
Symmetric Stair Preconditioning of Linear Systems
for Parallel Trajectory Optimization

Xueyi Bu1, Brian Plancher2

Abstract— There has been a growing interest in parallel
strategies for solving trajectory optimization problems. One key
step in many algorithmic approaches to trajectory optimization
is the solution of moderately-large and sparse linear systems.
Iterative methods are particularly well-suited for parallel solves
of such systems. However, fast and stable convergence of
iterative methods is reliant on the application of a high-
quality preconditioner that reduces the spread and increase
the clustering of the eigenvalues of the target matrix. To
improve the performance of these approaches, we present a
new parallel-friendly symmetric stair preconditioner. We prove
that our preconditioner has advantageous theoretical properties
when used in conjunction with iterative methods for trajectory
optimization such as a more clustered eigenvalue spectrum.
Numerical experiments with typical trajectory optimization
problems reveal that as compared to the best alternative
parallel preconditioner from the literature, our symmetric stair
preconditioner provides up to a 34% reduction in condition
number and up to a 25% reduction in the number of resulting
linear system solver iterations.

I. INTRODUCTION

Trajectory optimization algorithms [1] are a powerful, and
state-of-the-art set of tools for synthesizing dynamic motions
for complex robots [2], [3], [4], [5], [6], [7]. There has
been historical interest in parallel strategies [8] for solving
trajectory optimization problems and several more recent
efforts have shown that significant computational benefits are
possible by exploiting parallelism in different stages of the
algorithm on heterogeneous hardware platforms including
multi-core CPUs [9], [10], [11], [12], GPUs [13], [14], [15],
[16], [17], [18], and FPGAs [19], [20], [21], [22]. This shift
toward parallelism is growing increasingly important with
the impending end of Moore’s Law and the end of Dennard
Scaling, which have led to a utilization wall that limits the
performance a single CPU chip can deliver [23], [24].

One key step in many algorithmic approaches to trajectory
optimization is the solution of moderately-large and sparse
linear systems. These systems can be solved by direct
factorization or through iterative fixed point approaches.
While many state-of-the-art solvers leverage factorization-
based approaches [25], [26], iterative methods, like the
Preconditioned Conjugate Gradient (PCG) algorithm [27],

This material is based upon work supported by the National Science
Foundation (under Award 2246022). Any opinions, findings, conclusions,
or recommendations expressed in this material are those of the authors and
do not necessarily reflect those of the funding organizations.

1Xueyi Bu is with the School of Engineering and Applied Science,
Columbia University, New York, NY. xb2133@columbia.edu

2Brian Plancher is with Barnard College, Columbia University, New
York, NY. bplancher@barnard.edu

are particularly well-suited for parallelism, as they are com-
putationally dominated by matrix-vector products and vector
reductions [28], [29]. Furthermore, in the context of very-
large-scale linear systems GPU implementations of PCG,
and other iterative methods, have already been shown to
outperform both factorization and iterative approaches on
the CPU [30], [31]. However, fast and stable convergence
of such iterative methods is reliant on the use of a high-
quality symmetric preconditioner that reduces the spread
and increase the clustering of the eigenvalues of the target
matrix [28], [32], [33], [34].

To improve the performance of these approaches, we
present a new parallel-friendly symmetric stair precondi-
tioner. We prove that our preconditioner has advantageous
theoretical properties when used in conjunction with iterative
methods for trajectory optimization such as a more clustered
eigenvalue spectrum than previous parallel preconditioners.
Numerical experiments with typical trajectory optimization
problems reveal that as compared to the best alternative
parallel preconditioner from the literature, our symmetric
stair preconditioner provides up to a 34% reduction in
condition number and up to a 25% reduction in the number
of PCG iterations needed for convergence.

II. BACKGROUND AND RELATED WORK

A. Direct Trajectory Optimization

Trajectory optimization [1], also known as numerical opti-
mal control, solves an (often) nonlinear optimization problem
to compute a robot’s optimal path through an environment
as a series of states (x ∈ Rn) and controls (u ∈ Rm). These
problems assume a discrete-time dynamical system,

xk+1 = f(xk, uk, h), x0 = xs, (1)

with a timestep h, and minimize an additive cost function,

J(X,U) = ℓf (xN) +

N−1∑
k=0

ℓ(xk, uk). (2)

One approach for solving such problems is through the
use of direct methods. At each iteration of a direct method,
a quadratic approximation of the nonlinear problem defined
by Equations 1 and 2 is formed around a nominal trajectory
(X,U), resulting in a quadratic program (QP). The resulting
KKT system [35], [36] is then solved to update the nominal
trajectory. This process is repeated until convergence.

One approach to solving the KKT system is through two
step process using the symmetric positive definite Schur

Complement, S.1 This process first solves for the optimal
Lagrange multipliers, λ∗, and then recovers the state and
control update, δz∗ = [δx∗, δu∗] as follows (where c and C
are the constraint value and Jacobian, and g and G are the
cost Jacobian and Hessian respectively):

S = −CG−1CT γ = c− CG−1g

Sλ∗ = γ δz∗ = G−1(g − CTλ∗)
(3)

If we denote the dynamics Jacobians as Ak = fxk
and

Bk = fuk
, and cost Jacobians and Hessians as qk = Jxk

,
rk = Juk

, Qk = Jxkxk
, and Rk = Jukuk

, we can define:

θk = −AkQ
−1
k AT

k −BkR
−1
k BT

k −Q−1
k+1

ϕk = AkQ
−1
k

ζk = AkQ
−1
k qk +BkR

−1
k rk −Q−1

k+1qk+1.

(4)

The Schur complement then takes the following block-
tridiagonal form:

S =


−Q−1

0 ϕT
0

ϕ0 θ0 ϕT
1

. . .
ϕN−2 θN−2 ϕT

N−1

ϕN−1 θN−1


γ = c+

(
−Q−1

0 q0 ζ0 ζ1 . . . ζN−1

)T
.

(5)

For most trajectory optimization problems Q and R are
chosen to be symmetric positive definite, or made symmetric
positive definite by construction (e.g., in the case of quadratic
penalty methods), and CT has full column rank. Further-
more, by construction θ is both invertible and symmetric.
Similarly, although Ak and Bk will vary depending on the
integrator in use, for most popular explicit and semi-implicit
integrators they take the form

A = I + hM B = hN, (6)

where M and N are functions of the system dynamics
f . Additional conditions, such as Lipschitz continuity, are
usually imposed on f to ensure the local existence and
uniqueness of the solution to the dynamical system [37].
As a result, ∥M∥ is bounded; thus, for sufficiently small h,
h∥M∥ < 1 and A = I + hM , and thus ϕ, is invertible.
Finally, given all of the above, the dominant computational
step in this approach is solving for λ∗ in Equation 3.

B. Parallel Iterative Solvers

There has been a significant amount of prior work develop-
ing general purpose parallel iterative solvers, many of which
target the GPU [28], [38], [39], [40], [41], [42], [43]. Iterative
methods solve the problem Sλ∗ = γ for a given S and γ by
iterative refining an estimate for λ up to some tolerance ϵ.
The most popular of these methods is the Conjugate Gradient
(CG) method, which is applicable to systems where S is
positive definite. The convergence rate of CG is directly

1While S is actually symmetric negative definite, one can instead negate
it and solve for −λ∗, enabling us to simplify our proofs by treating it as
symmetric positive definite in the remainder of this work.

related to the spread of the Eigenvalues of S ∈ Rn×n,
converging faster when they are clustered. We also note that
clustered, and moderate in magnitude, eigenvalues also have
the added benefit of avoiding round-off and overflow errors
caused by iterative floating point math.

To improve the performance of CG, a symmetric precon-
ditioning matrix Φ ≈ S is often applied to instead solve the
equivalent problem Φ−1Sλ∗ = Φ−1γ [44]. The resulting
preconditioned CG (PCG) algorithm leverages matrix-vector
products with S and Φ−1, as well as vector reductions,
both parallel friendly operations. Finally, we note that PCG
requires a symmetric preconditioner [44].

C. Parallel Preconditioners
There is a large literature on preconditioning [28], [45],

[46], [47], [48], [49] and there are many different precon-
ditioners that are optimized for computation on vector or
parallel processors. The most popular of these are the Jacobi
and Block-Jacobi preconditioners. These set:

Φ = diag(S) or Φ = block-diag(S). (7)

Previous GPU based iterative solvers mainly leveraged these
preconditioners [42], [43]. For block banded matrices, alter-
nating and overlapping block preconditioners have also been
used in previous work. These methods compute Φ−1 as a
sum of the inverse of block-diagonal matrices that compose
S [28], [50]. Finally, Polynomial splitting preconditioners
have also found widespread usage [28], [34]. These follow
the pattern S = Ψ−P and compute a preconditioner where:

S−1 ≈ Φ−1 = (I +Ψ−1P + (Ψ−1P)2 . . .)Ψ−1. (8)

We note that these preconditioners are only valid where:

ρ(Ψ−1P) < 1, (9)

which is called a convergent splitting and will guarantee
convergence when used with the CG algorithm [28], [32],
[33], [34]. Also, increasing the degree of the polynomial
computes a better approximation of S and improves the con-
vergence rate of the resulting PCG algorithm. However, this
requires more computation to compute the preconditioner
and also often creates a preconditioner with a larger band-
width, requiring more memory. For block-banded matrices,
like S in our problem, the values in the true inverse decay
exponentially as one moves away from the diagonal [51], this
creates a tradeoff between the accuracy and both the memory
and computational complexity of the preconditioner.

III. STAIR PRECONDITIONERS

One polynomial splitting for (symmetric) block tridiagonal
matrices that has been shown to outperform Jacobi and
Block-Jacobi methods is the stair based splitting [52], [53].
This splitting comes in two types, left (type 1) and right
(type 2), depending upon the direction of the stair. For a 3x3
symmetric block tridiagonal S:

S =

D1 O1 0
OT

1 D2 O2

0 OT
2 D3

 (10)

The stair splittings are:

Ψl =

D1 0 0
OT

1 D2 O2

0 0 D3

 Pl = −

 0 O1 0
0 0 0
0 OT

2 0


Ψr =

D1 O1 0
0 D2 0
0 OT

2 D3

 Pr = −

 0 0 0
OT

1 0 O2

0 0 0

 .

(11)

The stair is invertible if and only if its diagonal blocks, D, are
invertible. If so, its inverse has the same stair shaped sparsity
pattern drawing from the same or neighboring block-rows of
S, enabling efficient parallel computation [29], [54]:

Ψ−1 = D−1(2D −Ψ)D−1

Ψ−1
l =

 D−1
1 0 0

−D−1
2 OT

1 D
−1
1 D−1

2 −D−1
2 O2D

−1
3

0 0 D−1
3


Ψ−1

r =

D−1
1 −D−1

1 O1D
−1
2 0

0 D−1
2 0

0 −D−1
3 OT

2 D
−1
2 D−1

3

 .

(12)

While, the left and right stair preconditioners are not sym-
metric, and thus cannot be used in the context of PCG, the
additive polynomial preconditioner can instead be used:

Φ−1
add =

1

2
(Ψ−1

l +Ψ−1
r). (13)

However, as we shall see later on, this will result in a declus-
tered spectrum that could negatively impact the performance
of PCG. In the remainder of this section we prove a few
lemmas and theorems about the eigenpairs of Ψ−1

l , Ψ−1
r ,

and Φ−1
addS which we will need for later proofs.2

A. Eigenpairs of Ψl and Ψl

We first prove a few lemmas about the eigenpairs of the
left and right stair preconditioners.3

Lemma 3.1: Given the stair-splittings of a symmetric
block tridiagonal matrix S = Ψl − Pl = Ψr − Pr for a
n × n block S, where each block is m × m, Ψ−1

l Pl and
Ψ−1

r Pr have the same spectrum.

Proof: If (λ, v) is an eigenpair of PrΨ
−1
r and λ ̸= 0:

Ψ−1
r Pr(Ψ

−1
r v) = Ψ−1

r (λv), (14)

and (λ,Ψ−1
r v) is an eigenpair of Ψ−1

r Pr. Since Pr is not
invertible, 0 is an eigenvalue for both PrΨ

−1
r and Ψ−1

r Pr.
Also as Pr and Ψ−1

r are equal dimensioned square matrices
then by Theorem 1.3.22 of [55], PrΨ

−1
r and Ψ−1

r Pr have
the same spectrum. Finally, (Ψ−1

l Pl)
T = PrΨ

−1
r and every

matrix has the same spectrum as its transpose.

Lemma 3.2: For vT = (vT1 , v
T
2 , . . . , v

T
i , . . . , v

T
n) ∈ Rnm

and vi ∈ Rm for i = 1, 2, . . . , n, we denote vTe =

2We note that throughout this paper we analyze the spectrum of Ψ−1S
even though the resulting matrix is not guaranteed to be symmetric positive
definite. This is possible because through the Cholesky factorization, Ψ =
LLT , we can instead from the symmetric positive definite L−1SL−T , and
the matrices L−1SL−T and Ψ−1S are similar.

3For more details on stair preconditioners please see [52] and [53].

(0, vT2 , . . . , 0, v
T
2j , . . .) and vTo = (vT1 , 0, . . . , v

T
2j+1, 0, . . .)

such that v = ve + vo.
If (λ, v = ve + vo) is an eigenpair of Ψ−1

l Pl and λ ̸= 0 ,
then (λ, u = ve + λvo) is an eigenpair of Ψ−1

r Pr.
If (λ, u = ue + uo) is an eigenpair of Ψ−1

r Pr and λ ̸= 0,
then (λ, v = λue + uo) is an eigenpair of Ψ−1

l Pl.

Proof: Ψ−1
l Plvo = 0 for all vo because of the zero

columns of Ψ−1
l Pl (see Equation 45 in the appendix).

Similarly, Prve = 0 and Ψ−1
r Prve = 0 (see Equation 46

in the appendix).

Suppose (λ, v = ve + vo) is an eigenpair of Ψ−1
l Pl, then

Ψ−1
l Plve = Ψ−1

l Plv = λ(ve + vo). (15)

If λ ̸= 0, we split Equation 15 into two parts,

(Ψ−1
l −D−1)Plv = (Ψ−1

l −D−1)Plve = λve (16)

D−1Plv = D−1Plve = λvo (17)

where D is the diagonal blocks of S (see Equations 47 and
48 in the appendix for more details).

Since Pr = Ψr − S = D −Ψl, then:

D−1Pr = I −D−1Ψl = (Ψ−1
l −D−1)Ψl. (18)

This means that:

D−1Prv = (Ψ−1
l −D−1)Ψlv

= (Ψ−1
l −D−1)Ψl(

1

λ
Ψ−1

l Plv)

=
1

λ
(Ψ−1

l −D−1)Plv

= ve

(19)

Using the inverse of the stair matrix (Equation 12):

Ψ−1
r −D−1 = D−1(D −Ψr)D

−1 = D−1PlD
−1 (20)

(Ψ−1
r −D−1)Prv = D−1PlD

−1Prv

= D−1Plve

= λvo

(21)

Combining Equations 19 and 21 as well as make use of
the fact Prve = 0, we obtain the following result:

Ψ−1
r Pr(ve + λvo) = Ψ−1

r Pr(λv)

= λ(D−1Prv + (Ψ−1
r −D−1)Prv)

= λ(ve + λvo)
(22)

The second statement follows from Lemma 4.1 or can be
proved with the same strategy as above.

Finally, we note that the eigenvectors with eigenvalues at 0
can be divided into two types. The first type of these are the
eigenvectors vo and ue which are formed because of the zero
columns of Ψ−1

l Pl and Ψ−1
r Pr (see Equations 45 and 46 in

the appendix). The second type of these are the eigenvectors
ve and uo such that Plve = 0 and Pruo = 0.

If n is even, then Ψ−1
l Pl and Ψ−1

r Pr have exactly mn
2

eigenpairs of the first type. If n is odd, Ψ−1
l Pl will have

mn+1
2 while Ψ−1

r Pr will have m less such eigenpair and,
instead, have m more eigenpairs in the form of (0, uo) since,
in this case, Pruo = 0, which has non-zero solutions even
when all Os are invertible:

OT
1 u1 +O2u3 = 0

OT
3 u3 +O4u5 = 0

· · ·
OT

n−2un−2 +On−1un = 0

(23)

In the case of most integrators, as discussed before, Os
are invertible, and Plve = 0 if and only if ve = 0. Hence,
there are exactly m⌈n

2 ⌉ eigenpairs with eigenvalues at 0 and
m⌊n

2 ⌋ eigenpairs with non-zero eigenvalues.

B. Eigenpairs of Φadd

We next construct the mn eigenpairs of Φ−1
addS from those

of Ψ−1
l Pl and Ψ−1

r Pr.

Theorem 3.3: If (0, ve) is an eigenpair of Ψ−1
l Pl then

(1, ve) is an eigenpair of Φ−1
addS and if (0, uo) is an eigenpair

of Ψ−1
r Pr then (1, uo) is an eigenpair of Φ−1

addS.

Proof: Let (0, ve) be an eigenpair of Ψ−1
l Pl, then:

Ψ−1
l Sve = Ψ−1

l (Ψl − Pl)ve = ve − 0ve = ve (24)

Ψ−1
r Sve = Ψ−1

r (Ψr − Pr)ve = ve − 0 = ve. (25)

Φ−1
addSve =

1

2
(Ψ−1

l +Ψ−1
r)Sve =

1

2
(ve + ve) = ve. (26)

Let (0, uo) be an eigenpair of Ψ−1
r Pr, then

Ψ−1
l Suo = Ψ−1

l (Ψl − Pl)uo = uo − 0 = uo (27)

Ψ−1
r Suo = Ψ−1

r (Ψr − Pr)uo = uo − 0uo = uo. (28)

Φ−1
addSuo = uo. (29)

Theorem 3.4: Let (λ, v = ve + vo) be an eigenpair of
Ψ−1

l Pl. If λ ̸= 0, then (1 − 1
2 (λ ±

√
λ), ve ±

√
λvo) are

eigenpairs of Φ−1
addS.

Proof: Let (λ, v = ve + vo) be an eigenpair of Ψ−1
l Pl:

Since Ψ−1
l Plvo = 0,

Ψ−1
l Plve = λ(ve + vo). (30)

Similarly, Equation 22 and Ψ−1
r Prve = 0 suggests:

Ψ−1
r Prvo = ve + λvo. (31)

We can therefore make an educated guess that the eigen-
values of Φ−1

addS = 1
2 (Ψ

−1
l + Ψ−1

r)S = 1
2 (Ψ

−1
l S + Ψ−1

r S)
and should be of the form u = ave + bvo. Following from
Equations 30 and 31, we can therefore say that:

Φ−1
addSu =

1

2
(Ψ−1

l S(ave + bvo) + Ψ−1
r S(ave + bvo))

= u− 1

2

[
bΨ−1

l Plve + aΨ−1
r Prvo

]
= u− 1

2
[bλ(ve + vo) + a(ve + λvo)]

= u− 1

2
[(a+ λb)ve + λ(a+ b)vo]

(32)

Given our assumed form u = ave + bvo, Equation 32
should simplify to: βave + βbvo. Thus, the eigenpair (λ, u)
must satisfy the linear system:

1

2

(
1 λ
λ λ

)(
a
b

)
= (1− β)

(
a
b

)
(33)

This means we can conclude that:

β = 1− 1

2
(λ±

√
λ), b = ±

√
λa (34)

Theorem 3.5: If S is symmetric block tridiagonal and
positive definite, then Φ−1

addS has real positive eigenvalues.

Proof: If S is positive definite, then its diagonal block
matrix, D, is positive definite and thus:

vTSv > 0

vT (Ψl +Ψr −D)v > 0

vT (Ψl +Ψr)v > 0

(35)

Since Ψl = ΨT
r we can also note that Ψl, Ψr, Ψ−1

l , and
Ψ−1

r are all positive definite as:

vT (Ψl +Ψr)v = 2vTΨlv = 2vTΨrv (36)

As (Ψ−1
l)T = Ψ−1

r , Φ−1
add = 1

2 (Ψ
−1
l +Ψ−1

r) is symmetric
and positive definite. Φ−1

addS is then similar to the symmetric
positive definite matrix 1

2 (Ψ
−1
l +Ψ−1

r)1/2S(Ψ−1
l +Ψ−1

r)1/2

and must also have positive real eigenvalues. We note that
this is a special case of Theorem 3.4 of [34] and Theorem
2.2 and Corollary 2.3 of [46].

IV. THE SYMMETRIC STAIR PRECONTIONER

In this section, we introduce a new symmetric parallel
preconditioner for symmetric positive definite block tridi-
agonal matrices which improves upon existing stair based
preconditoners, the symmetric stair preconditioner:

Φ−1
sym = Ψ−1

l +Ψ−1
r −D−1. (37)

This new preconditioner can also simply be thought of as
taking Ψ−1

l or Ψ−1
r and copying the off diagonal blocks

across the diagonal and takes the form:

Φ−1
sym =

 D−1
1 −D−1

1 O1D
−1
2 0

−D−1
2 OT

1 D
−1
1 D−1

2 −D−1
2 O2D

−1
3

0 −D−1
3 OT

2 D
−1
2 D−1

3

 (38)

In the remainder of this section, we will prove that Φ−1
symS

is admissible for use with PCG, and that Φ−1
symS has a more

clustered spectrum than Φ−1
addS.

We begin by showing that Φ−1
symS and Ψ−1

l S (or Ψ−1
r S)

share the same eigenvalues. And, that the multiplicities of
the eigenvalues of Φ−1

symS that are less than one are doubled
as compared to Ψ−1

l S (or Ψ−1
r S).

Theorem 4.1: If (0, ve) is an eigenpair of Ψ−1
l Pl then

(1, ve) is an eigenpair of Φ−1
symS. If (0, uo) is an eigenpair

of Ψ−1
r Pr then (1, uo) are eigenpairs of Φ−1

symS.

Proof: Let (0, ve) be an eigenpair of Ψ−1
l Pl, then by

Equations 16, 25 and 48 in the appendix:

Φ−1
symSve = (Ψ−1

r + (Ψ−1
l −D−1))Sve

= ve + (Ψ−1
l −D−1)(Ψl − Pl)ve

= ve + (Ψ−1
l −D−1)Ψlve − (Ψ−1

l −D−1)Plve

= ve + 0− 0ve = ve

(39)

Similarly, let (0, uo) be an eigenpair of Ψ−1
r Pr, then:

Φ−1
symSuo = (Ψ−1

l + (Ψ−1
r −D−1))Suo

= uo + (Ψ−1
r −D−1)(Ψr − Pr)uo

= uo + (Ψ−1
l −D−1)Ψruo − (Ψ−1

r −D−1)Pruo

= uo + 0− 0uo = uo

(40)

Theorem 4.2: If (λ, v = ve+vo) is an eigenpair of Ψ−1
l Pl,

then (1− λ, vo) and (1− λ, ve) are eigenpairs of Φ−1
symS.

Proof: Using Prve = 0, Equations 16 and 48:

Φ−1
symSve = (Ψ−1

r + (Ψ−1
l −D−1))Sve

= Ψ−1
r (Ψr − Pr)ve + (Ψ−1

l −D−1)(Ψl − Pl)ve

= ve + (Ψ−1
l −D−1)Ψlve − (Ψ−1

l −D−1)Plve

= ve + 0− λve

= (1− λ)ve.

(41)

Hence, (1 − λ, ve) is an eigenpair of Φ−1
symS. The proof

for (1− λ, vo) follows the same structure.

Finally, we will prove that Φ−1
symS is admissible for PCG,

and that Φ−1
symS has a smaller condition number than Φ−1

addS.

Theorem 4.3: If S is symmetric block tridiagonal and
positive definite, then:

1) Φ−1
symS has real eigenvalues.

2) Φ−1
symP has non-negative real eigenvalues and

ρ(Φ−1
symP) < 1.

3) Φ−1
symS is positive definite and λ(Φ−1

symS) ∈ (0, 1].

Proof: We prove each part in order:
1) As S is positive definite, then Φ−1

symS is similar to
the symmetric matrix S1/2Φ−1

symS1/2. Therefore, the
eigenvalues of Φ−1

symS are real.
2) As λ ∈ R from point one, then as we again derive λ

from Ψ, by Equation 34 and Theorem 3.5, 1− 1
2 (λ±√

λ) will be real and positive if and only if 0 ≤ λ < 1.
Thus, Φ−1

symP has non-negative real eigenvalues and
ρ(Φ−1

symP) < 1. This also shows that the stair splitting
is convergent for a symmetric positive definite S.

3) From points one and two and Theorem 4.1 and Theo-
rem 4.2, 1−λ ∈ (0, 1] and Φ−1

symS is positive definite.

As a result of Theorem 3.4, Theorem 3.5, and The-
orem 4.3, we have the following relationships between
the maximum (Equation 42) and minimum (Equation 43)
eigenvalues of the two preconditioners, where λ+

max(Ψ
−1
x P)

and λ+
min(Ψ

−1
x P) denotes the largest and smallest non-

zero eigenvalues of Ψx. As we can see from Equations 42
and 43, the symmetric stair preconditioner results in a smaller
condition number as the eigenvalues are of the range:

λ(Φ−1
symS) ∈ (0, 1],

λ(Φ−1
addS) ∈

(
0,

9

8

]
.

(44)

V. NUMERICAL RESULTS

In this section we present a numerical evaluation of our
symmetric stair preconditioner and compare it to the addi-
tive stair preconditioner and other parallel preconditioners
from the literature on representative trajectory optimization
tasks. We evaluate the spread of the eigenvalues both in
absolute terms and with regard to the the relative condi-
tion number after preconditioning, as well as the resulting
number of iterations of PCG needed for convergence. We
use the canonical pendulum and cart pole swing up prob-
lems as well as a problem to compute a motion across its
workspace for a Kuka LBR IIWA-14 manipulator. Source
code accompanying this evaluation, including all hyperpa-
rameter values used in these experiments, can be found at
github.com/a2r-lab/SymStair.

Figure 1 shows the distribution of the eigenvalues of the
additive and symmetric stair preconditioners along with the
line for 0.0 highlighted in black, 1.0 in green, and 9

8 = 1.125
in purple. We see that across all problems our numerical
results match the theoretical results in Equation 44.

This theoretical result directly leads to a better relative
condition number for our preconditioner as compared to
alternative parallel preconditioners from the literature. As
shown in Figure 2, when normalizing the condition number
to the Jacobi preconditioner equaling 1 for each system, to
enable comparison across the three problems which have
large differences in the absolute condition number, we see
that the symmetric stair preconditioner is the most perfor-

Fig. 1. Distribution of the Eigenvalues of the additive and symmetric stair
preconditioners matching the theoretical results in Equation 44.

λmax(Φ
−1
symS) = 1− λmin(Ψ

−1P) ≤ 1 < 1− 1

2

(
λ+(Ψ−1P)−

√
λ+(Ψ−1P)

)
≤ λmax(Φ

−1
addS) ≤

9

8
(42)

λmin(Φ
−1
symS) = 1− λ+

max(Ψ
−1P) > 1− 1

2

(
λ+
max(Ψ

−1P) +

√
λ+
max(Ψ−1P)

)
= λmin(Φ

−1
addS) > 0 (43)

https://github.com/a2r-lab/SymStair

Fig. 2. The relative condition number resulting from different precondi-
tioners, normalized to the value of the Jacobi preconditioner, showing the
improved performance of the symmetric stair preconditioner.

mant. In fact, it is not only able to reduce the relative
condition number by 76-89% as compared to the standard
Jacobi preconditioner, but also outperforms the best parallel
preconditioner from the literature, the additive stair precon-
ditioner, by 33-34%.

This improvement in numerical conditioning also drasti-
cally reduces the number of PCG iterations needed for the
problem to converge, enabling faster linear system solves.
This is crucial for real-time trajectory optimization as each
trajectory optimization solve requires the solution of many
linear systems. In particular, as shown in Figure 3, when
solving the first KKT system for our three target trajectory
optimization problems, PCG using the symmetric stair pre-
conditioner requires 51-68% fewer iterations than the Jacobi
preconditioner, and 17-25% fewer iterations than the next
best parallel preconditioner to converge to a solution under
the same exit tolerance.

Fig. 3. The number of PCG iterations required for convergence to the same
exit tolerance across different preconditioners and problems, again showing
the improved performance of the symmetric stair preconditioner.

VI. CONCLUSION AND FUTURE WORK

In this work we present a new parallel-friendly symmetric
stair preconditioner. Through both proofs and numerical ex-
periments, we show that our preconditioner has advantageous
theoretical and practical properties that enable fast iterative
linear system solves. Across three benchmark tasks, our
preconditoner provides up to a 34% reduction in condition
number and 25% reduction in PCG iterations.

In future work we hope to explore the theoretical and
practical performance tradeoffs of higher order polynomial
preconditioners on heterogeneous hardware, as well as ex-
tend our analysis to provide bounds on the number of PCG
iterations under various exit tolerances and preconditioners.

VII. APPENDIX

Some useful results revealing the sparsity patterns for the
6× 6 block cases are listed in Equations 45- 48.

Ψ−1
l Pl =



0 −D−1
1 O1 0 0 0 0

0 D−1
2 O2D

−1
3 OT

2 +D−1
2 OT

1 D
−1
1 O1 0 D−1

2 O2D
−1
3 O3 0 0

0 −D−1
3 OT

2 0 −D−1
3 O3 0 0

0 D−1
4 OT

3 D
−1
3 OT

2 0 D−1
4 O4D

−1
5 OT

4 +D−1
4 OT

3 D
−1
3 O3 0 D−1

4 O4D
−1
5 O5

0 0 0 −D−1
5 OT

4 0 −D−1
5 O5

0 0 0 D−1
6 OT

5 D
−1
5 OT

4 0 D−1
6 OT

5 D
−1
5 O5

 (45)

Ψ−1
r Pr =



D−1
1 O1D

−1
2 OT

1 0 D−1
1 O1D

−1
2 O2 0 0 0

−D−1
2 OT

1 0 −D−1
2 O2 0 0 0

D−1
3 OT

2 D
−1
2 OT

1 0 D−1
3 O3D

−1
4 OT

3 +D−1
3 OT

2 D
−1
2 O2 0 D−1

3 O3D
−1
4 O4 0

0 0 −D−1
4 OT

3 0 −D−1
4 O4 0

0 0 D−1
5 OT

4 D
−1
4 OT

3 0 D−1
5 O5D

−1
6 OT

5 +D−1
5 OT

4 D
−1
4 O4 0

0 0 0 0 −D−1
6 OT

5 0

 (46)

(Ψ−1
l −D−1)Pl =


0 0 0 0 0 0
0 D−1

2 O2D
−1
3 OT

2 +D−1
2 OT

1 D
−1
1 O1 0 D−1

2 O2D
−1
3 O3 0 0

0 0 0 0 0 0
0 D−1

4 OT
3 D

−1
3 OT

2 0 D−1
4 O4D

−1
5 OT

4 +D−1
4 OT

3 D
−1
3 O3 0 D−1

4 O4D
−1
5 O5

0 0 0 0 0 0
0 0 0 D−1

6 OT
5 D

−1
5 OT

4 0 D−1
6 OT

5 D
−1
5 O5

 (47)

D−1Pl =


0 −D−1

1 O1 0 0 0 0
0 0 0 0 0 0
0 −D−1

3 OT
2 0 −D−1

3 O3 0 0
0 0 0 0 0 0
0 0 0 −D−1

5 OT
4 0 −D−1

5 O5

0 0 0 0 0 0

 (Ψ−1
l −D−1)Ψl =


0 0 0 0 0 0

−D−1
2 OT

1 0 −D−1
2 O2 0 0 0

0 0 0 0 0 0
0 0 −D−1

4 OT
3 0 −D−1

4 O4 0
0 0 0 0 0 0
0 0 0 0 −D−1

6 OT
5 0

 (48)

REFERENCES

[1] J. T. Betts, Practical Methods for Optimal Control Using Nonlinear
Programming, ser. Advances in Design and Control. Society for
Industrial and Applied Mathematics (SIAM), vol. 3.

[2] Y. Tassa, T. Erez, and E. Todorov, “Synthesis and Stabilization
of Complex Behaviors through Online Trajectory Optimization,” in
IEEE/RSJ International Conference on Intelligent Robots and Systems.

[3] W. Xi and C. D. Remy, “Optimal Gaits and Motions for Legged
Robots,” in Proceedings of the IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS).

[4] M. Posa, S. Kuindersma, and R. Tedrake, “Optimization and stabiliza-
tion of trajectories for constrained dynamical systems,” in Proceedings
of the International Conference on Robotics and Automation (ICRA).
IEEE, pp. 1366–1373.

[5] T. Apgar, P. Clary, K. Green, A. Fern, and J. Hurst, “Fast Online
Trajectory Optimization for the Bipedal Robot Cassie,” in Proceedings
of Robotics: Science and Systems.

[6] T. Howell, B. Jackson, and Z. Manchester, “Altro: A fast solver
for constrained trajectory optimization,” in Proceedings of (IROS)
IEEE/RSJ International Conference on Intelligent Robots and Systems,
November 2019, pp. 7674 – 7679.

[7] S. Kuindersma, “Taskable agility: Making useful dynamic behavior
easier to create,” Princeton Robotics Seminar, April 2023.

[8] J. T. Betts and W. P. Huffman, “Trajectory optimization on a parallel
processor,” vol. 14, no. 2, pp. 431–439.

[9] D. Kouzoupis, R. Quirynen, B. Houska, and M. Diehl, “A Block Based
ALADIN Scheme for Highly Parallelizable Direct Optimal Control,”
in Proceedings of the American Control Conference.

[10] M. Giftthaler, M. Neunert, M. Stäuble, J. Buchli, and M. Diehl,
“A family of iterative gauss-newton shooting methods for nonlinear
optimal control,” in 2018 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). IEEE, 2018, pp. 1–9.

[11] F. Farshidian, E. Jelavic, A. Satapathy, M. Giftthaler, and J. Buchli,
“Real-time motion planning of legged robots: A model predictive
control approach,” in 2017 IEEE-RAS 17th International Conference
on Humanoid Robotics.

[12] A. Astudillo, J. Gillis, G. Pipeleers, W. Decré, and J. Swevers, “Speed-
up of nonlinear model predictive control for robot manipulators
using task and data parallelism,” in 2022 IEEE 17th International
Conference on Advanced Motion Control (AMC), 2022, pp. 201–206.

[13] T. Antony and M. J. Grant, “Rapid Indirect Trajectory Optimization
on Highly Parallel Computing Architectures,” vol. 54, no. 5, pp. 1081–
1091.

[14] B. Plancher and S. Kuindersma, “A Performance Analysis of Paral-
lel Differential Dynamic Programming on a GPU,” in International
Workshop on the Algorithmic Foundations of Robotics (WAFR).

[15] ——, “Realtime model predictive control using parallel ddp on a gpu,”
in Toward Online Optimal Control of Dynamic Robots Workshop at the
2019 International Conference on Robotics and Automation (ICRA),
Montreal, Canada, May. 2019.

[16] Z. Pan, B. Ren, and D. Manocha, “Gpu-based contact-aware trajectory
optimization using a smooth force model,” in Proceedings of the
18th Annual ACM SIGGRAPH/Eurographics Symposium on Computer
Animation, ser. SCA ’19. New York, NY, USA: ACM, 2019, pp. 4:1–
4:12.

[17] B. Plancher, S. M. Neuman, T. Bourgeat, S. Kuindersma, S. Devadas,
and V. J. Reddi, “Accelerating robot dynamics gradients on a cpu, gpu,
and fpga,” IEEE Robotics and Automation Letters, vol. 6, no. 2, pp.
2335–2342, 2021.

[18] B. Plancher, S. M. Neuman, R. Ghosal, S. Kuindersma, and
V. J. Reddi, “GRiD: GPU-Accelerated Rigid Body Dynamics with
Analytical Gradients,” in 2022 International Conference on Robotics
and Automation (ICRA). IEEE, pp. 6253–6260. [Online]. Available:
https://ieeexplore.ieee.org/document/9812384/

[19] J. Sacks, D. Mahajan, R. C. Lawson, and H. Esmaeilzadeh, “Robox: an
end-to-end solution to accelerate autonomous control in robotics,” in
Proceedings of the 45th Annual International Symposium on Computer
Architecture. IEEE Press, 2018, pp. 479–490.

[20] S. M. Neuman, B. Plancher, T. Bourgeat, T. Tambe, S. Devadas,
and V. J. Reddi, “Robomorphic computing: A design methodology
for domain-specific accelerators parameterized by robot morphology,”
ser. ASPLOS 2021. New York, NY, USA: Association for
Computing Machinery, 2021, p. 674–686. [Online]. Available:
https://doi.org/10.1145/3445814.3446746

[21] S. M. Neuman, R. Ghosal, T. Bourgeat, B. Plancher, and V. J.
Reddi, “Roboshape: Using topology patterns to scalably and flexibly
deploy accelerators across robots,” in Proceedings of the 50th Annual
International Symposium on Computer Architecture, ser. ISCA ’23.
New York, NY, USA: Association for Computing Machinery, 2023.
[Online]. Available: https://doi.org/10.1145/3579371.3589104

[22] Y. Yang, X. Chen, and Y. Han, “Rbdcore: Robot rigid body dy-
namics accelerator with multifunctional pipelines,” arXiv preprint
arXiv:2307.02274, 2023.

[23] H. Esmaeilzadeh, E. Blem, R. St. Amant, K. Sankaralingam, and
D. Burger, “Dark Silicon and the End of Multicore Scaling,” in
Proceedings of the 38th Annual International Symposium on Computer
Architecture, ser. ISCA ’11. ACM, pp. 365–376.

[24] G. Venkatesh, J. Sampson, N. Goulding, S. Garcia, V. Bryksin,
J. Lugo-Martinez, S. Swanson, and M. B. Taylor, “Conservation
Cores: Reducing the Energy of Mature Computations,” in Proceedings
of the Fifteenth Edition of ASPLOS on Architectural Support for
Programming Languages and Operating Systems, ser. ASPLOS XV.
ACM, pp. 205–218.

[25] B. Stellato, G. Banjac, P. Goulart, A. Bemporad, and S. Boyd, “Osqp:
An operator splitting solver for quadratic programs,” Mathematical
Programming Computation, vol. 12, no. 4, pp. 637–672, 2020.

[26] G. Frison and M. Diehl, “Hpipm: a high-performance quadratic
programming framework for model predictive control,” IFAC-
PapersOnLine, vol. 53, no. 2, pp. 6563–6569, 2020.

[27] S. C. Eisenstat, “Efficient implementation of a class of preconditioned
conjugate gradient methods,” SIAM Journal on Scientific and Statisti-
cal Computing, vol. 2, no. 1, pp. 1–4, 1981.

[28] Y. Saad, Iterative Methods for Sparse Linear Systems. Society for
Industrial and Applied Mathematics, Apr. 2003.

[29] B. Plancher, “GPU Acceleration for Real-Time, Whole-Body, Nonlin-
ear Model Predictive Controla,” Ph.D. dissertation, Harvard University,
United States – Massachusetts, 2022.

[30] M. Schubiger, G. Banjac, and J. Lygeros, “GPU acceleration of
ADMM for large-scale quadratic programming,” Journal of Parallel
and Distributed Computing, vol. 144, pp. 55–67, Oct. 2020.

[31] R. Helfenstein and J. Koko, “Parallel preconditioned conjugate gra-
dient algorithm on gpu,” Journal of Computational and Applied
Mathematics, vol. 236, no. 15, pp. 3584–3590, 2012.

[32] J. Nocedal and S. J. Wright, Numerical Optimization, 2nd ed.
Springer.

[33] J. R. Shewchuk, “An introduction to the conjugate gradient method
without the agonizing pain,” USA, Tech. Rep., 1994.

[34] H.-B. Li, T.-Z. Huang, Y. Zhang, X.-P. Liu, and H. Li, “On some new
approximate factorization methods for block tridiagonal matrices suit-
able for vector and parallel processors,” Mathematics and Computers
in Simulation, vol. 79, no. 7, pp. 2135–2147, Mar. 2009.

[35] W. Karush, “Minima of functions of several variables with inequalities
as side conditions,” Master’s thesis, Department of Mathematics,
University of Chicago, Chicago, IL, USA, 1939.

[36] H. W. Kuhn and A. W. Tucker, “Nonlinear programming,” in Proceed-
ings of the Second Berkeley Symposium on Mathematical Statistics and
Probability, 1950. Berkeley and Los Angeles: University of California
Press, 1951, pp. 481–492.

[37] H. K. Khalil, Nonlinear Systems. Prentice Hall, 2002.
[38] J. Bolz, I. Farmer, E. Grinspun, and P. Schröoder, “Sparse Matrix

Solvers on the GPU: Conjugate Gradients and Multigrid,” in ACM
SIGGRAPH 2003 Papers, ser. SIGGRAPH ’03. ACM, pp. 917–924.
[Online]. Available: http://doi.acm.org/10.1145/1201775.882364

[39] H. Liu, J.-H. Seo, R. Mittal, and H. H. Huang, “Gpu-accelerated
scalable solver for banded linear systems,” in 2013 IEEE International
Conference on Cluster Computing (CLUSTER). IEEE, 2013, pp. 1–8.

[40] H. Anzt, M. Gates, J. Dongarra, M. Kreutzer, G. Wellein, and
M. Köhler, “Preconditioned krylov solvers on gpus,” Parallel Com-
puting, 05 2017.

[41] H. Anzt, M. Kreutzer, E. Ponce, G. D. Peterson, G. Wellein, and
J. Dongarra, “Optimization and performance evaluation of the idr
iterative krylov solver on gpus,” The International Journal of High
Performance Computing Applications, vol. 32, no. 2, pp. 220–230,
2018.

[42] G. Flegar et al., “Sparse linear system solvers on gpus: Parallel
preconditioning, workload balancing, and communication reduction,”
Ph.D. dissertation, Universitat Jaume I, 2019.

[43] M. Schubiger, G. Banjac, and J. Lygeros, “Gpu acceleration of

https://ieeexplore.ieee.org/document/9812384/
https://doi.org/10.1145/3445814.3446746
https://doi.org/10.1145/3579371.3589104
http://doi.acm.org/10.1145/1201775.882364

admm for large-scale quadratic programming,” Journal of Parallel and
Distributed Computing, vol. 144, pp. 55–67, 2020.

[44] J. W. Pearson and J. Pestana, “Preconditioners for krylov subspace
methods: An overview,” GAMM-Mitteilungen, vol. 43, no. 4, p.
e202000015, 2020.

[45] L. Adams, “m-Step Preconditioned Conjugate Gradient Methods,”
Society for Industrial and Applied Mathematics. SIAM Journal on
Scientific and Statistical Computing, vol. 6, no. 2, p. 12, Apr. 1985.

[46] L. M. Adams and E. G. Ong, “Additive polynomial preconditioners for
parallel computers,” Parallel Computing, vol. 9, no. 3, pp. 333–345,
Feb. 1989.

[47] P. Concus, G. H. Golub, and D. P. O’Leary, “Numerical solution
of nonlinear elliptic partial differential equations by a generalized
conjugate gradient method,” Computing, vol. 19, no. 4, pp. 321–339,
Dec. 1978.

[48] K. Muzhinji, “Optimal Block Preconditioner for an Efficient Numer-
ical Solution of the Elliptic Optimal Control Problems Using Gmres
Solver,” International Journal of Numerical Analysis and Modeling,
vol. 20, no. 1, pp. 47–66, June 2023.

[49] M. Benzi and A. J. Wathen, “Some Preconditioning Techniques for
Saddle Point Problems,” in Model Order Reduction: Theory, Research
Aspects and Applications, ser. Mathematics in Industry, W. H. A.
Schilders, H. A. van der Vorst, and J. Rommes, Eds. Berlin,

Heidelberg: Springer, 2008, pp. 195–211.
[50] E. Galligani and V. Ruggiero, “A polynomial preconditioner for

block tridiagonal matrices,” PARALLEL ALGORITHM AND APPLI-
CATIONS, vol. 3, no. 3-4, pp. 227–237, 1994.

[51] S. Demko, W. F. Moss, and P. W. Smith, “Decay rates for inverses
of band matrices,” Mathematics of computation, vol. 43, no. 168, pp.
491–499, 1984.

[52] H.-B. Li, T.-Z. Huang, Y. Zhang, X.-P. Liu, and H. Li, “On
some new approximate factorization methods for block tridiagonal
matrices suitable for vector and parallel processors,” Mathematics
and Computers in Simulation, vol. 79, no. 7, pp. 2135–2147, 2009.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0378475408003881

[53] H.-B. Li, T.-Z. Huang, Y. Zhang, X.-P. Liu, and T.-X. Gu, “Chebyshev-
type methods and preconditioning techniques,” Applied Mathematics
and Computation, vol. 218, no. 2, pp. 260–270, 2011.

[54] H. Lu, “Stair Matrices and Their Generalizations with Applications
to Iterative Methods I: A Generalization of the Successive
Overrelaxation Method,” vol. 37, no. 1, pp. 1–17. [Online]. Available:
https://epubs.siam.org/doi/abs/10.1137/S0036142998343294

[55] R. A. Horn and C. R. Johnson, Matrix analysis. Cambridge university
press, 2012.

https://www.sciencedirect.com/science/article/pii/S0378475408003881
https://www.sciencedirect.com/science/article/pii/S0378475408003881
https://epubs.siam.org/doi/abs/10.1137/S0036142998343294

	Introduction
	Background and Related Work
	Direct Trajectory Optimization
	Parallel Iterative Solvers
	Parallel Preconditioners

	Stair Preconditioners
	Eigenpairs of l and l
	Eigenpairs of add

	The Symmetric Stair Precontioner
	Numerical Results
	Conclusion and Future Work
	Appendix
	References

