the claim above. This completes
the proof of (VI.3.4).

Finally, when p € I'ty N {z3 = 0}, the same argument applies with
obvious changes. Hence, we also get (VI.3.5). O

V1.3.2. The proof of Lemma VI.3.1. As mentioned earlier, we can assume
that we are in the case where Sy = 0, and we will use a flux argument to
rule out the possibility of a nonflat leaf of £’.

Proof of Lemma V1.3.1. We will prove the lemma by contradiction, so
suppose that T' C {3 > 0} is a nonflat leaf of £’ with 0 € T'¢jes N Speck and
{zs = 0} is the associated stable limit plane through 0. By Lemma VI.3.3,
there are two possibilities:

e 'cios NS = {0}
o I'clos NS = {0, p} for some point p with z3(p) > 0.

45Namely, the stable graph is actually a subset of a stable surface that is disjoint from
3; and has interior boundary lying in ¥;; this interior boundary connects within ¥; to the
curve ;. This barrier construction is given in Lemma IV.1.2.
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I is scale-invariant ULSC near 0. More precisely, there exist § € (0,1)
and rg > 0 so that

(V1.3.12) By |y () is a disk for every z € By, N {x3 >0} NL".

Recall that the argument used to prove that complete leaves of £ must
be flat actually gave a stronger statement; see Remark VI.2.24. This stronger
statement implies that (VI.3.12) holds.

I' has quadratic curvature blowup near 0. We will next use a compactness
argument to prove that there exist constants Cy and r; > 0 so that

(VL.3.13) |A?(z) < Cy|z|~2 for every = € By, N{z3 >0} N L.

The constant Cy above might depend on £, but it will be fixed throughout
this proof.

Proof of (V1.3.13). We will argue by contradiction, so suppose that there
is a sequence of points ¢, € I" with ¢, — 0 and

(VI.3.14) |an|* 141 (gn) > n.

The idea of the proof is that dilating £’ by the factor |g,|~! about the point
gn gives a sequence of laminations

(V1.3.15) Ly = lgal™" (L' = qn)

with [A|2(0) > n and so that OB intersects Speck(Ln); here Speek(Lr) is the
singular set for the rescaled lamination £,,. Moreover, (V1.3.12) gives a uniform
lower bound for the injectivity radius of the leaves of {z3 > 0} N L, in By y;
see below for more details. Consequently, as n goes to infinity, a subsequence
of the L,,’s would converge to a lamination L, with

(VI.3.16) 0e Sulsc(ﬁoo) and 9B1 N Sneck(ﬁoo) #* 0.

However, this would contradict the no mixing theorem, so we conclude that
the sequence ¢, could not have existed.

We need two things to make this outline rigorous. First, we do not have
a compactness theorem for sequences of laminations, but rather only for se-
quences of embedded minimal surfaces. This is easily dealt with since the limit
L+ can be realized as a limit of a diagonal sequence of rescalings of the X;’s; we
will omit this standard argument. Second, in (VI.3.12) above we showed only
that the leaves of £’ were scale-invariant ULSC near 0; what we need instead
is that the sequence ¥; is itself scale-invariant ULSC near 0. More precisely,
we must show that there exists some 0y € (0,1) so that for each fixed n, we
have

(VI.3.17) every component of Bs,|4.((g,) N X; is a disk for j large.
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Since the X;’s are converging to £ away from S, — and I" does not intersect S
— then the component of By, [(¢.) NY; that is converging to I' is a disk with
large curvature. However, the intrinsic version of the one-sided curvature esti-
mate implies that this is the only component of this ball intersecting a smaller
concentric sub-ball about ¢,. This gives the remaining ingredient needed to
make the proof rigorous.

Extending flatness. We claim that there exist constants Cg,e > 0 and
ro > 0 so that if r < ro, x € 0B, NI, and

(VL.3.18) B, 4(x) is a graph with gradient less than Chay over {x3 = 0},
then z is contained in a graph I', C T' defined over (at least) the annulus
(V1.3.19) {3 =0,7%/4 < 23+ 23 <r3}.

In other words, once I' becomes very flat, then it extends to a very flat graph
defined over some annulus of a definite size surrounding the singular point 0.
Note that the outer radius ro of this annulus is independent of 7.

It is easy to prove from the gradient estimate and the quadratic curvature
bound (VI.3.13) that x is contained in a very flat graph I'; , defined over the
annulus

(VL.3.20) {z3=0,7r?/4 <2} +23 <Cr?},

where the constant C' = C'(Chat) can be as large as we want for Ch,y sufficiently
small. A priori, one might worry that this would give a multi-valued graph.
However, by the usual argument, ¥; cannot contain a multi-valued graph (since
it would otherwise be forced to spiral infinitely because of the stable barrier)
and, therefore, neither can I'. It remains to extend I'; . as a graph all the way
out to 0D, for some fixed 2. Aslong as C'is sufficiently large, this can be done
using the sublinear growth of the height of the graph and the scale-invariant
curvature bound. This sublinear growth is proven in Proposition I1.2.12 in
[CMO04b]. Namely, the sublinear growth of the height gives some wp > 1 so
that the graph grows sublinearly out to scale C'r/wy. By the gradient estimate
and the curvature bound, the graph has small gradient out at this larger scale
too and we can repeat until we get out to a fixed larger scale (independent
of r).

I' cannot be too “horizontal” near 0. We will show next that

VI.3.21 lim su inf n,(0,0,1))] <1,
(V13.21) wsup - inf |0, (0,0,1)

where n is the unit normal to the surface I'. Note that [(n(z), (0,0,1))| is equal
to one if and only if the tangent plane at x is horizontal.
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Proof of (V1.3.21). Suppose first for some s that

1.3.22 inf 1 .
(VL.3.22) m(égs\Bs)Kn,(O,O, Nl >0

It follows that I' is locally graphical with bounded gradient in Bys \ Bs. By
the usual argument, »; cannot contain a multi-valued graph and, therefore,
neither can I'. Hence, (VI.3.22) would imply that I' N (Bas \ Bs) is a collection
of graphs.

Consequently, if we had a uniform lower bound for |(n, (0,0,1))| in any
neighborhood of 0, then standard removable singularity theorems for minimal
graphs would imply that I" has a removable singularity at 0. However, I' would
have to be flat by the strong maximum principle if the singularity at 0 was
removable. We conclude therefore that

(VL.3.23) hISn_)l(I)lf Fm(égf\Bs) |(n, (0,0,1))] = 0.

Finally, (VI.3.21) follows easily from “extending flatness” and (VI1.3.23).

Using (V1.3.21) to blow up L£'. The point about (VI.3.21) is that any limit
of rescalings of £’ about 0 will have a nonflat leaf. More precisely, if s,, is any
sequence going to zero, then a subsequence of the rescaled laminations

(VL3.24) L, = si (£

n

will converge to a lamination L, of R\ S(Ls) with the following properties:

(P1) The origin 0 is still in Speck(Loo) and {z3 = 0} is the corresponding limit
plane.

(P2) The leaves of Lo satisfy the quadratic curvature bound (VI.3.13) in all
of {x3 > 0} (not just in B,,), the singular set S(L~) does not intersect
the half-space {x3 > 0}, and 0 is the only singular point in {x3 = 0}
“reachable” from {z3 > 0}.

(P3) Lo contains a nonhorizontal, and hence nonflat, leaf in {3 > 0}.

The lamination L4 is given as a limit of a subsequence of rescalings of the
¥;’s; see the proof of (VI.3.13) for such a diagonal argument. Property (P1)
follows immediately from this. Property (P2) follows from immediately from
(VL.3.13). Finally, (VI.3.21) implies that L contains a nonhorizontal leaf.
This nonhorizontal leaf cannot be flat since it would otherwise intersect {x3 =
0} \ {0}, thus giving (P3).

The key point about the rescaled limit lamination L, is that it has all of
the same properties that £’ did. Therefore, we can repeat the construction to
get that limits of rescalings of L, also satisfy (P1), (P2), and (P3). This will
be important below, so we record it next:

(VI.3.25)
Any limit of rescalings of L, will also satisfy (P1), (P2), and (P3).
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From now on, we will assume that {x3 > 0} N L' has quadratic curvature
decay and

(VI.3.26) {zs>0}NS=10;
this can be achieved by rescaling as above.

No stable leaves in {x3 > 0}. We will show that a lamination
(V1.3.27)
L satisfying (P1), (P2), and (P3) cannot have a stable leaf in {z3 > 0}.

The same argument also rules out a leaf in {z3 > 0} whose oriented double
cover is stable.

Proof of no stable leaves in {x3 > 0}. Suppose instead that L, did contain
a stable leaf T in {z3 > 0}. We will show first that I" must be a flat plane
{x3 =t} for some ¢t > 0. Namely, if it were not flat, then it would be complete
away from 0 by Lemma VI.3.3 (see equation VI.3.5) and then Lemma A.26 in
Appendix A would give a contradiction.

Since the leaves of L, are — by definition — disjoint, it follows that the
nonflat leaf T' of L, must be contained in the open slab {0 < z3 < t}. Set
to = supr =3 so that

(V1328) I'C {xg < to}
and
(VL.3.29) T intersects every tubular neighborhood of the plane {z3 = to}.

Moreover, the quadratic curvature bound (VI.3.13) for the leaves of £’ implies
that
(VI1.3.30) sup |A|? <4Cyty? < 0.

{t0/2<1‘3<t0}ﬂr
However, the three properties (V1.3.28), (VI1.3.29), and (VI.3.30) are impossible
by the first paragraph of the proof of Lemma 1.5 in [MRO05]. We conclude that
(VI.3.27) must hold.

[ is proper. The first application of (VI.3.27) will be to show that I' must
be proper in compact subsets of {z3 > 0}.

Proof of properness. The starting point is that I" would otherwise accu-
mulate into a stable leaf T'; we have used this argument several times and will
omit the details (see, e.g., (e) in the proof of Lemma VI.2.1).%6 Clearly, T
intersects the open half-space {z3 > 0} and, hence, T' must be contained in

46T be precise, either T is stable or its oriented double cover is stable.
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{z3 > 0} by the strong maximum principle. However, this is impossible by
(VL3.27).

Scale-invariant area bounds. Given any a > 0, there exists a constant C,
so that

(VL.3.31) Area ((Bo, \ B,) N {z3 > |z} NT) < Cy 12

Proof of (V1.3.31). This will be pretty much the same argument as in the
proof of “I" is proper” combined with a compactness argument. We will argue
by contradiction, so suppose that (VI.3.31) fails with » = r,, and C,, = n for
every integer. By a diagonal argument and rescaling, we get a sequence of
embedded minimal planar domains ij with

(V1.3.32) Area ((By\ B1) N{zs > az[} N3;) — oo

Recall that we have proven in (VI.3.25) that a subsequence of the f]j’s con-
verges to a limit lamination Lo off of a singular set S(L) satisfying (P1),
(P2), and (P3).

Next, we will use (VI.3.32) to show that L., contains a stable leaf in
{x3 > 0}, contradicting (VI1.3.27). This would be obvious if L itself had
infinite area in (By \ B1) N {z3 > a/|z|}. On the other hand, if £, had finite
area in (By \ By) N {x3 > a|z|}, then the ¥,’s must converge with infinite

multiplicity to some leaf I' of L, that intersects

(V1333) (Bg \ Bl) N {.Cvg >« ’1“}

Note that we used that (B \ B1)N{x3 > a|z|} does not intersect the singular
set Soo (by (P2)) to guarantee the convergence of the f]j’s in this set. However,
as we have used several times, this convergence with multiplicity implies that
the leaf T is stable; see, e.g., the proof of Corollary A.20 for more details.*”
Finally, since I intersects the half-space {x3 > a}, it must be contained in the
open half-space {x3 > 0} by the strong maximum principle.

Low points in I are contained in graphs. We will need the following com-
plete version of “extending flatness”: There exists a > 0 so that if z € I" is in
the “low cone” {x3 < «|z|}, then x is contained in a graph I', C T' defined
over (at least)

(V1.3.34) {3 =0, r*/4 < 2% + 23 < 00},

where r = |z|. Moreover, the graph I';, must be asymptotic to a plane or to an
upward-sloping half-catenoid. Finally, there is a positive lower bound for the

47T be precise, this convergence with multiplicity implies that either I is stable or its
oriented double cover is stable.
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height of the graph I'y; i.e.,
(VL.3.35) inf x3 > 0.

Proof that low points in I' are contained in graphs. It follows from the
gradient estimate and the quadratic curvature decay of I' that I' is “very flat”
in a neighborhood of x in the sense of “extending flatness.” It then follows from
the sublinear growth of the height of the graph that I', can then be extended
over {z3 = 0, 7?/4 < 23+ 23 < 0o} as long as « is sufficiently small. The proof
of this extension will be left to the reader.

Now that we know that ', is defined over {x3 = 0, r2/4 < 2?2 + 23 < oo},
it follows that I', is asymptotic to either a plane, an upward-sloping half-
catenoid, or a downward-sloping half-catenoid. The last is impossible since I',,
is contained in {z3 > 0}.

Finally, (V1.3.35) follows from the maximum principle at infinity of [LR88].

The components of T'\ B, are proper. Given any r > 0, then

(VIL.3.36) each component of I' \ B, is proper.

Proof of (V1.3.36). To prove (VI1.3.36), we must show that any such com-
ponent I', cannot accumulate into {z3 = 0}; this is because we already know
that I' itself is proper in {x3 > 0}. We divide this into two cases.

First, suppose that the boundary OI', of the component I',. intersects the
“low cone” — i.e., suppose that

(VI.3.37) (191111: x3 < Qr.
In this case, it follows that the entire component I',. is a graph and, hence,
proper.

Suppose now that (VI.3.37) does not hold. In this case, we will find a low
component (for some smaller radius) that extends as a graph underneath T,
thus keeping T, strictly away from {x3 = 0}. To get this barrier component,
note that Lemma E.2 implies that I contains a sequence of points y, — 0
contained in the low cone {z3 < «|z|}. If we choose y,, close enough to zero,
then the resulting graph I'y,, must pass underneath OI'; in dB,.. It follows that
I', sits above I'y, U B, and, hence, cannot accumulate into {z3 = 0}. This
completes the proof of (VI.3.36).

The flux contradiction. We will show that the nonflat leaf I' must contain
a sequence of proper subdomains I';, with the following properties:

(top) OI'), contains an increasing sequence of compact “top curves” in a
fixed plane {x3="h} for some h. Here, increasing means that {x3="h}
N or,, C 0,41 for every n.
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(ends) T, has finitely many ends and each end is asymptotic to a plane or
an upward-sloping half-catenoid.
(bottom) The rest of JI',, consists of a finite collection of “bottom curves”
whose total length goes to zero as n goes to infinity.

This will give a flux contradiction just as in the last step of the proof of
Lemma VI.2.1. Namely, the flux of I',, across the top curves in {z3 = h} is
strictly positive and nondecreasing in n, the ends have nonnegative flux, and
the flux across the bottom curves goes to zero. However, this is impossible
since the total flux for each I',, must be zero by Stokes’ theorem. It remains
to construct the I';,’s with these properties.

We will start with the “top curve” for dT',,. As in the proof of (VI.3.36),
Lemma E.2 implies that I' has infinitely many “low” ends that are asymptotic
to either planes or upward-sloping half-catenoids. For simplicity, we will as-
sume that these ends are planar; the catenoid case follows similarly and will
be left to the reader. Since [LR88| ensures that the planar ends are asymp-
totic to different planes, we can choose some h > 0 between two consecutive
planar ends so that {x3 = h} intersects I' transversely. Let I';, be a compo-
nent of {x3 < h} NT containing 0 in its closure and fix some component -, of
or'y, C {.1'3 = h}

Combining the co-area formula with the area bounds from (VI.3.31), we
can choose a sequence r, — 0 so that

(VI.3.38) Length (0B, N{z3 > ar,} NI') <Cry,

for a uniform constant C' independent of n. The point here is that the length
of these curves goes to zero as n goes to infinity.

For each n, let T',, be the component of T'y, \ B, with 7, in its boundary.
First, it follows immediately that (top) holds. Second, (VI.3.36) implies that I",,
is proper. Next, when 7, is sufficiently small, then each point in 9B, N{z3 <
ary }NI is contained in a graphical (planar) end that never intersects {z3 = h}.
In particular, we must have that

(VI.3.39) 0B,, NOI'y, C {x3 > ar,}

so that the length bound (VI.3.38) gives (bottom). By construction, each
I';, has compact boundary, is contained in the slab {0 < z3 < h}, and has
quadratic curvature decay. Therefore, the gradient estimate implies that each
component of I',, outside of a cylinder {22 + 22 < R?} must be either an
asymptotically planar graph or a multi-valued graph. However, as we have
used several times, I' cannot contain such a multi-valued graph, so we conclude
that each component of

(VIL.3.40) [, N{2? + 23 > R*} is an asymptotically planar graph.
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There are only finitely many such ends for each n because I'j, is proper. This
gives (ends) and, hence, completes the proof. O

VI.4. The proofs of Theorems 0.6 and 0.12

We now have all of the necessary ingredients to prove Theorems 0.6 and
0.12.

Proof of Theorem 0.6. We have already established properties (A) and
(B) of Theorem 0.6 in Lemma I1.1.2 and Definition/Lemma II.1.1, respectively.
Therefore, it remains to show that every leaf of the lamination £ is contained
in a horizontal plane. Once we have shown this, then the lamination £ is
obtained by taking the union of the horizontal planes in £’ together with a
horizontal plane through each point in S.

We have already proven that the leaves of £’ are planar when the sequence
is ULSC in Theorem 0.9. Therefore, by the no mixing theorem, Theorem 0.4,
the only remaining case is when S = Sjecc # 0. However, Lemmas VI.2.1 and
VI.3.1 together prove that every leaf of £’ is flat in this case. This completes
the proof of the theorem. O

Theorem 0.12 now follows immediately.

Proof of Theorem 0.12. Now that we have established Theorem 0.6, it
only remains to show that property (Chpeck) holds. However, property (Check)
was proven in (C1) in Theorem 0.14. O

Part VII. Modifications in the positive genus case

As we noted earlier, the main theorems were stated for sequences of planar
domains, i.e., for genus zero. In this section, we will give the versions of
these theorems for sequences with bounded genus and describe the necessary
modifications for the proofs. The main change in the theorems is a change in
the definitions of the singular sets Speck and Syise- The new definitions of Syeck
and Syisc, as well as an example showing why a change is necessary, can be
found in Section VII.1.1.

Many aspects of the proofs in the genus zero case were essentially local
and will, therefore, extend easily once we have the local structure near Syeck
and Syisc. However, there are some global aspects to the proofs and these
will require some work. The two main global facts are the existence of planes
through each singular point and the flatness of nearby leaves (which we often
call “properness”). These are “global” in the sense that they fail to hold in
the local example constructed in [CMO04a].

The definitions of § and £ are unchanged since Definition/Lemma I1.1.1
(that defines the singular set) and Lemma II.1.2 (that constructs £’) did not
assume genus zero.
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VII.1. The definitions and statements for positive genus

VIL.1.1. The sets Speck and Syisc for positive genus. We will begin with an
example illustrating why we have to change the definitions of Syecc and Syjse
in the case of positive genus. Namely, let the sequence ¥; be a sequence of
rescalings (“blow downs”) of the genus one helicoid constructed in [WHWO09).
Since the genus one helicoid is asymptotic to the standard helicoid, the ¥;’s
converge to a foliation by horizontal planes away from the vertical axis. How-
ever, the vertical axis contains both the origin where the injectivity radius goes
to zero — since the genus concentrates there — and uniformly locally simply
connected points. This was impossible in the case of genus zero because of the
no mixing theorem.

This example of rescalings of the genus one helicoid illustrates that even
if the injectivity radius goes to zero at a point, the point still might not belong
in Speck- It is then reasonable to ask what it was about the injectivity radius
going to zero that was useful in the genus zero case. The answer is that this
allowed one to use a barrier argument near a point y € Speck to find stable
graphs disjoint from the X;’s that converge to a punctured plane through y.
This motivates the following re-definition of Syjsc and Speck:

e A point y in § is in Sy if there exist 7, > 0 and a sequence r, ; — 0 so
that for any r € [ry j,7y] and any connected component ¥’ of B, (y) N
we have

(VIL1.1) 9% is connected.
(VIL.1.2) E; has the same genus as one of the components of B, (y) N E;.

e A point y in S is in Syeek if there exist 7, > 0 and a sequence 7y ; — 0
so that some component of B, .(y) N X; has disconnected boundary and
(VIL.1.2) holds.

These definitions agree with the earlier ones when the sequence is uniformly
locally genus zero, i.e., when the genus of B, (y) N X; is zero for every j. In
particular, these definitions agree with the earlier ones when the X;’s have
genus zero. These definitions are natural in the sense that they allow us to
extend the proofs, but note that a shrinking limit of genus one helicoids would
be Susc and is most certainly not ULSC in the traditional sense.

In the positive genus case, the set Speck is divided into two subsets:

e A point z € Speek IS in S}leck if the locally separating curves in 3; that are
shrinking to z are either
— globally separating in 3; (like in the genus 0 case) or, more generally,
— globally separating in ¥; once we combine them with at most g other
shrinking curves at other points of Speck.
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e The set Sﬁeck = Sheck \ Srlleck consists of at most g “exceptional points”
where this does not happen.

The sets Speck and Syise are obviously disjoint subsets of S. It follows
from Proposition 1.0.19 in [CM04d] that, after passing to a subsequence, we
can assume that*®

(VII].S) S = Sneck U Sulsc'

The fact that there are at most g “exceptional points” follows immediately
from Lemma II1.3.1.

VIIL.1.2. The statements of the theorems for positive genus. We will next
run through the changes to the statements of the five theorems — Theo-
rems 0.4, 0.6, 0.9, 0.12, and 0.14 — when the surfaces have positive genus.

The first theorem is the no-mixing theorem, Theorem 0.4; in the positive
genus case, this becomes

THEOREM VII.1.4 (No-mixing theorem in the positive genus case). If
¥; C Br, = Bp,(0) C R3 is a sequence of compact embedded minimal surfaces
of genus at most g with 0%; C 0Bpg, where R; — 0o, then there is a subsequence
so that Srzleck consists of at most g points and either Sys. = 0 or Srlleck =0.

Moreover, if Suse # 0, then the lamination L' given by Lemma I1.1.2
consists of a foliation of (all of) R? by parallel planes away from a singular
set S consisting of either one or two lines perpendicular to the planes together
with at most g points of S?

neck*

Theorem 0.6 applies verbatim to the general case of bounded genus with
the new definitions of Syjsc and Speck-

On the other hand, Theorem 0.9 holds also for sequences with fixed genus
with one minor change in the conclusion and one in the hypothesis. The change
in the hypothesis is that we do not assume (0.5). The change in the conclusion
is that there might be either one or two singular curves. Assumption (0.5),
which says that the 3;’s are “uniformly not-disks,” was used in the genus zero
case to rule out the possibility of just one singular curve (as occurs both for
sequences of disks and for rescalings of the genus one helicoid). However, we
cannot rule out the possibility of just one singular curve in the fixed genus case
regardless of whether we assume (0.5). For this reason, we will not assume (0.5)
and we will allow for the possibility of just one singular curve.

Similarly, Theorems 0.12 and 0.14 require small changes in (Cpeex). Recall
that for each point y in Sheck, (Check) gives a sequence of graphs in the X;’s

48\ lore precisely, this follows from the proof of Proposition 1.0.19 in [CMO04d]; that propo-
sition was stated for the complementary case where the inner radius is fixed and the outer
radii go to infinity.
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that converges to a plane through y away from at most two punctures. In the
positive genus case, there are now two types of points in Syeck and the results
are different for each:

(SL.) Ify € Sk ., then there is a sequence of graphs in the ¥,’s that converges
to a plane through y away from at most (g + 2) punctures.

(Sgeck) Ify e Sgeck, then there is a sequence of graphs or multi-valued graphs
in the X;’s that converges to a plane through y away from at most
(9 + 2) punctures.

We do not know of any examples where Szeck # 0.

The remainder of this part will be devoted to sketching the modifications
needed to prove the main theorems in the general case of bounded genus.

VIL.2. The local structure near points in Sy and S;ecx

The starting point for understanding the sequence X is to describe the
sequence in a neighborhood of each singular point, depending on whether the
point is in Sy O Speck- Roughly speaking, we will get the same picture as in
the case of planar domains. The precise statements are

(o) Given a point x in Syis, there is a ball B,.(x) so that
a) The ¥;’s contain multi-valued graphs that “collapse” to a punctured
J
graph in B,(x) with a removable singularity at x.
(b) The set S satisfies the cone property with respect to this graph in
B, (x).
c) For j sufficiently large, the 3;’s are connected near x.
J
(8) Given a point z in Speck, there is a ball B,(z) and a sequence of graphs

49

in the ¥;’s that converges (with multiplicity at least two) to a finitely

punctured graph in B,(z) with a removable singularity at x.

We will prove («) first and then (/). Properties (a) and (b) in («) give
the same structure that Lemma I1.2.3 gave in the genus zero case. The proof
will follow the same outline as in the genus zero case, with modifications that
are standard by this point in the series of papers.

Sketch of proof of («). Suppose that y € Syjsc. We can assume that there
is genus concentrating at y (otherwise the genus 0 argument applies). Thus,
(by definition) there exist r > 0, a sequence ; — 0, and points y; € B, (y)N%;
so that

e For any s € [r;,7], the component ¥ ,. of Bs(y) N Y; containing y; has
positive genus and has connected boundary.

49The precise statement is that there exists C' > 1 so that if C's < r and j is sufficiently
large, then there is only one connected component of Bes(y) N X, that intersects Bs(y).
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o If r; < 51 < 53 <r (and s1,s2 are regular values), then ¥, . \ X, . is
a topological annulus with one inner boundary component in 0Bs, (y) and
one outer boundary component in 9B, (y).

The proof of (a). The first step in (a) is to prove the existence of small
multi-valued graphs near y in the ¥;’s; when the ¥;’s had genus zero, this
was done in [CMO04c| by identifying blow up pairs and working on the scale of
the maximum of the curvature. This approach does not work here because we
do not have any a priori relationship between the radii r; and the maximum
of the curvature near y on ¥;. This difference is the biggest change in the
extension of (a) to the positive genus case. Instead, we argue as follows:

(1) The first observation is that, by Theorem 1.22 in [CMO04c|, the area of
intrinsic sectors over the inner boundaries in the annuli ¥, . \ ¥, ,,, must
grow faster than quadratically.

(2) Observe next that these annuli are scale-invariant simply-connected.
Namely, if z € ¥, 4, \ X5, 5, has intrinsic distance ¢ > 251 to the inner
boundary (and is also not too close to the outer boundary), then B, ()
is a topological disk.

To prove this, suppose instead that the exponential map from z is not
injective on By 4(); this would give two geodesics from z with the same
endpoint that combine to give a simple closed curve with two break-points.
Using the nonpositive curvature and Gauss-Bonnet, we see that this curve
cannot bound a disk and, thus, must be homologous to the inner boundary
component. However, using Stokes’ theorem (applied to Az — y|?), this
would imply small area growth, which is impossible by (1).

(3) Using Corollary I1.2.10 in [CMO04d], we can now divide the intrinsic tubular
neighborhood of the inner boundary into sectors whose sides are minimiz-
ing geodesics (in fact, even minimizing back to the entire inner boundary).
The bases of these sectors will be chosen to have a length comparable to a
fixed large multiple of s.

(4) By (1), if we choose s; so that i—; is large enough, then we can make the
number of disjoint sectors in (3) as large as we would like.

(5) By (2) and the intrinsic version of the one-sided curvature estimate from
[CMO1] (recorded here in Theorem 1.1.3), if any two of these sectors are
sufficiently (scale-invariant) close extrinsically, then they both satisfy a
uniform scale-invariant curvature estimate.

(6) Combining (4) and (5) with Corollary 2.13 of [CMO04c|, we can arrange
that at least one of these sectors is 1/2-stable (with the width and length
of the sector fixed, but as large as we wish).

(7) Finally, (6) allows us to apply Corollary II.1.45 of [CM04d] to get the
desired multi-valued graph on a fixed scale.
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The extension of this multi-valued graph now follows from (a slight vari-
ation of) Theorem I1.0.21 in [CMO04b], which showed that stable multi-valued
graphs extend. Stability there was used for two different purposes: to get some
a priori scale-invariant bound on curvature, and then to come back and get a
better (global) estimate leading to almost flatness. The only notable difference
in the current case is that we only have the 1/2-stability as long as the sheets
stay close together; this is easily overcome by using the sublinear growth of
the separation (i.e., Proposition I1.2.12 in [CMO04b]) to keep them together.

The proof of (b). The second property that we need is the local cone
property. This follows immediately as in (5) from the intrinsic version of the
one-sided curvature estimate from [CMO01] together with (2) above.

The proof of (c). Finally, we need the local connecting property. This
follows immediately from (b) and a barrier argument. Namely, if there were
multiple components, then we could use them as barriers to get a stable (thus
very flat) surface between them. Using the intrinsic one-sided curvature es-
timate and simple-connectivity of (2), the multi-valued graph forming in ¥;
would then be forced to spiral graphically forever. This is impossible since
each surface is proper. [l

Sketch of proof of (8). The structure () near a point in Speei follows from
a local version of the results of Section IV.1 for the genus zero case. As in the
genus zero case, there are three main steps:

(1) Using the (local) topology to put in a sequence of stable barrier surfaces
that converge to a graph through the singular point; see Proposition IV.1.1.
This goes through as before, except that the outer radii of the extrinsic
balls remains bounded. Hence, the limiting stable graph is defined over a
disk and not the entire plane.

(2) Decomposing 3; into ULSC pieces by cutting along “small necks.” This
goes through as in Section IV.1.2 with only obvious changes.

(3) Showing that these ULSC pieces contain graphs that converge to the lim-
iting stable graph through the singular point. This goes through as in
Section IV.1.3 with obvious changes. O

VIL.2.1. Collapsed leaves. The key properties (1), (2), and (3) of collapsed
leaves are recorded in Proposition 11.3.1. We next extend the proofs of these
properties to the positive genus case. The proof of (1) goes through as in
Section II.3.1 using the local structure («) above. The proof of (2) in Sec-
tions I1.3.2 and I1.3.3 goes through with minor modifications that are noted
there. (See, e.g., the second paragraph of Lemma I1.3.22.) The proof of (3) in
Section I1.3.4 goes through with the following minor changes:
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e In the proof of (3), we used that the “figure eight” curves ; were separating
in X;. In the genus 0 case, this is automatic since all curves are separating.
When the genus is positive, note the infinite multiplicity of the convergence
allows us to choose g+1 distinct graphs (all on different sheets) 7]1, .. ,’yé-’ +
that are embedded graphs over the curve v in I' and all of these have
the same orientation (meaning all are on sheets where the “normal points
upward”). If none of these is separating on its own, then (since the genus
is g and they are all disjoint) Lemma III.3.1 gives a collection of them that
together separate in ;. We will use this collection as the inner boundary
in the Plateau problem and follow the rest of the argument.

e The other small change is that in the barrier construction, we apply [HS79]
rather than [MY82b]. Thus, we do not get an explicit bound on the topol-
ogy of the stable surface, but this bound was never used in the argument.

VII.3. Part III: When the surfaces are ULSC

This part completed the proof of Theorem 0.9 in the genus zero case, using
the tools already developed along with two new ingredients developed there:

e Proposition II1.0.2 shows that the closure of a collapsed leaf is a plane.
e Lemma III.1.4 proves “properness.”

We follow the same approach in the positive genus case, with minor
changes. The first changes are in the statement of Proposition I11.0.2, where

(1) We no longer assume that I'¢jos N Speck = @ but instead make the weaker

assumption that I'cieg N S&eck = (). (Weakening this assumption is not
necessary for the ULSC results in Part III but will be needed later for the
generalization of the no-mixing theorem to the positive genus case.)

(2) We omit (2) since we make no assumption in the fixed genus case to ensure
that there are two axes. As a result, we will need to also consider the case
of ULSC, one axis, and finite genus; in the genus zero case this follows

already from [CM04e].

Once we have these two things, then the modified Theorem 0.9 will follow
as in the genus zero case with one last small change. Namely, we can only
apply Meeks’ result, [Mee04], at points in the traditional Sygs. (where the
sequence is locally simply connected). It follows that the singular set is (one
or two) Lipschitz curves in Sy and these curves are orthogonal to the planar
foliation at all but a finite collection of points; this of course implies that they
are orthogonal everywhere.

The proof of (1) in the (modified) Proposition I11.0.2 goes through with
the following changes:



FIXED GENUS 121

e Since there are at most g points in Sfleck, we get that T'cles \ I' consists
of at most two points in Sys. together with at most g of the “exceptional
points.”

e The points in Sy are already known to be removable singularities and (a
cover of ) I is already known to be stable. This stability together with (3)
allows us to apply Lemma A.35 to conclude that the isolated exceptional
singular points are also removable. The claim now follows from a Bernstein
theorem as in the genus zero case.

The proof of properness when the genus is zero was given in Lemma IT1.1.4
using a global flux argument. We will describe the necessary modifications
next. Suppose first that the leaf has only one point of Syge in it. As in
Lemma III.1.4, we need to rule out the possibility of one leaf that spirals into
the plane I'cls. We would like to appeal to Corollary 0.7 of [CMO02b] as in
Part I of [CMO04e] to get a contradiction, but we will need some modifications:

(1) We can find the “short curves” (required in [CM02b]) by using the multi-
valued graph structure that we have already obtained together with Corol-
lary IT1.3.5 of [CMO04d] to get blow up pairs converging down to the singular
point from above and then following the argument in [CMO04e] (see Corol-
lary IV.0.10 there).

(2) The leaf is not known to be locally graphical above the plane since we
cannot directly apply the one-sided curvature estimate. In particular, as
we extend the sheets of the multi-valued graph, we may come to an intrinsic
ball that is not scale-invariant simply connected. Because of the closeness
to the plane and the sublinear growth proven in [CMO04b], we can take the
scale-invariant constant to be very small. However, there are at most g
of these “bad balls”; otherwise, some combination of curves in these balls
would be (globally) separating and we could put in a stable barrier that is
forced to “cut the axis” near the singular point; this is a standard variation
on the “estimates between the sheets” argument from [CMO04b] that we
have now employed a number of times.’® In particular, the “bad balls”
(where it is not simply-connected) can be surrounded by “good balls” and
the sheets can be continued globally (with at most g disks removed).

(3) The last modification is that we may need to start “lower” to ensure that
we do not hit any of these “bad balls” as we extend the sheets of the multi-
valued graph. Since there are at most g of these and the multi-valued graph

50The original “estimate between the sheets” was proven in Theorem L.0.8 in [CMO04b]; the
version that we use here is essentially (D) in the proof of property (2) in Proposition I11.0.2.
The difference is that the stable surface may have up to g + 1 inner boundary components,
and we use the existence theory of [HS79] instead of Meeks-Yau.
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has infinitely many sheets, this is not a problem. The argument now goes
through as in Part I on pages 584-593 of [CMO04e].

When the leaf contains two points in Syisc (as was the case in Lemma II1.1.4
because of (2) in Proposition II1.0.2), the modifications are similar. Namely,
the local picture near each singularity is identical and the leaf may fail to be
locally graphical over the plane, but only at at most g “bad balls” as in (2).
We use the argument in (1) to find the short curves and we argue as in (3) to
work “below” these “bad balls” and then follow the proof of Lemma III.1.4.

VII.4. Parts IV and V: When the surfaces are not ULSC

We will next turn to analyzing the structure of non-ULSC singular points,
including the proofs — in the positive genus case — of Theorems 0.14 and 0.4
(the no-mixing theorem). To do this, we must prove

e (C1) in Theorem 0.14; this will follow from Proposition VII.4.2 below.
e (C2) and (D) in Theorem 0.14.
e Theorem 0.4.

As in the genus zero case, a key point will be to prove that there is a limit
plane through each point in the singular set S. These planes were actually
(the closure of) leaves of £’ when the sequence was ULSC, but this was not
the case in general. However, these planes were always given as smooth limits
of subsets of the ¥;’s; cf. (Check) in Theorem 0.12. This is the motivation for
the following definition:

Definition VII.4.1. Let X; be a sequence of surfaces with limit lamination
L' and singular set S. We will say that a surface I' is a pseudo-leaf of L if it is
connected and there is a sequence of subsets Z]F C X; that converges smoothly
to I'. We will also require that I" is maximal with respect to these properties,
so that I" is not a proper subset of a connected surface that is also a limit of
subsets of the X;’s.

Here “converges” means that for each open subset I'. C I' with compact
closure in I', then the };’s contain a sequence of graphs — or multi-valued
graphs — over I'; and these converge smoothly to I'.. If we get multi-valued
graphs, then we require that the number of sheets goes to infinity as j goes to
infinity.

Note that every leaf of L' is also a pseudo-leaf. We have already come
across pseudo-leaves that may not be leaves. Namely, (Check) in Theorem 0.12
implies that, for each point x in Speck, we get a flat pseudo-leaf whose closure
is a plane through z. This pseudo-leaf is a plane punctured at x and possibly
at one other point.
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One useful property of a pseudo-leaf is that none of the leaves of £’ can
intersect a pseudo-leaf transversely. It then follows from the local structure of
nodal sets that the leaves of £’ cannot cross a pseudo-leaf.

The key point for generalizing the main results for non-ULSC sequences
from genus zero to fixed genus is to show that

ProprosiTiON VII.4.2. For each point x € S, we get a flat pseudo-leaf
whose closure is a plane through x. This pseudo-leaf is a plane punctured at
at most g + 2 points; each puncture is in S.

We will need one more definition before proving Proposition VII.4.2. Re-
call that when we studied the leaves of £’, we began with the collapsed leaves,
i.e., the ones “through” a point in Sy.. The collapsed leaves were shown to
be stable and to have removable singularities at points in Syec. With this in
mind, we will say that a pseudo-leaf I' is pinched if it goes “through” a point
in §. There are two local models for the ¥;’s near a point z in S, depending
on whether = € Syisc or T € Speck. First, if x € Syise, then we know that there
is a collapsed leaf of £ through z; see (). Second, if € Speck, then it follows
from (B) that there is a pinched pseudo-leaf through x.

VIL4.1. The local structure ([3). We begin by recalling the local structure
(B) near points of Speck:

(8) Given a point z in Speck, there is a ball B,.(z) and a sequence of graphs
in the ¥;’s that converges (with multiplicity at least two) to a finitely
punctured graph in B,(z) with a removable singularity at x.

Remark VII.4.3. The structure above is forced to be local because the
curves that are shrinking off may not be globally separating in the X;’s. How-
ever, if y € Sl .,
Plateau problems using the X;’s as barriers to get a limiting plane P, through

then we can argue as in (f) to solve a sequence of global

y so that

e P, is a smooth limit (of stable graphs disjoint from the ¥;’s) away from
at most g + 1 points in Sflcck. In particular, P, does not cross any leaves
(or pseudo-leaves).

e Observe that P, cannot contain any points of Sysc. (If it did, then the
multi-valued graphs that developed would be forced to spiral forever con-
tradicting properness of the 3;’s.)

e As in (), we can cut the ¥;’s along a collection of at most g + 1 small
necks to get graphs in the ¥;’s that converge to P, away from at most
g + 2 points. This follows as in steps (1) and (2) in Section IV.1.1.

e Finally, as in the genus zero case, we can do this both above and below
the stable barriers.
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From now on, we will assume that every pseudo-leaf is oriented. This
slightly simplifies some of the arguments below involving stability. As we have
seen several times, the unoriented case can be dealt with by going to a double
cover. We will leave the easy modifications needed for this case to the reader.

VIL5. Planes through S, and the proofs of (C2) and (D)

Suppose now that z € Syiec and I' is the collapsed leaf through it. Gener-
alizing Proposition 1V.2.2, we first show that

(0) S} does not intersect the closure of the collapsed leaf T".

The keys for showing this are the structure result («) and the following
lemma (which generalizes (IV.2.16)):

LEMMA VIL5.1. If T is a pinched pseudo-leaf (e.g., a collapsed leaf), y
is a point in S} P, is the plane through y given by Remark VIL.4.3, and

neck’

TCclos N Py # 0, then
(VIL5.2) rcPp,

Proof. Because of embeddedness of the sequence, it is not hard to see that

51 We will argue by contradiction and, thus, assume

I' and P, cannot cross.
that I" is above P,.

The key point will be the following claim:
CLAIM. I'clos N Speck 18 a finite collection of points.

Proof of Claim (proven by a modification of the proof of Lemma VI.3.3).
Since I' cannot cross any of the separating planes through the points in Srlleck,
it follows that I'cjos N S&eck is contained in P, together with at most one other
plane parallel to P, (and above it) and I' is contained either in the half-space
above Py or in the slab between the two planes. We will show that P, contains
finitely many points in I'gles N Séeck; the claim follows from this (together with
a similar argument for the second plane in the case of two planes).

We already know that P, is a smooth limit of stable graphs that are
disjoint from the X;’s away from at most g + 1 points and that there are at
most g points where the genus is concentrating; let G denote these (at most
2g + 1) “bad points.”

We will prove the claim by showing that P, NI'cies N S&eck cannot contain
4g + 3 distinct points. Namely, if it did, then P, N Tcjos N Sy contains two
collections

(VIL5.3) {y1,-. . yg+1} and {z1,..., 2941}

eck

511y the genus zero case, this is Lemma IV.2.3; the lemma extends easily to the finite
genus case.
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so that all these points are distinct and disjoint from (the at most 2g + 1
points in) G.

It follows from the one-sided curvature estimate that the injectivity radius
of the X;’s is going to zero at the points in X; that are converging to I' near
the y;’s and z;’s. Thus, since the genus is at most g, we can choose subcol-
lections of each collection so that they separate in the ¥;’s and we can put in
stable barriers (using the local version of Proposition IV.1.1). This leads to a
contradiction as in the end of the proof of Lemma VI.3.3: Namely, we get two
distinct stable barriers that separate in space, thus they must be ordered by
height, but the limiting surface somehow goes “through” both of them. This
contradiction proves the claim.

Once we have shown that I' is complete away from isolated points on the
boundary of a half-space and I is contained in this half-space, then Lemma A.35
implies that the isolated exceptional singular points are also removable. The
strong maximum principle then gives (VIL.5.2). O

Here is why (o) and Lemma VIL.5.1 imply (0):
Suppose that (0) fails and I'cjes contains y € St .. Let P, be the lim-

nec
iting plane through y given by Remark VII.4.3, so that Lemma VII.5.1
implies that I' C P,.
We get the contradiction from using the barrier graphs to separate
the sheets (cf. Remark VII.4.3), which is impossible because of the

local connecting property near Syisc given in part (c¢) of («).

Using (0), we can now apply the modified (1) from Proposition I11.0.2 to
get that the collapsed leaves are all punctured planes, and we can apply the
modified Lemma III.1.4 to get that a neighborhood of each point in Syjsc is
foliated by collapsed leaves. Thus, (the modified) (C2) and (D) hold.

VIL.6. The remaining cases of Proposition VII.4.2

Sketch of the proof of Proposition VI1.4.2. Suppose that x € §. We have
already dealt with the cases where z is in Sy Or Srlleck, so we may assume that
T € Sﬁeck. Let T" be the pinched pseudo-leaf through z guaranteed by (53). We
will show next that I';, is flat. This follows from stability when I';, is complete or
if it has only isolated removable singularities (by the usual logarithmic cut-off

argument). We will divide into several cases:

e Suppose that I', contains a point of Sy in its closure. Since we have
already shown that a neighborhood of each point in Sy is foliated by flat
leaves, we conclude that I'; is contained in one of these flat leaves and is,
thus, itself a punctured plane. (The bound on the number of punctures
has also already been established.)
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e Suppose next that I', contains a point y of S&eck in its closure; let P, be
the corresponding plane through y. It follows from Lemma VII.5.1 that
I' C P,, giving the desired flatness.

e Finally, suppose that I'; contains only points in Sr21eck in its closure. Since
there are at most ¢ of these points and each is a removable singularity
(by stability, the structure (), and Lemma A.35 in Appendix A), we can
apply the Bernstein type argument to get flatness.

This completes the proof. O

VIL.6.1. Part V: The no-mizing theorem. We will now combine the pre-
vious results to extend the no-mixing theorem, Theorem 0.4, to the positive
genus case; that is, we will prove Theorem VII.1.4. We must show that

o If Sy # 0, then the planar collapsed leaves (through Sy.) foliate all of R3.

We have already shown that the foliated region consists of an open set of planes
and Syisc is either one or two straight lines perpendicular to these planes. We
must rule out that one of these lines has an endpoint. However, the singular set
is closed, so this endpoint would have to be in Syeck. Thus (3) gives graphical
stable barriers near the endpoint (for j large) that force the spiralling in ¥;
(from the nearby Syisc points) to continue forever. This contradicts that the
;’s are proper.

VIL.6.2. Part VI: The leaves are all flat. The other two global flux argu-
ments are used to show that the leaves are flat in the non-ULSC case, i.e., when
S = Speck- This is divided into two cases, depending on whether or not the
leaf I is complete. The complete leaves were shown to be flat in Lemma VI.2.1
and the incomplete leaves were handled in Lemma VI.3.1. We will next explain
how to extend the proofs of these to the positive genus case.

I' is complete: Lemma V1.2.1. The point is that I' must lie in a half-space
(since it cannot cross any of the limit planes through S) and, after a translation
and a rotation, we may assume that I' C {z3 > 0} and

(VIL6.1) inf 23 = 0.

Arguing as in the claim after (VI.2.3) (using the intrinsic version of the one-
sided curvature estimate), we get a sequence of points p, € I' satisfying

(VIL6.2) i(pn) = 0,
(VIL6.3) z3(pn) — 0,

where i(py,) is the injectivity radius of I' at p,,. Thus far, there is no difference
in the positive genus case.

The contradiction comes from cutting I' along these “short curves” to get
that the flux of I is arbitrarily small, which contradicts the strict positivity of
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the flux “at the top” that comes from slicing I by a plane between two of its
ends. This is carried out in steps (a) through (h) of the proof of Lemma VI.2.1.
In the positive genus case, we need the following modifications:

(a)
(b)

()
(f)

(2)
(h)

No changes.

This is where we find the separating curves; this comes almost for
free in the genus zero case just because the injectivity radius is going
to zero at the p,’s. When the genus is at most g, then at most g of
the balls centered at the p,,’s can have positive genus,’ so we throw
these out; this allows us to apply the one-sided lemma for nonsimply
connected surfaces, Lemma II1.4.1, on the remaining balls. There is
still another difficulty; namely, the curves in the balls Bsc, (p,,)(Pn)
are locally separating, but they may not be globally separating. To
deal with this, we group the p,’s together with (g + 1) of them in
each group. We know that some subcollection of each group must be
globally separating. This requires obvious changes when we introduce
the stable barriers (as we have now done many times).

No changes.

The first part of this is just repeating (b), with the same changes. The
second part is to get the properties in (VI.2.16). This follows without
change because we only work on the balls that are genus zero and,
thus, can still apply Lemma VI.1.1.

No changes.

Here we use the one-sided curvature estimate and a decomposition
into ULSC pieces to show that ends of I' (above where we cut) are
graphical. This is dealt with exactly as in the decomposition around
necks. Namely, this can only fail on at most g “bad balls,” each of
which connects to a finite number of sheets, and each bad ball can be
surrounded with graphical pieces.

We choose the slicing plane below all of the “bad sheets” from (f).
This is where the flux contradiction comes in. The only difference
is that instead of one “bottom curve,” there may be (g + 1) bottom
curves.

I’ is not complete: Lemma VI.3.1. Suppose instead that I' C {z3 > 0}
is a nonflat leaf of £" with 0 € T'clos N Sneck and {x3 = 0} is the associated
stable limit plane through 0. As in the genus zero case, the argument for
incomplete leaves uses short curves to get a flux contradiction. The issue
is the construction of the “bottom curves” that required that the injectivity
radius was small relative to the distance to the boundary (cf. Remark VI.2.24).

52We are using that we can assume that all the balls Bsc, i(pn) (Pn) are disjoint; cf. (VI.2.6).



128

TOBIAS H. COLDING and WILLIAM P. MINICOZZI 11

We first modify Lemma VI.3.3 for the positive genus case to get that
T'cios NS consists of at most 3g + 1 points and there are two possibilities:
— Tas NS C {z3 = 0},
—Tcis NS C {z3 =0} U {z3 = z3(p) > 0} for some p.
(The proof of this modification follows the original proof of Lemma VI1.3.3
with the obvious modifications that we throw away the (at most g) points
where the genus is concentrating and then we need to work with two col-
lections of g + 1 points in order to guarantee that they separate globally.)
The important point is that I' fails to be complete only at isolated points.
Next note that I' is scale-invariant ULSC near each singular point (cf.
(VL.3.12)); this follows as before, except that we may need to throw away
g bad balls and work below these.
Next we show that the curvature blows up at most quadratically near each
singular point; see (V1.3.13). We will argue by contradiction, so suppose
instead that there is a sequence of points g, € I' with ¢, — 0 and

(VILG.4) |anl* 1A% (@) > n.

Thus, the sequence of dilated and translated laminations

(VIL6.5) Lo =lgal™ (£~ qn)

satisfies |A|?(0) > n and the point ﬁ € 0B is in Syeck(Ln) (where
Sneck(Ln) is the non-ULSC singular set for the rescaled lamination L,).
Since £’ is a limit lamination, we can apply these rescalings to a subse-
quence of the original sequence and use a diagonal argument to get the
L,’s to converge to a limit L. It follows that S = S(L&) has a ULSC
singularity at 0 and the points ﬁ converge to a point ¢ € 9B that is a
non-ULSC singularity for L.,. When the genus is zero, this violates the
no-mixing theorem giving the desired contradiction. In the present case of
positive genus, this alone is not enough. However, observe that the plane
x3 = 0 is the limit of punctured graphs in the ¥;’s and not multi-valued
graphs; this is because Sy = (. It follows that the horizontal planes
through ﬁ are also limits of graphs (in the dilated and translated X;’s).
From this, we conclude that the plane {z35 = x3(q)} is also a limit of graphs
and, thus, that Syiscoo = Sulsc(Loo) does not intersect this plane. However,
this violates the generalized no-mixing theorem, Theorem VII.1.4 (which
gives that once Sy # 0, then Sy contains a line that intersects every
one of the limiting planes), giving the desired contradiction.

Once we have the quadratic curvature bounds, the rest of the proof follows

as in the genus zero case.
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Part VIII. Appendices
Appendix A. Surfaces with stable covers

A.1. Going from stability of a covering space to stability of a surface itself.
If an oriented minimal surface is stable, then any covering space is also stable.
However, the converse may not always be true. The next lemma states that
the converse is true if in addition the holonomy group of the covering space
has sub-exponential growth.

Before showing this, we will need to recall a few elementary properties of
groups and covering spaces.

Growth of groups. Suppose that A is a finitely generated group, and fix
a set of generators. Such a choice of generators induces a natural metric on A
called the word metric; cf. [Gro81]. Let A,, denote the ball of radius n about
the identity in this metric. The group is said to have sub-exponential growth

if we have for every € > 0 that

(A1) lim Aol _ 0,

n—oo &N

where |A,| denotes the number of elements of A,.5® Given any fixed integer
k, it follows, almost immediately, that sub-exponential growth guarantees that
there is a sequence n; — oo with
’Aanrk \ An]’ ’
A, |
Covering spaces. Recall that a connected covering space II1:T — I with
base point x € I' is uniquely determined by the holonomy homomorphism
Hol from (') to the automorphisms of the fiber II='(z). To define this
homomorphism, suppose that v : [0,1] — I' is a curve with y(0) = y(1) = =

(A.2) —0.

and £ is a point in fI_l(ac). The lifting property for covering spaces gives a
unique lift vz : [0,1] — T of 4 with 7;(0) = Z. We define Hol(y)(&) to be the
endpoint v;(1).

We call the image Hol(71(T")) the holonomy group of the covering space;
to keep the notation simple, set A = Hol(m(I")).?* If we fix a point & with
I1(i) = z, then we can define a fundamental domain I'g in I by

(A.3) Ty = {y € ['|distp(y, #) < distp(y, 2) for all z € T (z)}.
Using this, let fn = Uxea, A(I'o) be the covering of I" corresponding to A,,.

931t is not hard to see that having sub-exponential growth is independent of the choice of
generators.

541f T is the universal cover, then the holonomy group is exactly the group of deck trans-
formations and, hence, isomorphic to m1(I'). However, the deck group acts transitively on
the fiber 1" () if and only if 7 is a normal subgroup of 7 (I'); when this is not the case,
the holonomy group is bigger than the deck group.
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The next property that we will need is a positive lower bound for the
distance between T, and T \ Fn+k0 when kg is sufficiently large. Precisely, if I
has compact closure (so, in particular, 71 (I") is finitely generated and diam(I'p)
is finite), then an easy compactness argument gives a constant kg so that

(A.4) distq (T, T\ Thypg) > 1.

Here ko depends on f, I', and A but does not depend on n.
The last fact that we will need is that the holonomy group extends to an
action on I when it is abelian; we include a proof for completeness.

LEMMA A.5. Iff — I is a connected covering space with abelian holo-
nomy group A, then A extends to an action on [ as the group of deck trans-
formations as follows:

Suppose that v : [0,1] — I' is a curve with v(0) = v(1) = x (where x is
the base point in T'). We have to define the action of Hol(y) on an arbitrary
point § in L. To do this, choose a curve o [0,1] = T from y to x and define
Hol(y)(g) to be the second endpoint of the curve starting at y that lifts the
curve

(A.6) (—o)ovoo,
where (—o) denotes the curve o traversed in the opposite direction.

Proof. The only thing to check is that this definition does not depend on
the choice of the curve o. Suppose therefore that p : [0,1] — T" is a second
curve from y to x. It is then easy to see that ¢ and u give the same endpoint
in (A.6) if and only if

(A7) po(=o)oyooo(—u)o(—y)

lifts to a closed curve in I' starting at . However, the second endpoint of the
curve in (A.7) is nothing more than

(A8) Hol (4o (~0) 0700 0 (—) o (—1))(2)
= Hol (uo (—0)) o Hol(y) o Hol(o o (—u)) o Hol(—v)(2) = =

since the holonomy group is abelian. This completes the proof. O

Stability of covering spaces. We will next show that if a cover of a mini-
mal surface is stable and its holonomy group has sub-exponential growth, then
the surface itself is stable. (This simple fact was also later observed indepen-
dently in [MPRO06].) This would be obvious for finite covers; in that case, any
compactly supported function on I' lifts to a compactly supported function on
[. When the holonomy group is infinite, the lift of a compactly supported
function on I' no longer has compact support. To deal with this, we have to
introduce a second cutoff function.
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LEMMA A.9. Suppose that T C R? is an oriented minimal surface with
compact closure, possibly with boundary, and I' is a covering space of I'. If T’
is stable and its holonomy group has sub-exponential growth, then I itself is
stable.

Proof. We will show that, for each function 0 < ¢ < 1 compactly sup-
ported on I' \ OT", we have the following stability inequality:

2 2 2
(A.10) / AP2g? < / Vo2,

Since the holonomy group A of the covering space has sub-exponential growth,
(A.2) gives a sequence n; — oo with

’An]‘—i-ko \ An]|

(A.11)
|[An, |

— 0,

where kg is given by (A.4).
Define a sequence of functions ¢; on I' by

1 onT,,,
(A.12) ¢y = 1—distp(T,, ) on {0 < distp(Tn,, -) < 1},
0 otherwise.

In particular, ¢; is one on f‘n]., zero outside the 1-tubular neighborhood of I n;
and hence zero outside f‘anrkO by (A.4). Moreover, v; decays linearly in the
distance to f‘nj and hence satisfies

(A.13) V] < 1.

Below, we will identify the functions ¢ and |A|? on I with their lifts to the
cover I

Although the function v; does not vanish on all of dr, the function Vi@
does. We can therefore use 1; ¢ in the stability inequality for I to get

(A.14)

mmﬁ&ﬁ&=é¢ﬁ&<é A2 (4; )2

7Lj+k0

< Ji L IVwoR= [ vePs [ V(w0

n +1€0
= 8,| 19672+ [ v 9.
n +k0
Since ¢ is smooth and has compact support, there is a constant Cy so that
2|Vp|? + 2 < Cyp; hence

(A.15) V(¥ 0)* < 2(IVo” +|Vey[*) < 2|Vl +2 < Cy.
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We can use this to bound the last term in (A.14) as follows:
(A.16)

i V(5 §)] < Cy Area(T'n, ko \ Tn;) = C Area(T) [Ap, ko \ Anyl-

Fnj +kq \fnj

Substituting (A.16) into (A.14) gives

Ay g \ Ay
(A.17) /\A|2¢2 g/yv¢|2+c¢Area(r)‘f*’“\f’.
r r | A, |
Finally, (A.11) implies that (A.17) goes to (A.10) as j — oo, completing the
proof. O

A.2. A surface and stable cover with cyclic holonomy group where the
previous lemma applies. We will show, in Corollary A.20 below, that a certain
minimal surface I' given as a limit of embedded minimal multi-valued graphs
¥; must be stable. This will follow from Lemma A.9 once we show that there
is a connected covering space r satisfying the following two properties:

e The holonomy group A of the covering space is cyclic (and, hence, has
sub-exponential growth).
e The cover I is stable.
Throughout this subsection, I' ¢ R? will be an oriented minimal surface with
compact closure, possibly with boundary, and II : I 5T a covering map with
holonomy group Z (in fact, abelian is sufficient) with the following properties:

(G1) 3 is a sequence of embedded minimal multi-valued (normal exponential)
graphs over I'.

(G2) There is a sequence K; C Ky C -+ C I' of open domains exhausting I’
and functions u; : K; — R with

(A.18) Jujl + [Vl < 1/j
so that there is a bijection from from K to X, given by
(A.19) z — I(z) + uj(z) np(I(z)).

Condition (G2) says that the 3;’s can be thought of as one to one graphs over
the domains K in the cover I'.

COROLLARY A.20. IfT' — I satisfies (G1) and (G2), then the surface T
is stable.

Proof. By assumption, the holonomy group A is cyclic and, thus, has sub-
exponential growth. Therefore, to apply Lemma A.9, we must show that the
cover I is stable. We will prove the stability of I by constructing a positive
solution w of the Jacobi equation on I.

First, since the holonomy group A is abelian, Lemma A.5 implies that it
acts as the deck group of I.
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Next, define a sequence of subsets f(]" cTl by
(A.21) K§ = {z € Kj|h(1)(z) € K;} = K; 0 h(1)71(K)),

where h(1) € A is the generator of the infinite cyclic subgroup A = Z. Fix a
point p € K1, and let K ; be the connected component of f(]" containing p.

We will need below that the f(j’s are nested, open, connected sets that
exhaust I'. The only point to check is that they exhaust I'. To see this, suppose
that y € I" and choose a path o : [0,1] — I from p toy. Since the K;’s are open
and exhaust T, the compact set o([0,1]) U h(1)(c([0,1])) is entirely contained
in some K for j sufficiently large and, in particular, o([0,1]) C K.

Given z € K, both z and h(1)(z) are in K and, therefore, we can define
functions w; on K j by

(A.22) wj (@) = uj(h(1)()) — u;(z).

Since the bijection (A.19) takes z and h(1)(x) to distinct points in the em-
bedded surface 3J; and these distinct points have the same projection to I', we
conclude that

(A.23) wj(z) # 0.

Therefore, we may as well assume that w; is positive on the connected set K e
Since u; and |Vu,;| are going to zero by (A.18), a standard calculation (cf.
Lemma 2.4 in [CM04c]) gives that u; almost satisfies the Jacobi equation.?
Likewise, the positive function w; is almost a solution of the Jacobi equation.
In particular, if we define normalized functions

wj

(A.24) w; =
7 wip)’

then a subsequence of the w;’s converges to a positive solution w of the Jacobi
equation on I' and, thus, I' is stable. O

A.3. A Bernstein theorem for incomplete surfaces. The results of the pre-
vious subsections will be used show that certain incomplete minimal surfaces
must be stable. We will next prove a Bernstein theorem showing that such
a stable surface I' must then be flat, as long as it is “complete away from a
single point.” This generalizes the well-known Bernstein theorem for complete
stable surfaces of [FCS80], [dCP79].

More precisely, we will assume that the closure I'cjog of I' is equal to the
union of I and a single point. Recall that the closure I'cyes, defined in (I1.2.10),

55Precisely, Au; + |A|? u; = Q(u;), where the nonlinear term Q(u;) is at least quadratic
in u; and Vu;.
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is given by

(A.25) Ccios = UBT(xF) :

The flatness of such a I' follows from an argument of Gulliver and Lawson,
[GL&6]; for completeness, we recall this in the next lemma.

LEMMA A.26. Suppose that T C R? is a connected stable minimal surface
without boundary and with trivial normal bundle. If

(A.27) Caios \ T' = {0},

then T is a (punctured) plane.

Proof. We will use an argument of Gulliver and Lawson, [GL86], to con-
formally change the metric ds? on I' so that

(1) The universal cover I';y of I' is complete in the new metric d32.
(2) The operator L = A — 2K is nonnegative on I'y; i.e., if ¢ is any compactly
supported function on I'y7, then

(A.28) /¢E¢ <0.

Note that the sign convention here may be the opposite of what one would
expect.

Once we have done this, it follows from [FCS80] that (I'y;, d3?) is conformal to
R? with the standard flat metric. Translating back to the original metric ds?
will then imply that the original I was flat.

Following [GL86|, we make the conformal change of metric

ds®
(A.29) ds> WQ
Since the covering map from I'y;y to I' is an immersion, the metric d5? on T
pulls back to give a metric on I'y; we will also use d3? to denote this pullback
metric. It follows immediately that I'y; is complete in the new metric d32. Set
L = A — 2K where the Laplacian A and the curvature K are computed with
respect to the metric d3. Corollary 2.13 in [GL86]*° gives that

(A.30) L=z)?L—401—|V|z|?.

56Note that our operator L has the opposite sign convention from the operator Ls in
[GL86).
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Combining (A.30) with the stability of I'yy gives for any compactly supported
¢ that
(A.31)

Fooog~ 2 _ _ 2 -2 .
[ oLodi= [ o (Lo~ 40~ 1V 1ell)0) lel 2 an < [ o Lodu<0;

that is, the operator L is nonnegative on I'y with the complete metric d32.
However, Theorem 2 in [FCS80] states that, for any complete surface confor-
mal to the disk, the intrinsically defined operator A — 2K must be negative.®”
Therefore, since the plane is the only other possible conformal type, we con-
clude that (T'y, d3?) — and hence also (I'y, ds?) — is conformally equivalent
to R2. In particular, there is a sequence of compactly-supported logarithmic
cutoff functions ¢; defined on I'yy with

(A.32) ¢j < ¢jq1 for every j and ¢;(x) — 1 for every x € I'y,

(A.33) lim \Voil>dji = lim / Vi du = 0.
J 'y J—o0 JIry

— 00

Using the functions ¢; in the stability inequality for L on I'yy gives

(A.34) _ 2/ K ¢2dp < / V2 dp — 0.
Ty Ty

Since K < 0 and the functions ¢; go to 1, we conclude that I';; is flat. This
completes the proof. O

We will also need a local version of this:

LEMMA A.35. If T is a connected embedded minimal surface with trivial
normal bundle, T' (or a cover) is stable, and By NTcios \I' = {0}, then T' has
a removable singularity at 0.

Proof. Using estimates for two-sided stable surfaces, the fact that stability
is preserved under limits, and Lemma A.26, a compactness argument gives that
(A.36) |z| |A] — 0 as || — 0.

To show that this scale-invariant curvature decay implies removability, the
main point is

x
(A.37) (n, W> —0asx —0.

x

To prove (A.37) by contradiction, we use the scale-invariance of (A.36)
and (A.37) to assume that

e [z| =1, [{(z,n)| >4 >0 and [z[[A] <& on By

5TNote that [FCS80] does not assume a sign on the curvature K.
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for some very small € > 0 (which we will take much less than ). Next, we
let v be an intrinsic geodesic parametrized by arc length with 7(0) = x and
set f(t) = |y(t)]>. Note that f(0) = 1 and f'(t) = 2(v,7'), and f"(t) =
2+ 2(v,~"). Since [(7(0),n)| > 4, it follows that

[f' ()] <2-206%
Moreover, (A.36) implies that (as long as v is defined)
If"=2| <e.

By comparing f with a quadratic polynomial, we see that f has a positive lower
bound for all ¢ as long as € is small enough. Since this is valid for any geodesic,
we see that we cannot reach 0 within distance 1/e which is impossible since x
must connect in this ball by assumption. This completes the proof of (A.37).

It is easy to finish the proof. Namely, (A.36) and (A.37) imply that each
point near 0 is almost contained in a flat plane through 0. If these regions
closed up as we circled the origin, then 0 is removable by standard theory.
Thus, the regions spiral. Any limit leaf that they accumulate on is a very
flat graph through 0. Pick a point above this graph, and look at how its
height decays as we follow it towards 0. It is easy to see that (A.37) implies
that the height decays at least linearly. On the other hand, the sublinear
growth of the separation implies that it decays sublinearly, giving the desired
contradiction. O

Appendix B. An extension of [CMO0S|

We need slight modifications of several results in [CMO08]. We will give
these results in this appendix and explain whatever modifications are needed
for their proofs.

B.1. Chord-arc bounds for ULSC surfaces. The next lemma extends the
chord-arc bounds of [CMO08] from disks to ULSC surfaces.

LEMMA B.1. Given a constant r, there exists R > r so that if ¥ is an
embedded minimal surface with Br(zg) C X\ 0¥ and

(B.2) Bi(z) is a disk for each x € Br(zo),

then the connected component of B, (xg) N Bgr(xg) containing xg has boundary
m 837«(160)

Proof. The proof follows the proof of Lemma 2.23 given in Appendix B of
[CMO08] with one modification. (The statement of Lemma 2.23 from [CMO8] is
recalled below in Lemma B.3.) The difference is that Lemma 2.23 assumed a
curvature bound and used this to show that two disjoint intrinsic balls whose
centers were close (in R3) could be written as graphs over each other. In the
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current case, the required curvature bound is not assumed but rather comes
from the intrinsic version of the one-sided curvature estimate (Corollary 0.8 in
[CMOS]). O

B.2. Chord-arc and area bounds for surfaces with bounded curvature. We
also needed following lemma from [CMO08|, which gives chord-arc bounds for

surfaces with bounded curvature:°8

LEMMA B.3 (Lemma 2.23 in [CMO08]). There exists Cy > 1 so that given
a constant C,, we get another constant Cy such that the following holds: If
¥ C R? is an embedded minimal surface with 0 € ¥ C B, g and 0% C dBc, r
and in addition

(B.4) sup |A* < C,R2,
BCO rRNE

then the component ¥ r of Br N'Y containing 0 satisfies

(B5) So.1 € Ba, n(0).

In particular, we also get a constant C. (depending only on C,) so that
(B.6) Area (3o g) < C. R2.

Proof. The first claim (B.5) follows precisely from the proof of Lemma
2.23 in [CMO8], which is given in Appendix B in [CMO08].>

Since |A|? is bounded on ¢ p by assumption, (B.5) and standard com-
parison theorems give the area bound (B.6). O

A key point in Lemma B.3 is that the constant Cy does not depend on
the constant C, in the curvature bound (B.4).

Appendix C. Estimates for stable surfaces

Throughout this section, I' will be a stable surface with connected “interior
boundary” . We will use An, () to denote the intrinsic tubular neighborhood
of radius r about the curve ~; i.e.,

(C.1) An,(v) = {z e I'|distr(z,v) < r}.
Similarly, we will write Ang () for the “annulus” Ang(vy) \ Ang(y).

580f course, any surface with bounded curvature is also ULSC and is therefore already
covered by Lemma B.1. The usefulness of Lemma B.3 is that it makes the dependence very
precise.

59We should point out that we have slightly modified the statement of Lemma 2.23 from
[CMO8]; in particular, the statement in [CMO08] assumes that ¥ is a disk. However, this was
not used in the proof of the lemma given in Appendix B in [CMO0S].
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The main result of this appendix is the following “stable graph” proposi-
tion. This proposition shows that a stable embedded minimal surface with a
single interior boundary curve v and an area bound near 7 is graphical away
from its boundary.

ProrosiTioN C.2. Given a constant C, there exists w > 4 so that if
R > w? and T' C Bg is a stable embedded minimal surface whose “interior
boundary”® 0T \ OBg is a simple closed curve v C By satisfying

(C.3) Area(Any(v)) < C,
then each component of Bgy,, NT'\ By, is a graph with gradient bounded by one.

C.1. The regularity of the distance function to the interior boundary. In
proving the proposition, we will need some basic results on the level sets of the
distance function to an interior boundary curve. Before stating these results,
it will be helpful to recall the Gauss-Bonnet theorem with corners and set the
notation.

The Gauss-Bonnet theorem with corners implies that a compact surface
> with piecewise smooth boundary 0% satisfies

(C.4) /82k:g—|—/ZKg—|—Zai:27rx(E).

Here Ky is the Gauss curvature of ¥, x(X) is its Euler characteristic, and k,
is the geodesic curvature of 9X. The sign convention of k, is such that it is
positive on the boundary of the unit disk in the plane. Finally, the «;’s are
the “jump angles” at the corners of 9%; see Figure 49. By convention, «; is
positive at a corner where ¥ is locally convex. For instance, on each corner of
a square, a; is m/2.

The next lemma of Shiohama and Tanaka contains the main results that
we will need (cf. the proof of Theorem 1 in [Ros03]).

LemMA C.5 ([ST89], [ST93]). Suppose that I' is a complete noncompact
oriented surface whose boundary OI' is a smooth simple closed curve. The set

(C.6) S(t) = {x € T'| distp(z, 9T) = ¢}

satisfies the following properties:

(x1) For almost every t, the set S(t) is a finite union of piecewise smooth
curves with length €(t). Let c;(t) be the “jump angle” at each corner; for
consistency with [Fiadl] and [Har64|, set 0;(t) = —a(t).

60The boundary of I' is contained in dBg except for a single simple closed curve v in Ba;
we call 7y the inner boundary and Br N OI" the outer boundary, respectively.
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Concave corners can develop

A negative jump angle as.

(see (x1)).
A positive jump angle a;. The distance level sets are
initially smooth.
Figure 49. The jump angle «; Figure 50. The level sets S(t)
at a corner. of the distance function to a
curve.

(x2) For almost every t, the derivative l'(t) exists and satisfies

(C.7) ‘=] k- 3 {2 tan <02(t>) - ez} - Zi:@-(t).

S®) {il0: (£)<0}

(x3) Given any s > r >0, we get
S
(C.8) 0s) — b(r) < / () dt.
(x4) The area of the “annulus” An, 4(0T') = {x € T'|r < distp(z, ") < s} is

(C.9) Area (An,., (9T)) = / ors

Remark C.10. The papers [ST89] and [ST93] extend earlier results of Fi-
ala, [Fiadl], for analytic surfaces and Hartman, [Har64|, for simply connected
surfaces. Since our surfaces are minimal in R? and, thus, analytic, the classi-
cal results of Fiala could be applied here. However, it is useful not to require
analyticity so that the results easily generalize to local ones in a Riemannian
3-manifold.

The claim (x1) was proven in [ST89], while the claims (x2), (x3), and (x4)
appear in [ST93]. Note also that (x4) follows from the co-area formula. We
should note that the formula (C.7) does not appear explicitly in [ST93] but is
implicit there and can also be found in Section 9.6 of [Fia4l].

We will need three additional properties of the level sets S(¢) that hold if
in addition I is stable:
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(x2") If T is embedded minimal and stable, then each 6;(t) > 0 and ¢'(¢) from
(x2) satisfies

(C.11) (t) = [S(t) By = Y 0i(1)

Notice that the right-hand side of (C.11) is exactly the boundary term
corresponding to S(¢) in the Gauss-Bonnet formula with corners.

(x5) There is a constant C, so that if I' is embedded minimal and stable, then
we get the upper bound

(C.12) supk, < Oyt 1.

S(t)

Recall that given our sign convention for kg, (C.12) means that S(t)
cannot be “too convex” when it is thought of as part of the boundary of
Ant(ﬁf)

(x6) There is a constant e, so that if I" is embedded minimal and stable and
o C S(t) is a closed curve with

(C.13) Length (o) < g4 t,
then o bounds a disk I'; C " and I'; C Ang; /4, 4/3(91).
Proof of (x2), (¥5) and (x6). Given p € S(t), let
(C.14) vt [0,4] =T

be a minimizing geodesic connecting JI' to p. The triangle inequality then
implies that S(t) does not intersect the interior of the geodesic ball B, (v,(t—s))
for any s between 0 and ¢. Standard comparison theorems and the curvature
estimate for stable surfaces then give some a > 0 and Cy so that 0B (v, (t—at))
is a smooth curve with geodesic curvature at most Cj t~1. Since the p is in the
boundaries of these balls, we see that

e The jump angles «;(t) at the corners of S(t) can only be negative as claimed
in (x2').

e If p is a smooth point of S(¢), then ky(p) < C,t™ 1, giving (¥5).

Note that we do not claim a lower bound for k4. (In fact, easy examples show

that k4 can go to —oo; see [Har64].)

To finish (¥2'), note that (C.7) implies (C.11) since 6;(t) is between 0 and
/2.

To see (x6), fix a point p € o and note that the entire curve o is contained
in the intrinsic geodesic ball B, ¢(p) and this ball stays away from OI'. Taking
g4 small, the interior curvature estimates for stable surfaces imply that B. ¢(p)
is a graph over some plane. In particular, the curve o is contractible in B, +(p),
giving the desired T, . U
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Remark C.15. We will actually use a very slight generalization of these
results. Namely, in applications, I' will not be complete but will rather be
allowed to have other boundary components. This does not matter since we
will always work with level sets S(t) where ¢ is less than the distance to any of
the other boundary components. It’s easy to see that the above results extend
to this case.

C.2. The proof of the “stable graph” proposition. The key point for prov-
ing Proposition C.2 will be to show that I' has quadratic area growth. This
quadratic area estimate formally follows from the argument in [CM02a], but
we need the results of the previous subsection to deal with technical difficulties
that arise from the lack of regularity of the level sets of the distance function.

Proof of Proposition C.2. The key point is to prove that the intrinsic an-
nuli An, () have quadratic area growth:

(C.16) Area (An,(v)) < C1 72 + C,

where the constant C; depends on the constant C' in (C.3). Once we have
(C.16), the lemma follows easily from the proof of Lemma I1.1.34 in [CM04d].
For the reader’s convenience, next we will sketch the proof of the lemma as-
suming (C.16):

First, (C.16) allows us to use a logarithmic cutoff function to get
sub-annuli with small total curvature. Since these sub-annuli have
small total curvature and are stable, the mean value inequality gives
a small scale-invariant pointwise curvature estimate. Here the scale
refers roughly to the distance to «. In particular, integrating this cur-
vature bound implies that each component of a level set of the distance
to 7y is itself a graph over (a curve in) some plane. Moreover, Proposi-
tion 1.12 in [CMO1] uses the fact that the Gauss map is conformal to
piece these together and get a graph over one fixed plane, as desired.

It remains therefore to establish (C.16). Note that Proposition II.1.3 in
[CM04d] gives (C.16) directly under the additional assumption that I' is a
topological annulus. We will see that the general case follows similarly if we
also use the regularity of the length of level sets of the distance function from
~ given by Lemma C.5.

The proof of (C.16). There are two steps in the proof of (C.16):

(1) The stability inequality allows us to bound the total curvature in terms of
the energy of a cutoff and this in turn is bounded by the area.

(2) The area growth is always controlled by the total curvature. This follows
easily from Gauss-Bonnet when the exponential map is smooth but holds
more generally by Lemma C.5.
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Step (1). Set d(-) = distr(y, ), and define a (radial) cut-off function ¢ by

d on Anj(v),
(C.17) p=1q(r—d)/(r—1) on Any,(v),
0 otherwise .

By the stability inequality applied to ¢, we get
(C.18)

/Anl,r(’}’) AP [(r = d)/(r = 1)] /|A[ < /‘v¢’2

< Area (Any(v)) + (r — 1)"% Area (Any (7).

If we set K(s) = [un, .() |A|2, then the co-area formula gives

(C.19) K(s) = / A2 = / V ]A\Q} dt.
Any s(v) 1 {d=t}

In particular, we can integrate by parts twice to get

(C.20)

2(r—1)2 /1 /ltK(s)ds dt = 2/(r — 1) /ITK(S)(T —§)/(r —1)ds

— [ K@) =9/t = 1)%ds
< Area(Any (7)) + (r — 1)72 Area (An; (7)),
where the last inequality is (C.18).

Step (2). We will now use Lemma C.5 to estimate the area by the total
curvature. Set ¢(t) equal to the length of the level set {d = t}. The key will
be to prove the following estimate for £(t) for ¢ > 1:

1 /¢ 1 /¢
(C.21) 6(t)§02(1+t)~|—7/ / A]? ds = Cs (1+t)+—/ K(s)ds
2 Any s(v) 2 )

where C depends only on the constant C' in (C.3).

The proof of the proposition assuming (C.21). Integrating the length bound
(C.21) gives the area bound

(C.22) Area (An,(v)) < Area (Any(y / 0(t) dt

K
§C’+Cg7“+(]2r2/2+/ /és)dsdt.
1 1

Combining (C.20) and (C.22) gives the needed bound (C.16).
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The proof of (C.21). We will prove (C.21) by integrating a bound on ¢'(t).
There will be two steps — namely, bounding ¢'(¢) and then finding some value
of t where £(t) is bounded. (This is where we will integrate the bound on ¢'(t)
from.)

The bound on ¢'(t). Roughly speaking, we will bound #'(¢) in terms of the
total curvature by using the Gauss-Bonnet theorem in the “annulus” Any, ; for
a specific choice of ty. Recall that (x2') implies that ¢'(¢) is bounded by the
Gauss-Bonnet terms corresponding to S(t). To get the desired upper bound,
we will need to control the contributions from the geodesic curvature of the
“Inner boundary” S(ty) as well as the Euler characteristic of the “annulus.”
We will do this next.

First, the area bound (C.3) and (x4) imply that there must exist some
to € (1/3,2/3) with

(C.23) £(to) < 3 Area(Any39/3(7)) < 3C.

Moreover, by the regularity property (x1), we may assume that the level set
S(tp) is a finite union of simple closed piecewise smooth curves. We will
sort these curves into two groups, depending on their length. Namely, let

Jion{ ..., 0098 be the components of S(tg) with

lon
(C.24) Length(o,”"%) > £4/3,
where ¢, is given by (x6). Let Uﬁhort, ey O’,%lort be the remaining components.

Combining (C.24) with the upper bound on the total length of S(tg) from
(C.23) immediately gives the bound

(C.25) n < n(C),

where n(C) depends only on the area bound (C.3).%!

We will not actually apply the Gauss-Bonnet theorem to all of Ang (),
but rather to the subset I'; that “sees the outer boundary” S(t). To be pre-
cise, define I'; to be the union of all connected components of Any, () whose
boundaries intersect S(t); see Figure 51.

By construction, we have

(C.26) S(t) € 9Ty and AL, \ S(t) C S(to).

Consequently, combining the length bound (C.23) with the pointwise geodesic
curvature bound (x5), we get a total (geodesic) curvature bound for 9T’y \ S(¢)

(C.27) / ky < €(to) sup k, < k(C),
orAS () S(to)

61We are not claiming a bound on the total number m + n of components of S(to).
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Ang, 4 (v) \ Ty

T m\ ] >

S(to) S(t)
Figure 51. An example illustrating I'; in a case where I'; # Any, 4(7).

where k(C) depends only on the area bound (C.3). We should make two
remarks about (C.27):

e The integration in (C.27) is over only the smooth part of o'y \ S(t).

e The sign convention on kg in (C.27) is as part of the boundary of Any,(7);
this is the opposite as it would be as part of the boundary of I';. This is
important later when we apply the Gauss-Bonnet theorem.

The last ingredient that we will need to bound ¢'(¢) is a bound on the Euler
characteristic x(I't) that depends only on the area bound (C.3). This bound
follows immediately from the bound (C.25) on the number of long components
of S(ty) together with the following claim:

CLAIM. For t > 3/4, each connected component of I'y, i.e., each com-
ponent of Any, () whose boundary touches S(t), contains at least one long

ng

1 . .
component o;°" in its boundary.

The point here is that the short components of S(ty) are contractible near
S(to), so S(t) never sees them. More precisely, (x6) implies that each g$hort
bounds a disk

(C.28) risk ¢ Any g 3/4(7)-

Therefore, if p is an arbitrary point in S(¢), then we know that p and v are in
the same connected component of

(C.29) Any(v) \ U, gshort,

7

Note that we have used here that An () is itself connected. Since S(tg) sepa-
rates v = 5(0) from S(t), we conclude that it must be U;o1™"® that separates
p and 7. In particular, the component of An,; with p in its boundary also

. 1
contains at least one o,”"®

in its boundary. This completes the proof of the
claim.
We can now bound ¢'(t) for t > 3/4. Namely, (¥2') implies that ¢(t)

is bounded by the Gauss-Bonnet integrand along S(¢) so the Gauss-Bonnet
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theorem gives for almost every ¢ that

(©30)  £(t) < / by~ 3 0:(0) < & / A2 4 2y (D) + k.

S(t) ; 2 Jr, AT\ (1)
We have thrown away the angle contributions at the corners of dI'; \ S(¢) in
(C.30) since these are all negative by (x2'). Since T'y C Any3,(7), we can use
interior curvature estimates for stable surfaces and the area bound on Anj(7)
to get
(C.31)

[1ar< [ jaP+AreaAm() s JAP< [ jaP+a,
Iy Any () Any/s.1(7) Any ¢ (7)

where C3 depends only on the initial area bound (C.3). Substituting the above
bounds into (C.30), we get for almost every ¢t > 3/4 that

(C.32) o) < - AP 1y,
2 Any ¢ (7)
where Cy depends only on the initial area bound (C.3).
To complete the proof, use the area bound and (x4) again to find ¢
between 3/4 and 1 with £(¢t;) < 4C. Given ¢t > 1, we can then use (x3)
to integrate (C.32):

(C.33) 0(t) < l(t) + tﬂ'(s) ds

t1
1 t
<A4C+Cu(t—t1) + = / / ’A’st.
2 Jty JAn(v)

This gives (C.21), thus completing the proof.

We should point out that we have actually shown only that the compo-
nents coming from the tubular neighborhood An,(v) are graphs. However, the
other components are easily also seen to be graphs by combining the curvature
estimate and embeddedness. Namely, any other component is intrinsically far
from the boundary and hence graphical over some plane. By embeddedness,
these graphs do not cross, and we can take these planes to be parallel. O

Appendix D. Blowing up intrinsically on the scale of
nontrivial topology

The next lemma uses a standard blowup argument to locate the smallest
scale of nontrivial topology:

LEMMA D.1. Suppose that ¥ C R? is a smooth minimal surface, possibly
with boundary 0. If the ball Bsc,r, (yo) C X is disjoint from 0% for some
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Ci>1 and
(D.2) B, (yo) is not a disk,
then there exists a sub-ball Boys(y1) C Bacy r, (yo) so that

(D.3) Bis(y1) is not a disk,
(D.4) Bs(y) is a disk for any y € Beys(y1) -

Proof. After rescaling, we can assume that r; = 1. The lemma will follow
from a simple rescaling argument as in Lemma 5.1 of [CM04c|, except we define
F intrinsically on By, (yo) by

(D-5) F(x) = d*(z)i7%(x),
where i(x) is the injectivity radius of ¥ at = and
(D.6) d(x) =4Cy — distx(x, yo)

is the distance to B4, (yo). It follows that F' = 0 on B¢, (yo) and F(yg) >
16 C2. Also, since Bs ¢, (yo) is smooth, it follows that F is bounded from above
on By, (yo). We can therefore choose a point y; where F(y;) is at least half
of its supremum,® i.e.,

(D.7) F(y1)>1/2 sup F.
Ba oy (yo)

Set 52 = i%(y1)/8.
To see that (D.3) holds, first note that 4s > i(y1). In particular, there
must be two distinct geodesics, 71 and 2, contained in Bys(y1) with

(D.8) 71(0) = 72(0) = y1 and v (i(y1)) = 12(i(y1)).

Since I' has nonpositive curvature, it follows immediately from the Gauss-
Bonnet theorem with corners that the closed curve 7; U 72 cannot bound a
disk in T, thus giving (D.3).%3

6211 the proof above, we are not using that ¢, or F, is continuous (and, in particular, not
using that a maximum is attained). Instead, we use only that there must be points where
F is at least half of its supremum. However, one can show continuity; see Proposition 88 in
[Ber03].

63The Gauss-Bonnet theorem with corners implies that a disk D has faD kg + fD K+
> a; = 2w, where D has jump angles a; at the corners. In this case, both integrals are
nonpositive and there are only two corners with each contributing less than 7, so no such
disk can exist.
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We will use (D.7) twice to prove (D.4). First, since d > d(y1)/2 on
Baw,) (y1), (D.7) implies that

2

4 F
(D.9) sup i 2 < 5 sup F < 827(311) =52,
Bd(yl)(yl) d (yl) Bm(yl) d (y]_)
2

2

so that i > s on B, (y1). Second, using F(yo) as a lower bound for the sup
2
of F'in (D.7) implies that

d*(y1)
8s2 ’

so that d(y1)/2 > Ci s. O

(D.10) 8C? < F(yy) =

Appendix E. Minimal surfaces with a quadratic curvature bound
in a half-space

The next lemma deals with a minimal surface whose curvature blows up
at most quadratically at a point z in its closure. The lemma shows that the
surface must come arbitrarily scale-invariant close to any plane through z.
Roughly speaking, this means that the surface does not lie in any strictly
mean convex cone through z; see Figure 52.

To state the lemma precisely, given a plane through z, we will define a
scale-invariant function ((s) that measures how close in the sphere 0Bs(z) a
surface I' € R3\ {z} comes to the plane. After a rotation, we can assume that
the plane is the horizontal plane {z3 = x3(2)}. Define the function 3(s) by
setting
_infap oyap 23— 23(2)]

(E.1) Bls) =

S

The next lemma shows that the liminf of 3(s) is zero, so that I' comes arbi-
trarily scale-invariant close to the plane as we approach z.

LEMMA E.2. Let T' € R?\ {z} be a minimal surface (embedded or not)
with z in its closure. Suppose that, for each € > 0, each component off\Be(z)
is complete and has boundary in OB:(z).

If there exist constants ro > 0 and C so that for x € By,(z) NT we have

(E.3) |APX(z) < C |z — 2|72,
then the function 5(s) defined in (E.1) satisfies
(E.4) liminf B(s) =0.

s—0
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I sitting in the convex cone.

z
Strictly convex cone with vertex z.

Figure 52. We prove Lemma E.2 by contra-
diction, so suppose that I lies in a strictly
mean convex cone.

Proof. We will prove (E.4) by contradiction (see Figure 52), so suppose
that

(E.5) lim inf 3(s) = fo > 0.

In particular, given any J > 0, equation (E.5) implies that there exists so > 0
so that S(s) > By — ¢ for every s < sp and, hence, Bs,(z) N T lies inside a
strictly mean convex (double) cone:

(E.6) By, (2)NT C {|zz — 23(2)| > (Bo — 0) |z — 2|}

On the other hand, (E.5) also implies that there is an s < s¢/2 with 5(s) <
Bo + 9 and, consequently, there is a point ys € 9Bs(z) NI close to the strictly
mean convex cone:

(E.7) ys € OBs(2) N {|z3 — z3(2)| < (Bo + ) s} NT.

Note that (E.6) and (E.7) imply that the intrinsic ball B,/ (ys) stays inside,
but comes close to, the strictly mean convex cone

(E.8) {lzs = 23(2)[ = (Bo = 9) [ — =}

We will assume below that § < .

We will see that (E.6) and (E.7) lead to a contradiction for ¢ sufficiently
small, thus proving (E.4).

First, recall that the quadratic curvature bound (E.3) gives an o > 0 so
that the component I'y s of By s(ys) N r containing y, is a graph with gradient
bounded by one (see, e.g., Lemma 2.2 in [CM99]). After possibly reducing a,
we can therefore assume that

(E.9) Tas C Bya(ys).

Since Ty s is connected and does not intersect the (double) cone (E.8), it must
be in one of the two components of {|zg — z3(z)| > (8o — d) |z — z|}. After
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possibly reflecting, we can assume that
(E.10) Tos C {23 —x3(2) > (Bo — 0) |z — 2|}

Define a function f that vanishes on the cone {z3 — z3(z) = (Bo — 0) |z — 2|}
by setting

(E.11) f(x) =23 —x3(2) — (Bo = 6) [& — 2.
Note that (E.6) and (E.7) imply that
(E.12) 0<inf f< f(ys) <26s.

as

Using that f‘a s 1s minimal, we have that

-0
(E.13) Af = —(Bo—08)Ajp— 2] < ~ D00
|z — 2|
Define a function ¢ on L'y, by setting
-4
(E.14) o=+l —yP 20

Using that |z — 2| < 3s/2 on I'y s, we get that g is superharmonic since

(E.15) Ag< D=0 P00

|z — z| 6s <0

Therefore, the minimum of ¢ is achieved on 8Ty s and thus
-0

(E.16) min | f 4 (a's)? ﬁOT
s

=min g < g(ys) = f(ys) <20,
8Fa5 Fas

where the last inequality is from (E.12). Combining the first inequality from
(E.12) and (E.16) gives

(E.17) 0 < min f<2ds—a’s(By—0)/6.
Ol s
This gives the desired contradiction for § sufficiently small. ([l
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