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Abstract We show that for any Ricci-flat manifold with Euclidean volume
growth the tangent cone at infinity is unique if one tangent cone has a smooth
cross-section. Similarly, for any noncollapsing limit of Einstein manifolds
with uniformly bounded Einstein constants, we show that local tangent cones
are unique if one tangent cone has a smooth cross-section.

1 Introduction

By Gromov’s compactness theorem, [18, 19], if M is an n-dimensional
manifold with nonnegative Ricci curvature, then any sequence of rescalings
(M, r−2

i g), where ri → ∞, has a subsequence that converges in the Gromov-
Hausdorff topology to a length space. Any such limit is said to be a tangent
cone at infinity of M . Compactness follows from that

r−nVol
(
Br(x)

)
(1.1)

is monotone nonincreasing in the radius r of the ball Br(x) for any fixed x ∈
M by the Bishop-Gromov volume comparison. As r tends to 0, this quantity
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on a smooth manifold converges to the volume of the unit ball in Rn and, as r

tends to infinity, it converges to a nonnegative number VM . If VM > 0, then
M is said to have Euclidean volume growth and, by [4], any tangent cone at
infinity is a metric cone.1

An important well-known question is whether the cross-section of the tan-
gent cone at infinity of a Ricci-flat manifold with VM > 0 depends on the
convergent sequence of blow-downs or is unique and independent of the se-
quence. Our main theorem is the following:

Theorem 1.2 (Uniqueness at ∞) Let Mn be a Ricci-flat manifold with Eu-
clidean volume growth. If one tangent cone at infinity has a smooth cross-
section, then the tangent cone at infinity is unique.2

In fact, we prove an effective version of uniqueness that is considerably
stronger. Theorem 1.2 settles in the affirmative a very strong form of Conjec-
ture 1.12 in [13].

The results of this paper were announced in [8] and again in [11].
Theorem 1.2 describes the asymptotic structure of Einstein manifolds with

Euclidean volume growth and vanishing Ricci curvature. These arise in a
number of different fields, including string theory, general relativity, and com-
plex and algebraic geometry, amongst others, and there is a extensive litera-
ture of examples; see, e.g., [3, 15, 21, 22, 24–27, 33] and [34]. Most exam-
ples fall into several different classes, including ALE spaces (like the Eguchi-
Hanson metric and, more generally, non-collapsing gravitational instantons,
etc.), Kähler-Einstein metrics constructed by blowing up divisors, or cones
over Sasaki-Einstein manifolds.

Our arguments will also show that local tangent cones of limits of noncol-
lapsing Einstein metrics are unique:

Theorem 1.3 Local uniqueness Let (Mi, xi) be a sequence of pointed n-
dimensional Einstein metrics with uniformly bounded Einstein constants and
Vol(B1(xi)) ≥ v > 0.

If (M∞, x∞) is a Gromov-Hausdorff limit of (Mi, xi) and one tangent cone
at y ∈ M∞ has a smooth cross-section, then the tangent cone at y is unique.

Similar to the case of tangent cones at infinity, the above statement follows
from a stronger effective version of uniqueness of local tangent cones.

1A metric cone C(X) with cross-section X is a warped product metric dr2 + r2 d2
X

on the
space (0,∞) × X. For tangent cones at infinity of manifolds with Ric ≥ 0 and VM > 0, by [4]
any cross-secton is a length space with diameter ≤ π ; cf. [5].
2In fact, we prove that the scale invariant distance to the tangent cone converges to zero like
(log r)−β for some β > 0, where r is the distance to a fixed point.
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It is well-known that uniqueness may fail without the two-sided bound
on the Ricci curvature. Namely, there exist a large number of examples of
manifolds with nonnegative Ricci curvature and Euclidean volume growth
and nonunique tangent cones at infinity; see [4, 14, 30]. In fact, by [14], it
is known that any smooth family of metrics on a fixed closed manifold can
occur as cross-sections of tangent cones at infinity of a single manifold with
nonnegative Ricci curvature and Euclidean volume growth provided the fol-
lowing two necessary assumptions are satisfied for any element in the family:

(1) The Ricci curvature is ≥ than that of the round unit (n − 1)-dimensional
sphere.3

(2) The volume is equal to a fixed constant.

Since the space of cross-sections of tangent cones at infinity of a given man-
ifold with nonnegative Ricci curvature and Euclidean volume growth is con-
nected and closed under the Gromov-Hausdorff topology, it follows that if a
smooth family of closed manifolds occurs as cross-sections, then so does any
metric space in the closure.

There is a rich history of uniqueness results for geometric problems and
equations. In perhaps its simplest form, the issue of uniqueness or not comes
up already in a 1904 paper entitled “On a continuous curve without tan-
gents constructible from elementary geometry” by the Swedish mathemati-
cian Helge von Koch. In that paper, Koch described what is now known as
the Koch curve or Koch snowflake. It is one of the earliest fractal curves to
be described and, as suggested by the title, shows that there are continuous
curves that do not have a tangent in any point. On the other hand, when a set
or a curve has a well-defined tangent or well-defined blow-up at every point,
then much regularity is known to follow. Tangents at every point, or unique-
ness of blow-ups, is a ‘hard’ analytical fact that most often is connected with
a PDE, as opposed to say Rademacher’s theorem, where tangents are shown
to exist almost everywhere for any Lipschitz functions.

Uniqueness is a key question for the regularity of Geometric PDE’s; for
instance, as explained in [38]: “Whether nonuniqueness of tangent cones ever
happens remains perhaps the most fundamental open question about singular-
ities of minimal varieties”. Two of the most prominent early works on unique-
ness of tangent cones are Leon Simon’s hugely influential paper [31] from
1983, where he proves uniqueness for tangent cones of minimal surfaces with
smooth cross-section. The other is Allard-Almgren’s 1981 [1] paper where
uniqueness of tangent cones with smooth cross-section is proven under an
additional integrability assumption on the cross-section; see also [32] and
[20] for more references about uniqueness. Earlier work on uniqueness for

3Strictly speaking, for the construction in [14], one must assume strict inequality for the Ricci
curvature.
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Ricci-flat metrics includes Cheeger-Tian’s 1994 paper [6], where uniqueness
is shown if all tangent cones have smooth cross-sections and all are inte-
grable.4

In each of these geometric problems, existence of tangent cones comes
from monotonicity, while the approaches to uniqueness rely on showing that
the monotone quantity approaches its limit at a definite rate. However, esti-
mating the rate of convergence seems to require either integrability and/or a
great deal of regularity (such as analyticity). For instance, for minimal sur-
faces or harmonic maps, the classical monotone quantities are highly regular
and are well-suited to this type of argument. This is not at all the case in
the current setting where the Bishop-Gromov is of very low regularity and
ill suited: the distance function is Lipschitz, but is not even C1, let alone an-
alytic. This is a major point (cf. p. 496 of [6]). In contrast, the functional
A (that we describe below) is defined on the level sets of an analytic func-
tion (the Green’s function) and does depend analytically and, furthermore, its
derivative has the right properties. In a sense, the scale invariant volume is
already a regularization of the quantity that, if one could, one would most of
all like to work with. Namely, one would like to work directly with the scale
invariant Gromov-Hausdorff distance between the manifold and the cone that
best approximates it on the given scale and try to prove directly some kind of
decay (in the scale) for this quantity. However, not only is it not clear that it is
monotone, but as a purely metric quantity it is even less regular than the scale
invariant volume.

Throughout, C will denote a constant which will be allowed to change
from line to line. When the dependence is important, we will be more explicit.
Mn will always be an open n-dimensional Ricci-flat manifold with Euclidean
volume growth where n ≥ 3. Moreover, dGH (X,Y ) will denote the Gromov-
Hausdorff distance between metric spaces X and Y .

1.1 Proving uniqueness

Next we will try to explain the key points in the proof of uniqueness; a much
more detailed discussion can be found in Sect. 2.

Let p ∈ M be a fixed point in a Ricci flat manifold with Euclidean volume
growth. We would like to show that the tangent cone at infinity is unique;
that is, does not depend on the sequence of blow-downs. To show this, let
Θr be the scale invariant Gromov-Hausdorff distance between the annulus

4In addition to integrability of all cross-sections and Euclidean volume growth, [6] assumed
that the sectional curvatures decay at least quadratically at infinity. By a standard argument,
Euclidean volume growth and quadratic curvature decay imply that all tangent cones at infinity
have smooth cross-sections. In fact, using [7], it can be shown that Euclidean volume growth
and smoothness of all cross-sections implies quadratic curvature decay.
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B4r (p) \ Br(p) and the corresponding annulus centered at the vertex of the
cone that best approximates the annulus. (By scale invariant distance, we
mean the distance between the annuli after the metrics are rescaled so that
the annuli have unit size; see (2.53).) The first key point is to find a positive
quantity A = A(r) that is a function of the distance to p, is monotone non
increasing and so for some positive constant C

−A′(r) ≥ C
Θ2

r

r
. (1.4)

(The quantity A with this property was found in [8]. Perelman’s monotone W

functional [29] is also potentially a candidate, but it comes from integrating
over the entire space which introduces so many other serious difficulties that
it cannot be used.) In fact, we shall use that for Q roughly equal to −rA′(r),
Q is monotone nonincreasing and

[
Q(r/2) − Q(8r)

] ≥ CΘ2
r . (1.5)

We claim that uniqueness of tangent cones is implied by showing that A con-
verges to its limit at infinity at a sufficiently fast rate or, equivalently, that Q

decays sufficiently fast to zero. Namely, by the triangle inequality, uniqueness
is implied by proving that

∑

k

Θ2k < ∞. (1.6)

This, in turn, is implied by the Cauchy-Schwarz inequality by showing that
for some ε > 0

∑

k

Θ2
2k k

1+ε < ∞, (1.7)

as
∑

k

k−1−ε < ∞. (1.8)

Equation (1.7) follows, by (1.5), from showing that

∑[
Q

(
2k−1) − Q

(
2k+3)]k1+ε < ∞. (1.9)

This is implied by proving that for a slightly larger ε

Q(r) ≤ C

(log r)1+ε
. (1.10)
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All the work in this paper is then to establish this crucial decay for Q. This
decay follows easily from showing that for some α < 1

Q(2r)2−α ≤ C
(
Q(r/2) − Q(2r)

)
. (1.11)

The proof of this comes from an infinite dimensional Lojasiewicz inequality
that essentially gives

∣∣A(r) − A(∞)
∣∣2−α ≤ C|∇A|2 = −CrA′. (1.12)

(Here the middle equation can be ignored as we won’t explain the meaning
of ∇A until later.) The left-hand side of (1.11) is easily seen (using that Q

is monotone) to be bounded from above by the left-hand side of (1.12). To
get that the right-hand side of (1.12) is bounded from above by the right-hand
side of (1.11) is more subtle and uses that the quantity Q(r) is defined slightly
differently.

The proof of uniqueness has three parts. The first is to find the right quan-
tities and set up the general scheme described above. The second will be
to find a way to actually implement this general scheme. The third will be
to prove the infinite dimensional Lojasiewicz inequality for a functional R
that approximates A to first order. R will actually be defined on the space of
metrics and weights. To explain how R is chosen, recall that a Lojasiewicz
inequality describes analytic functions in a neighborhood of a critical point.
The inequality asserts that the difference in values of such a function at a
critical point versus a nearby point is bounded in terms of the norm of the
gradient. In particular, any other nearby critical point must have the same
value. In our case, the analytic function will be a linear combination of a
weighted Einstein-Hilbert functional on the level sets plus the A functional.
The Einstein-Hilbert functional enters into this picture since in a Ricci-flat
cone the cross-section is a Einstein manifold and, thus, a critical point for the
Einstein-Hilbert functional.

Finally, note that although Q ≥ 0 and Q ↓, the rate of decay on Q implies
only that

Θ2k ≤
(∑

j≥k

Θ2
2j

) 1
2

(1.13)

decays like k− 1
2 −ε which in itself is of course not summable. Uniqueness

comes from the decay of Q together with that

Θ2
r ≤ C

[
Q(r/2) − Q(8r)

]
, (1.14)
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which gives that

∑

j≥k

Θ2j ≤ Ck−β̄ (1.15)

for a power β̄ > 0.

1.2 Effective uniqueness

In this subsection, we will describe how our main uniqueness will follow from
a stronger effective version.

Let Mn be a Ricci-flat n-manifold and N a smooth closed Einstein (n−1)-
manifold with Ric = (n − 2).

Theorem 1.16 (Effective uniqueness) There exist ε, δ, β > 0 and C > 1 such
that if A(r1/C)−A(Cr2) < δ for some 0 < r1 < r2 and every r ∈ [r1/C,Cr1]
satisfies

dGH

(
B2r (x) \ Br(x),B2r (v) \ Br(v)

)
< εr, (1.17)

where x ∈ M and v is the vertex of the cone C(N), then:

(E1) Every r ∈ [r1, r2] satisfies

dGH

(
B2r (x) \ Br(x),B2r (v) \ Br(v)

)
< 4εr. (1.18)

(E2) There exists a cone C(N0) with vertex ṽ such that for r between r1 and
r2

dGH

(
B4r (x) \ Br(x),B4r (ṽ) \ Br(ṽ)

)
< Cr

(
log

r

r1

)−β

. (1.19)

Note that the cone C(N0) in this theorem is independent of r . Moreover,
the Gromov-Hausdorff distance could be replaced by the Ck norm in (1.19)
by appealing to [7]. The key in the above theorem is that the constants do not
depend on r1 and r2. As a consequence, we get the uniqueness theorem stated
above.

Remarks:

• It seems very likely that, by arguing similarly, one could also replace the
right-hand side of (1.19) by Cr[A(r1) − A(r2)]β .

• There is also a local version of this that we will not state here.
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1.3 Key technical difficulties for the Lojasiewicz-Simon inequality

The classical Lojasiewicz-Simon inequality is proven by using Lyapunov-
Schmidt reduction to reduce it to a finite dimensional Lojasiewicz inequality
on the kernel of the second variation operator. It is critical that the kernel is
finite dimensional. In [31], the finite dimensionality came from the functional
being strictly convex in the first derivative (which was the highest order), so
that there are only finitely many eigenvalues (counting multiplicity) below
any fixed level.

There are two key difficulties for proving a Lojasiewicz-Simon inequality
for the R functional:

(1) There is an infinite dimensional kernel for the second variation operator.
(2) The second variation operator has infinitely many positive and negative

eigenvalues.

The reason for (1) is that the infinite dimensional gauge group of diffeomor-
phisms preserves the functional. (2) is similar to the situation for the Einstein-
Hilbert functional, where the highest order part of the second variation oper-
ator has opposite signs depending on whether the variation is conformal or
orthogonal to the conformal variations. (1) is far more serious.

Geometric functionals are invariant under changes of coordinates, so (1)
could potentially arise in any geometric problem, including the original ones
considered in [31], such as uniqueness for minimal surfaces. This is overcome
in [31] by working in canonical coordinates, such as writing the surfaces as
normal graphs. Similarly, in [36], the author makes a canonical choice of
frames to “gauge away” (1) for the Yang-Mills functional and then directly
apply [31]. In our setting, the action of the diffeomorphism group is more
complicated and even (2) already makes it impossible to appeal directly to
[31].

We will deal with (1) by using the Ebin-Palais slice theorem to mod out
by the diffeomorphism group.5 This will allow us to restrict to variations that
are transverse to the action of the group. We will then analyze the second
variation operator separately, depending on whether the variation is in the
conformal direction (up to a diffeomorphism) or it is orthogonal to both the
conformal variations and to the action of the group. We will show that, if we
write the operator in block form, then the off-diagonal blocks vanish and the
kernel is finite dimensional in each diagonal block. This will be enough to
carry through the Lyapunov-Schmidt reduction and prove the Lojasiewicz-
Simon inequality.

5The diffeomorphism group also created difficulties in [6], where they use a different version
of the slice theorem.
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1.4 Normalizations

Our normalization is that the Ricci curvature of the (n − 1)-dimensional unit
sphere Sn−1 is (n − 2) and the scalar curvature is (n − 1)(n − 2). By conven-
tion, the curvature is given by

R(X,Y ) = ∇Y ∇X − ∇X∇Y + ∇[X,Y ]. (1.20)

Given an orthonormal frame {ei}, we set

Rijk� = 〈
R(ei, ej )ek, e�

〉
.

The Ricci curvature is given by

Ric(ei, ej ) =
∑

k

Rikjk,

and the sectional curvature of the ei − ej plane is Rijij .

2 The proof of uniqueness

As mentioned in the introduction, the starting point for uniqueness is a
monotonicity formula from [8], where the monotone quantity A(r) is non-
increasing in r , is constant on cones, and where the derivative A′(r) measures
distance to being a cone on a given scale. We will show that A(r) goes to its
limit A(∞) fast enough to ensure uniqueness of the tangent cone. The key is
to show that

(	) A′(r) controls A(r) − A(∞).

Iterating (	) will show that A′(r), and thus the distance to being a cone, con-
verges to zero at a rate that implies uniqueness.

In order to prove (	), we will need to introduce an auxiliary functional R.
To explain this, recall that the Lojasiewicz inequality, [23], for an analytic
function f on Rn with a critical point x gives some α < 1 so that

∣∣f (x) − f (y)
∣∣2−α ≤ ∣∣∇f (y)

∣∣2 (2.1)

for all y close to x. Leon Simon proved an infinite dimensional version of
this for certain analytic functionals on Banach spaces in [31]. We will con-
struct an analytic functional R that approximates A to first order and satisfies
a Lojasiewicz-Simon inequality (these properties are (1)–(5) in Sect. 2.4).
Using R, we can prove (	).

In this section, we will prove the uniqueness of the tangent cones assum-
ing properties (1)–(5). The rest of the paper will be devoted to proving these
properties.
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2.1 Monotonicity

We will next define the monotone quantity A(r). Let G be a Green’s function6

on M with a pole at a fixed point x ∈ M and define

b = G
1

2−n . (2.2)

With this normalization, Stokes’ theorem implies that

r1−n

∫

b=r

|∇b| = Vol
(
∂B1(0)

)
. (2.3)

Following [8], define a scale-invariant quantity A(r) by

A(r) = r1−n

∫

b=r

|∇b|3. (2.4)

Since M is Ricci-flat the third monotonicity formula of [8] gives that

A′(r) = −1

2
rn−3

∫

r≤b

b2−2n

∣
∣∣∣Hessb2 − Δb2

n
g

∣
∣∣∣

2

. (2.5)

In particular, A is monotone non-increasing and, thus, has a limit7

A∞ = lim
r→∞A(r). (2.6)

As a consequence, we have that

A(R) − A∞ = 1

2

∫ ∞

R

rn−3
∫

r≤b

b2−2n

∣
∣∣∣Hessb2 − Δb2

n
g

∣
∣∣∣

2

dr. (2.7)

2.2 A brief introduction to the R functional

We will next briefly explain what the functional R is that will appear in our
Lojasiewicz-Simon inequality. This discussion can safely be ignored as we
will later return to the precise definition, including the weighted space that R
is defined on. At any rate, when restricted to the level set b = r the functional
R will be given by

R(r) = R = 1

2 − n

(
A − r3−n

n − 2

∫

b=r

Rb=r |∇b|
)

6Our Green’s functions will be normalized so that on Euclidean space of dimension n ≥ 3 the

Green’s function is r2−n.
7In fact, an easy calculation shows (see [7]) that A∞ = b2∞Vol(∂B1(0)); where b∞ is defined
below.
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= r1−n

2 − n

∫

b=r

(
|∇b|2 − r2Rb=r

n − 2

)
|∇b|. (2.8)

Here Rb=r is the intrinsic scalar curvature of the level set b = r . The idea
behind this functional is that R defined this way is a weighted analog of the
classical Einstein-Hilbert functional. In particular, when R is restricted to an
appropriate weighted space, then the critical points will precisely be weighted
Einstein metrics.

It may be helpful to illustrate this with an example. Suppose that M is n-
dimensional Euclidean space Rn so that b is the distance function |x|. Since
the scalar curvature of the sphere of radius r is (n − 1)(n − 2)r−2, we get

R(r) = r1−n

2 − n

∫

|x|=r

(
1 − r2(n − 1)(n − 2)r−2

n − 2

)
= r1−n

∫

|x|=r

1 = A(r).

(2.9)

This is a special case of that R and A agree on cones with a constant weight
(see (1) below in the subsection after the next one).

2.3 Asymptotic convergence

By [4], every tangent cone at infinity of M is a metric cone. Below, C(N)

will always be a fixed cone with vertex v over a smooth (n − 1)-dimensional
Einstein metric g0 on the cross-section N with

Ricg0 = (n − 2)g0. (2.10)

Moreover, δ = δ(N) > 0 will be a fixed small constant and we will work on
scales R > 0 so that

dGH

(
B2r (x) \ Br(x),B2r (v) \ Br(v)

)
< δr for all r ∈

[
R

4
,2R

]
, (2.11)

where dGH is the Gromov-Hausdorff distance. In particular, by [7], the annu-
lus B2R(x) \ BR

2
(x) in M is Ck close to one in the cone C(N).

We claim that as long as annuli in M are close to annuli in the cone (in the
sense explained above around (2.11)), then

|∇b| is close to b∞. (2.12)

Here the positive constant b∞ is defined by

b∞ =
(

VM

Vol(B1(0))

) 1
n−2

, (2.13)
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where VM > 0 is the asymptotic volume ratio

VM = lim
r→∞ r−nVol

(
Br(x)

)
. (2.14)

To see (2.12), note that by page 1374 of [10] for ε > 0 fixed, there exists
r0 > 0 so that for r ≥ r0

sup
∂Br (x)

∣∣∣∣
b

r
−

(
VM

Vol(B1(0))

) 1
n−2

∣∣∣∣ < ε, (2.15)

∫

Br(x)

∣
∣∣∣|∇b|2 −

(
VM

Vol(B1(0))

) 2
n−2

∣
∣∣∣

2

< εVol
(
Br(x)

)
. (2.16)

Since the annulus in M is Ck close to one in the cone C(N) (by [7]) and
b satisfies an elliptic equation, we get estimates for higher derivatives of b.

Namely, the integral bound on ||∇b|2 − ( VM

Vol(B1(0))
)

2
n−2 | gives the following

pointwise bound (for a slightly larger ε)

sup
B2R(x)\BR

2
(x)

∣∣∣
∣|∇b|2 −

(
VM

Vol(B1(0))

) 2
n−2

∣∣∣
∣

2

< ε. (2.17)

2.4 The functional R and the Lojasiewicz-Simon inequality

We will next bring in the auxiliary functional R and list its five key properties.
Given R > 0, we let gR denote the induced metric on the level set {b = R}

in M . It follows from the previous subsection that if we are in an annulus that
is close to one in C(N), then {b = R} is diffeomorphic to N . Moreover, the
metric R−2gR is close to the metric b−2∞ g0 and, in fact, (2.3) implies that

∫

b=R

|∇b|dμR−2gR
= R1−n

∫

b=R

|∇b| = Vol
(
∂B1(0)

)
. (2.18)

Define A to be the set of C2,β metrics g and positive C2,β functions w on N .
Let A1 be

A1 =
{
(g,w) ∈ A

∣
∣∣
∫

N

wdμg = Vol
(
∂B1(0)

)}
. (2.19)

The set A1 includes (R−2gR, |∇b|) as well as (b−2∞ g0, b∞).
We will construct a functional R : A1 → R that satisfies:

(1) R(b−2∞ g0, b∞) = A∞.
(2) (b−2∞ g0, b∞) is a critical point for R on A1.
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(3) R satisfies the Lojasiewicz-Simon inequality for some α < 1

∣∣R(g,w) − R
(
b−2∞ g0, b∞

)∣∣2−α ≤ |∇1R|2(g,w), (2.20)

where ∇1R is the restriction of ∇R to A1 and (g,w) is near (b−2∞ g0, b∞).
(4) We have

∣∣∇1R
(
R−2gR, |∇b|)∣∣2 ≤ C

∫

R
2 ≤b≤ 3R

2

b−n

∣∣∣
∣Hessb2 − Δb2

n
g

∣∣∣
∣

2

. (2.21)

(5) We have

A(R) ≤ R
(
R−2gR, |∇b|) + C

∫

R
2 ≤b≤ 3R

2

b−n

∣∣
∣∣Hessb2 − Δb2

n
g

∣∣
∣∣

2

. (2.22)

Roughly speaking, (1) and (2) show that R agrees with A to first order
at infinity, while (4) and (5) show that they are equivalent to first order on
(R−2gR, |∇b|). At first, this may appear surprising since R will contain the
scalar curvature and, thus, depends on more derivatives of the metric. How-
ever, we will see that the trace-free Hessian satisfies an elliptic equation and,
thus, elliptic estimates will allow us to bound these higher derivatives by
lower order ones (see Theorem 4.1 below).

We will construct R to satisfy (1) and (2) in Sect. 3. Properties (4) and
(5) are proven in Sect. 4. The remainder of the paper proves the Lojasiewicz-
Simon inequality (3) for R.

Remark 2.23 Roughly speaking, one can think of (4) and (5) as effective
forms of (2) and (1), respectively. Namely, when the manifold is conical, then
(4) and (5) imply (1) and (2), but with inequalities instead of equalities. The
precise dependence in the error terms will be critical for our arguments.

2.5 Decay

We will show next that (1)–(5) above implies that the tangent cone at infinity
is unique. We will first show decay of the following natural monotone non-
increasing scale-invariant integral

Q(r) =
∫

r≤b

b−n

∣∣
∣∣Hessb2 − Δb2

n
g

∣∣
∣∣

2

(2.24)

that roughly measures −rA′(r). One important reason why we work with Q

instead of rA′ is that Q(r) is obviously monotone.
Precisely, we will show that (1)–(5) implies the following crucial decay

estimate:
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Proposition 2.25 Set β = 1
1−α

− 1 > 0. There exists C so that if every R ∈
(r, s) satisfies (2.11), then

Q(s) ≤ C

| log(s/r)|β+1
. (2.26)

2.6 Proving decay

As described in the overview, the key for proving the decay in Proposi-
tion 2.25 is to establish the inequality (1.11) bounding Q(2r) in terms of
the decay of Q from r/2 to 2r . This will be done in a series of lemmas cul-
minating in Corollary 2.39.

Lemma 2.27 If R satisfies (2.11), then

(∫ ∞

R

rn−3
∫

r≤b

b2−2n

∣∣
∣∣Hessb2 − Δb2

n
g

∣∣
∣∣

2

dr

)2−α

≤ C

∫

R
2 ≤b≤ 3R

2

b−n

∣∣∣
∣Hessb2 − Δb2

n
g

∣∣∣
∣

2

. (2.28)

Proof Using (2.7), then (1) and then (5) gives

1

2

∫ ∞

R

rn−3
∫

r≤b

b2−2n

∣∣
∣∣Hessb2 − Δb2

n
g

∣∣
∣∣

2

dr

= A(R) − A∞ = A(R) − R
(
b−2∞ g0, b∞

)

≤ R
(
R−2gR, |∇b|) − R

(
b−2∞ g0, b∞

)

+ C

∫

R
2 ≤b≤ 3R

2

b−n

∣
∣∣∣Hessb2 − Δb2

n
g

∣
∣∣∣

2

. (2.29)

On the other hand, (3) and (4) give that

∣
∣R

(
R−2gR, |∇b|) − R

(
b−2∞ g0, b∞

)∣∣2−α

≤ ∣
∣∇1R

(
R−2gR, |∇b|)∣∣2

≤ C

∫

R
2 ≤b≤ 3R

2

b−n

∣
∣∣∣Hessb2 − Δb2

n
g

∣
∣∣∣

2

. (2.30)

Raising (2.29) to the power 2 −α, using the convexity of t → tp for p ≥ 1 so
that

(a + b)p ≤ 2p−1(ap + bp
)

for a, b ≥ 0 and p ≥ 1 (2.31)
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with p = 2 − α, and then using (2.30) gives

(∫ ∞

R

rn−3
∫

r≤b

b2−2n

∣
∣∣∣Hessb2 − Δb2

n
g

∣
∣∣∣

2

dr

)2−α

≤ C

∫

R
2 ≤b≤ 3R

2

b−n

∣∣
∣∣Hessb2 − Δb2

n
g

∣∣
∣∣

2

+ C

(∫

R
2 ≤b≤ 3R

2

b−n

∣∣
∣∣Hessb2 − Δb2

n
g

∣∣
∣∣

2)2−α

. (2.32)

Since 2−α > 1 and we always work on annuli where
∫

R
2 ≤b≤ 3R

2
b−n|Hessb2 −

Δb2

n
g|2 is bounded, we conclude that

(∫ ∞

R

rn−3
∫

r≤b

b2−2n

∣∣∣
∣Hessb2 − Δb2

n
g

∣∣∣
∣

2

dr

)2−α

≤ C

∫

R
2 ≤b≤ 3R

2

b−n

∣
∣∣∣Hessb2 − Δb2

n
g

∣
∣∣∣

2

. (2.33)

�

Lemma 2.34 Given R > 0, we have
∫ ∞

R

rn−3
∫

r≤b

b2−2n

∣∣∣
∣Hessb2 − Δb2

n
g

∣∣∣
∣

2

dr ≥ 42−nQ(2R). (2.35)

Proof Within this proof, set f = |Hessb2 − Δb2

n
g|2 to simplify notation. We

have
∫ ∞

R

rn−3
∫

r≤b

b2−2nf dr =
∞∑

j=0

∫ 2j+1R

2jR

rn−3
∫

r≤b

b2−2nf dr

≥
∞∑

j=0

∫ 2j+1R

2jR

(
2j

)n−3
∫

2j+1R≤b≤2j+2R

b2−2nf dr

=
∞∑

j=0

(
2jR

)n−2
∫

2j+1R≤b≤2j+2R

b2−2nf. (2.36)

On the interval 2j+1R ≤ b ≤ 2j+2R, we have that

(
2jR

)n−2
b2−2n = b−n

(
2jR

b

)n−2

≥ 42−nb−n. (2.37)
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We conclude that

∫ ∞

R

rn−3
∫

r≤b

b2−2nf dr ≥ 42−n
∞∑

j=0

∫

2j+1R≤b≤2j+2R

b−nf = 42−nQ(2R).

(2.38)

�

Combining Lemmas 2.27 and 2.34 gives the inequality (1.11):

Corollary 2.39 If r satisfies (2.11), then

Q(2r)2−α ≤ C
(
Q(r/2) − Q(2r)

)
. (2.40)

Proof Combining Lemmas 2.27 and 2.34 gives

Q(2r)2−α ≤ C

∫

r
2 ≤b≤2r

b−n

∣∣∣
∣Hessb2 − Δb2

n
g

∣∣∣
∣

2

= C
(
Q(r/2) − Q(2r)

)
.

(2.41)

�

The decay estimate for Q(r), i.e., Proposition 2.25, will follow easily from
Corollary 2.39 and the following elementary algebraic fact:

Lemma 2.42 If 0 < a < b ≤ 1, α ∈ (0,1), and a2−α ≤ C′(b − a), then

aα−1 − bα−1 ≥ C, (2.43)

where C depends on α and C′.

Proof Since α < 1 and 0 < a < b ≤ 1, the fundamental theorem of calculus
gives

aα−1 − bα−1 = (1 − α)

∫ b

a

tα−2dt ≥ (1 − α)(b − a)min
{
tα−2|t ∈ (a, b)

}

= (1 − α)(b − a)bα−2. (2.44)

We will get a lower bound for this by considering two cases, depending on
the ratio b

a
.

First, if b ≤ 2a, then the hypothesis a2−α ≤ C′(b − a) implies that

(b − a)bα−2 ≥ 2α−2((b − a)bα−2) ≥ 2α−2

C′ . (2.45)
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Substituting this into (2.44) gives the lemma in this case.
Second, suppose instead that b > 2a and, thus, that

(b − a)bα−2 ≥ b

2
bα−2 = bα−1

2
≥ 1

2
, (2.46)

giving the lemma in this case also. �

Proof of Proposition 2.25 Given j so that r = 2(4j ) satisfies (2.11), then
(2.40) gives

Q
(
4j+1)2−α ≤ C′(Q

(
4j

) − Q
(
4j+1)), (2.47)

where C′ is independent of j . Applying Lemma 2.42 with a = Q(4j+1) and
b = Q(4j ) gives

Q
(
4j+1)α−1 − Q

(
4j

)α−1 ≥ C. (2.48)

Therefore, if r = 2(4j ) satisfies (2.11) for j1 ≤ j ≤ j2, then iterating this
gives

Q
(
4j2+1)α−1 ≥ Q

(
4j1+1)α−1 + C(j2 − j1). (2.49)

If we set β = 1
1−α

− 1, then β > 0 and (2.49) gives

Q
(
4j2+1) ≤ C(j2 − j1)

1
α−1 = C(j2 − j1)

−β−1. (2.50)

Using the monotonicity of Q, we conclude that if every R ∈ (r, s) satisfies
(2.11), then

Q(s) ≤ C

| log(s/r)|β+1
, (2.51)

completing the proof. �

2.7 Distance to cones

Let the point y ∈ M be the pole for the Green’s function. Following Defi-
nition 4.2 in [8], define the quantity Θr to be the scale invariant Gromov-
Hausdorff distance from the annulus

B 4r
b∞

(y) \ B r
b∞

(x) ⊂ M (2.52)

to the corresponding annulus centered at the vertex in the closest metric cone.
Here, we have divided by b∞ since the function b is not asymptotic to the
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distance function r , but rather to b∞r . Thus, if Θr < ε, then there is a cone
Cr so that

dGH

(
B 4r

b∞
(y) \ B r

b∞
(x) ⊂ M,B 4r

b∞
\ B r

b∞
⊂ Cr

)
< ε

r

b∞
, (2.53)

where the balls in Cr are centered at the vertex of the cone Cr .
We will need the following estimate that holds when we are close to a fixed

Ricci-flat cone with smooth cross-section: There exists C so that

Θ2
r ≤ C

[
Q(r/2) − Q(8r)

]
. (2.54)

We will prove (2.54) in Sect. 4.4 using the estimates from Sect. 4.8

The last properties of Θr that we will need are the following criteria for
uniqueness (cf. Theorem 4.6 in [8]) and an effective version of it that follows
afterwards:

Lemma 2.56 If
∑∞

j=1 Θ2j < ∞, then M has a unique tangent cone at infin-
ity.

Proof To keep notation simple within this proof, we will argue as if b∞ = 1.
For each j , we get a cone Cj so that

dGH

(
B42j (x) \ B2j (x) ⊂ M,B42j \ B2j ⊂ Cj

) ≤ 2Θ2j 2j . (2.57)

Let Aj denote the annulus B2j+1(x) \ B2j (x) ⊂ M and define the rescaled
annuli Āj by

Āj = 2−jAj . (2.58)

Since two cones that agree on an annulus must be equal, it suffices to prove
that the sequence Āj is Cauchy with respect to Gromov-Hausdorff distance.
This will follow from the triangle inequality once we show that the sequence
dGH (Āj , Āj+1) is summable.

The bound (2.57) implies that

dGH (Āj ,B2 \ B1 ⊂ Cj) = 2−j dGH (Aj ,B2j+1 \ B2j ⊂ Cj) ≤ 2Θ2j ,

(2.59)

8The methods of [4] apply more generally when M has nonnegative Ricci curvature to give
μ = μ(n) > 0 and a constant C so that

Θ
2+μ
r ≤ C

[
Q(r/2) − Q(8r)

]
. (2.55)

Although this more general inequality is never used in this paper, we will sketch the proof of
(2.55) in the Appendix.
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dGH (Āj+1,B2 \ B1 ⊂ Cj) = 2−j−1dGH (Aj+1,B2j+1 \ B2j ⊂ Cj) ≤ Θ2j .

(2.60)

Combining these bounds with the triangle inequality gives

dGH (Āj , Āj+1) ≤ dGH (Āj ,B2 \ B1 ⊂ Cj) + dGH (Āj+1,B2 \ B1 ⊂ Cj)

≤ 3Θ2j . (2.61)

It follows that the sequence dGH (Āj , Āj+1) is summable, completing the
proof. �

We will also use the following effective version of Lemma 2.56:

Lemma 2.62 Fix R > 0. Let Aj denote the annulus B2j+1R(x) \ B2jR(x) ⊂
M and define the rescaled annuli Āj by

Āj = 1

2jR
Aj . (2.63)

Given integers j1 < j2, then

sup
{
dGH (Āi, Āj )|j1 ≤ i, j ≤ j2

} ≤ 3
j2∑

j=j1

Θ2jRb∞ . (2.64)

Proof This follows as in the proof of Lemma 2.56. �

2.8 Uniqueness

Uniqueness will follow by combining Lemma 2.62 with the following modi-
fication of Theorem 4.6 in [8].

Proposition 2.65 There exist C̄, β̄ > 0 so that if every r ∈ (R,2mR) satisfies
(2.11), then

m∑

j=j1

Θ2jR ≤ C̄j
−β̄

1 . (2.66)

Proof By scaling, we may assume that R = 1.
Given any γ > 0, and j1 < j2, Hölder’s inequality for series gives

j2∑

j=j1

Θ2j ≤
(

j2∑

j=j1

Θ2
2j j

2γ

) 1
2
( ∞∑

j=1

(
j−γ

)2

) 1
2

. (2.67)
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The series in the last term is summable whenever we have

2γ > 1. (2.68)

To bound the remaining term, we bring in (2.54) to get

j2∑

j=j1

Θ2
2j j

2γ ≤ C

∞∑

j1=1

[
Q

(
2j−1) − Q

(
2j+3)]j2γ . (2.69)

By assumption, every r ∈ (1,2j2) satisfies (2.11), so Proposition 2.25 gives
for j ≤ j2

Q
(
2j

) ≤ Cj−1−β, (2.70)

so Lemma 2.73 below applies as long as

2γ < 1 + β. (2.71)

Since β > 0, we can choose γ > 0 so that both (2.68) and (2.71) are satisfied.
Therefore, we get that (2.69) is bounded by

j2∑

j=j1

Θ2
2j j

2γ ≤ C

∞∑

j=j1

[
Q

(
2j−1) − Q

(
2j+3)]j2γ ≤ Cj

2γ−1−β

1 . (2.72)

�

The preceding proposition used the following elementary lemma for se-
quences:

Lemma 2.73 Suppose that β > 0 and {aj } is a monotone non-increasing
sequence with

0 ≤ aj ≤ Cj−1−β. (2.74)

For any positive integers k and m and constant ν ∈ [1,1 + β), then we have

∞∑

j=m

[aj − aj+k]jν ≤ Ck
β + 1

β + 1 − ν
mν−1−β < ∞. (2.75)

Proof Given N > m, we have

N∑

j=m

[aj − aj+k]jν =
N∑

j=m

ajj
ν −

N+k∑

j=m+k

aj (j − k)ν



Uniqueness of tangent cones 535

=
m+k−1∑

j=m

ajj
ν −

N+k∑

j=N+1

aj (j − k)ν

+
N∑

j=m+k

aj

(
jν − (j − k)ν

)
. (2.76)

Using (2.74) and noting that jν−1−β is decreasing in j , the first sum is
bounded by

m+k−1∑

j=m

ajj
ν ≤ C

m+k−1∑

j=m

jν−1−β ≤ Ckmν−1−β. (2.77)

To prove the lemma, we have to handle the last sum in (2.76). Since ν ≥ 1,
the fundamental theorem of calculus gives

jν − (j − k)ν = ν

∫ j

j−k

tν−1dt ≤ kνjν−1. (2.78)

Putting this in, then using (2.74), and then noting that ν − 2 − β < 0 gives

N∑

j=m+k

aj

(
jν − (j − k)ν

) ≤ kν

N∑

j=m+k

aj j
ν−1 ≤ Ckν

∞∑

j=m+k

jν−2−β

≤ Ckν

∫ ∞

m

tν−2−βdt = Ckνmν−1−β

β + 1 − ν
, (2.79)

where we used that ν − 2 − β < −1. �

We are now ready to prove uniqueness assuming that we have a functional
R that satisfies (1)–(5). The rest of the paper will then be devoted to con-
structing R and proving (1)–(5).

Proof of Theorem 1.2 assuming (1)–(5) We start by choosing constants δ > 0,
j1 and ε > 0:

• Fix δ > 0, so that (1)–(5) hold on any scale r that satisfies (2.11).
• Proposition 2.65 gives C̄, β̄ > 0 so that if every r ∈ (R,2mR) satisfies

(2.11), then

m∑

j=j1

Θ2jR ≤ C̄j
−β̄

1 . (2.80)
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Fix an integer j1 = j1(C̄, β̄) so that C̄j
−β̄

1 < δ/100.
• Using (2.54), fix ε > 0 so that if A(r/2) − A(8r) < ε, then Θr < δ/100.

Suppose now that R > 0 and an integer m ≥ j1 satisfy:

(A) Every r ∈ (R,2j1R) satisfies (2.11) with δ/100 in place of δ.
(B) A(R/2) − A(2m+3R) < ε.

Suppose that k ∈ [j1,m−1] . If r ∈ (R,2kR) satisfies (2.11) with δk ≤ δ/2
in place of δ, then (B) and the triangle inequality give that r ∈ (R,2k+1R)

satisfies (2.11) with

δk + 3δ/100 < δ (2.81)

in place of δ. In particular, we can apply Proposition 2.65 on this stretch to
get that

k+1∑

j=j1

Θ2jR ≤ C̄j
−β̄

1 < δ/100. (2.82)

Consequently, Lemma 2.62 and the triangle inequality give that r ∈ (R,

2k+1R) satisfies (2.11) with 4δ/100 < δ in place of δ. Since this bound is
independent of k, we conclude that it holds on the entire interval (R,2mR).

We can use this to prove both the global uniqueness theorem (Theorem 1.2)
and the effective version. To prove Theorem 1.2, use the monotonicity of A to
pick some large R so that (B) holds for every m. It follows that (2.11) holds
on the entire interval (R,∞) and (2.82) gives for j̄ ≥ j1 that

∞∑

j=j̄

Θ2jR ≤ C̄j̄−β̄ < ∞. (2.83)

This implies uniqueness by Lemma 2.56; combining it with Lemma 2.62
gives the rate of convergence. �

We will next describe the modifications needed for the effective version of
uniqueness.

Proof of Theorem 1.16 The first claim (E1) follows as in the proof of the
uniqueness theorem, with (A) and (B) in the proof now given by the as-
sumptions instead of by taking R sufficiently large. Furthermore, arguing as
there (see (2.83) and Lemma 2.62) gives an “effective Cauchy bound” for
r1 < r < s < r2:

dGH

(
1

r

(
B2r (x) \ Br(x)

)
,

1

s

(
B2s(x) \ Bs(x)

)) ≤ C

(
log

r

r1

)−β̄

. (2.84)



Uniqueness of tangent cones 537

Thus, we get that the maximal scale-invariant distance between any of these
annuli decays as claimed. Finally, (2.82) gives that Θr also decays like a
power of log r

r1
so these annuli are close to an annulus in a fixed cone. �

3 Functionals on the space of metrics and measures

In this section, we will define the functional R and verify properties (1) and
(2) of R. Recall that g0 is a fixed Einstein metric on an (n − 1)-dimensional
manifold N with Ricg0 = (n−2)g0, A is the set of C2,β metrics g and positive
C2,β functions w, and A1 ⊂ A are the ones satisfying the weighted volume
constraint

A1 =
{
(g,w) ∈ A

∣
∣∣
∫

N

wdμg = Vol
(
∂B1(0)

)}
. (3.1)

As we saw, (b−2∞ g0, b∞) ∈ A1. The tangent space T to A at (g,w) is given
by the set of symmetric 2-tensors h and functions v, with (h, v) being tangent
to the path9

(
g + th,wetv

)
. (3.2)

The linear space T comes with a natural inner product

〈
(h1, v1), (h2, v2)

〉
(g,w)

=
∫

N

{〈h1, h2〉g + v1v2
}
wdμg. (3.3)

Lemma 3.4 The variation (h, v) is tangent to A1 at (g,w) if and only if
∫

N

(
1

2
Tr(h) + v

)
wdμg = 0. (3.5)

Proof This follows immediately from integrating

((
wetv

)
dμg+th

)′ =
(

1

2
Tr(h) + v

)
wdμg. (3.6)

�

The functional R will be a linear combination of two natural functionals
on A given by

A(g,w) =
∫

N

w3dμg, (3.7)

9This normalization simplifies some later computations.
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B(g,w) =
∫

N

Rgwdμg, (3.8)

where Rg is the scalar curvature of the metric g. The coefficients of A and B

will be chosen so that R satisfies (1) and (2).
The next proposition computes the first derivatives of A and B at (g,w).

Proposition 3.9 Given one parameter families g + th and wetv , we get

A′ =
∫

N

{
w2

(
1

2
Tr(h) + v

)
+ 2w2v

}
wdμg, (3.10)

B ′ =
∫

N

{
−〈Ricg, h〉 +

〈
h,

Hessw

w

〉
− Tr(h)

Δw

w

+ Rg

(
1

2
Tr(h) + v

)}
wdμg. (3.11)

Proof Since [(wetv)2]′ = 2w2v, the first claim follows from the formula (3.6)
for the derivative of the weighted volume form. Using Lemma A.1 and (3.6),
the variation of B is

B ′ =
∫

N

{
R′

g + Rg

(
1

2
Tr(h) + v

)}
wdμg

=
∫

N

{
(−〈Ricg, h〉 + δ2h − ΔTr(h)

) + Rg

(
1

2
Tr(h) + v

)}
wdμg.

(3.12)

This almost gives what we want, except that two of the terms have derivatives
applied to h. We will integrate by parts to take these off. Namely, Stokes’
theorem gives that

∫

N

wΔTr(h)dμg =
∫

N

Tr(h)Δwdμg, (3.13)

∫

N

wδ2hdμg = −
∫

N

〈∇w,δh〉dμg =
∫

N

〈h,Hessw〉dμg. (3.14)

�

The next corollary uses the first variation formulas to choose a linear com-
bination R of A and B so that R(b−2∞ g0, b∞) = A∞ and (g0, b∞) is a critical
point, i.e., (1) and (2) hold.
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Corollary 3.15 Given b∞ > 0, the pair (b−2∞ g0, b∞) is a critical point for
the functional

R ≡ 1

2 − n

(
A − B

(n − 2)

)
(3.16)

restricted to the subset A1 and, moreover, R(b−2∞ g0, b∞) = A∞.

Proof To simplify notation, set ḡ = b−2∞ g0. Since g0 is Einstein with Ricg0 =
(n − 2)g0,

Rḡ = b2∞Rg0 = b2∞(n − 1)(n − 2), (3.17)

Ricḡ = b2∞(n − 2)ḡ. (3.18)

Hence, at (ḡ, b∞), Proposition 3.9 gives that

A′ = 2b3∞
∫

N

vdμḡ = −b3∞
∫

N

Tr(h)dμḡ, (3.19)

B ′ = −b∞
∫

N

〈Ricḡ, h〉dμḡ = (2 − n)b3∞
∫

N

Tr(h)dμḡ, (3.20)

where the first two equations used that the integral of Tr(h) + 2v is zero
because of the weighted volume constraint. This gives the first claim.

For the second claim, observe that

(
A − B

(n − 2)

)
(ḡ, b∞) =

∫

N

{
b2∞ − b2∞(n − 1)(n − 2)

(n − 2)

}
b∞dμḡ

= (2 − n)b2∞
∫

M

b∞dμḡ = (2 − n)b2∞Vol
(
∂B1(0)

)

= (2 − n)A∞. (3.21)

�

3.1 The gradient of R

We will next compute the gradient of R as a functional on the full space
of metrics g and weights w. The starting point is the following lemma that
computes the directional derivative of R.

Lemma 3.22 Given one parameter families g + th and wetv , we have

(2 − n)R′ =
∫

N

{(
3w2 − Rg

n − 2

)(
1

2
〈g,h〉g + v

)
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+
〈(

Ricg

n − 2
− w2g

)
, h

〉

g

}
wdμg

+ 1

n − 2

∫

N

〈(
(Δw)g − Hessw

)
, h

〉
g
dμg. (3.23)

Proof It is convenient to set φ = (1
2 Tr(h) + v). Proposition 3.9 gives

A′ =
∫

N

{
w2φ + 2w2v

}
wdμg =

∫

N

{
3w2φ − w2〈g,h〉}wdμg, (3.24)

B ′ =
∫

N

{
−〈Ricg, h〉 +

〈
h,

Hessw

w

〉
− Tr(h)

Δw

w
+ Rgφ

}
wdμg. (3.25)

Using the equations for A′ and B ′ gives
(

A − B

n − 2

)′
=

∫

N

{(
3w2 − Rg

n − 2

)
φ +

〈(
Ricg

n − 2
− w2g

)
, h

〉}
wdμg

+ 1

n − 2

∫

N

〈(
(Δw)g − Hessw

)
, h

〉
dμg. (3.26)

�

The previous lemma computed the directional derivative of R. To get the
gradient, we need to write it in terms of inner products for a fixed background
metric ḡ.

Lemma 3.27 If h and J are symmetric 2-tensors, while g and ḡ are metrics,
then

〈h,J 〉g = 〈
h,Ψ (J )

〉
ḡ
, (3.28)

where Ψ is the mapping defined by [Ψ (J )]ij = ḡikg
knJnmgm�ḡ�j . If g = ḡ +

th, then

d

dt

∣
∣∣∣
t=0

Ψ (J )ij = J ′
ij − hipḡpnJnj − Jimḡmphpj . (3.29)

Proof Expanding the first expression out, we have

〈h,J 〉g = hijJkng
ikgjn. (3.30)

On the other hand, we get
〈
h,Ψ (J )

〉
ḡ

= hpqḡ
pi ḡqj

[
Ψ (J )

]
ij

= hpqḡ
pi ḡqj ḡikg

knJnmgm�ḡ�j

= hpqδpkg
knJnmgm�δ�q = hk�g

knJnmgm�. (3.31)



Uniqueness of tangent cones 541

Suppose now that we have a one-parameter family of metrics g = ḡ + th and
both Ψ and J depend on t . Differentiating at t = 0 and using that Ψ is the
identity at t = 0 gives

[
Ψ (J )ij

]′ = J ′
ij + ḡik

(
gkn

)′
Jnj + Jim

(
gm�

)′
ḡ�j

= J ′
ij − hipḡpnJnj − Jimḡmphpj , (3.32)

where the last equality used that (gm�)′ = −gmphpqg
q� (and the correspond-

ing equation for the derivative of gkn). �

We will apply Lemma 3.27 with ḡ equal to the background metric ḡ =
b−2∞ g0. The next corollary uses the lemma to calculate the gradient of R on
the space of all variations; later, we will project this onto A1.

Corollary 3.33 The gradient of R at (g,w) is given by

(2 − n)∇R =
(

1

2
φ1Ψ (g) + Ψ (J ),φ1

)
ν, (3.34)

where we define functions ν and φ1 by

ν = w
√

det(g)

b∞
√

det(b−2∞ g0)

, (3.35)

φ1 = 3w2 − Rg

n − 2
, (3.36)

and we define the 2-tensor J = J1 + J2 by

J1 = Ricg

n − 2
− w2g, (3.37)

J2 = 1

n − 2

(
Δw

w
g − Hessw

w

)
. (3.38)

Proof Given one parameter families g + th and wetv , Lemma 3.22 gives that

(2 − n)R′ =
∫

N

{
φ1

(
1

2
〈g,h〉g + v

)
+ 〈J,h〉g

}
wdμg

=
∫

N

{
1

2
φ1〈g,h〉g + 〈J,h〉g + φ1v

}
νb∞dμ

b−2∞ g0
. (3.39)

Lemma 3.27 gives the corollary. �
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For the next corollary, it is useful to define the functional A1 by

A1(g,w) =
∫

N

wdμg. (3.40)

The next corollary computes the gradient of A1.

Corollary 3.41 The gradient of A1 at (g,w) is given by ∇A1 = (1
2Ψ (g),1)ν

where

ν = w
√

det(g)

b∞
√

det(b−2∞ g0)

. (3.42)

Proof Given one parameter families g+ th and wetv , differentiating A1 gives

A′
1 =

∫

N

(
1

2
〈g,h〉g + v

)
wdμg =

∫

N

(
1

2
〈g,h〉g + v

)
νb∞dμ

b−2∞ g0
. (3.43)

Lemma 3.27 gives the corollary. �

4 Proving properties (4) and (5)

In this section, we will show that when R is applied to the level sets of b, then
it satisfies properties (4) and (5). A key for both of these will be to show in
the next subsection that an L2 bound on the trace-free Hessian of b2 implies
scale-invariant C1 bounds.

As in Sect. 2, will assume throughout this section that we are working
on a scale R where the Hessian of b2 is almost diagonal and |∇b| is almost
constant.

4.1 C1 bounds on the trace free Hessian

Theorem 4.1 There exists a constant C so that
∥∥
∥∥Hessb2 − Δb2

n
g

∥∥
∥∥

2

C1(b=R)

≤ C

∫

R
2 ≤b≤ 3R

2

b−n

∣∣
∣∣Hessb2 − Δb2

n
g

∣∣
∣∣

2

, (4.2)

where ‖ · ‖C1(b=R) is the scale-invariant C
1-norm on M at b = R.

Here, “scale-invariant” means measured with respect to the rescaled metric
R−2gR , where gR is the induced metric on the level set b = R. Namely, at
b = R

∣∣∣
∣Hessb2 − Δb2

n
g

∣∣∣
∣

2

+ R2
∣∣∣
∣∇

{
Hessb2 − Δb2

n
g

}∣∣∣
∣

2
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≤ C

∫

R
2 ≤b≤ 3R

2

b−n

∣
∣∣∣Hessb2 − Δb2

n
g

∣
∣∣∣

2

.

We will need the following Bochner type formula for the Hessian in the
proof.

Lemma 4.3 Given any Ricci-flat manifold and function w, we have

ΔHessw = HessΔw − 2R(Hessw), (4.4)

where R(Hessw) denotes the natural action of the curvature tensor on sym-
metric two-tensors.

Proof Fix a point p and an orthonormal frame ei with ∇ei
ej = 0 at p for

every i, j .
Since ∇ei

ei = 0 at this point, the Laplacian of the Hessian is

ΔHessw = ∇ei
∇ei

∇∇w, (4.5)

and combining this with ∇ei
ej = 0 at the point gives

(ΔHessw)jk = 〈∇ei
∇ei

∇ej
∇w,ek〉 − 〈∇∇ei

∇ei
ej

∇w,ek〉. (4.6)

Using the definition of the curvature (cf. (1.20)), we get at this point

〈∇ei
∇ei

∇ej
∇w,ek〉 = 〈∇ei

(∇ej
∇ei

∇w + ∇[ei ,ej ]∇w − R(ei, ej )∇w
)
, ek

〉

= 〈∇ej
∇ei

∇ei
∇w + ∇ei

∇[ei ,ej ]∇w − R(ei, ej )(∇ei
∇w)

− ∇ei

(
R(ei, ej )∇w

)
, ek

〉

= 〈∇ej
∇ei

∇ei
∇w + ∇ei

∇[ei ,ej ]∇w,ek〉 − Rij�kwi�

− Rijnkwin, (4.7)

where the last equality used that Ric = 0 and, by the second Bianchi identity
and Ric = 0,

(∇R)iijnk = 0. (4.8)

Since [ei, ej ] vanishes at the point, we have ∇ei
∇[ei ,ej ]∇w = ∇∇ei

[ei ,ej ]∇w

and we get

〈∇ei
∇ei

∇ej
∇w,ek〉 = 〈∇ej

∇ei
∇ei

∇w + ∇∇ei
[ei ,ej ]∇w,ek〉 − 2Rij�kwi�.

(4.9)
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On the other hand, Ric = 0 implies that ∇Δw = Δ∇w, so we have

(Δw)jk = 〈∇ej
∇Δw,ek〉 = 〈∇ej

Δ∇w,ek〉
= 〈∇ej

(∇ei
∇ei

∇w − ∇∇ei
ei
∇w), ek

〉

= 〈∇ej
∇ei

∇ei
∇w − ∇∇ej

∇ei
ei
∇w,ek〉. (4.10)

Combining this with (4.6) and (4.9) gives

(ΔHessw)jk − (Δw)jk

= −2Rij�kwi� + 〈∇∇ei
[ei ,ej ]∇w − ∇∇ei

∇ei
ej

∇w + ∇∇ej
∇ei

ei
∇w,ek〉.

To complete the proof, we observe that

∇ei
[ei, ej ] − ∇ei

∇ei
ej + ∇ej

∇ei
ei = 0. (4.11)

�

Proof of Theorem 4.1 Set Bb = Hessb2 − Δb2

n
g, so that Bb is trace free. Since

Δb2 = 2n|∇b|2, we have

Bb ≡ Hessb2 − 2|∇b|2g. (4.12)

Since M is Ricci flat, a computation from [8] (see Lemma B.11) gives

b2Δ|∇b|2 = 1

2
|Bb|2 + (2n − 4)Bb(∇b,∇b). (4.13)

Lemma B.4 gives

b∇|∇b|2 = Bb(∇b), (4.14)

so we know that

∇b ⊗ ∇|∇b|2 + bHess|∇b|2 = ∇(
Bb(∇b)

)
. (4.15)

We rewrite this as

b2Hess|∇b|2 = b∇(
Bb(∇b)

) − ∇b ⊗ Bb(∇b). (4.16)

Thus, using Lemma 4.3, we compute

b2ΔHessb2 = b2HessΔb2 − 2b2Rij�k

(
b2)

i�

= 2nb2Hess|∇b|2 − 2b2Rij�k

(
b2)

i�
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= 2n
{
b∇(

Bb(∇b)
) − ∇b ⊗ Bb(∇b)

} − 2b2Rij�k(Bb)i�, (4.17)

where the last equality also used that Ric = 0 to get that

Rij�k(Bb)i� − Rij�k

(
b2)

i�
= −2|∇b|2Rij�kgi� = 0. (4.18)

On the other hand, the metric is parallel so we have

Δ
(
2|∇b|2g) = 2gΔ|∇b|2 = g

b2

(|Bb|2 + 4(n − 2)Bb(∇b,∇b)
)
. (4.19)

Combining these, we see that

b2ΔBb = 2n
{
b∇(

Bb(∇b)
) − ∇b ⊗ Bb(∇b)

}

− {|Bb|2 + 4(n − 2)Bb(∇b,∇b)
}
g

− 2b2Rij�k(Bb)i�. (4.20)

Using this, noting that Bb is trace-free (so its inner product with g is zero),
and using that b2Rij�k is bounded by a constant C (since we are close to a
fixed cone), we get the differential inequality

1

2
b2Δ|Bb|2 = b2|∇Bb|2 + 〈

b2ΔBb,Bb

〉

≥ b2|∇Bb|2 − 2n|Bb|
{
b|∇Bb||∇b| + |Bb|b|Hessb|

+ |∇b|2|Bb|
} − C|Bb|2. (4.21)

Using the a priori bounds for |∇b| and b|Hessb|, and the absorbing inequality,
we get

1

2
b2Δ|Bb|2 ≥ b2|∇Bb|2 − C1|Bb|b|∇Bb| − C2|Bb|2

≥ 1

2
b2|∇Bb|2 − C′

2|Bb|2. (4.22)

We will use this twice. First, this differential inequality allows us to use the
meanvalue inequality to get the desired pointwise bound for |Bb|2. Second,
using a cutoff function η ≥ 0 with support in the annular region and arguing
as in the reverse Poincaré inequality, we have

0 =
∫

div
(
η2∇|Bb|2

) ≥
∫ (

η2|∇Bb|2 − 2C′
2η

2 |Bb|2
b2

− 4η|∇η||Bb||∇Bb|
)

≥
∫ (

1

2
η2|∇Bb|2 − 2C′

2η
2 |Bb|2

b2
− 8|∇η|2|Bb|2

)
. (4.23)
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Since we are on the scale R, we have |∇η| ≤ C
R

and b ≈ R, so this yields

R2
∫

3R
4 ≤b≤ 5R

4

|∇Bb|2 ≤ C

∫

R
2 ≤b≤ 3R

2

|Bb|2. (4.24)

We will again use the meanvalue inequality to go from this integral bound
to a pointwise bound for |∇Bb|. We start with the “Bochner formula” for
Δ|∇Bb|2

Δ|∇Bb|2 ≥ 2|∇∇Bb|2 − C

b2
|∇Bb|2 + 2〈∇Bb,∇ΔBb〉, (4.25)

where the constant C comes from a scale-invariant curvature bound for M

which holds because it is C3 close to a fixed cone on this scale. Bringing in
the formula (4.20) for ΔBb and the a priori bounds that hold since M is close
to conical on this scale, we see that

b2|∇ΔBb| ≤ C

{
|∇Bb| + b|∇∇Bb| + |Bb|

b

}
. (4.26)

Using this in the Bochner formula (4.25) and using the absorbing inequality
as before, then allows us to use the meanvalue inequality to get the desired
bound on b|∇Bb|. �

4.2 The proof of property (4)

As in the previous section, the functional R is given by

R ≡ 1

2 − n

(
A − B

(n − 2)

)
. (4.27)

The next proposition verifies property (4) for the functional R.

Proposition 4.28 There exists C so that

∣
∣∇1R

(
R−2gR, |∇b|)∣∣2 ≤ C

∫

R
2 ≤b≤ 3R

2

b−n

∣∣
∣∣Hessb2 − Δb2

n
g

∣∣
∣∣

2

. (4.29)

To prove this, we will first give a pointwise bound for ∇1R for metrics g

that are in a fixed neighborhood of b−2∞ g0.

Lemma 4.30 If (g,w) is in a sufficiently small neighborhood of (b−2∞ g0, b∞),
then

|∇1R| ≤ C sup
(∣∣Ricg − (n − 2)w2g

∣∣ + |Hessw| + |∇w|). (4.31)
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Proof Within this proof, we will write | · | for pointwise norms and ‖ · ‖ for
L2 norms, while 〈·, ·〉 will be the L2 inner product.

The space A1 is a level set of A1, so the projection ∇1R of the gradient
∇R is

∇1R = ∇R − 〈∇R,∇A1〉 ∇A1

‖∇A1‖2
, (4.32)

where Corollary 3.41 gives that

∇A1 =
(

1

2
Ψ (g),1

)
ν. (4.33)

By Corollary 3.33, the gradient of R at (g,w) is given by

(2 − n)∇R = φ1∇A1 + (
Ψ (J ),0

)
ν. (4.34)

Here ν, φ1 and J = J1 + J2 are given by

ν = w
√

det(g)

b∞
√

det(b−2∞ g0)

, (4.35)

φ1 = 3w2 − Rg

n − 2
, (4.36)

J1 = Ricg

n − 2
− w2g, (4.37)

J2 = 1

n − 2

(
Δw

w
g − Hessw

w

)
. (4.38)

Since Ψ is a bounded operator, w is bounded above and below, and ν is
bounded, we get the pointwise bound

∣
∣(Ψ (J ),0

)
ν
∣
∣ ≤ C|J | ≤ C

(∣∣Ricg − (n − 2)w2g
∣
∣ + |Hessw|). (4.39)

To bound ∇1R, we combine the above with a bound on the projection of
φ1∇A1 given by

φ1∇A1 − 〈φ1∇A1,∇A1〉 ∇A1

‖∇A1‖2
=

(
φ1 −

〈
φ1

∇A1

‖∇A1‖ ,
∇A1

‖∇A1‖
〉)

∇A1.

(4.40)

However, since ∇A1 is bounded, we can bound this by

C

∣∣∣
∣φ1 −

∫
N

φ1|∇A1|2∫
N

|∇A1|2
∣∣∣
∣ ≤ C(supφ1 − infφ1). (4.41)
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Using the definition of φ1, we can bound this by a multiple of the supremum
|∇w| + |Ricg − (n − 2)w2g|. �

Proof of Proposition 4.28 Set g = R−2gR , where gR is the induced metric on
the level set b = R and set w = |∇b|, where ∇ is the gradient in M ; ∇T will
denote the tangential gradient on the level set. We can assume that g is close
to b−2∞ g0 and w is close to b∞.

It follows from Lemma 4.30 that

|∇1R| ≤ C sup
(∣∣Ricg − (n − 2)w2g

∣∣ + |∇gw|g + |Hessw,g|g
)
. (4.42)

To complete the proof, we will show that the right hand side of (4.42) can
be bounded by the scale-invariant C1 norm of the trace-free Hessian Bb of b2

and then appeal to Theorem 4.1. The first observation is that at b = R

|∇gw|2g = R2
∣∣∇T w

∣∣2 = R2
∣∣∇T |∇b|∣∣2 = 1

4

∣∣(Bb(n)
)T ∣∣2

, (4.43)

so we see that |∇gw|g is bounded by the C0 norm of trace-free Hessian of b2.
Similarly, differentiating the equation 2b∇T |∇b| = Bb(n) shows that the tan-
gential Hessian of w is bounded by the C1 norm of Bb. Finally, Lemma B.33
gives the desired bound on |Ricg − (n − 2)w2g|. �

4.3 The proof of property (5)

We will let gR denote the induced metric on the level set {b = R} in the man-
ifold M . The main result in this section is the following proposition which
verifies property (5):

Proposition 4.44 There exists C so that

A(R) ≤ R
(
R−2gR, |∇b|) + C

∫

R
2 ≤b≤ 3R

2

b−n

∣∣∣∣Hessb2 − Δb2

n
g

∣∣∣∣

2

. (4.45)

The next lemma expresses R(R−2gR, |∇b|) in terms of A(R) and an in-
tegral that vanishes when Bb is zero. This must be since R and A agree on
cones. To prove the proposition, we must show that the error terms either have
the right sign or are at least quadratic in Bb.

Lemma 4.46 We can write R(R−2gR, |∇b|) as

A(R) + R1−n

n − 2

∫

b=R

{
−Bb(n,n) + 2|Bb(n)|2 − |Bb|2

4(n − 2)|∇b|2
}
|∇b|. (4.47)
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Proof We have

A(R) = R1−n

∫

b=R

|∇b|3. (4.48)

On the other hand, we have

R
(
R−2gR, |∇b|) = 1

n − 2
R1−n

∫

b=R

{
R2RR

(n − 2)
− |∇b|2

}
|∇b|, (4.49)

where the scalar curvature RR of the level set is given by Lemma B.26

b2|∇b|2RR = (n − 1)(n − 2)|∇b|4 − (n − 2)|∇b|2Bb(n,n) − 1

4
|Bb|2

+ 1

2

∣
∣Bb(n)

∣
∣2

. (4.50)

We see that at b = R

R2RR

(n − 2)
− |∇b|2 = (n − 2)|∇b|2 − Bb(n,n) + 2|Bb(n)|2 − |Bb|2

4(n − 2)|∇b|2 . (4.51)

After dividing by (n − 2) the first term on the right gives us A(R), giving the
lemma. �

Proof of Proposition 4.44 Using Lemma 4.46, we can write R(R−2gR, |∇b|)
as

A(R) + R1−n

n − 2

∫

b=R

{
−Bb(n,n) + 2|Bb(n)|2 − |Bb|2

4(n − 2)|∇b|2
}
|∇b|. (4.52)

Since |∇b|Bb(n,n) = b〈∇|∇b|2,n〉, we see that

R1−n

∫

b=R

{−Bb(n,n)
}|∇b| = −R2−n

∫

b=R

〈∇|∇b|2,n〉 = −RA′(R) ≥ 0,

(4.53)

where the last equality used that d
dR

(R1−n
∫
b=R

v|∇b|) = R1−n
∫
b=R

〈∇v,n〉
for any function v (see Sect. 2 of [9]; cf. [10]).

Substituting (4.53) into (4.54) and throwing away the (only helpful)
|Bb(n)|2 term gives

R
(
R−2gR, |∇b|) − A(R) ≥ −R1−n

n − 2

∫

b=R

{ |Bb|2
4(n − 2)|∇b|2

}
|∇b|. (4.54)
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We conclude that

A(R) ≤ R
(
R−2gR, |∇b|) + CR1−n

∫

b=R

∣∣∣∣Hessb2 − Δb2

n − 1
g

∣∣∣∣

2

. (4.55)

Finally, the proposition follows by using Theorem 4.1 to estimate the last
term. �

4.4 Distance to cones

We will use the estimates in this section to sketch the proof of (2.54), rather
than appealing to the much more general methods in [4]. In the present case,
where the gradient |∇b| is almost constant and the Hessian is almost diagonal,
we actually get stronger estimates.

Recall that Θr is the scale invariant Gromov-Hausdorff distance from the
annulus

B 4r
b∞

(x) \ B r
b∞

(x) ⊂ M

(x is the pole of the Green’s function) to the corresponding annulus centered
at the vertex in the closest metric cone. Given a function w, we will let Hess0

w

denote the trace-free Hessian of w, i.e.,

Hess0
w = Hessw − Δw

n
g.

With this notation, (2.54) asserts that

Θ2
r ≤ C

[
Q(r/2) − Q(8r)

] ≡ C

∫

r
2 ≤b≤8r

b−n
∣∣Hess0

b2

∣∣2
. (4.56)

Here C is a constant. In fact, we will show that the metric is C0 close to the
cone metric.

To keep notation short, we will set δQ = [Q(r/2)−Q(8r)] ≡ ∫
r
2 ≤b≤8r

b−n

×|Hess0
b2 |2. We may assume that δQ is small since there is otherwise nothing

to prove.
The first step is Theorem 4.1 that gives a constant C so that

∥∥Hess0
b2

∥∥2
C1(b=r)

≤ C

∫

r
2 ≤b≤ 3r

2

b−n
∣∣Hess0

b2

∣∣2 ≤ CδQ, (4.57)

where ‖ ·‖C1(b=r) is the scale-invariant C1-norm on M at b = r . Furthermore,
a calculation (see Lemma 2.6 in [12]) gives that

∇|∇b|2 = b−1Hess0
b2(∇b, ·). (4.58)
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Thus, we see that

∣
∣Hess0

b2

∣
∣ + b

∣
∣∇|∇b|∣∣ ≤ C

√
δQ. (4.59)

At this point, it is convenient to normalize by dividing b by the value of
|∇b| at some point p, i.e., we set

f (x) = b(x)

|∇b|(p)
, (4.60)

so that |∇f | is one at p and, thus, Δf 2 = 2n
|∇b|2

|∇b|2(p)
is 2n at p. The bound

(4.59) on Hess0
b2 and |∇|∇b||2 gives a corresponding bound for Hess0

f 2 and

|∇|∇f ||2.
Fix a < b in the range of f . The flow generated by ∇f

|∇f |2 gives a diffeo-
morphism between {a ≤ f ≤ b} and the product space {f = a} × [a, b]. Let
ga denote the induced metric on the level set {f = a}. We will see that the
metric on {a ≤ f ≤ b} is C0 close to the cone metric

df 2 + f 2ga

on {f = a}×[a, b] which trivially implies Gromov-Hausdorff closeness, thus
giving (2.54).

We have |∇f | ≈ 1 and Hessf 2 ≈ 2g; if these had been equalities, then
(1.19) in [4] gives that the metric would be identical to the cone metric. Here,
we don’t have equalities, so we follow the argument keeping track of the error
terms.

Let q be an arbitrary point in {f = a} and {ei} an orthonormal frame for ga

at q . Using the flow, extend the ei’s to the flow line from q (which is identified
with q × [a, b]). The extended vector fields are no longer orthonormal, but
they are tangent to the level sets of f and satisfy

[
ei,

∇f

|∇f |2
]

= 0. (4.61)

By integrating (4.59), g(
∇f

|∇f |2 ,
∇f

|∇f |2 ) = |∇f |−2 is almost one, i.e., |1 −
|∇f |−2| ≤ C

√
δQ.

It remains to check g(ei, ej ). Following (1.14)–(1.17) in [4], we have

(
g(ei, ej )

)′ = L ∇f

|∇f |2

(
g(ei, ej )

) = (L ∇f

|∇f |2
g)(ei, ej ) = 2Hessf (ei, ej )

|∇f |2 ,

(4.62)
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where the second equality used that the Lie derivatives of the ei’s vanish and
the last equality used that ∇f is perpendicular to the ei’s. Since Hessf 2 =
2f Hessf + ∇f ⊗ ∇f and the ei ’s are perpendicular to ∇f , we can rewrite
this as

(
g(ei, ej )

)′ = Hessf 2(ei, ej )

f |∇f |2 . (4.63)

In the model case where |∇f | ≡ 1 and Hessf 2 = 2g, Sect. 1 in [4] integrates
this to get that g(ei, ej ) is exactly quadratic. In our case, it is quadratic up
to an error of C

√
δQ from (4.59). Thus, we see that the components of the

metric differ from the cone metric by at most C
√

δQ. This completes the
proof of (4.56).

5 Second variation of R and the linearization of the gradient of R

The rest of the paper will be devoted to proving the Lojasiewicz-Simon in-
equality (3) for R. We will need to understand the linearization LR of the
gradient ∇1R of the functional R restricted to A1. This is equivalent to un-
derstanding the second variation of R. The operator LR will behave quite
differently on different subspaces of variations, just as for the second varia-
tion of the classical Einstein-Hilbert scalar curvature functional.

Throughout this section, we will assume that
(
b−2∞ g0 + th, b∞etvt

) ∈ A1 (5.1)

is a variation. As in the previous section, g0 is an Einstein metric with Ricg0 =
(n − 2)g0 and b∞ is a positive constant. Where it is clear, we will omit the
subscript t from g and v.

We will first compute the second variations of A and B and then combine
these to get the second variation of R on two important subspaces. Roughly
speaking, this will determine the two on-diagonal blocks of LR. In the last
subsection, we will show that the remaining (off-diagonal) blocks of LR van-
ish.

5.1 The second variation of A

Lemma 5.2 The second variation A′′ = d2

dt2 |t=0A(b−2∞ g0 + th, b∞etvt ) is

b3∞
∫

N

{
4v

(
1

2
Tr(h) + 2v

)
+

(
1

2
Tr(h) + v

)2

+ 6v′ − |h|2
2

+ Tr(h′)
2

}
dμ

b−2∞ g0
. (5.3)
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Proof To simplify notation, set ḡ = b−2∞ g0 + th. Proposition 3.9 gives

A′(t) = b3∞
∫

N

{
e2tv

(
1

2
Tr(h) + v + tv′

)
+ 2

(
v + tv′)e2tv

}
etvdμḡ. (5.4)

At t = 0, the term in curly brackets becomes

(
1

2
Tr(h) + v

)
+ 2v. (5.5)

Since we also have

(
Tr(h)

)′ = (
ḡij hij

)′ = Tr
(
h′) − |h|2, (5.6)

differentiating A a second time at t = 0 gives

A′′

b3∞
=

∫

N

{(
1

2
Tr(h) + v

)2

+ 4v

(
1

2
Tr(h) + v

)

+ Tr(h′) − |h|2
2

+ 4v2 + 6v′
}
dμḡ0 . (5.7)

�

5.2 The second variation of B

Lemma 5.8 The second variation B ′′ = d2

dt2 |t=0B(b−2∞ g0 + th, b∞etvt ) is

B ′′ = b∞
∫

N

{
b2∞(n − 2)

[
(n − 1)

(
1

2
Tr(h) + v

)
− 2 Tr(h)

](
1

2
Tr(h) + v

)

− 〈∇(δh), h
〉 + 1

2
〈Δh,h〉 + 1

2
〈HessTrh, h〉 + Rikj�hk�h

ij

+ 〈h,Hessv〉 − Tr(h)Δv + (
δ2h − ΔTr(h)

)(1

2
Tr(h) + v

)

+ b2∞(n − 2)

(
n − 3

2

(
Tr

(
h′) − |h|2) + 2(n − 1)v′

)}
dμ

b−2∞ g0
. (5.9)

Proof To simplify notation, set ḡ = b−2∞ g0 + th. Proposition 3.9 gives that
B ′(t)
b∞ is

∫

N

{
−〈Ricḡ, h〉 +

〈
h,

Hessetv

etv

〉
− Tr(h)

Δetv

etv
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+ Rḡ

(
Tr(h)

2
+ v + tv′

)}
etvdμḡ. (5.10)

At t = 0, Ricḡ0 = b2∞(n − 2)ḡ0 and the term in curly brackets is equal to

−b2∞(n − 2)Tr(h) + b2∞(n − 1)(n − 2)

(
1

2
Tr(h) + v

)
. (5.11)

Using Lemma A.1 and Ricḡ0 = b2∞(n − 2)ḡ0, we get at t = 0:

(
ḡij

)′ = −hij , (5.12)

R ′̄
g = δ2h − 〈Ricḡ0, h〉 − ΔTr(h)

= δ2h − b2∞(n − 2)Tr(h) − ΔTr(h), (5.13)

Ric′
ij = 1

2

(∇i (δh)j + ∇j (δh)i + Ricikhjk + Ricjkhik

− Δhij − HessTrh
) − Rikj�hk�

= 1

2

(∇i (δh)j + ∇j (δh)i + 2b2∞(n − 2)hij − Δhij − HessTrh
)

− Rikj�hk�, (5.14)

(Hessetv )′ij = Hessv − 1

2

(∇i (Hessetv )jk + ∇j (Hessetv )ik

− ∇k(Hessetv )ij
)∇ketv

= Hessv. (5.15)

(In the formula for Ric′, we work in an orthonormal frame and ignore the
difference between upper and lower indices after differentiating.)

We also need the formula for (Δetv)′. This follows from the first and last
formulas above since Δw = ḡij (Hessw)ij so that

(
Δetv

)′ = ḡ
ij

0 (Hessetv )′ij = Δv. (5.16)

We will differentiate the four terms in curly brackets in (5.10) at t = 0. The
first is

〈Ricḡ, h〉′ = 〈
Ric′̄

g, h
〉 + 〈

Ricḡ, h
′〉 − Rijhk�h

ikḡj� − Rijhk�ḡ
ikhj�

= 〈
Ric′̄

g, h
〉 + b2∞(n − 2)Tr

(
h′) − 2b2∞(n − 2)|h|2

= b2∞(n − 2)Tr
(
h′) − 2b2∞(n − 2)|h|2 + 〈∇(δh), h

〉



Uniqueness of tangent cones 555

+ b2∞(n − 2)|h|2

− 1

2
〈Δh,h〉 − 1

2
〈HessTrh, h〉 − Rikj�hk�h

ij . (5.17)

Simplifying this gives

〈Ricḡ, h〉′ = b2∞(n − 2)
[
Tr

(
h′) − |h|2] + 〈∇(δh), h

〉

− 1

2
〈Δh,h〉 − 1

2
〈HessTrh, h〉 − Rikj�hk�h

ij . (5.18)

Since Hessetv vanishes at t = 0, differentiating the second term gives

(〈
h,

Hessetv

etv

〉)′
= 〈

h,Hess′
etv

〉 = 〈h,Hessv〉. (5.19)

Similarly, the third term is

(
Tr(h)

Δetv

etv

)′
= Tr(h)

(
Δetv

)′ = Tr(h)Δv. (5.20)

Finally, the last term is

(
Rḡ

(
1

2
Tr(h) + v + tv′

))′

= R ′̄
g

(
1

2
Tr(h) + v

)
+ b2∞(n − 1)(n − 2)

(
1

2
Tr(h) + v + tv′

)′

= {
δ2h − b2∞(n − 2)Tr(h) − ΔTr(h)

}(1

2
Tr(h) + v

)

+ b2∞(n − 1)(n − 2)

(
1

2

(
Tr

(
h′) − |h|2) + 2v′

)
. (5.21)

Combining all of this gives

B ′′ = b∞
∫

N

{
b2∞(n − 2)

[
(n − 1)

(
1

2
Tr(h) + v

)
− Tr(h)

](
1

2
Tr(h) + v

)

− b2∞(n − 2)
(
Tr

(
h′) − |h|2) − 〈∇(δh), h

〉 + 1

2
〈Δh,h〉

+ 1

2
〈HessTrh, h〉 + Rikj�hk�h

ij

+ 〈h,Hessv〉 − Tr(h)Δv + (
δ2h − b2∞(n − 2)Tr(h) − ΔTr(h)

)
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×
(

1

2
Tr(h) + v

)

+ b2∞(n − 1)(n − 2)

(
1

2

(
Tr

(
h′) − |h|2) + 2v′

)}
dμḡ. (5.22)

Simplifying this completes the proof.
�

5.3 The constraint on the variation

Since the variation (b−2∞ gt , b∞etvt ) is in A1, there are constraints on h,h′, v
and v′. The next lemma records this.

Lemma 5.23 At t = 0, we have that
∫

N

{
1

2
Tr(h) + v

}
dμ

b−2∞ g0
= 0, (5.24)

∫

N

{(
1

2
Tr(h) + v

)2

+ 1

2
Tr

(
h′) − 1

2
|h|2 + 2v′

}
dμ

b−2∞ g0
= 0. (5.25)

Proof The weighted volume is constant along a path in A1. The two claims
follow from using (3.6) to compute the first derivative of the weighted volume
and then using (5.6) to compute the second derivative. �

5.4 The transverse trace-less second variation

The functional R is given by

R ≡ 1

2 − n

(
A − B

(n − 2)

)
. (5.26)

Since we have computed the second variations of A and B , we get R′′ as
a consequence. It is useful to divide this into two cases, depending on the
variation h of the metric. In this subsection, we will consider the case where
h is “transverse-traceless”, i.e., when

δh = 0 and Trh = 0. (5.27)

The next proposition computes the second variation for transverse trace-less
variations.10

10When we apply this later, we will have v = 0.
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Proposition 5.28 If h satisfies (5.27), then the second variation is

(2 − n)R′′ = −b∞
∫

N

{
1

2(n − 2)
〈Lh,h〉 − 6b2∞v2

}
dμ

b−2∞ g0
, (5.29)

where L is the Lichnerowicz operator

(Lh)ij = (Δh)ij + 2Rikj�hk�. (5.30)

Proof Set ḡ = b−2∞ g0 + th. Since Tr(h) = 0, Lemma 5.2 gives

A′′ = b3∞
∫

N

{
9v2 + 6v′ − |h|2

2
+ Tr(h′)

2

}
dμḡ0 . (5.31)

Since Tr(h) = 0 and δh = 0, Lemma 5.8 gives

B ′′ = b∞
∫

N

{
b2∞(n − 1)(n − 2)v2 + 1

2
〈Δh,h〉 + Rikj�hk�h

ij

+ b2∞(n − 2)

(
n − 3

2

(
Tr

(
h′) − |h|2) + 2(n − 1)v′

)}
dμḡ0, (5.32)

where we have also used that
∫ 〈h,Hessv〉 = − ∫ 〈δh,∇v〉 = 0. Combining

the two formulas gives that

(2 − n)R′′ = A′′ − B ′′

(n − 2)

= b∞
∫

N

{
b2∞(10 − n)v2 + b2∞(4 − n)

[
2v′ − |h|2

2
+ Tr(h′)

2

]

− 〈Δh,h〉
2(n − 2)

− Rikj�

n − 2
hk�h

ij

}
dμḡ0 . (5.33)

We want to eliminate the v′ and h′ terms. Lemma 5.23 gives that

∫

N

{
2v′ − |h|2

2
+ Tr(h′)

2

}
dμḡ0 = −

∫

N

{
v2}dμḡ0 . (5.34)

Substituting this gives

(2 − n)R′′ = b∞
∫

N

{
6b2∞v2 − 〈Δh,h〉

2(n − 2)
− Rikj�

n − 2
hk�h

ij

}
dμḡ0 . (5.35)

�
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5.5 The conformal second variation

We suppose next that

h = φb−2∞ g0 (5.36)

at t = 0 for a function φ, so that

Trh = (n − 1)φ, (5.37)

(δh) = ∇φ, (5.38)

∇δh = Hessφ, (5.39)

δ2h = Δφ, (5.40)

Δh = (Δφ)b−2∞ g0. (5.41)

Theorem 5.42 If h satisfies (5.36), then the second variation is

(2 − n)R′′ = b∞
∫

N

{
n − 3

2
φ
[
Δφ + (n − 1)b2∞φ

] + 2(n − 1)b2∞φv

+ φΔv + vΔφ + 6b2∞v2
}
dμ

b−2∞ g0
. (5.43)

Proof To simplify notation, set ψ = (n−1
2 φ + v) and ḡ = b−2∞ g0. Lemma 5.2

gives

A′′ = b3∞
∫

N

{
4v(ψ + v) + ψ2 + 6v′ − |h|2

2
+ Tr(h′)

2

}
dμḡ. (5.44)

Lemma 5.8 gives

B ′′ = b∞
∫

N

{
b2∞(n − 2)(n − 1)[ψ − 2φ]ψ − φΔφ + (n − 1)φΔφ

+ φ2Rikj�gk�g
ij + φΔv − (n − 1)φΔv + (

Δφ − (n − 1)Δφ
)
ψ

+ b2∞(n − 2)

(
n − 3

2

(
Tr

(
h′) − |h|2) + 2(n − 1)v′

)}
dμḡ. (5.45)

Collecting terms, this becomes

B ′′ = b∞(n − 2)

∫

N

{
b2∞(n − 1)

[
ψ2 − 2φψ

] + φΔφ + b2∞(n − 1)φ2
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− φΔv − ψΔφ + b2∞
(

n − 3

2

(
Tr

(
h′) − |h|2) + 2(n − 1)v′

)}
dμḡ.

(5.46)

Combining the two formulas gives that

(2 − n)R′′ = A′′ − B ′′

(n − 2)

= b∞
∫

N

{
−φΔφ + φΔv + ψΔφ + b2∞

[
4v2 + (6 − n)ψ2

+ (4 − n)

[
2v′ − |h|2

2
+ Tr(h′)

2

]
− (n − 1)φ2

]}
dμḡ, (5.47)

where the last equality also used that

4vψ + 2(n − 1)φψ = 4ψ2. (5.48)

We want to eliminate the v′ and h′ terms. Lemma 5.23 gives that

∫

N

{
1

2
Tr

(
h′) − 1

2
|h|2g + 2v′

}
dμḡ = −

∫

N

{
ψ2}dμḡ. (5.49)

Putting this in gives

(2 − n)R′′ = b∞
∫

N

{−φΔφ + φΔv + ψΔφ

+ b2∞
[
4v2 + 2ψ2 − (n − 1)φ2]}dμḡ.

Since ψ = (n−1
2 φ + v), we have

2ψ2 + 4v2 − (n − 1)φ2 = 2v2 + 2(n − 1)φv + (n − 1)2

2
φ2

+ 4v2 − (n − 1)φ2

= 6v2 + (n − 1)(n − 3)

2
φ2 + 2(n − 1)φv, (5.50)

−φΔφ + φΔv + ψΔφ = n − 3

2
φΔφ + φΔv + vΔφ. (5.51)

Substituting these two equations back in gives the claim. �
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5.6 The gradient of R in the conformal directions

The next proposition shows that the linearization of ∇R maps conformal vari-
ations onto the span of conformal variations together with variations tangent
to the action of the diffeomorphism group.

Proposition 5.52 The first variation of ∇R along the path (b−2∞ gt , b∞etvt )

where b−2∞ g′
t = φb−2∞ g0 and v′

t = v′ can be written as

(∇R)′ = (f1g0, f2) + (Hessf3,0), (5.53)

where f1, f2 and f3 are functions.

Proof Set ḡt = b−2∞ gt ; we omit the subscript when the meaning is clear.
Corollary 3.33 gives

(2 − n)(∇R) = φ1

(
1

2
Ψ (ḡ),1

)
ν + (

Ψ (J ),0
)
ν. (5.54)

At t = 0, we know that

ν = 1, J = 0, Ψ is the identity, and φ1 = (4 − n)b2∞. (5.55)

Lemma 3.27 gives that if J̄ is a family of 2-tensors depending on t , then

d

dt

∣∣∣
∣
t=0

Ψ (J̄ )ij = J̄ ′
ij − ḡ′

ipḡpnJ̄nj − J̄imḡmpḡ′
pj . (5.56)

Using this, we see that

[
Ψ (ḡ)

]′ = −ḡ′, (5.57)
[
Ψ (J )

]′ = J ′. (5.58)

Thus, we see that at t = 0 we have

(2 − n)(∇R)′ = (n − 4)

2
b2∞

(
ḡ′,0

) +
(

1

2
ḡ,1

)[
(4 − n)b2∞ν′ + φ′

1

] + (
J ′,0

)
.

(5.59)

Next, we bring in the conformal nature of the variation in order to compute
ν′, J ′, and φ′

1. If we write the metric ḡt as

ḡt = b−2∞ etφg0, (5.60)
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then we have at t = 0 that ḡ0 = b−2∞ g0 and ḡ′ = φḡ0. Using this variation in
the formulas for ν, φ1, and J from Corollary 3.33 gives

ν = et (v+ (n−1)
2 φ), (5.61)

φ1 = 3b2∞e2tv − Rḡt

n − 2
, (5.62)

and the 2-tensor J = J1 + J2 is given by

J1 = Ricḡt

n − 2
− b2∞e2tvḡ, (5.63)

J2 = 1

n − 2

(
Δetv

etv
ḡ − Hessetv

etv

)
. (5.64)

Using Lemma A.1 and Ricḡ = b2∞(n− 2)ḡ and working in an orthonormal
frame (so we do not distinguish upper and lower indices), we get at t = 0:

R ′̄
g = δ2ḡ′ − 〈

Ricḡ0, ḡ
′〉 − ΔTr

(
ḡ′) = (2 − n)

{
Δφ + b2∞(n − 1)φ

}
,

(5.65)

Ric′
ij = 1

2

(∇i

(
δḡ′)

j
+ ∇j

(
δḡ′)

i
+ Ricikḡ

′
jk + Ricjkḡ

′
ik − Δḡ′

ij

− HessTr ḡ′
) − Rikj�ḡ

′
k�

= Hessφ + b2∞(n − 2)φḡ − 1

2

{
(Δφ)ḡ + (n − 1)Hessφ

}

− b2∞(n − 2)φḡ

= 1

2

{
(3 − n)Hessφ − (Δφ)ḡ

}
, (5.66)

(Hessetv )′ij = Hessv − 1

2

(∇i(Hessetv )jk + ∇j (Hessetv )ik

− ∇k(Hessetv )ij
)∇ketv

= Hessv. (5.67)

By the last formula and the general formula Δu = ḡij (Hessu)ij , we get

(
Δetv

)′ = ḡ
ij

0 (Hessetv )′ij = Δv. (5.68)

Using these formulas for the derivatives in the definitions of φ1 and J , we
compute

φ′
1 = 6b2∞v + Δφ + b2∞(n − 1)φ, (5.69)
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J ′ = (3 − n)Hessφ − (Δφ)ḡ0

2(n − 2)
− b2∞(2v + φ)ḡ0 + 1

n − 2
(Δvḡ0 − Hessv)

= (3 − n)

2(n − 2)
Hessφ − Hessv

n − 2
+

(
Δv

n − 2
− Δφ

2(n − 2)
− b2∞(2v + φ)

)
ḡ0.

(5.70)

Finally, substituting these in (5.59) gives

(2 − n)(∇R)′ =
[
(4 − n)b2∞

[
v + n − 1

2
φ

]
+ 6b2∞v + Δφ + b2∞(n − 1)φ

]

×
(

1

2
ḡ0,1

)
+

(
(3 − n)

2(n − 2)
Hessφ − Hessv

n − 2
,0

)

+
[

Δv

n − 2
− Δφ

2(n − 2)
− b2∞(2v + φ)

+ (n − 4)

2
b2∞φ

]
(ḡ0,0). (5.71)

�

The previous proposition linearized the full gradient ∇R along a confor-
mal variation. The next corollary linearizes the projection ∇1R of the gradient
to A1.

Corollary 5.72 The first variation of ∇1R along the path (b−2∞ gt , b∞etvt )

where b−2∞ g′
t = φb−2∞ g0 and v′

t = v′ can be written as

(∇1R)′ = (f̄1g0, f̄2) + (Hessf̄3
,0), (5.73)

where f̄1, f̄2 and f̄3 are functions.

Proof Set ḡt = b−2∞ gt ; we omit the subscript when the meaning is clear.
Within this proof, | · | is the pointwise norm and ‖ · ‖ is the L2 norm, while
〈·, ·〉 is the L2 inner product.

Since A1 is a level set of the functional A1, the projection ∇1R of ∇R is

∇1R = ∇R − 〈∇R,∇A1〉 ∇A1

‖∇A1‖2
. (5.74)



Uniqueness of tangent cones 563

It follows that11

(∇1R)′ = (∇R)′ − 〈
(∇R)′,∇A1

〉 ∇A1

‖∇A1‖2
− 〈∇R, (∇A1)

′〉 ∇A1

‖∇A1‖2

− 〈∇R,∇A1〉 (∇A1)
′

‖∇A1‖2

+ 2〈∇R,∇A1〉
〈∇A1, (∇A1)

′〉 ∇A1

‖∇A1‖4
. (5.75)

We next calculate ∇R, ∇A1 and (∇A1)
′ at t = 0. First, Corollary 3.33 gives

at t = 0

(2 − n)(∇R) = (4 − n)b2∞
(

1

2
ḡ0,1

)
. (5.76)

Next, Corollary 3.41 gives that the gradient of A1 at t is given by ∇A1 =
(1

2Ψ (ḡ),1)ν. In particular, at t = 0, we have

∇A1 =
(

1

2
ḡ0,1

)
, (5.77)

(∇A1)
′ =

(
n − 1

2
φ + v

)(
1

2
ḡ0,1

)
− φ

2
(ḡ0,0), (5.78)

where the second equality also used Lemma 3.27 to see that [Ψ (ḡ)]′ = −ḡ′.
Observe that both ∇A1 and (∇A1)

′ give conformal variations of the metric.
The corollary now follows from this, (5.75) and Proposition 5.52. �

6 The action of the diffeomorphism group

Let D be the space of C3,β diffeomorphisms on N . The group D acts by pull-
back on both the space of metrics and the space of functions, where the metric
or function are pulled back by the diffeomorphism. The tangent space T D to
this action is given by

T D = {
(LV g0,0)

∣∣ V is a C3,β vector field
}
, (6.1)

where LV g0 is the Lie derivative of the metric g0 with respect to V . As ob-
served by Berger and Ebin (see, e.g., (b) in Corollary 32 of the Appendix of

11The gradients are computed with the fixed L2 inner product 〈·, ·〉 induced by the background
metric ḡ0.
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[2]), it follows that the space T of pairs of symmetric tensors and functions
decomposes as an orthogonal direct sum

T = T D ⊕ T1, where T1 ≡ {
(h, v) ∈ C2,β

∣
∣ δh = 0

}
. (6.2)

Here, the divergence δ is computed with respect to g0.
We will be most interested in the subspace T 0

1 ⊂ T1 of variations that are
tangent to A1, i.e., that preserve the weighted volume constraint

T 0 =
{
(h,w)

∣∣∣
∫ (

1

2
Tr(h) + w

)
dμg0 = 0

}
, (6.3)

T 0
1 = T1 ∩ T 0. (6.4)

There are two main results in this section, both related to the action of the
diffeomorphism group:

• The first is the use of the Ebin-Palais slice theorem to mod out by this
action; this is described in Sect. 6.2.

• The second is Theorem 6.6 below showing that the linearization LR of
∇1R at the critical point has finite dimensional kernel after we restrict it to
T 0

1 .

The linearization LR is computed at the critical point (b−2∞ g0, b∞) where
∇1R vanishes. It maps a C2,β variation in T 0 to a Cβ variation in T 0. We
will go back and forth between LR and the associated bilinear form BR on
T 0 × T 0 defined by12

BR(x, y) = 〈LRx, y〉. (6.5)

Theorem 6.6 The restriction of LR to T 0
1 is Fredholm from T 0

1 to (the Cβ

closure of) T 0
1 .

The theorem says there is a finite dimensional kernel K ⊂ T 0
1 , so that if x

is in (the Cβ closure of) T 0
1 ∩ K⊥, then there is a unique yx ∈ T 0

1 ∩ K⊥ so
that

〈LRyx, z〉 ≡ BR(yx, z) = 〈x, z〉 for every z ∈ T 0
1 . (6.7)

We will prove Theorem 6.6 at the end of this section.

12The reason for working with the quadratic form is that the operator will be computed from
the second variation formula and this is expressed in terms of the quadratic form.
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6.1 The action of D

Given η in the diffeomorphism group D, (g,w) ∈ A, and tangent vectors
X,Y at a point p ∈ M , then the action of η is given by

η	(g)p(X,Y ) ≡ gη(p)

(
dη(X), dη(Y )

)
, (6.8)

η	(w)(p) = w
(
η(p)

)
. (6.9)

This action gives a map

ρ : D × A → A, (6.10)

where ρ(η, (g,w)) ≡ (η	(g), η	(w)). We will need three elementary proper-
ties of this action:

• The action preserves A1, i.e., if η ∈ D and γ ∈ A1, then ρ(η, γ ) ∈ A1.
• The action fixes the functional R.
• The action is isometric with respect to the metric on A.

Given γ ∈ A, let Iγ and Oγ denote its isotropy group and orbit, respec-
tively

Iγ = {
η ∈ D|ρ(η, γ ) = γ

}
, (6.11)

Oγ = {
ρ(η, γ )|η ∈ D

}
. (6.12)

6.2 The slice theorem

The Ebin-Palais slice theorem, [16], gives a way to mod out by the action of
the diffeomorphism group D. In particular, the version due to Palais (which
uses Cβ spaces, rather than Sobolev spaces as in Ebin) gives:

• A neighborhood Ũ1 of 0 in the space of divergence-free symmetric 2-
tensors.

• A neighborhood Ũ of b−2∞ g0 in the space of metrics.
• A neighborhood ŨO of b−2∞ g0 in the orbit of b−2∞ g0 under D.
• A map χ : ŨO → D to a neighborhood of the identity Id with χ(b−2∞ g0) =

Id.

So that the mapping

F(u,h) ≡ ρ
(
χ(u), b−2∞ g0 + h

)
(6.13)

is a diffeomorphism from ŨO × Ũ1 to Ũ . Here we are using a slight abuse of
notation, as the action ρ is actually on pairs of metrics and functions, but the
meaning is clear.
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This slice theorem allows us to mod out by the action of D on the space
of metrics, but it does not incorporate the second part of the action where
the diffeomorphism acts on the function by composition. When we incorpo-
rate the full action, we get neighborhoods U1 ⊂ T1 of (0,0) and U ⊂ A of
(b−2∞ g0, b∞), so that

F : ŨO × U1 → U is onto. (6.14)

The slice theorem guarantees that this map hits all of the metrics near b−2∞ g0,
so the point is that it also covers a neighborhood of (b−2∞ g0, b∞) in A. To see
this, given (g,w) first use the slice theorem to get a diffeomorphism η = χ(u)

and h ∈ U1 with η∗(b−2∞ g0 + h) = g. Since η∗(w ◦ η−1) = w ◦ η−1 ◦ η = w,
we see that F((u,h),w ◦ η−1) = (g,w) as desired.

The last thing that we need to do here is to restrict to the space A1 of
normalized pairs of metrics and functions, i.e., to the subset of A where A1 =
Vol(∂B1(0)).

Lemma 6.15 The analytic map exp on T 0
1 given by

exp(h,w) =
(

b−2∞ g0 + h,
Vol(∂B1(0))

A1(b
−2∞ g0 + h,b∞ew)

b∞ew

)
(6.16)

is a diffeomorphism from a neighborhood of 0 to a neighborhood of
(b−2∞ g0, b∞) in A1.

Proof Analyticity follows since linear maps and exponentials are analytic
and the functional A1 is analytic since it is given as an integral where the
integrand depends analytically. The map exp is defined so that A1 ◦ exp ≡
Vol(∂B1(0)), so it automatically lands in A1. Furthermore, exp takes the ori-
gin to (b−2∞ g0, b∞).

Finally, we will show that exp is a local diffeomorphism by using the im-
plicit function theorem, [28]. To do this, first observe that the linearization at
the origin is given by

d

dt

∣∣∣∣
t=0

exp(th, tw) = (h, b∞w), (6.17)

where we used that the variation is tangent to A1 so that the derivative of
A1 vanished. In particular, the linearization is the identity13 and the inverse
function theorem applies. �

Combining all of this, we get the following slice theorem:

13Recall our convention on the tangent space in (3.2) where we exponentiate the second factor.
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Corollary 6.18 There is a neighborhood U ′
1 of (b−2∞ g0, b∞) in A1 and a

constant C, so that for each y ∈ U ′
1, there is y0 ∈ T 0

1 and η ∈ D so that
y = ρ(η, exp(y0)) and ‖η‖C3,β ≤ C.

Note that the bound on the C3,β of the diffeomorphism η actually comes
from the stronger fact that η can be taken to be in a small neighborhood of
the identity.

6.3 The linearized operator

We need a little notation. We will let Tc denote the variations corresponding
to the conformal directions and Tt t denote the space of transverse traceless
variations, so that

Tt t = {
(h,0) ∈ C2,β

∣∣ δh = 0 and Tr(h) = 0
}
, (6.19)

Tc = {
(φg0, v) ∈ C2,β

}
, (6.20)

T D = {
(LV g0,0)

∣∣ V ∈ C3,β is a vector field
}
. (6.21)

We add a superscript 0 to denote the intersection with T 0, so that T 0
c ≡ Tc ∩

T 0 consists of the conformal variations that are tangent to A1.
It will be useful to define two additional spaces. The first is the space TcD

of variations coming from conformal diffeomorphisms

TcD ≡ Tc ∩ T D. (6.22)

The last space that we will need are the variations T⊥0 in T 0
1 that can be

generated from conformal variations and diffeomorphisms

T⊥0 = T1 ∩ (
T 0

c + T D
)
. (6.23)

Note that T⊥0 is orthogonal to Tt t since both Tc and T D are. The next lemma
shows that

T 0
1 = T⊥0 ⊕ Tt t . (6.24)

Lemma 6.25 Given any x ∈ T 0
1 , there exist xtt ∈ Tt t , xc ∈ T 0

c , and xD ∈ T D
so

x = xtt + xc + xD. (6.26)

Conversely, given any xc ∈ T 0
c , there exists xD ∈ T D so that xc + xD ∈ T 0

1 .
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Proof Suppose that x = (g, v). York’s decomposition of Riemannian metrics
(see [37] or Theorem 1.4 in [17]) gives a transverse traceless metric gtt , a
conformal metric gc, and a C3,β vector field V so that

g = gtt + gc + LV g0. (6.27)

The first claim follows with xtt = (gtt ,0) ∈ Tt t , xc = (gc, v) ∈ Tc, and xD =
(LV g0,0) ∈ T D . To see that xc ∈ T 0

c (and not just Tc), note that the spaces Tt t

and T D are tangent to A1.
For the second part, we need to find a vector field V so that

δLV g0 = −δxc. (6.28)

However, δ is (a multiple of) the adjoint of L(·)g0 and the operator

V → δLV g0

is (a multiple of) Bochner’s Laplacian on vector fields. In particular, this op-
erator is elliptic and, thus, Fredholm, and its kernel consists of Killing vector
fields. In particular, the kernel is orthogonal to the image of δ, so we can solve
(6.28) as claimed. �

We will need the following standard property of the linearized operator
LR.

Lemma 6.29 The operator LR is symmetric.

Proof Let x(s, t) ∈ A1 be a 2-parameter variation depending on s and t where
x(0,0) is a critical point. We have

∂2

∂s∂t
R(x) = ∂

∂t

〈∇1R(x), xs

〉 = 〈LRxt , xs〉. (6.30)

Since mixed partials commute, we get that LR is symmetric as claimed. �

The next proposition describes LR on the subspaces T 0
c , Tt t , T D and T⊥0.

Part (D) says that the off-diagonal blocks of LR are zero. The reader should
keep in mind that Tt t and T⊥ are orthogonal and span T 0

1 , but T ⊥
t t is larger

than T⊥. Namely, this orthogonal complement is done relative to the L2 inner
product, so it includes things with lower regularity.

Proposition 6.31 The linearization LR has the following properties:

(A) The restriction of BR to T 0
c is Fredholm.

(B) The restriction of BR to Tt t is Fredholm.
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(C) LR is identically zero on T D and maps to T D
⊥.

(D) LR : T⊥0 → T ⊥
t t and LR : Tt t → [T⊥0]⊥.

Proof Proof of (A): To prove this, define the quadratic form Qc : T 0
c → R

by

Qc(h, v) = 〈
LR(h, v), (h, v)

〉
. (6.32)

The claim is that the linear operator Lc associated to Qc is Fredholm.
It follows from Theorem 5.42 that if h = φb−2∞ g0, then

Qc(h, v) = 1

2 − n

〈
Lc(φ, v), (φ, v)

〉
, (6.33)

where the linear operator Lc maps the pair of functions (φ, v) to the pair of
functions

(
n − 3

2
Δφ + b2∞

(n − 1)(n − 3)

2
φ + b2∞(n − 1)v + Δv,6b2∞v

+ b2∞(n − 1)φ + Δφ

)
.

In block form, we can write this as the symmetric linear operator

(
n−3

2 (Δ + b2∞(n − 1)) Δ + b2∞(n − 1)

Δ + b2∞(n − 1) 6b2∞

)

. (6.34)

It suffices to show that this linear second order operator is elliptic. For this,
we need only consider the second order part which can be written as

(
n−3

2 1

1 0

)

Δ. (6.35)

Since Δ is elliptic, it suffices to show that the matrix in front of Δ is non-
degenerate.14 This follows since the determinant of this matrix is −1.

Proof of (B): Define a quadratic form Qtt : Tt t → R by

Qtt (h,0) = 〈
LR(h,0), (h,0)

〉
. (6.36)

14There are several different notions of ellipticity for systems. Weak ellipticity requires only
non degeneracy of the matrix and is sufficient to imply elliptic estimates and that the map is
Fredholm. Strong ellipticity requires that the matrix is positive definite; this gives additional
properties like the maximum principle.
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It follows from Proposition 5.28 that Qtt is given by

Qtt (h,0) = 1

2(n − 2)2

〈
(Lh,0), (h,0)

〉
, (6.37)

where L is the Lichnerowicz operator

(Lh)ij = (Δh)ij + 2Rikj�hk�. (6.38)

Since L is elliptic, the linear operator associated to Qtt is Fredholm, giv-
ing (B).

Proof of (C): Since the diffeomorphism group preserves R and, thus, maps
critical points to critical points, it follows that LR : T D → 0. Since LR is
symmetric by Lemma 6.29, it follows that LR maps to T D

⊥.
Proof of (D): Since Tt t is perpendicular to both Hessians (these are tangent

to T D ) and to conformal variations, Proposition 5.52 implies that

LR : Tc ∩ T 0 → T ⊥
t t . (6.39)

Combining this with (C), we conclude that

LR : T⊥0 ≡ (T D + Tc) ∩ T 0 → T ⊥
t t . (6.40)

The last claim follows from this and the symmetry of LR. �

We are now ready to prove Theorem 6.6.

Proof of Theorem 6.6 Let L denote the linear operator associated to the re-
striction of B R to T 0

1 , so that

〈Lx,y〉 = B R(x, y) ≡ 〈L Rx, y〉 (6.41)

for x, y ∈ T 0
1 . L is symmetric since L R is. Moreover, L maps T 0

1 to the Cβ

closure of T 0
1 .

To prove the theorem, we will show that:

• L has a finite dimensional kernel K .
• Given x in (the Cβ closure of) T 0

1 ∩K⊥, there is a unique y ∈ T 0
1 ∩K⊥ so

that

Ly = x. (6.42)

We will decompose the map L into blocks according to the orthogonal de-
composition

T 0
1 = Tt t ⊕ T⊥0 (6.43)
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given by Lemma 6.25. Namely, (D) in Proposition 6.31 implies that L “pre-
serves” this splitting.15 Let Ltt and L⊥ denote the restrictions of L to Tt t and
T⊥0, respectively, i.e.,

L =
(

Ltt 0

0 L⊥

)
.

Let K⊥ and Ktt be the kernels of L⊥ and Ltt , respectively. By (D) in Propo-
sition 6.31, we have

K = K⊥ ⊕ Ktt . (6.44)

Since the off-diagonal blocks vanish, we need only show that Ltt and L⊥
have the two desired properties. This is immediate for Ltt by (B) in Proposi-
tion 6.31. The rest of the proof will be to show that L⊥ also has these proper-
ties.

We will need a few preliminaries. Define the map Πc : T 0 → T 0
c by

Πc(g, v) =
(

Tr(g)

n − 1
ḡ0, v

)
, (6.45)

where ḡ0 = b−2∞ g0 is the background metric and the trace is computed relative
to ḡ0. The map Πc projects the two-tensor to a diagonal two-tensor with the
same trace; it is easy to see that this preserves T 0. Let Lc be the linear map
associated to the restriction of B R to T 0

c . If xc ∈ T 0
c , then it is easy to see that

Lcxc = Πc(LRxc). (6.46)

The map Lc is Fredholm by (A) in Proposition 6.31, so the kernel Kc of Lc

is finite dimensional and Lc is invertible on (the Cβ closure of) K⊥
c .

Suppose now that x, y ∈ T⊥0. Lemma 6.25 gives xc, yc ∈ T 0
c and xD, yD ∈

T D so that

x = xc + xD and y = yc + yD. (6.47)

Furthermore, xc and yc are unique up to elements of TcD . Part (C) in Propo-
sition 6.31 gives that LRxD = 0 and LRxc is orthogonal to T D , so we get

〈L⊥x, y〉 = 〈
L(xc + xD), (yc + yD)

〉 = 〈LRxc, yc〉 = 〈Lcxc, yc〉. (6.48)

Thus, if x ∈ K⊥, then xc is in the finite dimensional space Kc (by (A) in
Proposition 6.31). It follows that K⊥ is also finite dimensional.

15The spaces are defined to be in C2,β , so the image of L is merely in Cβ ; cf. (D) in Proposi-
tion 6.31.
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Next, suppose that y is orthogonal to K⊥. Given any x ∈ K⊥, then since
T D is orthogonal to T⊥0, we get

0 = 〈xc + xD, y〉 = 〈xc, y〉 = 〈
xc,Πc(y)

〉
. (6.49)

In particular, Πc(y) is orthogonal to Kc. Since Lc is Fredholm ((A) in Propo-
sition 6.31), we get zc so that Lczc = Πc(y). The second part of Lemma 6.31
then gives zD so that

z = zc + zD ∈ T 0
1 . (6.50)

Since LRzD = 0, we have Πc(Lz) = Lczc = Πc(y). In particular,

(y − Lz) ∈ T⊥0 ⊂ T 0
1 (6.51)

is trace-free and transverse, so it belongs to Tt t . But T⊥0 is perpendicular to
Tt t , so we conclude that Lz = y as desired. �

7 A general Lojasiewicz-Simon inequality

The Lojasiewicz-Simon inequality of [31] is set up for analytic functionals
that are uniformly convex in the gradient, such as the area or energy func-
tionals. Our functional does not quite fit into this framework since it depends
on second derivatives and is not convex, so we will need a generalization.
Suppose therefore that we have:

(1) A closed subspace E of L2 maps to a finite dimensional vector space and
an analytic functional G defined on a neighborhood OE of 0 in C2,β ∩E.

(2) The gradient of G is a C1 map ∇G : OE → Cβ ∩E with ∇G(0) = 0 and
∥∥∇G(x) − ∇G(y)

∥∥
L2 ≤ C‖x − y‖W 2,2 . (7.1)

(3) The linearization L of ∇G at 0 is symmetric, bounded from C2,β ∩ E to
Cβ ∩ E and from W 2,2 ∩ E to L2 ∩ E, and is Fredholm from C2,β ∩ E

to Cβ ∩ E.

One consequence of (3) is that L has finite dimensional kernel K ⊂ C2,β ∩
E.

In (2), C1 means that there is a Frechet derivative at each point and this
varies continuously. Recall that if V is a map from a Banach space X to
another Banach space Y and x ∈ X, then a linear map Vx : X → Y is the
Frechet derivative of V at x if

‖V (x + u) − V (x) − Vx(u)‖Y

‖u‖X

→ 0 as ‖u‖X → 0. (7.2)
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The main result of this section is the following Lojasiewicz-Simon inequal-
ity.

Theorem 7.3 If G satisfies (1), (2) and (3), there exists α ∈ (0,1) so that for
all x ∈ E sufficiently small

∣∣G(x) − G(0)
∣∣2−α ≤ ∥∥∇G(x)

∥∥2
L2 . (7.4)

Let ΠK be projection onto K and define the mapping N by N = ∇G +
ΠK . The next lemma is Lyapunov-Schmidt reduction.

Lemma 7.5 There is an open set O ⊂ Cβ ∩ E about 0 and a map Φ : O →
C2,β ∩ E with Φ(0) = 0 so that

• Φ ◦ N (x) = x and N ◦ Φ(x) = x.
• ‖Φ(x)‖C2,β ≤ C‖x‖Cβ and ‖Φ(x) − Φ(y)‖W 2,2 ≤ C‖x − y‖L2 .
• The function f = G ◦ Φ is analytic.

Proof Following [31], the mapping N = ∇G + ΠK is C1 from C2,β ∩ E to
Cβ ∩ E and the Frechet derivative at 0 is

dN0 = L + ΠK. (7.6)

We will show that dN0 = L + ΠK is an isomorphism. First, since L is Fred-
holm and ΠK is compact (it has finite rank), the sum L + ΠK is also Fred-
holm. Since both L and ΠK are symmetric, so is L + ΠK and, thus, it is
an isomorphism if and only if it is injective. Finally, since K is the kernel
of the symmetric operator L, we see that L maps to K⊥ and, thus, L + ΠK

is injective. We conclude that dN0 is an isomorphism from C2,β ∩ E onto
Cβ ∩ E and the inverse [dN0]−1 is a bounded linear mapping from Cβ ∩ E

to C2,β ∩ E.
The implicit function theorem (Theorem 2.7.2 in [28]) gives an open set

O ⊂ Cβ ∩E about 0 and a C1 inverse map Φ : O → C2,β ∩E with Φ(0) = 0
and

Φ ◦ N (x) = x and N ◦ Φ(x) = x. (7.7)

The Frechet derivative of Φ is continuous and is given by

dΦy = [dNΦ(y)]−1. (7.8)

Since Φ is C1, the integral mean value theorem on Banach spaces (see p. 34
in [28]) gives a constant C so that for x, y ∈ O

∥∥Φ(x) − Φ(y)
∥∥

C2,β ≤ C‖x − y‖Cβ . (7.9)
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Using this with y = Φ(y) = 0 gives ‖Φ(x)‖C2,β ≤ C‖x‖Cβ . The Lipschitz
bound for Φ as a map from L2 to W 2,2 follows in the same way using the
W 2,2 estimate for ∇G and the trivial boundedness of ΠK on L2.

Finally, by the remark on p. 36 of [28], the map Φ is analytic. �

The next lemma gives a lower bound for ∇G(x) in terms of ∇f at ΠK(x).

Lemma 7.10 There exists C so that for every sufficiently small x ∈ C2,β ∩ E

∥
∥∇f

(
ΠK(x)

)∥∥2
L2 ≤ C

∥
∥∇G(x)

∥
∥2

L2 . (7.11)

Proof Suppose first that y ∈ K . Since f = G ◦ Φ , it follows from the chain
rule and the Lipschitz bound for Φ that

∥∥∇f (y)
∥∥2

L2 ≤ C2
∥∥∇G ◦ Φ(y)

∥∥2
L2 . (7.12)

Thus, given any x (not necessarily in K), applying this with y = ΠK(x) gives

∥∥∇f
(
ΠK(x)

)∥∥2
L2 ≤ C2

∥∥∇G ◦ Φ ◦ ΠK(x)
∥∥2

L2 . (7.13)

This is close to what we want, except that ∇G is evaluated at Φ ◦ ΠK(x)

instead of at x.
Since x = Φ ◦ (ΠK(x) + ∇G(x)), the Lipschitz bounds for ∇G and Φ

give
∥∥∇G

(
Φ ◦ ΠK(x)

) − ∇G(x)
∥∥

L2

= ∥∥∇G
(
Φ

(
ΠK(x)

)) − ∇G
(
Φ

(
ΠK(x) + ∇G(x)

))∥∥
L2

≤ C
∥∥Φ

(
ΠK(x)

) − Φ
(
ΠK(x) + ∇G(x)

)∥∥
W 2,2

≤ C
∥
∥∇G(x)

∥
∥

L2, (7.14)

completing the proof. �

We next bound the difference between G and G ◦ Φ ◦ ΠK .

Lemma 7.15 There exists C so that for every sufficiently small x ∈ C2,β ∩ E

∣∣G(x) − f
(
ΠK(x)

)∣∣ ≤ C
∥∥∇G(x)

∥∥2
L2 . (7.16)

Proof Define the one-parameter family t → yt by

yt = ΠK(x) + t∇G(x), (7.17)

so that Φ(y1) = x, y0 = ΠK(x), and d
dt

yt = ∇G(x).



Uniqueness of tangent cones 575

Combining the definition of f and the fundamental theorem of calculus
gives

G(x) − f
(
ΠK(x)

) = G
(
Φ(y1)

) − f (y0) = f (y1) − f (y0) =
∫ 1

0

d

dt
f (yt )dt

=
∫ 1

0

〈∇f (yt ),∇G(x)
〉
dt. (7.18)

Hence, the lemma follows from Cauchy-Schwarz once we show that
∥
∥∇f (yt )

∥
∥

L2 ≤ C
∥
∥∇G(x)

∥
∥

L2 . (7.19)

To show this, note first that ∇f is Lipschitz from L2 to L2 by the chain
rule (since Φ is Lipschitz from L2 to W 2,2 and ∇G is from W 2,2 to L2). In
particular, we have

∥∥∇f (yt ) − ∇f (y1)
∥∥

L2 ≤ C‖yt − y1‖L2 ≤ C
∥∥∇G(x)

∥∥
L2 . (7.20)

Finally, (7.19) follows from this and the fact that ‖∇f (y1)‖L2 ≤ C‖∇G(x)‖L2

which we already established using the chain rule in the proof of the last
lemma. �

We will now prove the Lojasiewicz-Simon inequality using the two lem-
mas and the finite dimensional Lojasiewicz inequality applied to the restric-
tion fK ≡ f |K of the analytic function f to the finite dimensional vector
space K endowed with the L2 inner product.

Proof of Theorem 7.3 Let x ∈ E be sufficiently small.
In order, we apply Lemma 7.10, then use that |∇fK(y)| ≤ ‖∇f (y)‖L2 for

y ∈ K , and then apply the finite dimensional Lojasiewicz inequality to fK to
get

C
∥∥∇G(x)

∥∥2
L2 ≥ ∥∥∇f

(
ΠK(x)

)∥∥2
L2 ≥ ∣∣∇fK

(
ΠK(x)

)∣∣2

≥ ∣
∣fK

(
ΠK(x)

) − fK(0)
∣
∣2−α

= ∣∣f
(
ΠK(x)

) − G(0)
∣∣2−α

. (7.21)

The estimate now follows from the triangle inequality and Lemma 7.15 which
gives

∣
∣f

(
ΠK(x)

) − G(x)
∣
∣ ≤ C

∥
∥∇G(x)

∥
∥2

L2 . (7.22)

�
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8 The Lojasiewicz-Simon inequality for R

Finally, in this section, we will prove that R satisfies a Lojasiewicz-Simon
inequality. We cannot argue directly on R since the diffeomorphism group
creates an infinite dimensional kernel for the linearized operator. However,
the slice theorem of Ebin allows us to mod out by this action and then prove
such an inequality which will in turn imply one for R.

8.1 Modding out by the group action

We will prove a Lojasiewicz-Simon inequality for G : T 0
1 → R given by

G(x) = R ◦ exp(x), (8.1)

where exp : T 0
1 → A1 is given by Lemma 6.15. Since R and exp are both

analytic, so is G.
By definition, the gradient ∇G of G is given by

〈∇G(x), y
〉 = d

dt

∣
∣∣∣
t=0

R ◦ exp(x + ty) = 〈∇1R
(
exp(x)

)
, d expx(y)

〉

= 〈
(d expx)

t∇1R
(
exp(x)

)
, y

〉
, (8.2)

where (d expx)
t is the transpose of d expx .

Proposition 8.3 A Lojasiewicz-Simon inequality for G implies one for R
on A1.

Proof Corollary 6.18 gives a neighborhood U ′
1 of (b−2∞ g0, b∞) in A1 and

a constant C, so that for each y ∈ U ′
1, there is y0 ∈ T 0

1 and η ∈ D so that
y = ρ(η, exp(y0)) and ‖η‖C3,β ≤ C. In particular, the invariance of R under
the group action gives that

R(y) = G(y0). (8.4)

Therefore, the Lojasiewicz-Simon inequality for G and (8.2) give

∣∣R(y) − R
(
b−2∞ g0, b∞

)∣∣2−α = ∣∣G(y0) − G(0)
∣∣2−α ≤ ∥∥∇G(y0)

∥∥2
L2

≤ Cexp
∥∥∇1R

(
exp(y0)

)∥∥2
L2, (8.5)

where Cexp comes from the bound for the differential of exp.
Finally, we need to bound ∇1R at exp(y0) by the value at y. To do this, let

x be tangent to A1 at exp(y0) and use the invariance of R under the action to
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get that

〈∇1R
(
exp(y0)

)
, x

〉 = d

dt

∣
∣∣∣
t=0

R
(
exp(y0) + tx

)

= d

dt

∣∣
∣∣
t=0

R
(
ρ
(
η, exp(y0) + tx

))

= 〈∇1R
(
ρ
(
η, exp(y0)

))
, dρ(η, ·)exp(y0)(x)

〉

= 〈(
dρ(η, ·)exp(y0)

)t∇1R(y), x
〉
, (8.6)

where the third equality used that the action preserves A1 to get ∇1R in-
stead of ∇R. Since ‖η‖C3,β ≤ C, the differential dρ(η, ·)exp(y0) is bounded
independent of x and we conclude that

∥∥∇1R
(
exp(y0)

)∥∥
L2 ≤ C′∥∥∇1R(y)

∥∥
L2, (8.7)

completing the proof. �

8.2 Verifying the properties

We now need to verify that

G = R ◦ exp : T 0
1 → R (8.8)

has the properties needed for Theorem 7.3. Recall that we need 3 properties:

(1) G is analytic on an open neighborhood OE of 0 in C2,β ∩ T 0
1 .

(2) ∇G is C1 from OE to Cβ with ∇G(0) = 0 and

∥
∥∇G(x) − ∇G(y)

∥
∥

L2 ≤ C‖x − y‖W 2,2 . (8.9)

(3) The linearization LG of ∇G at 0 is symmetric, bounded from C2,β ∩ T 0
1

to Cβ and from W 2,2 ∩ T 0
1 to L2, and is Fredholm.

Lemma 8.10 G defined in (8.8) satisfies (1), (2) and (3).

Proof We deal with these in order.
Proof of (1): Property (1) is automatic since exp is analytic from C2,β to

C2,β and R is analytic from C2,β to R. The analyticity of R follows since
it is given as an integral of an analytic (in fact algebraic) function of the
weight and the metric, as well as their first and second derivatives (the second
derivatives come in from the scalar curvature), cf. [31].
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Proof of (2): Since exp(0) = (b−2∞ g0, b∞) is a critical point for R,
∇G(0) = 0. By (8.2),

∇G(x) = (d expx)
t∇1R

(
exp(x)

)
. (8.11)

It follows from the formula (4.32) for ∇1R and Corollaries 3.33 and 3.41 that
∇1R is C1 from a neighborhood of 0 in C2,β to Cβ and also Lipschitz (in
this neighborhood) from W 2,2 to L2. Since exp is smooth, the formula (8.11)
implies that ∇G has the same properties.

Proof of (3): The Lipschitz bounds on ∇G from (2) imply the boundedness
of LG from C2,β ∩ T 0

1 to Cβ ∩ T 0
1 and from W 2,2 ∩ T 0

1 . Using (8.2), plus the
fact that exp(0) is a critical point for R, we can calculate the linearization LG

of ∇G at 0 by

〈
LG(x), y

〉 = d

dt

∣∣∣∣
t=0

〈∇G(tx), y
〉 = d

dt

∣∣∣∣
t=0

〈∇1R
(
exp(tx)

)
, d exptx(y)

〉

= 〈
LR

(
d exp0(x)

)
, d exp0(y)

〉 = 〈
LR(x), y

〉 ≡ BR(x, y), (8.12)

where the first equality in the second line used that d exp0 is the identity on
T 0

1 . Since LR maps to T 0
1 , we conclude that LG is just the restriction of LR to

T 0
1 . Thus, LG is symmetric since LR is and LG is Fredholm by Theorem 6.6.

�
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Appendix A: The weighted total scalar curvature functional

We will need the following calculations from [35] for the changes of geomet-
ric quantities under deformation of a metric.16 The derivative at t = 0 will
be denoted by a prime; for example, R′ denotes the derivative of the scalar
curvature R at t = 0.

Lemma A.1 Let g + th be a one-parameter family of metrics on a closed
manifold and u + tv a one-parameter family of functions. Then

(
(g + th)ij

)′ = −hij , (A.2)
(∣∣∇(u + tv)

∣∣2)′ = −h(∇u,∇u) + 2〈∇u,∇v〉, (A.3)

dμ′ = 1

2
Tr(h)dμ, (A.4)

16Note that [35] has the same curvature convention as here; cf. (1.20) and Sect. 2.1 in [35].
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R′ = −〈Ric, h〉 + δ2h − ΔTr(h), (A.5)

where δ is the divergence operator and δ2 comes from applying it twice. These
will suffice for first variation formulas.

We will need the following additional formulas for the second variation; to
simplify notation, we compute these at an orthonormal frame so that we do
not need to keep track of upper or lower indices:

Ric′
ij = 1

2

(∇i (δh)j + ∇j (δhi) + Ricikhjk + Ricjkhik − Δhij

− HessTrh
) − Rikj�hk�, (A.6)

(Hessu+tv)
′
ij = Hessv − 1

2

(∇i(Hessu)jk + ∇j (Hessu)ik − ∇k(Hessu)ij
)∇ku.

(A.7)

Note that hij is given by using the background metric g to raise the indices
on the tensor h, i.e., hij = gikgj�hk�.

Appendix B: Some computations and identities for the trace free
Hessian

In this appendix, we collect some calculations and identities for the trace free
Hessian Bb of b2 where b2 satisfies Δb2 = 2n|∇b|2 on an n-dimensional
Ricci flat manifold (M,g).

B.1 The trace-free Hessian

Throughout this section, the function b satisfies

Δb2 = 2n|∇b|2 (B.1)

and we define the tensor Bb to be the trace-free part of the Hessian of b2, i.e.,

Bb = Hessb2 − 2|∇b|2g. (B.2)

We will use that Hessb2 = 2bHessb + 2∇b ⊗ ∇b, so that

2bHessb = Hessb2 − 2∇b ⊗ ∇b = Bb + 2
(|∇b|2g − ∇b ⊗ ∇b

)
. (B.3)

The next lemma computes the gradient of |∇b|2 in terms of Bb.

Lemma B.4 We have b∇|∇b|2 = Bb(∇b), where Bb(∇b) is given by
〈Bb(∇b), v〉 ≡ Bb(∇b, v).
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Proof Since ∇|∇b|2 = 2Hessb(∇b, ·), (B.3) gives

b∇|∇b|2 = 2bHessb(∇b, ·) = Bb(∇b, ·) + 2
(|∇b|2∇b − |∇b|2∇b

)

= Bb(∇b, ·). (B.5)

�

Corollary B.6 We have 2b∇|∇b| = Bb(n) where n = ∇b
|∇b| and 4b2|∇|∇b||2

= |Bb(n)|2.

Proof Since b∇|∇b|2 = 2b|∇b|∇|∇b|, this follows from Lemma B.4. �

The next lemma computes the divergence of Bb.

Lemma B.7 The divergence of Bb is

δBb = (2n − 2)∇|∇b|2 = (2n − 2)b−1Bb(∇b). (B.8)

Proof Fix a point p ∈ M and let ei be an orthonormal frame at p with
∇ei

ej (p) = 0. Since M is Ricci flat, we get for any function w that

∇Δw = Δ∇w. (B.9)

Using the definition of Bb, the fact that g is parallel, and (B.9) with w = b2

gives

(δBb)i ≡ (Bb)ij,j = (
b2)

ijj
− 2

(|∇b|2)
i
= (

Δb2)
i
− 2

(|∇b|2)
i
. (B.10)

Thus, δBb = ∇(Δb2 − 2|∇b|2). The lemma follows since Δb2 = 2n|∇b|2. �

Using this, we can compute the Laplacian of |∇b|2.

Lemma B.11 We have

b2Δ|∇b|2 = 1

2
|Bb|2 + (2n − 4)Bb(∇b,∇b)

= 1

2
|Bb|2 + (n − 2)

〈∇|∇b|2,∇b2〉. (B.12)

Proof Using the definition of the Laplacian, then Lemma B.4, and then
Lemma B.7 gives

b2Δ|∇b|2 = b2div∇|∇b|2 = b2div
(
b−1Bb(∇b)

)

= b〈δBb,∇b〉 + 〈Bb, bHessb〉 − Bb(∇b,∇b)
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= (2n − 2)Bb(∇b,∇b) +
〈
Bb,

{
1

2
Bb + (|∇b|2g − ∇b ⊗ ∇b

)
}〉

− Bb(∇b,∇b). (B.13)

Using 〈Bb,g〉 = 0 since Bb is trace-free, and noting that 〈Bb,∇b ⊗ ∇b〉 =
Bb(∇b,∇b) gives

b2Δ|∇b|2 = (2n − 4)Bb(∇b,∇b) + 1

2
|Bb|2.

This gives the first equality. To get the second equality, use that b∇|∇b|2 =
Bb(∇b) by Lemma B.4 to write

2Bb(∇b,∇b) = 2
〈
Bb(∇b),∇b

〉 = 2b
〈∇|∇b|2,∇b

〉 = 〈∇|∇b|2,∇b2〉.
(B.14)

�

B.2 The trace-free second fundamental form

The second fundamental form II of the level sets of b is given by

II(ei, ej ) ≡ 〈∇ei
n, ej 〉, (B.15)

where ei is a tangent frame and n = ∇b
|∇b| is the unit normal. It follows that

2b|∇b|II(ei, ej ) = 〈∇ei
∇b2, ej

〉 = Hessb2(ei, ej ). (B.16)

Lemma B.17 The trace-free second fundamental form II0 and mean curva-
ture H are

2b|∇b|II0 = Bb + Bb(n,n)

n − 1
gT , (B.18)

2b|∇b|H = 2(n − 1)|∇b|2 − Bb(n,n), (B.19)

where Hessb2 and Bb are restricted to tangent vectors and gT is the metric
on the level set.

Proof The mean curvature H is the trace of II over the ei’s. We have

2b|∇b|H = Δb2 − Hessb2(n,n) = 2n|∇b|2 − Hessb2(n,n)

= 2(n − 1)|∇b|2 + (
2|∇b|2 − Hessb2(n,n)

)

= 2(n − 1)|∇b|2 − Bb(n,n), (B.20)
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giving the second claim. The trace-free second fundamental form II0 is

2b|∇b|II0 = 2b|∇b|
(

II − H

n − 1
gT

)
= Hessb2 − 2|∇b|2gT + Bb(n,n)

n − 1
gT

= Bb + Bb(n,n)

n − 1
gT , (B.21)

where Hessb2 and Bb are restricted to tangent vectors. �

Lemma B.22 If B0 denotes the restriction of the tensor Bb to tangent vectors,
then

|Bb|2 = |B0|2 + 2
∣∣Bb(n)T

∣∣2 + (
Bb(n,n)

)2
. (B.23)

Lemma B.24 If we let B0 denote the restriction of Bb to tangent vectors,
then

4b2|∇b|2|II0|2 = |B0|2 − (Bb(n,n))2

n − 1
= |Bb|2 − 2

∣∣Bb(n)T
∣∣2

− n

n − 1

(
Bb(n,n)

)2

= |Bb|2 − n

n − 1

∣∣Bb(n)
∣∣2 − n − 2

n − 1

∣∣Bb(n)T
∣∣2

. (B.25)

The next lemma computes the scalar curvature RgT where gT is the in-
duced metric on the level sets of b.

Lemma B.26 The scalar curvature RgT is given by

4b2|∇b|2RgT = 4(n − 1)(n − 2)|∇b|4 − 4(n − 2)|∇b|2Bb(n,n)

− |Bb|2 + 2
∣∣Bb(n)

∣∣2
. (B.27)

Proof Using that II0 and gT are pointwise orthogonal and |gT |2 = (n − 1),
we get

|II|2 =
∣
∣∣∣II0 + H

n − 1
gT

∣
∣∣∣

2

= |II0|2 + H 2

n − 1
. (B.28)

Since M is Ricci flat, the Gauss equation gives

RgT = H 2 − |II|2 = H 2 − |II0|2 − H 2

n − 1
= n − 2

n − 1
H 2 − |II0|2. (B.29)
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To handle this, we first compute H 2

4b2|∇b|2H 2 = [
2(n − 1)|∇b|2 − Bb(n,n)

]2

= 4(n − 1)2|∇b|4 − 4(n − 1)|∇b|2Bb(n,n) + (
Bb(n,n)

)2
.

(B.30)

Combining this with the calculation of |II0|2 from Lemma B.24 gives

4b2|∇b|2RgT = 4(n − 1)(n − 2)|∇b|4 − 4(n − 2)|∇b|2Bb(n,n)

+ n − 2

n − 1

(
Bb(n,n)

)2

− |Bb|2 + n

n − 1

∣∣Bb(n)
∣∣2 + n − 2

n − 1

∣∣Bb(n)T
∣∣2

. (B.31)

Finally, simplifying this gives

4b2|∇b|2RgT = 4(n − 1)(n − 2)|∇b|4 − 4(n − 2)|∇b|2Bb(n,n)

− |Bb|2 + 2
∣
∣Bb(n)

∣
∣2

. (B.32)

�

We will also need to compute the Ricci curvature RicT of the level sets.
This will be applied in Sect. 4 where we will have that |∇b| is close to con-
stant.

Lemma B.33 If |∇b| is fixed close to a positive constant, then the Ricci cur-
vature RicT of the level sets is given by

b2RicT = (n − 2)|∇b|2gT + E , (B.34)

where the error term E is bounded by a constant times |Bb| + b|∇Bb|.

Proof Let R and RT denote the curvature tensor of M and the level set of b,
respectively. Choose an orthonormal frame ei where en = ∇b

|∇b| is the unit
normal and e1, . . . , en−1 diagonalize the second fundamental form II; let λi

be the eigenvalue corresponding to ei .
For i �= j (and i, j < n), the Gauss equation gives

RT
ijij = Rijij + λiλj . (B.35)
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Summing over j < n gives the Ricci curvature of the level set in the ei, ei

direction

RicT
ii =

∑

i �=j<n

(Rijij + λiλj ) = Ricii − Rinin + λi(H − λi). (B.36)

Using that M is Ricci flat, this becomes

RicT
ii = −Rinin + λiH − λ2

i , (B.37)

where we used that H = ∑
i<n λi . Using that λi = II0(ei, ei) + H

n−1 , we get

RicT
ii = −Rinin + H II0(ei, ei) + H 2

n − 1
−

(
II0(ei, ei) + H

n − 1

)2

. (B.38)

Since |∇b| is almost constant (and thus bounded away from zero),
Lemma B.17 gives

∣
∣∣∣H − (n − 1)|∇b|

b

∣
∣∣∣ + |II0| ≤ C

|Bb|
b

. (B.39)

Using this in (B.38) and noting that both |Bb| and b|H | are uniformly
bounded gives

RicT
ii = −Rinin + (n − 2)

|∇b|2
b2

+ E
b2

, (B.40)

where the error term E is bounded by a constant times Bb.
To complete the proof, we will bound the “radial” extrinsic curvature term

Rinin in terms of the trace-free Hessian Bb. Let e be a tangent vector to the
level set b = R; we can assume that ∇∇be = 0. The definition of the curvature
tensor gives

4b2〈R(∇b, e)∇b, e
〉 = 〈

R
(∇b2, e

)∇b2, e
〉

= 〈∇e∇∇b2∇b2, e
〉 − 〈∇∇b2∇e∇b2, e

〉 + 〈∇[∇b2,e]∇b2, e
〉

= 〈∇eHessb2

(∇b2), e
〉 − 〈∇∇b2Hessb2(e), e

〉

− Hessb2

(
Hessb2(e), e

)
. (B.41)

Next, we use metric compatibility (and the fact that ∇∇be = 0) to get

4b2〈R(∇b, e)∇b, e
〉 = ∇e

(
Hessb2

(∇b2, e
)) − Hessb2

(∇b2,∇ee
)

− ∇∇b2

(
Hessb2(e, e)

) − Hessb2

(
Hessb2(e), e

)
.

(B.42)
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Bringing in that Hessb2 = Bb + 2|∇b|2g, we can write this as

4b2〈R(∇b, e)∇b, e
〉 = ∇e

(
Bb

(∇b2, e
)) − Bb

(∇b2,∇ee
) − 2|∇b|2〈∇b2,∇ee

〉

− ∇∇b2

(
Bb(e, e)

) − 2∇∇b2 |∇b|2

− Bb

(
Bb(e) + 2|∇b|2e, e)

− 2|∇b|2Bb(e, e) − 4|∇b|4. (B.43)

The right-hand side has eight terms. Terms 1, 2, 4, 5, 6 and 7 are all bounded
by C(|Bb| + b|∇Bb|) (here we also used that ∇|∇b| can also be bounded in
terms of Bb). Thus, we get that

4b2〈R(∇b, e)∇b, e
〉 = −2|∇b|2〈∇b2,∇ee

〉 − 4|∇b|4 + E0, (B.44)

where E0 ≤ C(|Bb| + b|∇Bb|). Using that ∇b and e are orthogonal, we get

〈∇b2,∇ee
〉 = −〈∇e∇b2, e

〉 = −Hessb2(e, e) = −Bb(e, e) − 2|∇b|2, (B.45)

and plugging this in completes the proof. �

Appendix C: Bounding the distance to cones in general

In this appendix we will explain a generalization, stated in footnote 8, of
(2.54) that holds when Mn has nonnegative Ricci curvature that follows from
the methods of [4]. This more general inequality is not used in this paper.

Before recalling the more general inequality, recall that Θr is the scale
invariant Gromov-Hausdorff distance from the annulus

B 4r
b∞

(x) \ B r
b∞

(x) ⊂ M

(x is a fixed point) to the corresponding annulus centered at the vertex in the
closest metric cone. The claim in footnote 8 is that there exist μ = μ(n) > 0
and a constant C so that

Θ2+μ
r ≤ C

[
Q(r/2) − Q(8r)

] ≡ C

∫

r
2 ≤b≤8r

b−n
∣∣Hess0

b2

∣∣2
, (C.1)

where the point x is the pole of the Green’s function G, b is defined by b =
G

1
2−n and Hess0

b2 denotes the trace-free Hessian of b2, i.e.,

Hess0
b2 = Hessb2 − Δb2

n
g.
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It follows directly from a simplification of Theorem 4.85 (with f (r) = r)
in [4] that Θr goes to zero as the right-hand side of (C.1) goes to zero. This
simplification is that we don’t have (4.88) of [4] here, but (4.88) is used in
[4] to establish the L2 bound for the trace-free Hessian that we get here by
assumption. What needs to be explained is the rate at which Θr goes to zero
as the L2 bound does.

When M is Einstein and the annulus is close to a cone with smooth cross-
section, we saw in Sect. 4.4 that (C.1) holds with μ = 0. The first step was
to get a pointwise bound from the L2 bound by using the equation and the
meanvalue inequality (see Theorem 4.1). This pointwise bound gave point-
wise estimates for the distortion of the flow generated by the vector field
∇b

|∇b|2 and we concluded that not only is the annulus was diffeomorphic to an

annulus in a cone, but the metric was C0 close to the cone metric, thus giving
(2.54) (see p. 28 and compare (1.14)–(1.17) in [4] for the model case).

For a general M with nonnegative Ricci curvature, we do not get point-
wise bounds on the trace-free Hessian. Rather, the segment inequality, Theo-
rem 2.11 of [4], allows one to bound the average distortion from the cone of
the flow generated by the vector field ∇b

|∇b|2 by a constant times the L2 bound

for the trace-free part of the Hessian of b2. Within any two balls of a fixed
radius, the linear bound on the average distortion allows us to find a point in
each ball where the distortion is linearly bounded. Namely, we can find a net
of points of any fixed size where the distances to the corresponding net in
the cone are bounded by the L2 norm (corresponding to (C.1) with μ = 0).
Combining this with the triangle inequality then gives the Gromov-Hausdorff
closeness to the model cone, with the bound for distance being the sum of the
L2 norm and the radius of the balls. If we now let the radius shrink, then we
lose less in the triangle inequality but we lose more in going from the integral
to the pointwise bound since we are averaging over smaller sets. Interpolating
to optimize the estimate gives the bound (C.1).
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