Invent math (2014) 196:515-588
DOI 10.1007/s00222-013-0474-z

On uniqueness of tangent cones for Einstein
manifolds

Tobias Holck Colding - William P. Minicozzi I1

Received: 21 June 2012 / Accepted: 7 June 2013 / Published online: 29 June 2013
© Springer-Verlag Berlin Heidelberg 2013

Abstract We show that for any Ricci-flat manifold with Euclidean volume
growth the tangent cone at infinity is unique if one tangent cone has a smooth
cross-section. Similarly, for any noncollapsing limit of Einstein manifolds
with uniformly bounded Einstein constants, we show that local tangent cones
are unique if one tangent cone has a smooth cross-section.

1 Introduction

By Gromov’s compactness theorem, [18, 19], if M is an n-dimensional
manifold with nonnegative Ricci curvature, then any sequence of rescalings
(M, ri_2 g), where r; — 00, has a subsequence that converges in the Gromov-
Hausdorff topology to a length space. Any such limit is said to be a tangent
cone at infinity of M. Compactness follows from that

r~"Vol(B,(x)) (1.1)

is monotone nonincreasing in the radius » of the ball B, (x) for any fixed x €
M by the Bishop-Gromov volume comparison. As r tends to 0, this quantity
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on a smooth manifold converges to the volume of the unit ball in R” and, as r
tends to infinity, it converges to a nonnegative number V. If Vs > 0, then
M is said to have Euclidean volume growth and, by [4], any tangent cone at
infinity is a metric cone.!

An important well-known question is whether the cross-section of the tan-
gent cone at infinity of a Ricci-flat manifold with V7 > 0 depends on the
convergent sequence of blow-downs or is unique and independent of the se-
quence. Our main theorem is the following:

Theorem 1.2 (Uniqueness at co) Let M" be a Ricci-flat manifold with Eu-
clidean volume growth. If one tangent cone at infinity has a smooth cross-
section, then the tangent cone at infinity is unique.”

In fact, we prove an effective version of uniqueness that is considerably
stronger. Theorem 1.2 settles in the affirmative a very strong form of Conjec-
ture 1.12 in [13].

The results of this paper were announced in [8] and again in [11].

Theorem 1.2 describes the asymptotic structure of Einstein manifolds with
Euclidean volume growth and vanishing Ricci curvature. These arise in a
number of different fields, including string theory, general relativity, and com-
plex and algebraic geometry, amongst others, and there is a extensive litera-
ture of examples; see, e.g., [3, 15, 21, 22, 24-27, 33] and [34]. Most exam-
ples fall into several different classes, including ALE spaces (like the Eguchi-
Hanson metric and, more generally, non-collapsing gravitational instantons,
etc.), Kihler-Einstein metrics constructed by blowing up divisors, or cones
over Sasaki-Einstein manifolds.

Our arguments will also show that local tangent cones of limits of noncol-
lapsing Einstein metrics are unique:

Theorem 1.3 Local uniqueness Let (M;, x;) be a sequence of pointed n-
dimensional Einstein metrics with uniformly bounded Einstein constants and
Vol(B1(x;)) = v > 0.

If (M, Xx0) is a Gromov-Hausdorff limit of (M;, x;) and one tangent cone
aty € M, has a smooth cross-section, then the tangent cone at y is unique.

Similar to the case of tangent cones at infinity, the above statement follows
from a stronger effective version of uniqueness of local tangent cones.

1A metric cone C(X) with cross-section X is a warped product metric dr? 4+ r2d2 on the

space (0, c0) x X. For tangent cones at infinity of manifolds with Ric > 0 and V; > 0, by [4]
any cross-secton is a length space with diameter < m; cf. [5].

2In fact, we prove that the scale invariant distance to the tangent cone converges to zero like
(logr)~# for some B > 0, where r is the distance to a fixed point.
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Uniqueness of tangent cones 517

It is well-known that uniqueness may fail without the two-sided bound
on the Ricci curvature. Namely, there exist a large number of examples of
manifolds with nonnegative Ricci curvature and Euclidean volume growth
and nonunique tangent cones at infinity; see [4, 14, 30]. In fact, by [14], it
is known that any smooth family of metrics on a fixed closed manifold can
occur as cross-sections of tangent cones at infinity of a single manifold with
nonnegative Ricci curvature and Euclidean volume growth provided the fol-
lowing two necessary assumptions are satisfied for any element in the family:

(1) The Ricci curvature is > than that of the round unit (n — 1)-dimensional
sphere.’
(2) The volume is equal to a fixed constant.

Since the space of cross-sections of tangent cones at infinity of a given man-
ifold with nonnegative Ricci curvature and Euclidean volume growth is con-
nected and closed under the Gromov-Hausdorff topology, it follows that if a
smooth family of closed manifolds occurs as cross-sections, then so does any
metric space in the closure.

There is a rich history of uniqueness results for geometric problems and
equations. In perhaps its simplest form, the issue of uniqueness or not comes
up already in a 1904 paper entitled “On a continuous curve without tan-
gents constructible from elementary geometry” by the Swedish mathemati-
cian Helge von Koch. In that paper, Koch described what is now known as
the Koch curve or Koch snowflake. It is one of the earliest fractal curves to
be described and, as suggested by the title, shows that there are continuous
curves that do not have a tangent in any point. On the other hand, when a set
or a curve has a well-defined tangent or well-defined blow-up at every point,
then much regularity is known to follow. Tangents at every point, or unique-
ness of blow-ups, is a ‘hard’ analytical fact that most often is connected with
a PDE, as opposed to say Rademacher’s theorem, where tangents are shown
to exist almost everywhere for any Lipschitz functions.

Uniqueness is a key question for the regularity of Geometric PDE’s; for
instance, as explained in [38]: “Whether nonuniqueness of tangent cones ever
happens remains perhaps the most fundamental open question about singular-
ities of minimal varieties”. Two of the most prominent early works on unique-
ness of tangent cones are Leon Simon’s hugely influential paper [31] from
1983, where he proves uniqueness for tangent cones of minimal surfaces with
smooth cross-section. The other is Allard-Almgren’s 1981 [1] paper where
uniqueness of tangent cones with smooth cross-section is proven under an
additional integrability assumption on the cross-section; see also [32] and
[20] for more references about uniqueness. Earlier work on uniqueness for

3Strictly speaking, for the construction in [14], one must assume strict inequality for the Ricci
curvature.
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Ricci-flat metrics includes Cheeger-Tian’s 1994 paper [6], where uniqueness
is shown if all tangent cones have smooth cross-sections and all are inte-
grable.*

In each of these geometric problems, existence of tangent cones comes
from monotonicity, while the approaches to uniqueness rely on showing that
the monotone quantity approaches its limit at a definite rate. However, esti-
mating the rate of convergence seems to require either integrability and/or a
great deal of regularity (such as analyticity). For instance, for minimal sur-
faces or harmonic maps, the classical monotone quantities are highly regular
and are well-suited to this type of argument. This is not at all the case in
the current setting where the Bishop-Gromov is of very low regularity and
ill suited: the distance function is Lipschitz, but is not even C I let alone an-
alytic. This is a major point (cf. p. 496 of [6]). In contrast, the functional
A (that we describe below) is defined on the level sets of an analytic func-
tion (the Green’s function) and does depend analytically and, furthermore, its
derivative has the right properties. In a sense, the scale invariant volume is
already a regularization of the quantity that, if one could, one would most of
all like to work with. Namely, one would like to work directly with the scale
invariant Gromov-Hausdorff distance between the manifold and the cone that
best approximates it on the given scale and try to prove directly some kind of
decay (in the scale) for this quantity. However, not only is it not clear that it is
monotone, but as a purely metric quantity it is even less regular than the scale
invariant volume.

Throughout, C will denote a constant which will be allowed to change
from line to line. When the dependence is important, we will be more explicit.
M’ will always be an open n-dimensional Ricci-flat manifold with Euclidean
volume growth where n > 3. Moreover, dgg (X, Y) will denote the Gromov-
Hausdorff distance between metric spaces X and Y.

1.1 Proving uniqueness

Next we will try to explain the key points in the proof of uniqueness; a much
more detailed discussion can be found in Sect. 2.

Let p € M be a fixed point in a Ricci flat manifold with Euclidean volume
growth. We would like to show that the tangent cone at infinity is unique;
that is, does not depend on the sequence of blow-downs. To show this, let
©®, be the scale invariant Gromov-Hausdorff distance between the annulus

“4In addition to integrability of all cross-sections and Euclidean volume growth, [6] assumed
that the sectional curvatures decay at least quadratically at infinity. By a standard argument,
Euclidean volume growth and quadratic curvature decay imply that all tangent cones at infinity
have smooth cross-sections. In fact, using [7], it can be shown that Euclidean volume growth
and smoothness of all cross-sections implies quadratic curvature decay.
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Uniqueness of tangent cones 519

B4 (p) \ Br(p) and the corresponding annulus centered at the vertex of the
cone that best approximates the annulus. (By scale invariant distance, we
mean the distance between the annuli after the metrics are rescaled so that
the annuli have unit size; see (2.53).) The first key point is to find a positive
quantity A = A(r) that is a function of the distance to p, is monotone non
increasing and so for some positive constant C

@2
—A'(r)>C—L. (1.4)
r

(The quantity A with this property was found in [8]. Perelman’s monotone W
functional [29] is also potentially a candidate, but it comes from integrating
over the entire space which introduces so many other serious difficulties that
it cannot be used.) In fact, we shall use that for Q roughly equal to —r A’(r),
Q is monotone nonincreasing and

[0(r/2) — 08r)] = CO?. (1.5)

We claim that uniqueness of tangent cones is implied by showing that A con-
verges to its limit at infinity at a sufficiently fast rate or, equivalently, that Q
decays sufficiently fast to zero. Namely, by the triangle inequality, uniqueness
is implied by proving that

> Oy < o0. (1.6)
k

This, in turn, is implied by the Cauchy-Schwarz inequality by showing that
for some € > 0

> 05k < oo, (1.7)
k
as

> kT <0 (1.8)
k

Equation (1.7) follows, by (1.5), from showing that

> [o@ ") = 0@ ) k' < co. (1.9)

This is implied by proving that for a slightly larger €

C
o(r) < GogryTre’ (1.10)
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All the work in this paper is then to establish this crucial decay for Q. This
decay follows easily from showing that for some o < 1

Q(2r)** <C(Q(r/2) — 0(2r). (L.1T1)

The proof of this comes from an infinite dimensional Lojasiewicz inequality
that essentially gives

|A(r) — A(co) "™ < CIVAP = —CrA. (1.12)

(Here the middle equation can be ignored as we won’t explain the meaning
of VA until later.) The left-hand side of (1.11) is easily seen (using that Q
is monotone) to be bounded from above by the left-hand side of (1.12). To
get that the right-hand side of (1.12) is bounded from above by the right-hand
side of (1.11) is more subtle and uses that the quantity Q(r) is defined slightly
differently.

The proof of uniqueness has three parts. The first is to find the right quan-
tities and set up the general scheme described above. The second will be
to find a way to actually implement this general scheme. The third will be
to prove the infinite dimensional Lojasiewicz inequality for a functional R
that approximates A to first order. R will actually be defined on the space of
metrics and weights. To explain how R is chosen, recall that a Lojasiewicz
inequality describes analytic functions in a neighborhood of a critical point.
The inequality asserts that the difference in values of such a function at a
critical point versus a nearby point is bounded in terms of the norm of the
gradient. In particular, any other nearby critical point must have the same
value. In our case, the analytic function will be a linear combination of a
weighted Einstein-Hilbert functional on the level sets plus the A functional.
The Einstein-Hilbert functional enters into this picture since in a Ricci-flat
cone the cross-section is a Einstein manifold and, thus, a critical point for the
Einstein-Hilbert functional.

Finally, note that although QO >0 and Q |, the rate of decay on Q implies
only that

1
O < (Z @2?,)2 (1.13)

jzk

decays like k=2~¢ which in itself is of course not summable. Uniqueness
comes from the decay of Q together with that

e <c[or/2) - 0@Bn], (1.14)
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Uniqueness of tangent cones 521

which gives that

> 0, <ckf (1.15)
=k

for a power 8 > 0.
1.2 Effective uniqueness

In this subsection, we will describe how our main uniqueness will follow from
a stronger effective version.

Let M" be a Ricci-flat n-manifold and N a smooth closed Einstein (n — 1)-
manifold with Ric = (n — 2).

Theorem 1.16 (Effective uniqueness) There exist €,8, 8 > 0and C > 1 such
thatif A(r1/C)— A(Cry) < é forsome 0 <ry <ryandeveryr € [r1/C, Cri]
satisfies

d 1 (B2 (x) \ By (x), Boy (v) \ By (v)) < er, (1.17)

where x € M and v is the vertex of the cone C(N), then:

(E1) Everyr € [ry, r2] satisfies
dg i (Bar(x) \ Br(x), By (v) \ Br(v)) < 4er. (1.18)

(E2) There exists a cone C(Ng) with vertex v such that for r between r1 and
)

—p
dGH(B4r(x)\Br(x),B4r(ﬁ>\Br<ﬁ>)<Cr(log:—l) . (119)

Note that the cone C(Np) in this theorem is independent of r. Moreover,
the Gromov-Hausdorff distance could be replaced by the C* norm in (1.19)
by appealing to [7]. The key in the above theorem is that the constants do not
depend on r1 and r;. As a consequence, we get the uniqueness theorem stated
above.

Remarks:

e It seems very likely that, by arguing similarly, one could also replace the
right-hand side of (1.19) by Cr[A(r1) — A(r)]P.
e There is also a local version of this that we will not state here.
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1.3 Key technical difficulties for the Lojasiewicz-Simon inequality

The classical Lojasiewicz-Simon inequality is proven by using Lyapunov-
Schmidt reduction to reduce it to a finite dimensional Lojasiewicz inequality
on the kernel of the second variation operator. It is critical that the kernel is
finite dimensional. In [31], the finite dimensionality came from the functional
being strictly convex in the first derivative (which was the highest order), so
that there are only finitely many eigenvalues (counting multiplicity) below
any fixed level.

There are two key difficulties for proving a Lojasiewicz-Simon inequality
for the R functional:

(1) There is an infinite dimensional kernel for the second variation operator.
(2) The second variation operator has infinitely many positive and negative
eigenvalues.

The reason for (1) is that the infinite dimensional gauge group of diffeomor-
phisms preserves the functional. (2) is similar to the situation for the Einstein-
Hilbert functional, where the highest order part of the second variation oper-
ator has opposite signs depending on whether the variation is conformal or
orthogonal to the conformal variations. (1) is far more serious.

Geometric functionals are invariant under changes of coordinates, so (1)
could potentially arise in any geometric problem, including the original ones
considered in [31], such as uniqueness for minimal surfaces. This is overcome
in [31] by working in canonical coordinates, such as writing the surfaces as
normal graphs. Similarly, in [36], the author makes a canonical choice of
frames to “gauge away” (1) for the Yang-Mills functional and then directly
apply [31]. In our setting, the action of the diffeomorphism group is more
complicated and even (2) already makes it impossible to appeal directly to
[31].

We will deal with (1) by using the Ebin-Palais slice theorem to mod out
by the diffeomorphism group.® This will allow us to restrict to variations that
are transverse to the action of the group. We will then analyze the second
variation operator separately, depending on whether the variation is in the
conformal direction (up to a diffeomorphism) or it is orthogonal to both the
conformal variations and to the action of the group. We will show that, if we
write the operator in block form, then the off-diagonal blocks vanish and the
kernel is finite dimensional in each diagonal block. This will be enough to
carry through the Lyapunov-Schmidt reduction and prove the Lojasiewicz-
Simon inequality.

SThe diffeomorphism group also created difficulties in [6], where they use a different version
of the slice theorem.
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Uniqueness of tangent cones 523

1.4 Normalizations

Our normalization is that the Ricci curvature of the (n — 1)-dimensional unit
sphere S"~!is (n —2) and the scalar curvature is (n — 1)(n — 2). By conven-
tion, the curvature is given by

R(X, Y)=Vyvx—VXVY+V[X,y]. (1.20)
Given an orthonormal frame {e;}, we set
Rijke = (R(ei, ej)ex, ep).

The Ricci curvature is given by
Ric(ej. ej) = Y Rikjk.
k

and the sectional curvature of the e; — e; plane is R;j;;.

2 The proof of uniqueness

As mentioned in the introduction, the starting point for uniqueness is a
monotonicity formula from [8], where the monotone quantity A(r) is non-
increasing in r, is constant on cones, and where the derivative A’(r) measures
distance to being a cone on a given scale. We will show that A(r) goes to its
limit A(oo) fast enough to ensure uniqueness of the tangent cone. The key is
to show that

(x) A’(r) controls A(r) — A(c0).

Iterating (%) will show that A’(r), and thus the distance to being a cone, con-
verges to zero at a rate that implies uniqueness.

In order to prove (x), we will need to introduce an auxiliary functional R.
To explain this, recall that the Lojasiewicz inequality, [23], for an analytic
function f on R” with a critical point x gives some o < 1 so that

F) = fo < vim) @.1)

for all y close to x. Leon Simon proved an infinite dimensional version of
this for certain analytic functionals on Banach spaces in [31]. We will con-
struct an analytic functional R that approximates A to first order and satisfies
a Lojasiewicz-Simon inequality (these properties are (1)-(5) in Sect. 2.4).
Using R, we can prove ().

In this section, we will prove the uniqueness of the tangent cones assum-
ing properties (1)—(5). The rest of the paper will be devoted to proving these
properties.
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524 T.H. Colding, W.P. Minicozzi II

2.1 Monotonicity

We will next define the monotone quantity A(r). Let G be a Green’s function®
on M with a pole at a fixed point x € M and define

b=GT. (22)
With this normalization, Stokes’ theorem implies that
rlon /b |Vb| = Vol(dB1(0)). (2.3)
=r
Following [8], define a scale-invariant quantity A(r) by
A(r):rl—"/b Vb3, (2.4)
=r

Since M is Ricci-flat the third monotonicity formula of [8] gives that

1 Ab?
A(r)=—=r""3 f b>~>" | Hessyp — —g| . (2.5)
2 rsb n
In particular, A is monotone non-increasing and, thus, has a limit’
Aso = lim A(r). (2.6)
r—0o0
As a consequence, we have that
1 [ Ab? |
AR) — Aoo = ~ / 3 / b>~2"|Hessyp — ——g| dr. 2.7)
2 R r<b n

2.2 A brief introduction to the R functional

We will next briefly explain what the functional R is that will appear in our
Lojasiewicz-Simon inequality. This discussion can safely be ignored as we
will later return to the precise definition, including the weighted space that R
is defined on. At any rate, when restricted to the level set b = r the functional
‘R will be given by

R) =R = — A—r3_nf Ry, |VD|
r)= —2 5 e, b=r

—n n —

50ur Green’s functions will be normalized so that on Euclidean space of dimension n > 3 the
Green’s function is r2~".

7In fact, an easy calculation shows (see [7]) that Aso = b%oVol(a B1(0)); where by is defined
below.
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Uniqueness of tangent cones 525

1—n 2
Ry
_ 7 f Vb2 — 0= ) 1w (2.8)
2—n b=r n—2

Here Rjp—, is the intrinsic scalar curvature of the level set b = r. The idea
behind this functional is that R defined this way is a weighted analog of the
classical Einstein-Hilbert functional. In particular, when R is restricted to an
appropriate weighted space, then the critical points will precisely be weighted
Einstein metrics.

It may be helpful to illustrate this with an example. Suppose that M is n-
dimensional Euclidean space R” so that b is the distance function |x|. Since
the scalar curvature of the sphere of radius r is (n — 1)(n — 2)r ~2, we get

1-n 200 — -2
R = r / (1 _rin=Dm=2r ) :rl—n/ 1= A®r).
2—n |x|=r n—2 |x|=r

(2.9)

This is a special case of that R and A agree on cones with a constant weight
(see (1) below in the subsection after the next one).

2.3 Asymptotic convergence

By [4], every tangent cone at infinity of M is a metric cone. Below, C (V)
will always be a fixed cone with vertex v over a smooth (n — 1)-dimensional
Einstein metric go on the cross-section N with

Ricg, = (n — 2)go. (2.10)

Moreover, § = §(N) > 0 will be a fixed small constant and we will work on
scales R > 0 so that

du(Bar(x) \ Br(x), Bor(v) \ B-(v)) <8r forallre [; ZR], (2.11)

where dg g is the Gromov-Hausdorff distance. In particular, by [7], the annu-
lus Bogp(x) \ B§ (x) in M is C¥ close to one in the cone C(N).

We claim that as long as annuli in M are close to annuli in the cone (in the
sense explained above around (2.11)), then

|Vb| is close to bo. (2.12)

Here the positive constant b, is defined by

beo = Vi & 2.13
~~ () o
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526 T.H. Colding, W.P. Minicozzi II

where Vs > 0 is the asymptotic volume ratio
Vy = lim r~"Vol(B,(x)). (2.14)
r—00

To see (2.12), note that by page 1374 of [10] for € > 0O fixed, there exists
ro > 0 so that for r > rg

1
sup é — (V7M> ) e o1s)
B ()T Vol(B(0))
\% 1 |2
2 (_ YM n—2
/Br(x) Vel (Vol(Bl(O))) < eVol(B; (). (2.16)

Since the annulus in M is C¥ close to one in the cone C(N) (by [7]) and
b satisfies an elliptic equation, we get estimates for higher derivatives of b.

Namely, the integral bound on ||Vb|* — (%)%| gives the following
pointwise bound (for a slightly larger €)

2
|Vb|2 _ <V7M) "
Vol(B1(0))

2.4 The functional R and the Lojasiewicz-Simon inequality

2

sup < €. 2.17)

sz(x)\Bg(x)

We will next bring in the auxiliary functional R and list its five key properties.
Given R > 0, we let gr denote the induced metric on the level set {b = R}
in M. It follows from the previous subsection that if we are in an annulus that
is close to one in C(N), then {b = R} is diffeomorphic to N. Moreover, the
metric R~2gp is close to the metric bo_ozgo and, in fact, (2.3) implies that

/ |Vbldjg-2g, =R1_”/ |Vb| = Vol(dB1(0)). (2.18)
b=R b=R

Define A to be the set of C># metrics g and positive C># functions w on N.
Let A be

Alz{(g,w)eA)/ wd,ug:Vol(aBl(O))}. (2.19)
N

The set A includes (R™%gg, |Vb]|) as well as (bgozgo, bo).
We will construct a functional R : A; — R that satisfies:

(1) R(b55 80, boo) = Acc.
(2) (b0, boo) is a critical point for R on Aj.
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(3) R satisfies the Lojasiewicz-Simon inequality for some o < 1
_ 2—
[R(g. w) = R(b:780. bos) | * < IVIRP (g, w), (2.20)

where VR is the restriction of VR to A and (g, w) is near (bgozgo, bxo).
(4) We have

v
IViR(R 2gr, IVBI)[* < cf b~"[Hessyp — —g| . (221)
3sb=
(5) We have
b |?
A(R) <R(R *gr.|Vb|) + C/ b7 |Hess;p — —g| . (2.22)
R§b§3R

2

Roughly speaking, (1) and (2) show that R agrees with A to first order
at infinity, while (4) and (5) show that they are equivalent to first order on
(R™2gg, |Vb]). At first, this may appear surprising since R will contain the
scalar curvature and, thus, depends on more derivatives of the metric. How-
ever, we will see that the trace-free Hessian satisfies an elliptic equation and,
thus, elliptic estimates will allow us to bound these higher derivatives by
lower order ones (see Theorem 4.1 below).

We will construct R to satisfy (1) and (2) in Sect. 3. Properties (4) and
(5) are proven in Sect. 4. The remainder of the paper proves the Lojasiewicz-
Simon inequality (3) for R.

Remark 2.23 Roughly speaking, one can think of (4) and (5) as effective
forms of (2) and (1), respectively. Namely, when the manifold is conical, then
(4) and (5) imply (1) and (2), but with inequalities instead of equalities. The
precise dependence in the error terms will be critical for our arguments.

2.5 Decay

We will show next that (1)—(5) above implies that the tangent cone at infinity
is unique. We will first show decay of the following natural monotone non-
increasing scale-invariant integral

0(r) = / b
r<b

that roughly measures —r A’(r). One important reason why we work with Q
instead of r A’ is that Q(r) is obviously monotone.

Precisely, we will show that (1)-(5) implies the following crucial decay
estimate:

Ab? |?

Hess;z — —¢g (2.24)
n
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528 T.H. Colding, W.P. Minicozzi II

Proposition 2.25 Ser g = ﬁ — 1> 0. There exists C so that if every R €
(r, s) satisfies (2.11), then

0) < o ST (2.26)

2.6 Proving decay

As described in the overview, the key for proving the decay in Proposi-
tion 2.25 is to establish the inequality (1.11) bounding Q(2r) in terms of
the decay of Q from r/2 to 2r. This will be done in a series of lemmas cul-
minating in Corollary 2.39.

Lemma 2.27 If R satisfies (2.11), then

o0 2 2—a
</ rn—3 / b2—2n dl")
R r<b

A 2
Hess;2 — —¢
n

Ab? P
< C/ b™"|Hess, — —g| - (2.28)
§<b<3_R n
2="=2
Proof Using (2.7), then (1) and then (5) gives
1 00 2 12
—/ r”_3/ b*~>"|Hessyr — ——g| dr
2 Jr r<b n
= A(R) — Aco = A(R) — R(b5780. boo)
< R(R7%gr, |Vb|) — R(b5280, boo)
Ab?
+ C/ b™"|Hessp2 — —g| - (2.29)
E<b<3_R n
2="=2
On the other hand, (3) and (4) give that
_ _ 2—
IR(R2gr, IVb]) — R(bxg0. boo)| *
_ 2
< [ViR(Rgr,1Vbl)|
Ab? |
< Cf b™"|Hess;. — —g| . (2.30)
RB<p<3f n

Raising (2.29) to the power 2 — «, using the convexity of t — ¢? for p > 1 so
that

(@a+b)P <2771 (a? +b?) fora,b>0and p>1 (2.31)
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Uniqueness of tangent cones 529

with p =2 — «, and then using (2.30) gives

Ab?
Hess;» — —¢
n

2\ 2—«a
> . (2.32)

<b<3k b™""|Hess;2 —

2 2—a
dr)

ce(f
S<p<f

Since 2 —« > 1 and we always work on annuli where [z
2

2 5.
% g|? is bounded, we conclude that

0
</ rn—3 / b2—2n
R r<b

2
Hess)p — ——¢g
n

Ab? |

< C/ b™"|Hess;,. — —g| . (2.33)

E<b<ﬁ n

2="=2
O
Lemma 2.34 Given R > 0, we have
o0 2 12
/ p3 / b>~2"|Hessy, — —g| dr = 4*""Q(2R). (2.35)
R r<b n

Proof Within this proof, set f = |[Hess;. — Asz g|?* to simplify notation. We
have

00 oo 2/tIR
/ rn—3/ P f iy — Z/ rn—3/ P22 f oy
R r<b =0 2/ R r<b

©  a2itlR

2] n3/ b2—2n d
>j2:(:)f2.i1€ ( ) 2/ R<b<2i+2R fdr
o0
Z(sz)n—Z
j=0

= / B2 (2.36)
2/ R<b<2/+2R

On the interval 2/t R < b < 2/+2R_ we have that

(2/R)"p? 2 = b—"(T) > 42-npn, (2.37)
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We conclude that

) 00
f rn—3/ b2—2nfdr > 42—n Z/ b—nf — 42—n O(2R).
R r<b =0 2/t R<p<2i+2R

(2.38)
O
Combining Lemmas 2.27 and 2.34 gives the inequality (1.11):
Corollary 2.39 If r satisfies (2.11), then
Q2™ < C(Q(r/2) - Q(2n)). (2.40)
Proof Combining Lemmas 2.27 and 2.34 gives
2 2
0Q2r)¥ ¥ < C/;<b<2rb_” Hess2 — ——8| = C(Q(r/2) — Q(2r)).
T (2.41)
O

The decay estimate for Q(r), i.e., Proposition 2.25, will follow easily from
Corollary 2.39 and the following elementary algebraic fact:

Lemma242 I[fO0<a<b<1,ae€(0,1),and a* e < C'(b —a), then

a® ' —pl >, (2.43)
where C depends on o and C'.
Proof Since o < 1 and 0 < a < b < 1, the fundamental theorem of calculus

gives

b
a® ' —p* =1 - ot)/ t°72dt > (1 —a)(b — @) min{r* |t € (a, b))

=1 —a)b—a)b* 2. (2.44)

We will get a lower bound for this by considering two cases, depending on
the ratio f—l.
First, if b < 2a, then the hypothesis at < (b — a) implies that

a—2

c

(b—a)p* 2 >2°%((b—a)p*"?) > 2 (2.45)

@ Springer



Uniqueness of tangent cones 531

Substituting this into (2.44) gives the lemma in this case.
Second, suppose instead that b > 2a and, thus, that
ba—l
2

b 1

(b—a)b* 2> b* 2= > -, (2.46)
2 2

giving the lemma in this case also. O

Proof of Proposition 2.25 Given j so that r = 2(4/) satisfies (2.11), then
(2.40) gives

0™ = (o) - o). @47

where C’ is independent of j. Applying Lemma 2.42 with a = Q(4/*!) and
b= Q(4/) gives

o) — o) =c. (2.48)

Therefore, if r = 2(4/) satisfies (2.11) for Jj1 < j < ja, then iterating this
gives

Q(4jz+1)a—1 > Q(4j1+1)°‘—1 +C(jr — j1). (2.49)

If we set B = —— — 1, then B > 0 and (2.49) gives

l—o
Q47 < C(jp— 7T =C(ja— jn P, (2.50)

Using the monotonicity of O, we conclude that if every R € (r, s) satisfies
(2.11), then

O(s 2.51)

) S ———————,
~ |log(s/r) [P+
completing the proof. 0

2.7 Distance to cones

Let the point y € M be the pole for the Green’s function. Following Defi-
nition 4.2 in [8], define the quantity @, to be the scale invariant Gromov-
Hausdorff distance from the annulus

boo

Ba (W\ Bz ()CM (2.52)

to the corresponding annulus centered at the vertex in the closest metric cone.
Here, we have divided by b, since the function b is not asymptotic to the
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distance function r, but rather to boor. Thus, if &, < €, then there is a cone
C, so that

r
dGH(Bb4_,~(y) \ B (x)CM,Bas \ B C C,) < € — (2.53)
00 0 00 00 00
where the balls in C, are centered at the vertex of the cone C,.
We will need the following estimate that holds when we are close to a fixed
Ricci-flat cone with smooth cross-section: There exists C so that

7 <C[o@r/2) — 0B (2.54)

We will prove (2.54) in Sect. 4.4 using the estimates from Sect. 4.8

The last properties of @, that we will need are the following criteria for
uniqueness (cf. Theorem 4.6 in [8]) and an effective version of it that follows
afterwards:

Lemma 2.56 IfZiozl ©,; < 00, then M has a unique tangent cone at infin-
ity.

Proof To keep notation simple within this proof, we will argue as if boo = 1.
For each j, we get a cone C; so that

dGr (Bayi (x)\ Byj(x) C M, Byyj \ Byj C Cj) <20,;2/. (2.57)

Let A; denote the annulus B,j+i(x) \ B,j(x) C M and define the rescaled
annuli A; by

A;=2774A;. (2.58)

Since two cones that agree on an annulus must be equal, it suffices to prove
that the sequence A j 1s Cauchy with respect to Gromov-Hausdorff distance.
This will follow from the triangle inequality once we show that the sequence
dGH(Aj, AJ-H) is summable.

The bound (2.57) implies that

dor(Aj, By\ B CCj)=2"7dgu(Aj, Byit1 \ Byj C Cj) <205,
(2.59)

8The methods of [4] apply more generally when M has nonnegative Ricci curvature to give
m = pu(n) > 0 and a constant C so that

o <clor/2) - 0Bn)]. 2.55)

Although this more general inequality is never used in this paper, we will sketch the proof of
(2.55) in the Appendix.

@ Springer



Uniqueness of tangent cones 533

dor(Aj41, B2\ B1 CCj) =277 dgu(Aj41, Byjs1 \ Byj CC)) < Oy;.
(2.60)

Combining these bounds with the triangle inequality gives

dou(Aj, Aj+1) <dgu(A;, B\ B CC;)+dcu(Aj+1, B2\ B CC))
<36,;. (2.61)

It follows that the sequence dgp (A Iz A j+1) is summable, completing the
proof. O

We will also use the following effective version of Lemma 2.56:

Lemma 2.62 Fix R > 0. Let Aj denote the annulus Byj+1g(x) \ Byjg(x) C
M and define the rescaled annuli A by

- 1
AjzﬂAj. (2.63)
Given integers j| < ja, then
o 2
sup{dgu(Ai, Aplji <i.j < ja} <3 Onigp,.- (2.64)
J=j1
Proof This follows as in the proof of Lemma 2.56. 0

2.8 Uniqueness

Uniqueness will follow by combining Lemma 2.62 with the following modi-
fication of Theorem 4.6 in [8].

Proposition 2.65 There exist C, B > 0 so that if every r € (R, 2™ R) satisfies
(2.11), then

Y 0ur=Ci”. (2.66)
J=i

Proof By scaling, we may assume that R = 1.
Given any y > 0, and j; < jp, Holder’s inequality for series gives
1

i@zj5<i o2 2V> (Z ) (2.67)

J=i J=J1
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The series in the last term is summable whenever we have
2y > 1. (2.68)

To bound the remaining term, we bring in (2.54) to get

Z 02 2 < ¢ Z 2/ 1 (24/'+3)]j23/, (2.69)

J= J1=1

By assumption, every r € (1,2/2) satisfies (2.11), so Proposition 2.25 gives
for j < jp

0(2/)<cj'7P, (2.70)
so Lemma 2.73 below applies as long as
2y <1+ 8. (2.71)

Since § > 0, we can choose y > 0 so that both (2.68) and (2.71) are satisfied.
Therefore, we get that (2.69) is bounded by

Z 07 <C Z (271 — (217 <P 272)
J=j1 J=J1

O

The preceding proposition used the following elementary lemma for se-
quences:

Lemma 2.73 Suppose that B > 0 and {a;} is a monotone non-increasing
sequence with

0<a;<Cj '7F. (2.74)

For any positive integers k and m and constant v € [1, 1 4+ B), then we have

B+1 —]—
Z[aj aj+k]] ﬁm =8 - . (2.75)

Proof Given N > m, we have

N N N+k
D laj—ajndit =Y a;j" = Y aj(j -k’
j=m j=m j=m+k
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m+k—1 N+k
= > a;j'= ) aj(j—-k"
j=m j=N+1
N
+ > ai(j" -G —-R"). (2.76)
j=m+k

Using (2.74) and noting that j"~!=# is decreasing in j, the first sum is
bounded by

m+k—1 m+k—1
Y ajjr=c Y P < Chm TP 2.77)
j=m j=m

To prove the lemma, we have to handle the last sum in (2.76). Since v > 1,
the fundamental theorem of calculus gives

j
j"—(j—k)":v/ 'l < kvl (2.78)
j—k

Putting this in, then using (2.74), and then noting that v — 2 — 8 < 0 gives

N v N
S a0 <k 3w =cke 3
j=m+k etk Pl
CkvmV~1-P
m —
where we used thatv —2 — 8 < —1. -

We are now ready to prove uniqueness assuming that we have a functional
R that satisfies (1)—(5). The rest of the paper will then be devoted to con-
structing R and proving (1)—(5).

Proof of Theorem 1.2 assuming (1)—(5) We start by choosing constants § > 0,
j1and € > 0:

e Fix § > 0, so that (1)~(5) hold on any scale r that satisfies (2.11).
e Proposition 2.65 gives C, B > 0 so that if every r € (R,2™R) satisfies
(2.11), then

m -
Y @ur=Ci”. (2.80)
J=1
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Fix an integer j; = ji(C, B) so that C_'jl_B < §/100.
e Using (2.54), fix € > 0 so that if A(r/2) — A(8r) < €, then ®, < §/100.

Suppose now that R > 0 and an integer m > j; satisfy:

(A) Everyr € (R, 2/1R) satisfies (2.11) with 8/100 in place of é.
(B) A(R/2) — AQQ"3R) <e.

Suppose that k € [ji,m — 1] . If r € (R, 2kR) satisfies (2.11) with §x <§6/2
in place of 8, then (B) and the triangle inequality give that r € (R, 2¥T1R)
satisfies (2.11) with

8¢ +38/100 < § (2.81)

in place of 8. In particular, we can apply Proposition 2.65 on this stretch to
get that

k+1

Y @yx = Cj P <s/100. (2.82)

J=
Consequently, Lemma 2.62 and the triangle inequality give that r € (R,
2K*+1R) satisfies (2.11) with 48/100 < § in place of §. Since this bound is
independent of k, we conclude that it holds on the entire interval (R, 2" R).

We can use this to prove both the global uniqueness theorem (Theorem 1.2)

and the effective version. To prove Theorem 1.2, use the monotonicity of A to
pick some large R so that (B) holds for every m. It follows that (2.11) holds
on the entire interval (R, oo) and (2.82) gives for ]_ > jp that

Oo _
D 0y =Cj P <0 (2.83)
j=i

This implies uniqueness by Lemma 2.56; combining it with Lemma 2.62
gives the rate of convergence. O

We will next describe the modifications needed for the effective version of
uniqueness.

Proof of Theorem 1.16 The first claim (E1) follows as in the proof of the
uniqueness theorem, with (A) and (B) in the proof now given by the as-
sumptions instead of by taking R sufficiently large. Furthermore, arguing as
there (see (2.83) and Lemma 2.62) gives an “effective Cauchy bound” for
rp<r<s<ry:

1 1 r\*
GH\| —\b2rX r{X)), 25 (X s (X = - . .
d (r(B (x)\ B (x)), - (B ()\B())><C(10grl> (2.84)

N
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Thus, we get that the maximal scale-invariant distance between any of these
annuli decays as claimed. Finally, (2.82) gives that &, also decays like a
power of log r’—l so these annuli are close to an annulus in a fixed cone. 0

3 Functionals on the space of metrics and measures

In this section, we will define the functional ‘R and verify properties (1) and
(2) of R. Recall that gg is a fixed Einstein metric on an (n — 1)-dimensional
manifold N with Ricg, = (n—2)go, Ais the set of C 2. metrics g and positive
C?# functions w, and A; C A are the ones satisfying the weighted volume
constraint

Alz{(g,w)eA)/Nwdugz\/ol(aBl(O))}. (3.1

As we saw, (b32g0, boo) € A;. The tangent space 7 to A at (g, w) is given
by the set of symmetric 2-tensors 4 and functions v, with (4, v) being tangent
to the path’

(g + th, we'). (3.2)

The linear space 7 comes with a natural inner product
(1,00, 20}y = [ 00 2) +viafuwdisg. G3)
’ N

Lemma 3.4 The variation (h, v) is tangent to Ay at (g, w) if and only if

fN (% Tr(h) + v) wd g = 0. (3.5)

Proof This follows immediately from integrating

/ 1
((wet”)dMngth) = (5 Tr(h) + v) wdlg. (3.6)
O

The functional ‘R will be a linear combination of two natural functionals
on A given by

A(g, w) = /N widjug, (3.7)

9This normalization simplifies some later computations.
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B(g, w) = /N Rewd iy, (3.8)

where R, is the scalar curvature of the metric g. The coefficients of A and B
will be chosen so that R satisfies (1) and (2).
The next proposition computes the first derivatives of A and B at (g, w).

Proposition 3.9 Given one parameter families g + th and we'’, we get

A/:f {wZ(%Tr(hH—v) +2w2v}wdug, (3.10)
N
, . Hess,, Aw
=/ {—(Rlcg,h)+<h, >—Tr(h)—
N w w
+Rg<%Tr(h)+v)}wdu,g. 3.11)

Proof Since [(we')2] = 2w?v, the first claim follows from the formula (3.6)
for the derivative of the weighted volume form. Using Lemma A.1 and (3.6),
the variation of B is

1
B — /N{R; + Rg(iTr(h) + v)}wdug

- / {(—(Ricg, h) + 82h — ATe(h)) + Rge Tr(h) + v> }wdug.
N
(3.12)

This almost gives what we want, except that two of the terms have derivatives
applied to 2. We will integrate by parts to take these off. Namely, Stokes’
theorem gives that

/ wATr(h)d g = / Tr(h) Awd g, (3.13)
N N
/wézhdugz—/ (Vw,éh)dung (h,Hess,)dug.  (3.14)
N N N

O

The next corollary uses the first variation formulas to choose a linear com-
bination R of A and B so that R(bgozgo, boo) = Aco and (go, bo) is a critical
point, i.e., (1) and (2) hold.

@ Springer



Uniqueness of tangent cones 539

Corollary 3.15 Given by, > 0, the pair (bgozgo, boo) is a critical point for

the functional
R = ! A B (3.16)
" 2—-n (n—2) '

restricted to the subset Ay and, moreover, R(bgoz 20, b0) = Aco.

Proof To simplify notation, set g = bgoz go. Since g is Einstein with Ricg, =
(7’1 - Z)gOS

Rz = b2 Rgy = b2 (n — 1)(n —2), (3.17)
Ricz = b2 (n — 2)g. (3.18)

Hence, at (g, boo), Proposition 3.9 gives that
A =2b3, /N vdpg = —b3, /N Tr(h)dug, (3.19)

B' = —boo/ (Ricg, h)dug = (2 — n)bgo/ Tr(h)dug, (3.20)
N N
where the first two equations used that the integral of Tr(h) 4+ 2v is zero

because of the weighted volume constraint. This gives the first claim.
For the second claim, observe that

B\ _ . ,  bA(n—1(n—2) )
(A_m—z))(g’b“)‘/zv{b“_ (n=2) }b“’d“g

= (2 —n)b% / bood g = (2 — n)b% Vol(3 B, (0))
M

=2 —n)As. (3.21)
O

3.1 The gradient of R

We will next compute the gradient of R as a functional on the full space

of metrics g and weights w. The starting point is the following lemma that

computes the directional derivative of R.

Lemma 3.22 Given one parameter families g + th and we'", we have

(2—n)R/=/ {(3w2 — &> (l(g,h)g +v)
N n—2 2
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Ric, 5
+{l—=—wg).h) (wdug
n—2 2

— /N(((AW>8 — Hessy), h) disg. (3.23)

+

Proof 1Tt is convenient to set ¢ = (% Tr(h) + v). Proposition 3.9 gives

A/:f {w2¢+2w2v}wdug=/ {3w2¢—w2(g,h)}wdug, (3.24)
N N

B = f {—(Ricg,h) +<h, Hess“’> ey Y +Rg¢}wdug- (3.25)
N w w

Using the equations for A" and B’ gives

(25~ 5o (5l

/N(((Aw)g —Hessy), h)dug. (3.26)

+n—2

The previous lemma computed the directional derivative of R. To get the
gradient, we need to write it in terms of inner products for a fixed background
metric g.

Lemma 3.27 If h and J are symmetric 2-tensors, while g and g are metrics,
then

(h, J)g=(h, ¥ () (3.28)

g,
where W is the mapping defined by [¥ (J)];j = ging"" Jnmg’"‘fggj. Ifg=g+
th, then

d _ _
o YW= Jij = hip8"" Jnj — Jim&" hp;. (3.29)
=0

Proof Expanding the first expression out, we have
(h, J)g = hijJing™*g"". (3.30)
On the other hand, we get
(h, W (D) =hpg8” 8V [W(D];; = hpa8" 8V g8 " Tumg™ &

= NS pk 8" Tum 8" S0g = hit 8" Jumg™". (3.31)
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Suppose now that we have a one-parameter family of metrics g = g + th and
both ¥ and J depend on ¢. Differentiating at + = 0 and using that ¥ is the
identity at ¢ = 0 gives
[ ()] = I+ i (") Juj + Jim (8™) 24
=J-/j —h,-pgp”J,,j —J,-mgmphpj, (3.32)

l

where the last equality used that (g”¢) = —g"”h »q8? ¢ (and the correspond-
ing equation for the derivative of gk"). O

We will apply Lemma 3.27 with g equal to the background metric g =
bgoz go- The next corollary uses the lemma to calculate the gradient of R on

the space of all variations; later, we will project this onto A;.

Corollary 3.33 The gradient of R at (g, w) is given by

1
2—n)VR = <§¢1l1/(g)—|—l11(]),¢>1>v, (3.34)

where we define functions v and ¢1 by

b wa/det(g) (3.35)
booy/ det(bs g0)
o1 =3w* — Re (3.36)
n—2

and we define the 2-tensor J = J1 + J» by

Ric, ’
Ji= —w-g, (3.37)
n—2
1 Aw Hess,,
J = —g - . (3.38)
n—2\ w w

Proof Given one parameter families g + 14 and we'”, Lemma 3.22 gives that
, 1
Q2-mR = . b1\ 58 Mg+ v |+ {J. h)grwdpg

1
= fN {Ecm (8, h)g + (J, h)g +¢1v}vbooduboggo- (3.39)

Lemma 3.27 gives the corollary. 0
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For the next corollary, it is useful to define the functional A; by

Ai(g, w) 2/ wdlg. (3.40)
N
The next corollary computes the gradient of Aj.

Corollary 3.41 The gradient of Ay at (g, w) is given by VA| = (%l‘l/(g), v
where

po Vdetl®) (3.42)

booy/ det(ba g0)

Proof Given one parameter families g +1h and we'", differentiating A gives

1 1
A/l:/[V(E(g,h)g+v)wdug:A(E(g,h)g—{—v)vboodubo_czgo. (3.43)

Lemma 3.27 gives the corollary. g

4 Proving properties (4) and (5)

In this section, we will show that when R is applied to the level sets of b, then
it satisfies properties (4) and (5). A key for both of these will be to show in
the next subsection that an L? bound on the trace-free Hessian of »> implies
scale-invariant C! bounds.

As in Sect. 2, will assume throughout this section that we are working
on a scale R where the Hessian of b2 is almost diagonal and |Vb| is almost
constant.

4.1 C! bounds on the trace free Hessian

Theorem 4.1 There exists a constant C so that

2
< C/ b~
Cl(b=R) R<p<3R

2="="2

2
, 4.2

2
Hess)p — ——¢g
n

2
Hess;» — ——
hess: — 5

where || - || c1p=p) IS the scale-invariant C'-normon M at b =R.

Here, “scale-invariant” means measured with respect to the rescaled metric
R~ 2ggr, where g is the induced metric on the level set » = R. Namely, at
b=R

2P, A2 P
Hess;2 — ——g| + R°|V{Hess;, — —¢g
n n
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§C/ b
REbESR

2 2

Ab? |2

Hess;» — —¢
n

We will need the following Bochner type formula for the Hessian in the
proof.

Lemma 4.3 Given any Ricci-flat manifold and function w, we have
AHess,, = Hess a,, — 2R (Hess,,), 4.4)

where R(Hess,,) denotes the natural action of the curvature tensor on sym-
metric two-tensors.

Proof Fix a point p and an orthonormal frame e; with V,.e; =0 at p for

every i, j.
Since V,,e; = 0 at this point, the Laplacian of the Hessian is

AHessy,, = V., V., VVuw, 4.5)
and combining this with V. e; = 0 at the point gives
(AHessy) jk = (Ve Ve, Ve, Vw, ex) — (Vy, v,.e; VW, ex). (4.6)
Using the definition of the curvature (cf. (1.20)), we get at this point
(Ve; Ve Ve, Vw, ex) = (Ve (Ve; Ve, Vo 4 Vg ;] VW — Rlej, ej)Vw), ex)
=(Ve;Ve; Ve, Vo + Vo, Vig, e Vo — R(ei, €) (Ve V)
-V, (R(e,-, ej)Vw), ek>
=(Ve;Ve; Ve, VW + V¢, Vi e 1VW, €k) — Rijekwie
— Rijnkwin, 4.7)

where the last equality used that Ric = 0 and, by the second Bianchi identity
and Ric =0,

(VR)jijnk = 0. (4.8)

Since [e;, e;] vanishes at the point, we have V,, Vi, ., jVw = VVei leie;1 VW
and we get

(Ve, Ve, Veij, ex) = (Ve_,- Ve; Ve, Vw + Vvei [e,-,ej]vwa ek) — 2R;joxwig.
4.9)
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On the other hand, Ric = 0 implies that VAw = AVw, so we have
(Aw) jx = (Ve VAw, ex) = (Ve AVw, e)
=(Ve;(Ve; Ve, Vo = Vi, ¢, V), ex)
= (Ve; Ve, Ve, Vo — Vvejveiein, er). (4.10)
Combining this with (4.6) and (4.9) gives

(AHessy) jx — (Aw) jk

= =2Rijexwie +{VV, e ]VW = VV, Ve, VW + VY, v, e VW, ek).
To complete the proof, we observe that
Ve lei,ej]l— Ve, Veej+ Ve Ve ei = 0. (4.11)
O

Proof of Theorem 4.1 Set By, = Hess;> — ATI’Z g, so that By, is trace free. Since
Ab? =2n|Vb|?, we have

By = Hess;» — 2|Vb|%g. (4.12)
Since M is Ricci flat, a computation from [8] (see Lemma B.11) gives
1
b2A|Vb|2=§|Bb|2+(2n—4)3b(v19, Vb). (4.13)

Lemma B.4 gives

bV|Vb|> = B,(Vb), (4.14)
so we know that
Vb ® V|Vb|* + bHessy,2 = V(B (VD). (4.15)
We rewrite this as
b*Hess|y,2 = bV (By(Vb)) — Vb ® By(Vb). (4.16)

Thus, using Lemma 4.3, we compute
bZAHessbz = szessAbz — 2b2Rijgk (bz)ie
= 2nb*Hessy,p — 20° Rijec (b7,
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=2n{bV (By(Vb)) — Vb ® By(Vb)} — 2b*R;jux(Bp)ie, (4.17)
where the last equality also used that Ric = 0 to get that
Rijox(Bp)ie — Rijex(b?),, = —2IVbI*Rijexgie =0. (4.18)
On the other hand, the metric is parallel so we have
A(2|Vb|*g) =2gAIVD|* = %(u&m2 +4(n —2)By(Vb, Vb)).  (4.19)

Combining these, we see that
b>ABj, =2n{bV(B}(Vb)) — Vb ® B(Vb)}
—{IBy|* +4(n — 2)B,(Vb, Vb)}g
— 2% R;jex(Bp)ie- (4.20)

Using this, noting that By, is trace-free (so its inner product with g is zero),
and using that b2R; jek 1s bounded by a constant C (since we are close to a
fixed cone), we get the differential inequality

1
5192A|Bb|2 =b*|VBy|* + (b ABy, By)
> b|V By|* — 20| By| {b|V By||Vb| + | By|b|Hess,|
+ Vb |*|By|} — CIBy|*. @.21)

Using the a priori bounds for [Vb| and b|Hess |, and the absorbing inequality,
we get

1
b AIByI* = bV By[* = C1| By bIV Byl — Cal By ?
1
> 5192|VB,,|2 — Ch|Bp|?. (4.22)
We will use this twice. First, this differential inequality allows us to use the
meanvalue inequality to get the desired pointwise bound for |By|?. Second,

using a cutoff function n > 0 with support in the annular region and arguing
as in the reverse Poincaré inequality, we have

. |By|?
0= / div(n®V|By|*) = /<ﬂ2|VBb|2 = 2Cn* = 5= = 4 Vnl| BV By|

1 |By|?
> f(EUZWBHZ =205 =5 = 8IVaPI Byl ). (4.23)
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Since we are on the scale R, we have |Vn| < % and b & R, so this yields
RZ/ IVBy|? < C/ |By . (4.24)
8 <pesh Bop<ip

We will again use the meanvalue inequality to go from this integral bound
to a pointwise bound for |V By|. We start with the “Bochner formula” for
A|VBy|?

c
A|VBy|* = 2|VV By |* — b—QIVBbI2 +2(VBy, VABy), (4.25)

where the constant C comes from a scale-invariant curvature bound for M
which holds because it is C? close to a fixed cone on this scale. Bringing in
the formula (4.20) for A B}, and the a priori bounds that hold since M is close
to conical on this scale, we see that

B
b2|VAB;,|SC{|VB;,|+b|VVB,,|+|Tb|}. (4.26)

Using this in the Bochner formula (4.25) and using the absorbing inequality
as before, then allows us to use the meanvalue inequality to get the desired
bound on b|V By|. O

4.2 The proof of property (4)

As in the previous section, the functional R is given by

R=_L (a B 427
=2—n( _(n—2)>' 27

The next proposition verifies property (4) for the functional R.

Proposition 4.28 There exists C so that

2
. (429)

2
IViR(R 2gr, IVBI)|* < C/ b™" |Hess,: — ——g

3R
<b<=7

]

To prove this, we will first give a pointwise bound for VR for metrics g
that are in a fixed neighborhood of bgoz £0-

Lemma 4.30 If (g, w) is in a sufficiently small neighborhood of (bgo2 20, Dboo),
then

|ViR| < C sup(|Ricg — (n — 2)w?g| + [Hessy | + [Vw]). (4.31)
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Proof Within this proof, we will write | - | for pointwise norms and || - || for
L? norms, while (-, -y will be the L? inner product.

The space A; is a level set of Ay, so the projection ViR of the gradient
VR is

ViR = VR — (VR. VA)— A1 (4.32)
1= - s VA =, .
IVAL]2
where Corollary 3.41 gives that
1
VA = (Ellf(g), l)v. (4.33)
By Corollary 3.33, the gradient of R at (g, w) is given by
2-nVR=¢ VA + (¥(J),0)v. (4.34)
Here v, ¢1 and J = J; + J, are given by
+/det
po 2yaet®) (4.35)
booy/ det(bac g0)
R
¢ =3w? — —5, (4.36)
n—2
Ri
J= 28 2 (4.37)
n—2
1 A H
I = <_w g — W ) (4.38)
n—2\ w w

Since ¥ is a bounded operator, w is bounded above and below, and v is
bounded, we get the pointwise bound

[(#(J),0)v] < C|J| < C(|Ricg — (n — 2)w?g| + [Hessyl).  (4.39)

To bound V'R, we combine the above with a bound on the projection of
d)]VA] given by

VA VA VA
¢1VA1—(¢1VA1,VA1)7—<¢1—<¢ >)VA

= 1>
VA2 VALl VAL
(4.40)
However, since VA1 is bounded, we can bound this by
[y @1IVAL?
Clpy — ————| < C(sup¢; —inf¢y). (4.41)
[y IVAL?
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Using the definition of ¢;, we can bound this by a multiple of the supremum
|Vw| + |Ric, — (n —2)w?g|. O

Proof of Proposition 4.28 Set g = R™2gg, where g is the induced metric on
the level set b = R and set w = |Vb|, where V is the gradient in M; VT will
denote the tangential gradient on the level set. We can assume that g is close
to bgozgo and w is close to byo.

It follows from Lemma 4.30 that

IViR| < Csup(|Ricg — (n — 2)w?g| + |Vowlg + [Hessy glg).  (4.42)

To complete the proof, we will show that the right hand side of (4.42) can
be bounded by the scale-invariant C! norm of the trace-free Hessian By, of b?
and then appeal to Theorem 4.1. The first observation is that at b = R

2

2 2 1 T
IVewls = R*| VI w|” = R*|VT|Vb|| =21 (Brm) (4.43)
so we see that |V,w|, is bounded by the C° norm of trace-free Hessian of b?.
Similarly, differentiating the equation 26V’ |Vb| = Bj,(n) shows that the tan-
gential Hessian of w is bounded by the C! norm of By,. Finally, Lemma B.33
gives the desired bound on |Ric, — (n — 2)w? gl [l

4.3 The proof of property (5)

We will let gg denote the induced metric on the level set {b = R} in the man-
ifold M. The main result in this section is the following proposition which
verifies property (5):

Proposition 4.44 There exists C so that

2 2

A(R) < R(R_zgR, |Vb|) + Cf b™"|Hessjp — —g| . (4.45)
n

R 3R
2

b=

|

The next lemma expresses R(R_zgR, [Vb|) in terms of A(R) and an in-
tegral that vanishes when By, is zero. This must be since R and A agree on
cones. To prove the proposition, we must show that the error terms either have
the right sign or are at least quadratic in Bp.

Lemma 4.46 We can write R(R_ZgR, |Vb]) as

a4+ B B 2B, =Byl ] o 447
<>+n_2fb:R{— b+ = }| L @47
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Proof We have

A(R):Rl"/h |Vb|3. (4.48)
=R

On the other hand, we have

1 R2R
R(R—2gR,|Vb|):—R1—"f { R —|Vb|2}|Vb|, (4.49)
n—2 b=k | (n—2)

where the scalar curvature R of the level set is given by Lemma B.26
1
B*VbPRg = (n = 1)(n = 2)|VBI" = (n = 2)| Vb By(n, m) — - | By
1 2
+ 5\Bb(n)| : (4.50)

We see thatat b = R

R%R 2|Bp(m)|* — | By
R _\Vb? = (n — 2)|VbP — By(n,m) + oot — 15

(n—-2) 4(n —2)|Vb|? “31)

After dividing by (n — 2) the first term on the right gives us A(R), giving the
lemma. (]

Proof of Proposition 4.44 Using Lemma 4.46, we can write R(R™2gg, |Vb|)
as

AR +R1—n/~ B +2|Bb(n)|2_|Bb|2 Vb 4.52)
S b:R{_ R N }' -

Since |Vb|By(n, n) = b(V|Vb|2, n), we see that

R [ LB ivo= = [ 9198 = R’ =0,
= = (4.53)

where the last equality used that ﬁ(Rl_” [y_pvIVB) =R [, (Vv n)
for any function v (see Sect. 2 of [9]; cf. [10]).

Substituting (4.53) into (4.54) and throwing away the (only helpful)
| By(n)|? term gives

R(R 2gr |Vb|)—A(R)>—R1_n/ {L}Wm (4.54)
’ = n=2J)_r |4 —2)|VD] S
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We conclude that

2 2

18

Hess;» — (4.55)

A(R) < R(R%gg,|Vb|) + CR'™ /
b=R

Finally, the proposition follows by using Theorem 4.1 to estimate the last
term. g

4.4 Distance to cones

We will use the estimates in this section to sketch the proof of (2.54), rather
than appealing to the much more general methods in [4]. In the present case,
where the gradient | Vb| is almost constant and the Hessian is almost diagonal,
we actually get stronger estimates.

Recall that @, is the scale invariant Gromov-Hausdorff distance from the
annulus

Bb%(x)\Bé(X)CM

(x is the pole of the Green’s function) to the corresponding annulus centered
at the vertex in the closest metric cone. Given a function w, we will let Hessow
denote the trace-free Hessian of w, i.e.,

0 Aw
Hess,, = Hess,, — Tg.
With this notation, (2.54) asserts that

O <C[0(r/2)— 0B ]=C f b—"|Hess22|2. (4.56)

S<b<8r

Here C is a constant. In fact, we will show that the metric is C close to the
cone metric.
To keep notation short, we will set §gp = [Q(r/2) — Q(8r)] = f% <pegr 7"

X |Hess22 |>. We may assume that 8¢ is small since there is otherwise nothing
to prove.
The first step is Theorem 4.1 that gives a constant C so that

HHessg2 Hzcl(b:r) < C/r b—n|Hess22|2 <Cég. 4.57)

3r
<b<z

where || - || ¢1(p—p) 18 the scale-invariant C "_norm on M at b = r. Furthermore,
a calculation (see Lemma 2.6 in [12]) gives that

V|Vb|* = b~ 'Hess), (Vb, -). (4.58)
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Thus, we see that
Hess),| 4+ b|V|Vb|| < C/y. (4.59)

At this point, it is convenient to normalize by dividing b by the value of
|Vb| at some point p, i.e., we set

b(x)

T = 19p16)°

(4.60)

[Vb
IVbI2(p)
(4.59) on Hessg2 and |V|Vb||? gives a corresponding bound for Hess(}2 and
IVIVFIP.

Fix a < b in the range of f. The flow generated by

so that |V f] is one at p and, thus, Af? =2n

is 2n at p. The bound

vf

IVF?
morphism between {a < f < b} and the product space {f = a} x [a, b]. Let
gq denote the induced metric on the level set { f = a}. We will see that the
metricon {a < f <b}is C O close to the cone metric

gives a diffeo-

df*+ fga

on { f = a} x [a, b] which trivially implies Gromov-Hausdorff closeness, thus
giving (2.54).

We have |V f| ~ 1 and Hess ;> ~ 2g; if these had been equalities, then
(1.19) in [4] gives that the metric would be identical to the cone metric. Here,
we don’t have equalities, so we follow the argument keeping track of the error
terms.

Let g be an arbitrary point in { f = a} and {e;} an orthonormal frame for g,
at g. Using the flow, extend the e;’s to the flow line from ¢ (which is identified
with ¢ X [a, b]). The extended vector fields are no longer orthonormal, but
they are tangent to the level sets of f and satisfy

\%
|:ei, —fzi| =0. 4.61)
V£l
By integrating (4.59), g(%, %) = |Vf|_2 is almost one, i.e., |1 —

V72 < C\/50.
It remains to check g(e;, e;). Following (1.14)—(1.17) in [4], we have

YA N ‘ ._2HeSSf(e,-,eJ-)
(gleirep) —ﬁ%(g(eue,))—(E%g)(eue])——lvﬂz

’

(4.62)
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where the second equality used that the Lie derivatives of the ¢;’s vanish and
the last equality used that V f is perpendicular to the ¢;’s. Since Hess y» =
2fHessy + V f ® V f and the ¢;’s are perpendicular to V f, we can rewrite
this as

Hessfz (ei,ej)
fIVFI2
In the model case where |V f| = 1 and Hess ;> = 2¢, Sect. 1 in [4] integrates

this to get that g(e;, e;) is exactly quadratic. In our case, it is quadratic up
to an error of C,/8¢p from (4.59). Thus, we see that the components of the

metric differ from the cone metric by at most C,/8p. This completes the
proof of (4.56).

(geine)) = (4.63)

5 Second variation of R and the linearization of the gradient of R

The rest of the paper will be devoted to proving the Lojasiewicz-Simon in-
equality (3) for R. We will need to understand the linearization L of the
gradient V{R of the functional R restricted to A;. This is equivalent to un-
derstanding the second variation of R. The operator L will behave quite
differently on different subspaces of variations, just as for the second varia-
tion of the classical Einstein-Hilbert scalar curvature functional.

Throughout this section, we will assume that

(bo2go +th, baoe™) € Ay (5.1)

is a variation. As in the previous section, g is an Einstein metric with Ricg, =
(n — 2)go and b, is a positive constant. Where it is clear, we will omit the
subscript ¢ from g and v.

We will first compute the second variations of A and B and then combine
these to get the second variation of R on two important subspaces. Roughly
speaking, this will determine the two on-diagonal blocks of L. In the last
subsection, we will show that the remaining (off-diagonal) blocks of L% van-
ish.

5.1 The second variation of A

Lemma 5.2 The second variation A" = j—; |t:0A(bg02go +th, boo€') is
; 1 1 2
boo/ v =Tr(h)+2v )+ | =Tr(h) +v
V12 2
6 _ 2 T 53
R (5.3)
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Proof To simplify notation, set g = bgozgo + th. Proposition 3.9 gives
1
A = bgo/ {eZ“’ (5 Tr(h) + v + tv/) +2(v+ tv/)ezw}etvd,ug. (5.4)
N
At t =0, the term in curly brackets becomes
1
(5 Tr(h) + v) + 2v. (5.5)

Since we also have
(Te(h)) = (8Vhi;) =Te(h') — 102, (5.6)

differentiating A a second time at ¢ = 0 gives

A//— lTh ’ 4 lTh
E_/N{<§ r( )+v> + U(E r( )+v)

Tr(h') — |h|?
n (h") — |h|

5 + 4% + 61/}51%. (5.7)

5.2 The second variation of B

Lemma 5.8 The second variation B” = % li=0B(b280 + th, booe'™) is
" 2 1 1
B"=boo | 162 =2)| (1= D( S Tr(h) +v ) =2Te(h) | 5 Teh) +v
N
—(V(sn), h) + §<Ah’ h) + E(HeSSTrh, h) + Rikjehieh
1
+ (h, Hessy) — Tr(h) Av + (8%h — ATr(h)) (5 Tr(h) + v)
n—3

+bZ(n — 2)(T(Tr(h/) — |h?) +2(n — 1)1/) }d,ubgozgo. (5.9)

Proof To simplify notation, set g = bgozgo + th. Proposition 3.9 gives that
B'() -
Do 18

) Hessero Ael?
| Ricg, b+ (=) = T~
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Tr(h) AN
+ Re( — =+ vt ) redpg. (5.10)

Att =0, Ricg, = b2 (n — 2)go and the term in curly brackets is equal to
—b2 (n —2) Tr(h) + b2 (n — 1)(n — 2)( Tr(h) + v) (5.11)

Using Lemma A.1 and Ricg, = bgo (n—2)go, we getatt =0:
(87) =—n", (5.12)
Ry = 8h — (Ricg,, h) — ATr(h)
=8%h — b2 (n —2) Tr(h) — ATr(h), (5.13)
Ric;; = %(v,- (8h)j + V;(8h); + Ricikh ji + Ricjihix
— Ahjj —Hesstrn) — Rikjehke
= %(v,- (8h)j + V;(8h); + 2b% (n — 2)hij — Ah;j — Hesstyp)
— Rikjehke, (5.14)
(Hessem)gj = Hess, — %(Vi (Hesser) jk + Vj (Hesser )ik

— Vi(Hesser);j) Vie'
= Hess,. (5.15)

(In the formula for Ric’, we work in an orthonormal frame and ignore the
difference between upper and lower indices after differentiating.)

We also need the formula for (AeV)’. This follows from the first and last
formulas above since Aw = g’j (Hessy,);; so that

(Ae™)' = g (Hessen); = Av. (5.16)

We will differentiate the four terms in curly brackets in (5.10) at = 0. The
first is

(Ricg, h) (RIC h)+ (Ricg, h') — Rijhieh™ 87" — Rijhieg™ n'*
= (Ric}, h) + b3, (n — 2) Tr(h') — 2b3,(n — 2)|h|?

= bgo(n —2)Tr(h') — 2b%(n — 2)|h|* +(V(8h), h)
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+ b2, (n —2)|h|?
1

1 .
— §<Ah’ h) — §<HeSSTrh, h) — R,‘kjghkghlj. (5.17)

Simplifying this gives

(Ricg, h)' = b3, (n — 2)[Tr(K') — |h*] +(V(8h), h)

1 1 iy
— E(Ah, h) — E(HGSSTrh, h) — R,‘kj(hkghlj. (5.18)

Since Hess.» vanishes at ¢ = 0, differentiating the second term gives

Hessero |\
(<h, ewe >) = (h, Hess_;,) = (h, Hess,). (5.19)

Similarly, the third term is

tv

= ) =Tr(h)(Ae™) = Tr(h) Av. (5.20)

Ae
(Tr(h)

Finally, the last term is
1 A
(re(4m00-+0400))
= Ré(% Tr(h) + v) + b2, (n—1)(n — 2)(% Tr(h) + v + n/)
2 2 1
={8°h — b3, (n —2) Tr(h) — ATr(h)} (5 Tr(h) + v)

+ b2 (n—1Dn —2)<%(Tr(h’) — |h?) +2v/). (5.21)

Combining all of this gives

B" = by / {bgo(n —2) [(n —1) (1 Tr(h) + v) - Tr(h)] (1 Tr(h) + v)
N 2 2

— b2 (n = 2)(Te(h') — |h1?) — (V(8h), h) + = (Ah, h)

| =

1 .
+ §<HessTrh’ h) + Rikjehkeh'

+ (h, Hess,) — Tr(h) Av + (8%h — b2, (n — 2) Tr(h) — ATr(h))
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X <% Tr(h) + v)

+ b2 (n—1)(n—2) (%(Tr(h’) — |h?) + 2v’) }d,ug. (5.22)

Simplifying this completes the proof.

5.3 The constraint on the variation

Since the variation (bgozg,, bsoe™") is in A;, there are constraints on i, h', v
and v’. The next lemma records this.

Lemma 5.23 Art =0, we have that

1
/N{E Tr(h) + U}d“bgﬁgo =0, (5.24)

L ey 40 2+1Tr(h’)—l|h|2+2v’ d =0. (5.25)
V12 2 2 Holgo =™ '

Proof The weighted volume is constant along a path in A;. The two claims
follow from using (3.6) to compute the first derivative of the weighted volume
and then using (5.6) to compute the second derivative. U

5.4 The transverse trace-less second variation

The functional R is given by

R=—1 (a4 B 5.26
=2—n< _(n—2)>' (5-26)

Since we have computed the second variations of A and B, we get R” as
a consequence. It is useful to divide this into two cases, depending on the
variation % of the metric. In this subsection, we will consider the case where
h is “transverse-traceless”, i.e., when

8h=0 and Trh=0. (5.27)

The next proposition computes the second variation for transverse trace-less
variations.'”

10When we apply this later, we will have v = 0.
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Proposition 5.28 If h satisfies (5.27), then the second variation is

Q2—nR’ = —bs /N { T 1_ > (Lh, h) — 6b§ov2}dub&2go, (5.29)
where L is the Lichnerowicz operator
(Lh)ij = (Ah)ij +2Rikjehye. (5.30)
Proof Set g =b32go + th. Since Tr(h) =0, Lemma 5.2 gives

h|>  Tr(h
A”:bgO/N{9v2+6v’—%+ r(2 )}d 3o (5.31)

Since Tr(h) =0 and 642 = 0, Lemma 5.8 gives

1 .
B = boo/ {bgo(n —1(n— 2)1)2 + §<Ah’ h) + R,'kjehkghl]
N

-3

+ b2 (n —2)< (T (/)—|h|2)+2(n—1)v/)}d,ugo, (5.32)

where we have also used that [(h, Hess,) = — [(8h, Vv) = 0. Combining
the two formulas gives that

1

(Z—H)R,/:A”—
(n—2)
hi2  Te(W
i a5
N
(Ah,h)  Ruge, 1)
hieh td g, . 5.33
T2m-2) n-2 ke Mo (5.33)

We want to eliminate the v" and &’ terms. Lemma 5.23 gives that

h|>  Tr(h
/{21}’—%—}— r(2 )}dug0=—/ (v }dug,. (5.34)
N N

Substituting this gives

(Ah,h)  Rikje i
Q2-nR'= boo/N{6b§ov2 ~ 3= " n l_jzhkgh” dpg,. (5.35)

g
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5.5 The conformal second variation

We suppose next that

h=pb2go (5.36)
at t = 0 for a function ¢, so that
Trh=(n— )¢, (5.37)
(8h) = V¢, (5.38)
Véh = Hessy, (5.39)
8’h = A¢, (5.40)
Ah = (Ap)b2g0. (5.41)

Theorem 5.42 If h satisfies (5.36), then the second variation is
-3
Q2-mR' = boof {”T¢[A¢> +(n = Db3¢] +2(n — Dbygv
N
+¢Av +vAP + 6b§ov2}dubo_ozg0. (5.43)

Proof To simplify notation, set = (%d) +v)and g = bgoz go. Lemma 5.2
gives

> Tr(h)

A/’:bgO/ {4v(w+v)—|—w2+6v/— = 4 — }dug (5.44)
N 2 2

Lemma 5.8 gives
B" = boofN{biom —2)(n — DIy — 201 — pAd + (n — NP AP
+ ¢? Rikjegres” +¢pAv — (n — DNpAv + (Ap — (n — 1) Ag)yr
+ b2 (n —2)( 3(Tr( h') = 1h1*) +2(n — 1)1/)}51%. (5.45)
Collecting terms, this becomes
B = boon — 2)fN{b§o(n —D[Y? = 209 + 64 + b (1 — D
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—pAV — Y AP+ b@(?(ﬁ(k’) —|h?) +2(n — 1)v’> }d/,Lg.
(5.46)

Combining the two formulas gives that

1

(n—2)

= boof {—¢A¢ +¢Av+ Y Ap + b [4v2 + (6 — n)y?
N

(2 _ n)R// — A// _

K> Tr(W
In? | Te()
2 2

+ @ —n) [21/ - ] —(n— 1)¢2} }d;,Lg, (5.47)

where the last equality also used that

4o +2(n — Dy = 42 (5.48)

We want to eliminate the v’ and &’ terms. Lemma 5.23 gives that
1 I 1 2 ’ 2
STr(R') — Slhlg 4+ 20" vdug =— | {¥*}dug. (5.49)
nv12 2 N
Putting this in gives
Q2-nR"= boof {—04d+9pAv+y AP
N
+ b [407 + 292 — (n — D¢?]}dus.

Since ¢ = (”—51¢ + v), we have

22 4 40? — (1 — 1) = 207 + 201 — Dw + " 1)2¢2
+4v% — (n — 1)¢?
=6v” + W& +2(n — Dgv, (5.50)
—pAP+ PAV+ Y AP = $¢A¢+¢AU+UA¢. (5.51)
Substituting these two equations back in gives the claim. O
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5.6 The gradient of R in the conformal directions

The next proposition shows that the linearization of V'R maps conformal vari-
ations onto the span of conformal variations together with variations tangent
to the action of the diffeomorphism group.

Proposition 5.52 The first variation of V'R along the path (b;ozgt, booe™)
where b3>g| = pbs2go and v, = v’ can be written as

(VR) = (f180, f2) + (Hess,, 0), (5.53)
where f1, f2 and f3 are functions.

Proof Set g, = b;}gt; we omit the subscript when the meaning is clear.
Corollary 3.33 gives

1
2 —n)(VR) =¢1(§'1/(g), 1>v+ (¥(J),0)v. (5.54)

At t =0, we know that
v=1, J=0, Wistheidentity, and ¢;=4— n)bgo. (5.55)

Lemma 3.27 gives that if J is a family of 2-tensors depending on , then

d - - ) —pn T = _p=
7 W ()ij =~ &ip8"" Inj — Jim&" g ;- (5.56)
t=0

Using this, we see that
[v )] =-¢ (5.57)
[w] =" (5.58)
Thus, we see that at t =0 we have

(n—4)
2

2—-n)(VR) = b2 (g, 0) + (%g, 1) [ —n)bZ v +¢1]+ (. 0).

(5.59)

Next, we bring in the conformal nature of the variation in order to compute
V', J', and ¢} . If we write the metric g; as

- -2

g =b2e?g, (5.60)
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then we have at t = 0 that go = bgj go and g’ = ¢go. Using this variation in
the formulas for v, ¢, and J from Corollary 3.33 gives

p =+ (5.61)
R_
d1=3be™ — L, (5.62)

and the 2-tensor J = J| + J3 is given by

Ric; 2 v -
Ji = ﬁ — b2 e, (5.63)
1 [Ae" _  Hessew
Jzzn_2< TR A > (5.64)

Using Lemma A.1 and Ric; = bgo (n —2)g and working in an orthonormal
frame (so we do not distinguish upper and lower indices), we get at t = 0:

R, = 8§ — (Ricg,. &) — ATe(g) = 2 —m){A¢p + b2 (n — D},

(5.65)
. 1 _ _ . L _
Ricj; = > (Vi(88); + V;(88); + Riciky + Ricjugjx — AZj;
— Hesstrg’) — Rikje8p
_o 1 _
= Hessy + b2y (n — 2)pg — 5{(M))g + (n — 1)Hessy }
2 -
— b5, (n—2)pg
1
= 5{(3 — n)Hessy — (A¢)g}, (5.66)
1
(Hesseiv);; = Hess, — E(Vi (Hesserv) jx + Vj (Hesser )ik
— Vk (HCSSetv)ij)Vksz
= Hess,. (5.67)

By the last formula and the general formula Au = g'/ (Hess,,); i, we get
(Ae™) = g (Hessen)}; = Av. (5.68)

Using these formulas for the derivatives in the definitions of ¢; and J, we
compute

¢ = 6b2v + Ap + b2 (n — 1), (5.69)
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_ (3 —n)Hessy — (Ad)go

_ 1 _

J 2(n —2) - bgo(2v +@)go + m(Avgo — Hess,)
_ (B—=n) B Hess, Av B A o .
RS (n—2 21— 2) bm(2”+¢)>g0'

(5.70)

Finally, substituting these in (5.59) gives

2—-n)(VR) = [(4 — n)bgo[v + ?q&] + 6b2v 4+ Ad + b2 (n — 1)¢]

1._ 3—n) Hess,
—g0, 1 H — ,0
(380 1) + (G gtose =, 250)

+[A” A% 2 v
n—2 2m—2 o
4
L )bgo¢](g0,0). (5.71)

O

The previous proposition linearized the full gradient V'R along a confor-
mal variation. The next corollary linearizes the projection VR of the gradient

to Aj.

Corollary 5.72 The first variation of V'R along the path (bgozg,, booe™)

where b3’ gl = ¢pb2go and v, = v’ can be written as

(ViR)' = (f180, f2) + (Hess 7, 0), (5.73)
where fi, f> and f3 are functions.

Proof Set g, = bgozg,; we omit the subscript when the meaning is clear.
Within this proof, | - | is the pointwise norm and | - || is the L? norm, while
(-,-) is the L? inner product.

Since A; is a level set of the functional Ay, the projection ViR of VR is

VA

ViR=VR — (VR,VA) .
VA2

(5.74)
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It follows that!!

A A
(ViR) = (VR) —((VR), VA|)——— — VR, (VA})')——
IVA;]? IVA]?
(VA
— (VR,VA))
HZNE
+2(VR, VA VAL, (VA VAl (5.75)
O A |

We next calculate VR, VA and (VA1) at t = 0. First, Corollary 3.33 gives
atr =0

2—-n)(VR) = (4—n)b§o<%go, 1). (5.76)

Next, Corollary 3.41 gives that the gradient of A at ¢ is given by VA| =
(%llf(g), 1)v. In particular, at = 0, we have

VA = (%go, 1), (5.77)
vay = ("= Lao1) = 2.0 5.78
(VA = <T¢+U) (580, )— E(go’ ), (5.78)

where the second equality also used Lemma 3.27 to see that [¥ (2)] = —g.
Observe that both VA and (VA})’ give conformal variations of the metric.
The corollary now follows from this, (5.75) and Proposition 5.52. U

6 The action of the diffeomorphism group

Let D be the space of C# diffeomorphisms on N. The group D acts by pull-
back on both the space of metrics and the space of functions, where the metric
or function are pulled back by the diffeomorphism. The tangent space 7p to
this action is given by

Tp = {(ngo, 0) | Visa C*P vector ﬁeld}, (6.1)

where Ly go is the Lie derivative of the metric gy with respect to V. As ob-
served by Berger and Ebin (see, e.g., (b) in Corollary 32 of the Appendix of

UThe gradients are computed with the fixed L? inner product (-, -) induced by the background
metric gg.
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[2]), it follows that the space 7 of pairs of symmetric tensors and functions
decomposes as an orthogonal direct sum

T=Tp®Ti, whereT;=]{(h,v)eC*F|sh=0}. (6.2)

Here, the divergence ¢ is computed with respect to gg.
We will be most interested in the subspace TIO C 7; of variations that are
tangent to A1, i.e., that preserve the weighted volume constraint

70 = {(h,w) | /(%Tr(h)+w>dug0=0}, 6.3)
P=TinT (6.4)

There are two main results in this section, both related to the action of the
diffeomorphism group:

e The first is the use of the Ebin-Palais slice theorem to mod out by this
action; this is described in Sect. 6.2.
e The second is Theorem 6.6 below showing that the linearization Li of

V1R at the critical point has finite dimensional kernel after we restrict it to
70,
1

The linearization Lk is computed at the critical point (bgozgo, bso) where
ViR vanishes. It maps a C># variation in 7° to a C# variation in 7°. We
will go back and forth between Ly and the associated bilinear form Br on
79 x 70 defined by'?

B'R(X, y) — (LRX’ )’> (65)

Theorem 6.6 The restriction of Ly to ’TIO is Fredholm from ’TIO to (the CP
closure of) T]O.

The theorem says there is a finite dimensional kernel K C 7, so that if x
is in (the C# closure of) Tlo N K=, then there is a unique y, € TIO NK+Lso
that

(LRYx,2) = Br(yx,2) = (x,2) foreveryze T} 6.7)

We will prove Theorem 6.6 at the end of this section.

12The reason for working with the quadratic form is that the operator will be computed from
the second variation formula and this is expressed in terms of the quadratic form.
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6.1 The action of D

Given 7 in the diffeomorphism group D, (g, w) € A, and tangent vectors
X, Y at a point p € M, then the action of 7 is given by

n*(8)p (X, Y) = gy(py (dn(X), dn(Y)), (6.8)
n*(w)(p) = w(n(p)). (6.9)
This action gives a map
p:Dx A— A, (6.10)
where p (17, (g, w)) = (7*(g), n*(w)). We will need three elementary proper-

ties of this action:

e The action preserves Ay, i.e.,if n € D and y € Ay, then p(n, y) € A;.
e The action fixes the functional R.
e The action is isometric with respect to the metric on A.

Given y € A, let I, and O,, denote its isotropy group and orbit, respec-
tively

I, ={neDlpmy) =y} 6.11)

0, ={p(,y)IneD}. (6.12)

6.2 The slice theorem

The Ebin-Palais slice theorem, [16], gives a way to mod out by the action of
the diffeomorphism group D. In particular, the version due to Palais (which
uses C# spaces, rather than Sobolev spaces as in Ebin) gives:

e A neighborhood U of 0 in the space of divergence-free symmetric 2-
tensors.

e A neighborhood U of bgOZgo in the space of metrics.

e A neighborhood Uop of bgoz go in the orbit of bgoz go under D.

e Amap x : Z;{O — D to a neighborhood of the identity Id with x (bgo2 g0) =
Id.

So that the mapping

Fu, h) = p(x W), bl go+h) (6.13)
is a diffeomorphism from Uo x U, to U. Here we are using a slight abuse of
notation, as the action p is actually on pairs of metrics and functions, but the

meaning is clear.
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This slice theorem allows us to mod out by the action of D on the space
of metrics, but it does not incorporate the second part of the action where
the diffeomorphism acts on the function by composition. When we incorpo-
rate the full action, we get neighborhoods U C 7; of (0,0) and U C A of
(bgozgo, bxo), so that

F :Z;lo x U] — U is onto. (6.14)

The slice theorem guarantees that this map hits all of the metrics near bgoz £0,
so the point is that it also covers a neighborhood of (bgozgo, bxo) in A. To see
this, given (g, w) first use the slice theorem to get a diffeomorphism n = x (u)
and h € Uy with n*(b2go + h) = g. Since n*(won N =won~lon=w,
we see that F((u, h), won~!) = (g, w) as desired.

The last thing that we need to do here is to restrict to the space A; of
normalized pairs of metrics and functions, i.e., to the subset of A where A| =
Vol (9 B1(0)).

Lemma 6.15 The analytic map exp on ’Tlo given by

Vol(9B1(0)) w)
— bsce
A1(bos 80 + 1, beoe™)

exp(h, w) = <b;3go +h, (6.16)

is a diffeomorphism from a neighborhood of 0 to a neighborhood of
(b0, boo) in Aj.

Proof Analyticity follows since linear maps and exponentials are analytic
and the functional A is analytic since it is given as an integral where the
integrand depends analytically. The map exp is defined so that A| o exp =
Vol(d B1(0)), so it automatically lands in .4;. Furthermore, exp takes the ori-
gin to (bgozgo, bo).

Finally, we will show that exp is a local diffeomorphism by using the im-
plicit function theorem, [28]. To do this, first observe that the linearization at
the origin is given by

d
— exp(th, tw) = (h, boow), (6.17)
dt|,_g

where we used that the variation is tangent to .4; so that the derivative of
A vanished. In particular, the linearization is the identity!? and the inverse
function theorem applies. 0

Combining all of this, we get the following slice theorem:

13Recall our convention on the tangent space in (3.2) where we exponentiate the second factor.
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Corollary 6.18 There is a neighborhood U] of (bgozgo, bso) in Ay and a
constant C, so that for each y € U], there is yy € ’TIO and n € D so that
y = p(,exp(yo)) and |[nllcss < C.

Note that the bound on the C3# of the diffeomorphism 7 actually comes
from the stronger fact that 1 can be taken to be in a small neighborhood of
the identity.

6.3 The linearized operator
We need a little notation. We will let 7. denote the variations corresponding

to the conformal directions and 7, denote the space of transverse traceless
variations, so that

Tie = {(h,0) € C*# | 8h = 0 and Tr(h) =0}, (6.19)
T. = {(#g0.v) € C*F}, (6.20)
Tp = {(Lvg0,0) | V € C*F is a vector field}. (6.21)

We add a superscript 0 to denote the intersection with 77, so that TCO =7.N
79 consists of the conformal variations that are tangent to Aj.

It will be useful to define two additional spaces. The first is the space Z.p
of variations coming from conformal diffeomorphisms

Tp=T.0Tp. (6.22)

The last space that we will need are the variations 7, ° in T]O that can be
generated from conformal variations and diffeomorphisms

7. =7 N (70 + Tp). (6.23)

Note that 7, © is orthogonal to 7;;, since both 7, and 7p are. The next lemma
shows that

’=7"e1,. (6.24)

Lemma 6.25 Given any x € T2, there exist x;; € Tj;, x¢ € TCO, and xp € Tp
S0

X =Xy +Xc+ Xp. (626)
Conversely, given any x. € ’TCO, there exists xp € Tp so that x. + xp € ’TIO.
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Proof Suppose that x = (g, v). York’s decomposition of Riemannian metrics
(see [37] or Theorem 1.4 in [17]) gives a transverse traceless metric g;;, a
conformal metric g., and a C*# vector field V so that

g=28u+8 +Lvgo. (6.27)

The first claim follows with x;; = (g4, 0) € T4, xc = (g, v) € T¢, and xp =
(Lvgo,0) € Tp. To see that x, € TCO (and not just 7;), note that the spaces 7;;
and 7p are tangent to A;.

For the second part, we need to find a vector field V so that

8Ly go= —0dxc. (6.28)
However, § is (a multiple of) the adjoint of £.)go and the operator
V—>38Lyvgo

is (a multiple of) Bochner’s Laplacian on vector fields. In particular, this op-
erator is elliptic and, thus, Fredholm, and its kernel consists of Killing vector
fields. In particular, the kernel is orthogonal to the image of §, so we can solve
(6.28) as claimed. O

We will need the following standard property of the linearized operator
Lg.

Lemma 6.29 The operator L is symmetric.

Proof Letx(s,t) € Aj be a 2-parameter variation depending on s and ¢ where
x(0, 0) is a critical point. We have
82

a
ER(X) = E(VIR(X), xs) = (LRXt, Xs). (6.30)

Since mixed partials commute, we get that Lz is symmetric as claimed. [

The next proposition describes L on the subspaces TCO, T, Tp and T °.
Part (D) says that the off-diagonal blocks of Ly are zero. The reader should
keep in mind that 7;, and 7| are orthogonal and span 7.°, but 7;} is larger
than 7 . Namely, this orthogonal complement is done relative to the L? inner
product, so it includes things with lower regularity.

Proposition 6.31 The linearization L has the following properties:

(A) The restriction of Br to ’TCO is Fredholm.
(B) The restriction of Bg to Iy, is Fredholm.
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(C) LR isidentically zero on Tp and maps to Tpt.
D) Ly : 7,°— ’Z;f- and Ly : T; — [’]]_O]J-.

Proof Proof of (A): To prove this, define the quadratic form Q. : TCO —R
by

QC(h7 U) = (LR(ha v)v (hv U)> (632)
The claim is that the linear operator L. associated to Q. is Fredholm.

It follows from Theorem 5.42 that if 4 = ¢b(;02 go, then

1
Qc(h» U) = 2—(L6(¢’ U), (¢a U)), (633)

—n

where the linear operator L. maps the pair of functions (¢, v) to the pair of
functions

-3 —D(n -3
(" . Aqﬁ—i—bé%(p—i—bé(n — D+ Av, 62 v

+ b2 (n— g+ A¢>.

In block form, we can write this as the symmetric linear operator

n—=3 2 _ 2 -1
(2 (A+b2(n—1) A+b%@n )>. 634

A+b(n—1) 6b2,

It suffices to show that this linear second order operator is elliptic. For this,
we need only consider the second order part which can be written as

n—3
< 2 1) A. (6.35)
1 0

Since A is elliptic, it suffices to show that the matrix in front of A is non-
degenerate.'* This follows since the determinant of this matrix is —1.
Proof of (B): Define a quadratic form Q4 : 7, — R by

Q11(h,0) =(Lz(h,0), (h,0)). (6.36)

14There are several different notions of ellipticity for systems. Weak ellipticity requires only
non degeneracy of the matrix and is sufficient to imply elliptic estimates and that the map is
Fredholm. Strong ellipticity requires that the matrix is positive definite; this gives additional
properties like the maximum principle.
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It follows from Proposition 5.28 that Qy; is given by

h,0) = —((Lh,0), (h,0)), 6.37
Q1 (h,0) 2(n—2)2<( ,0), (h,0)) (6.37)
where L is the Lichnerowicz operator

(Lh)ij = (Ah)ij + 2Rikjehie. (6.38)

Since L is elliptic, the linear operator associated to Qy; is Fredholm, giv-
ing (B).

Proof of (C): Since the diffeomorphism group preserves R and, thus, maps
critical points to critical points, it follows that L : 7p — 0. Since Ly is
symmetric by Lemma 6.29, it follows that Lz maps to Tp=.

Proof of (D): Since 7;; is perpendicular to both Hessians (these are tangent
to 7p) and to conformal variations, Proposition 5.52 implies that

Lg:T.NnT°—> T+ (6.39)
Combining this with (C), we conclude that
Lr:T.°=Tp+T)NT° > T} (6.40)
The last claim follows from this and the symmetry of L. U
We are now ready to prove Theorem 6.6.

Proof of Theorem 6.6 Let L denote the linear operator associated to the re-
striction of Bg to T2, so that

(Lx,y)=Br(x,y) = (Lrx,y) (6.41)

forx,ye Tlo. L is symmetric since Lg is. Moreover, L maps T]O to the CP

closure of TIO.
To prove the theorem, we will show that:

e L has a finite dimensional kernel K.
e Given x in (the C? closure of) TIO N K+, there is a unique y € ’]'10 NK+ so
that

Ly =x. (6.42)

We will decompose the map L into blocks according to the orthogonal de-
composition

=T, ®7.° (6.43)
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given by Lemma 6.25. Namely, (D) in Proposition 6.31 implies that L “pre-
serves” this splitting.]5 Let L;; and L | denote the restrictions of L to 7;; and

7.0, respectively, i.e.,
p=(f 0.
0 L,

Let K; and K;; be the kernels of L and L, respectively. By (D) in Propo-
sition 6.31, we have

K=KL@K[;. (644)

Since the off-diagonal blocks vanish, we need only show that L, and L
have the two desired properties. This is immediate for L;; by (B) in Proposi-
tion 6.31. The rest of the proof will be to show that L also has these proper-
ties.

We will need a few preliminaries. Define the map IT. : 79 — 79 by

T
M.(g.v) = (%g)go, v),

— (6.45)

where go = bgoz go is the background metric and the trace is computed relative
to go. The map I1. projects the two-tensor to a diagonal two-tensor with the
same trace; it is easy to see that this preserves 7°. Let L. be the linear map
associated to the restriction of B to ’TCO. Ifx. e TCO, then it is easy to see that

Lexe =T .(Lrxe). (6.46)

The map L. is Fredholm by (A) in Proposition 6.31, so the kernel K. of L.
is finite dimensional and L. is invertible on (the C# closure of) K LJ-

Suppose now that x, y € 7.°. Lemma 6.25 gives x., y¢ € ’TCO and xp, yp €
7p so that

xX=xc+xp and y=y.+ yp. (6.47)

Furthermore, x. and y. are unique up to elements of 7.p. Part (C) in Propo-
sition 6.31 gives that Lrxp = 0 and Ly x, is orthogonal to 7p, so we get

(Lix,y)=(L(xc+xp), (ye + yp)) = (LrXc, ye) = (LeXe, ye).  (6.48)

Thus, if x € K, then x. is in the finite dimensional space K. (by (A) in
Proposition 6.31). It follows that K | is also finite dimensional.

15The spaces are defined to be in C2%# sothe image of L is merely in Ch; cf. (D) in Proposi-
tion 6.31.
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Next, suppose that y is orthogonal to K . Given any x € K|, then since
Tp is orthogonal to 7, °, we get

0= (xc+xp,y) = (xc, ) = (xe, (). (6.49)

In particular, I1.(y) is orthogonal to K. Since L. is Fredholm ((A) in Propo-
sition 6.31), we get z. so that L.z, = I1.(y). The second part of Lemma 6.31
then gives zp so that

z=zc+zpeT. (6.50)
Since Lrzp =0, we have I1.(Lz) = L.z, = I1:(y). In particular,

v-L)eT.’cT) (6.51)

is trace-free and transverse, so it belongs to 7;;. But 7 ? is perpendicular to
7Ty, so we conclude that Lz = y as desired. O

7 A general Lojasiewicz-Simon inequality

The Lojasiewicz-Simon inequality of [31] is set up for analytic functionals
that are uniformly convex in the gradient, such as the area or energy func-
tionals. Our functional does not quite fit into this framework since it depends
on second derivatives and is not convex, so we will need a generalization.
Suppose therefore that we have:

(1) A closed subspace E of L? maps to a finite dimensional vector space and
an analytic functional G defined on a neighborhood O of 0in C*# N E.
(2) The gradient of G isa C! map VG : O — CP N E with VG(0) = 0 and

IVGx) = VG )|,z < Cllx = yliw2e. (7.1)

(3) The linearization L of VG at 0 is symmetric, bounded from C?># N E to
CP N E and from W%2N E to L2 N E, and is Fredholm from C*# N E
toCPNE.

One consequence of (3) is that L has finite dimensional kernel K C Cc*fn
E.

In (2), C! means that there is a Frechet derivative at each point and this
varies continuously. Recall that if V is a map from a Banach space X to
another Banach space Y and x € X, then a linear map Vi : X — Y is the
Frechet derivative of V at x if

[V +u) —Vix) = Vi@lly
el x

—- 0 asl|ullx —0. (7.2)
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The main result of this section is the following Lojasiewicz-Simon inequal-
ity.

Theorem 7.3 If G satisfies (1), (2) and (3), there exists o € (0, 1) so that for
all x € E sufficiently small

G =GO < |[VGW) 3. (7.4)

Let [Tk be projection onto K and define the mapping N' by N’ = VG +
ITk . The next lemma is Lyapunov-Schmidt reduction.

Lemma 7.5 There is an open set © C CP N E about 0 and a map & : O —
C*P N E with ®(0) =0 so that

e PoN(x)=xand N o ®(x)=x.
o [P(X)llc2p = Clixllcp and | P (x) = P (W) llw22 = Clix =yl 2.
o The function f = G o @ is analytic.

Proof Following [31], the mapping N' = VG + Ik is C' from C># N E to
CP N E and the Frechet derivative at 0 is

dNo= L+ k. (7.6)

We will show that d Ny = L + ITg is an isomorphism. First, since L is Fred-
holm and [Tk is compact (it has finite rank), the sum L + [Tk is also Fred-
holm. Since both L and [Tg are symmetric, so is L + [1g and, thus, it is
an isomorphism if and only if it is injective. Finally, since K is the kernel
of the symmetric operator L, we see that L maps to K + and, thus, L + Ik
is injective. We conclude that d\j is an isomorphism from C># N E onto
CP# N E and the inverse [dNp]~! is a bounded linear mapping from C# N E
to C2PNE.

The implicit function theorem (Theorem 2.7.2 in [28]) gives an open set
O c CPNE about 0 and a C! inverse map @ : O — C%P N E with ®(0) =0
and

®oN(x)=x and N o®(x)=ux. (7.7)
The Frechet derivative of @ is continuous and is given by
d®, =[dNpy1™". (7.8)

Since @ is C!, the integral mean value theorem on Banach spaces (see p. 34
in [28]) gives a constant C so that for x, y € O

|@(x) = @) | c2s < Clix = ylics- (7.9)
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Using this with y = @(y) =0 gives [|®(x)|[c26 < C|lx||cs. The Lipschitz
bound for @ as a map from L? to W22 follows in the same way using the
W22 estimate for VG and the trivial boundedness of ITx on L2.

Finally, by the remark on p. 36 of [28], the map @ is analytic. U

The next lemma gives a lower bound for VG (x) in terms of V f at [Tk (x).

Lemma 7.10 There exists C so that for every sufficiently small x € C>P N E
2 2

V7 ()| = | Ve a1

Proof Suppose first that y € K. Since f = G o @, it follows from the chain
rule and the Lipschitz bound for ¢ that

IVr) |32 < G| VG o ()] (7.12)

L L

Thus, given any x (not necessarily in K ), applying this with y = ITg (x) gives
|V £ (k)32 < C2| VG 0 @ 0 Tk ()| 7 (7.13)

This is close to what we want, except that VG is evaluated at @ o [Tx (x)
instead of at x.

Since x = @ o ([Ig(x) + VG(x)), the Lipschitz bounds for VG and @
give

[VG(® o Mk (x)) = VG ()| ;2
= [V6(@(1Tk ) - VG (@ (x (1) + VG )
< C|@(MTx (x)) — @ (Mg (x) + VG (X)) 22
<C|VGW| .. (7.14)

completing the proof. O
We next bound the difference between G and G o @ o [1k.
Lemma 7.15 There exists C so that for every sufficiently small x € C>P N E
G(x) — f(Mx ()| < C|VG) |72 (7.16)
Proof Define the one-parameter family t — y; by
v =g (x) +tVG(x), (7.17)
so that @ (y1) = x, yo = g (x), and Ly, = VG (x).
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Combining the definition of f and the fundamental theorem of calculus
gives

1

d
G — f(ITx () = G(@O) = FO0) = Fm) — F (o) = fo & F s

1
:f (V £y, VG(x))dt. (7.18)
0
Hence, the lemma follows from Cauchy-Schwarz once we show that
IV, =CIVGW] 2. (7.19)

To show this, note first that V f is Lipschitz from L? to L? by the chain
rule (since @ is Lipschitz from L? to W2 and VG is from W22 to L?). In
particular, we have

IV£G) =V D] 2 <Cllye = yill2 <C|VG®)| - (7.20)

Finally, (7.19) follows from this and the fact that |V f (y1)[;2 < CIIVG(x) |2
which we already established using the chain rule in the proof of the last
lemma. g

We will now prove the Lojasiewicz-Simon inequality using the two lem-
mas and the finite dimensional Lojasiewicz inequality applied to the restric-
tion fx = f|g of the analytic function f to the finite dimensional vector
space K endowed with the L? inner product.

Proof of Theorem 7.3 Let x € E be sufficiently small.

In order, we apply Lemma 7.10, then use that |V fx (y)| < [V f(¥)Il;2 for
y € K, and then apply the finite dimensional Lojasiewicz inequality to fx to
get

CIVGW |2 = [V (k)2 = |V fx (k)
> | fx (Mg () = fr @
= |/ (k) - GO (7.21)

The estimate now follows from the triangle inequality and Lemma 7.15 which
gives

£k (x) = G@)| < C|VG™) 7. (7.22)

O
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8 The Lojasiewicz-Simon inequality for R

Finally, in this section, we will prove that R satisfies a Lojasiewicz-Simon
inequality. We cannot argue directly on R since the diffeomorphism group
creates an infinite dimensional kernel for the linearized operator. However,
the slice theorem of Ebin allows us to mod out by this action and then prove
such an inequality which will in turn imply one for R.

8.1 Modding out by the group action
We will prove a Lojasiewicz-Simon inequality for G : ’TIO — R given by
G(x) =R oexp(x), 8.1

where exp : Tlo — A is given by Lemma 6.15. Since R and exp are both
analytic, so is G.
By definition, the gradient VG of G is given by

d
(VG(x),y)= T Roexp(x +1y) = (ViR (exp(x)), d exp, (y))
t=0

= ((dexp,)' ViR (exp(x). y). (82)
where (d exp,)’ is the transpose of d exp, .

Proposition 8.3 A Lojasiewicz-Simon inequality for G implies one for R
on Aj.

Proof Corollary 6.18 gives a neighborhood Z/{{ of (bgozgo,boo) in A; and
a constant C, so that for each y € U], there is yo € Tlo and n € D so that
y = p(n,exp(yo)) and ||n||-3.s < C. In particular, the invariance of R under
the group action gives that

R(y) =G (o). (8.4)

Therefore, the Lojasiewicz-Simon inequality for G and (8.2) give

IR — R(b5280.bos)|”* =G (0) = GO < |[VGO0) |32
< Cexp | ViR (exp(30)) | 72+ (8.5)

where Cexp comes from the bound for the differential of exp.
Finally, we need to bound VR at exp(yp) by the value at y. To do this, let
x be tangent to A at exp(yp) and use the invariance of R under the action to
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get that

d
(ViR(exp(0)), x) = —|  R(exp(yo) +1x)

t=0

= R(p(n, exp(yo) +1x))
=0

=(ViR(p(n,exp(30))), dp (. Jexp(yp) (X))
={(dp(, expisy) VIR(¥), X), (8.6)

where the third equality used that the action preserves A; to get ViR in-
stead of VR. Since |[n|lc3.6 < C, the differential dp (7, -)exp(yy) 1 bounded
independent of x and we conclude that

[ViR(exp(y0)) | 2 < C'| VIR | ;2 (8.7)
completing the proof. g
8.2 Verifying the properties
We now need to verify that
G=Roexp:7 - R (8.8)

has the properties needed for Theorem 7.3. Recall that we need 3 properties:

(1) G is analytic on an open neighborhood O of 0 in C%# N ’2'10.
(2) VG is C! from Of to C# with VG (0) = 0 and

IVG(x) = VG(y)|,2 = Cllx — ylly2o. (8.9)

(3) The linearization Lg of VG at 0 is symmetric, bounded from C 26N Tlo
to C# and from W22 N Tlo to L2, and is Fredholm.

Lemma 8.10 G defined in (8.8) satisfies (1), (2) and (3).

Proof We deal with these in order.

Proof of (1): Property (1) is automatic since exp is analytic from C?# to
C?# and R is analytic from C># to R. The analyticity of R follows since
it is given as an integral of an analytic (in fact algebraic) function of the
weight and the metric, as well as their first and second derivatives (the second
derivatives come in from the scalar curvature), cf. [31].
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Proof of (2): Since exp(0) = (bgozgo,boo) is a critical point for R,
VG(0) =0. By (8.2),

VG(x) = (dexp,) ViR (exp(x)). (8.11)

It follows from the formula (4.32) for V'R and Corollaries 3.33 and 3.41 that
ViR is C! from a neighborhood of 0 in C 2.8 to CP and also Lipschitz (in
this neighborhood) from W22 to L?. Since exp is smooth, the formula (8.11)
implies that VG has the same properties.

Proof of (3): The Lipschitz bounds on VG from (2) imply the boundedness
of Lg from C># N TIO toCP N TIO and from W>2 N TIO. Using (8.2), plus the
fact that exp(0) is a critical point for R, we can calculate the linearization L
of VG at 0 by

d d
(Lo(x),y)= o (VG(x),y)=—| (ViR(exp(tx)),d exp, (y))
Tli=0 dt =0

= (Lr(d expy(x)), d expy(y)) = (Lr(x), y) = Br(x,y), (8.12)

where the first equality in the second line used that d exp,, is the identity on
7'10. Since Lz maps to 79, we conclude that L is just the restriction of LR to

Tlo. Thus, L is symmetric since Ly is and Lg is Fredholm by Theorem 6.6.
O

Acknowledgements We would like to thank the referee for a careful and thoughtful reading
of the paper and Antonio Ache for comments.

Appendix A: The weighted total scalar curvature functional

We will need the following calculations from [35] for the changes of geomet-
ric quantities under deformation of a metric.!® The derivative at r = 0 will
be denoted by a prime; for example, R’ denotes the derivative of the scalar
curvature R at ¢t =0.

Lemma A.1 Let g + th be a one-parameter family of metrics on a closed
manifold and u + tv a one-parameter family of functions. Then

((g+1th)7) = —n', (A.2)
(IV @+ 10)[*) = —h(Vu, Vu) +2(Vu, Vo), (A.3)
dy = %Tr(h)du, (A.4)

16Note that [35] has the same curvature convention as here; cf. (1.20) and Sect. 2.1 in [35].
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R = —(Ric, h) + 8*h — ATr(h), (A.5)

where § is the divergence operator and 8% comes from applying it twice. These
will suffice for first variation formulas.

We will need the following additional formulas for the second variation; to
simplify notation, we compute these at an orthonormal frame so that we do
not need to keep track of upper or lower indices:

. 1 . .
Rlcéj = E(Vi (8h); + V;(8h;) + Ricjkh ji + Ricjihix — Ah;j
— Hesstrn) — Rikjehke, (A.6)

1
(Hess,+v);; = Hessy — E(V,- (Hessy) jx + Vj(Hessy )ik — Vi(Hess,)ij) Viu.
(A7)

Note that 4/ is given by using the background metric g to raise the indices
on the tensor &, i.e., h'/ = gikg/thy,.

Appendix B: Some computations and identities for the trace free
Hessian

In this appendix, we collect some calculations and identities for the trace free
Hessian Bj, of b* where b? satisfies Ab? = 2n|Vb|? on an n-dimensional
Ricci flat manifold (M, g).

B.1 The trace-free Hessian
Throughout this section, the function b satisfies
Ab* =2n|Vb|? (B.1)
and we define the tensor B, to be the trace-free part of the Hessian of b2, ie.,
By = Hess;» — 2|Vb|%g. (B.2)
We will use that Hess;» = 2bHess;, +2Vb ® Vb, so that
2bHessp = Hess;» —2Vb ® Vb = B, +2(|Vb|’g — Vb @ Vb).  (B.3)
The next lemma computes the gradient of |V5h|? in terms of By,.

Lemma B.4 We have bV|Vb|?> = B,(Vb), where Bp(Vb) is given by
(Bp(Vb),v) = Bp(Vb, v).
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Proof Since V|Vb|?> = 2Hess;,(Vb, -), (B.3) gives

bV|Vb|* = 2bHessy(Vb, -) = By(Vb, -) + 2(IVb|*Vb — |Vb|>Vb)
= By(Vb,-). (B.5)

O

Corollary B.6 We have 2bV|Vb| = B(n) where n = % and 4b*|V|Vb||?
= |By(m)|%.

Proof Since bV|Vb|? = 2b|Vb|V|Vb], this follows from Lemma B.4. O
The next lemma computes the divergence of By.
Lemma B.7 The divergence of By is
8By = (2n —2)V|Vb|*> = 2n — 2)b~ ' B, (VD). (B.8)

Proof Fix a point p € M and let ¢; be an orthonormal frame at p with
Veej(p) =0. Since M is Ricci flat, we get for any function w that

VAw = AVw. (B.9)

Using the definition of By, the fact that g is parallel, and (B.9) with w = b?
gives

(8Bp)i = (Bp)ij,j = (b%),,, — 2(IVb?), = (Ab*), — 2(|Vb]?)

i ; ; ;- (B.10)
Thus, § B, = V(Ab* —2|Vb|?). The lemma follows since Ab? = 2n|Vb|2. O
Using this, we can compute the Laplacian of |Vb|?.

Lemma B.11 We have

1
B2A|VbH|? = 5|Bb|2 + (2n — 4)By(Vb, Vb)

1
= 5|Bb|2 + (n —2)(V|Vb|?, Vb?). (B.12)

Proof Using the definition of the Laplacian, then Lemma B.4, and then
Lemma B.7 gives

P2 A|VH|? = b*divV|Vb|* = b*div(b~' B, (Vb))
= b(3 By, Vb) + (B, bHessp) — B, (Vb, Vb)
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= (2n —2)Bp(Vb, Vb) + <B;,, {%Bb + (IVb|2g —Vb® Vb)}>
— B,(Vb, VD). (B.13)

Using (Bp, g) = 0 since By, is trace-free, and noting that (Bp, Vb ® Vb) =
By (Vb, VD) gives

1
b*A|VbH|? = (2n — 4)B,(Vb, Vb) + 5|B,,|2.

This gives the first equality. To get the second equality, use that bV|Vb|? =
By (Vb) by Lemma B.4 to write

2B, (Vb, Vb) =2(B,,(Vb), Vb) = 2b(V|Vb|*, Vb) = (V|Vb|?, Vb?).

(B.14)
O
B.2 The trace-free second fundamental form
The second fundamental form II of the level sets of b is given by
(e, ej) = (Ven, e)), (B.15)
where ¢; is a tangent frame and n = % is the unit normal. It follows that
2b|Vb|Il(e;, e;) = Ve, Vb*, e;) = Hessya (e;, €). (B.16)

Lemma B.17 The trace-free second fundamental form lly and mean curva-
ture H are

B

2b|Vb|I = By + L’l“)gﬁ (B.18)
p—

2b|Vb|H =2(n — 1)|Vb|> — By(n, n), (B.19)

where Hess,» and By, are restricted to tangent vectors and g" is the metric
on the level set.

Proof The mean curvature H is the trace of Il over the ¢;’s. We have
2b|Vb|H = Ab? — Hessy (n, n) = 21| Vb|> — Hessy (n, n)
=2(n— 1)|Vb* + (2|Vb|* — Hess;2(n, m))

=2(n — 1)|Vb|* — By(n, n), (B.20)
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giving the second claim. The trace-free second fundamental form Il is

H By(n,n
2b|Vb|II():2b|Vb|<H_ —1gT) — Hessy» —2|Vb|2gT+ b( 1 )gT
n— n—
Bpy(n,n
= By + 227, (B.21)
n—1
where Hess;» and B}, are restricted to tangent vectors. N

Lemma B.22 [If By denotes the restriction of the tensor By, to tangent vectors,
then

2 2
By |? = |Bol? + 2| By(m)” | + (By(n, m))". (B.23)
Lemma B.24 [f we let By denote the restriction of By to tangent vectors,
then
Bpy(n,n 2
4b*|Vb[* o[> = | Bol* — M = |ByI” —2|Bym)" |’

_ Ll(Bb(n, m)?

2
= B2 — B[ - == |B,mT|.  (B25)
n—1 n—1

The next lemma computes the scalar curvature R,r where g’ is the in-
duced metric on the level sets of b.

Lemma B.26 The scalar curvature R,r is given by

4b*|Vb*R,r =4(n — 1)(n — 2)|Vb|* — 4(n — 2)|Vb|* By(n, n)

— 1By + 2| Bym)|*. (B.27)

Proof Using that Il and g7 are pointwise orthogonal and |g7|?> = (n — 1),
we get

2 2

H
= || + . (B.28)

I =
n—1

H T
Mg+ ——g
n—1

Since M is Ricci flat, the Gauss equation gives

H? -2
R,r=H?— [ =H?—|lly)> — DTS . (B29)
g n—1 n—1
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To handle this, we first compute H>

4b*|VbI*H* = [2(n — 1)|Vb|* — By(n, n)]2
= 4(n — 1)?|Vb|* — 4(n — 1)| VB> By(n, m) + (By(n, m))’.
(B.30)

Combining this with the calculation of |IIo|> from Lemma B.24 gives

4b*|\Vb|*R,r =4(n — 1)(n — 2)|Vb|* — 4(n — 2)|Vb|* By(n, m)

n—2

+ (B, n)’

B2+ nnTl|Bb(n)|2 + %|Bb(n)T|2. (B.31)
Finally, simplifying this gives
4b*|Vb|*Ryr =4(n — 1)(n — 2)|Vb|* — 4(n — 2)|Vb|* By(n, m)
— |ByI? +2|By)|*. (B.32)
O

We will also need to compute the Ricci curvature Ric of the level sets.
This will be applied in Sect. 4 where we will have that |Vb]| is close to con-
stant.

Lemma B.33 [f|Vb| is fixed close to a positive constant, then the Ricci cur-
vature RicT of the level sets is given by

b?Ric! = (n — 2)|Vb|2gT + €, (B.34)
where the error term &£ is bounded by a constant times |Bp| + b|V Bp|.

Proof Let R and RT denote the curvature tensor of M and the level set of b,
respectively. Choose an orthonormal frame e; where e, = % is the unit
normal and ey, ..., e, diagonalize the second fundamental form II; let A;
be the eigenvalue corresponding to e;.

Fori # j (and i, j < n), the Gauss equation gives

RT

zjij:Rijij+)‘i)‘j' (B.35)
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Summing over j < n gives the Ricci curvature of the level set in the ¢;, ¢;
direction
Ricl = %) = Ric:: . . .
ich = Y (Rijij +hikj) =Ricij — Rinin +2i(H —1;).  (B.36)
i#j<n
Using that M is Ricci flat, this becomes
Ricl = —Ripin + M H — A7, (B.37)

Ai. Using that A; =Ip(e;, €;) + H_ we get

n—1°

where we used that H =)

i<n

2

o \2
Ric!, = —Ripin + Hllp(e;, ;) + - <HO(€i, )+ m) . (B.33)

n—1
Since |Vb| is almost constant (and thus bounded away from zero),
Lemma B.17 gives

(n — DIVb| | By|
— p + ol < C—~. (B.39)

Using this in (B.38) and noting that both |Bp| and b|H| are uniformly
bounded gives

Vb2 &

(B.40)

where the error term £ is bounded by a constant times Bp,.

To complete the proof, we will bound the “radial” extrinsic curvature term
Rinin in terms of the trace-free Hessian Bp. Let e be a tangent vector to the
level set b = R; we can assume that Vype = 0. The definition of the curvature
tensor gives

4b*(R(Vb, e)Vb, e) = (R(VD?, e) Vb, e)
= (Ve Vg VB, €) — (Vg Ve VB2, €) + (Viyyo o VD2 €)
= (V. Hessy2 (Vb?), e) — (Vy2Hessja (e), e)
— Hess;2 (Hessy2 (e), e). (B.41)
Next, we use metric compatibility (and the fact that Vy,e = 0) to get
4b*(R(Vb, e)Vb, e) = V. (Hess;2 (Vb?, €)) — Hess;» (VH2, Vee)

— V2 (Hessy2 (e, €)) — Hessy2 (Hessjz (), e).
(B.42)
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Bringing in that Hess,. = B, + 2|Vb|2g, we can write this as

4b*(R(Vb, e)Vb, e) = V.(B,(Vb*, e)) — By(Vb*, V,e) — 2| Vb|*(VD?, V,e)
— Ve (Bi(e, €)) — 2V, | Vb
— By(By(e) +2|Vb|%e, e)
—2|Vb|®Bp(e, e) — 4|Vb|*. (B.43)

The right-hand side has eight terms. Terms 1, 2, 4, 5, 6 and 7 are all bounded
by C(|Bp| + b|V Bp|) (here we also used that V|Vb| can also be bounded in
terms of Bp). Thus, we get that

4b*(R(Vb, e)Vb, e) = —2|Vb|*(Vb?, V,e) — 4|Vb[* + &, (B.44)
where &y < C(|Bp| + b|V Bp|). Using that Vb and e are orthogonal, we get
(Vb2 Vee) = —(V,Vb?, e) = —Hessy (e, €) = — By (e, ) — 2|Vb|*, (B.45)

and plugging this in completes the proof. 0

Appendix C: Bounding the distance to cones in general

In this appendix we will explain a generalization, stated in footnote 8, of
(2.54) that holds when M" has nonnegative Ricci curvature that follows from
the methods of [4]. This more general inequality is not used in this paper.

Before recalling the more general inequality, recall that @, is the scale
invariant Gromov-Hausdorff distance from the annulus

Bb%(x)\Bé(x)CM

(x is a fixed point) to the corresponding annulus centered at the vertex in the
closest metric cone. The claim in footnote 8 is that there exist © = u(n) > 0
and a constant C so that

Ot <clor/n - eBn]=C / b Hess €D

5<b<8r

where the point x is the pole of the Green’s function G, b is defined by b =
1
G2 and Hessg2 denotes the trace-free Hessian of b2, i.e.,

Ab?

Hessg2 = Hess;p — —g.
n
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It follows directly from a simplification of Theorem 4.85 (with f(r) =r)
in [4] that ®, goes to zero as the right-hand side of (C.1) goes to zero. This
simplification is that we don’t have (4.88) of [4] here, but (4.88) is used in
[4] to establish the L? bound for the trace-free Hessian that we get here by
assumption. What needs to be explained is the rate at which ®, goes to zero
as the L? bound does.

When M is Einstein and the annulus is close to a cone with smooth cross-
section, we saw in Sect. 4.4 that (C.1) holds with p = 0. The first step was
to get a pointwise bound from the L? bound by using the equation and the
meanvalue inequality (see Theorem 4.1). This pointwise bound gave point-
wise estimates for the distortion of the flow generated by the vector field

|VV :‘2 and we concluded that not only is the annulus was diffeomorphic to an

annulus in a cone, but the metric was C° close to the cone metric, thus giving
(2.54) (see p. 28 and compare (1.14)—(1.17) in [4] for the model case).

For a general M with nonnegative Ricci curvature, we do not get point-
wise bounds on the trace-free Hessian. Rather, the segment inequality, Theo-
rem 2.11 of [4], allows one to bound the average distortion from the cone of

the flow generated by the vector field IVb|2 by a constant times the L? bound

for the trace-free part of the Hessian of »2. Within any two balls of a fixed
radius, the linear bound on the average distortion allows us to find a point in
each ball where the distortion is linearly bounded. Namely, we can find a net
of points of any fixed size where the distances to the corresponding net in
the cone are bounded by the L? norm (corresponding to (C.1) with u = 0).
Combining this with the triangle inequality then gives the Gromov-Hausdorff
closeness to the model cone, with the bound for distance being the sum of the
L? norm and the radius of the balls. If we now let the radius shrink, then we
lose less in the triangle inequality but we lose more in going from the integral
to the pointwise bound since we are averaging over smaller sets. Interpolating
to optimize the estimate gives the bound (C.1).
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