
Parallel Optimization for Robotics: An Undergraduate Introduction to

GPU Parallel Programming and Numerical Optimization Research

Brian Plancher1

Abstract— While parallel programming, particularly on
graphics processing units (GPUs), and numerical optimization
hold immense potential to tackle real-world computational
challenges across disciplines, their inherent complexity and
technical demands often act as daunting barriers to entry. This,
unfortunately, limits accessibility and diversity within these
crucial areas of computer science. To combat this challenge and
ignite excitement among undergraduate learners, we developed
an application-driven course, harnessing robotics as a lens to
demystify the intricacies of these topics making them tangible
and engaging. Our course’s prerequisites are limited to the
required undergraduate introductory core curriculum, opening
doors for a wider range of students. Our course also features a
large final-project component to connect theoretical learning
to applied practice. In our first offering of the course we
attracted 27 students without prior experience in these topics
and found that an overwhelming majority of the students felt
that they learned both technical and soft skills such that they
felt prepared for future study in these fields.

I. INTRODUCTION AND MOTIVATION

The fields of parallel programming, particularly on graph-

ics processing units (GPUs), and numerical optimization

hold immense potential for tackling complex computational

challenges across diverse disciplines. Recently, our research

has shown that integrating these approaches can lead to

significant performance improvements for robotic planning

and control [1], [2], [3], [4]. However, these areas currently

suffer from high barriers to entry due to their perceived

complexity and technical demands, limiting accessibility

and diversity within these areas of computing. In fact, the

required topics for study in these fields, low-level systems

programming and vector calculus, are colloquially referred

to as “weed-out” topics, and there is a well documented

under representation of women in research in both computer

systems (a Female Author Ratio of only 11%), as well as

and theory and algorithms (8%) [5].

At the same time, while concepts of parallelism are

increasingly found in undergraduate curricula, both through

dedicated courses and by weaving the concepts into core

classes, and GPUs are now a recommend topic in the updated

NSF/IEEE-TCPP Curriculum Guidelines [6], many studies

on undergraduate parallel programming do not address the

This material is based upon work supported by the National Science
Foundation (under Award 2246022). Any opinions, findings, conclusions,
or recommendations expressed in this material are those of the authors and
do not necessarily reflect those of the funding organizations.

This pseudonymous and anonymous student survey study was approved
as exempt by the Institutional Review Board (IRB) of Barnard College on
January 18, 2023 (Approval 2223-0505-031E).

1Brian Plancher is with Barnard College, Columbia University, New
York, NY. bplancher.barnard.edu

underutilized potential of GPUs [7], [8], [9], [10]. Further-

more, numerical optimization is rarely taught below the

graduate level, beyond coverage in standard calculus and

linear algebra courses, or a brief module in interdisciplinary

engineering courses [11], [12]. These gaps are concerning

given the increasing prominence of GPUs in real-world

computational applications and the fact that numerical opti-

mization underlies much of modern algorithms that students

aim to explore (e.g., training neural networks).

That said, the few studies that do focus on GPU program-

ming do find a handful of common pitfalls and opportunities

for increasing student learning [13], [14], [15], [16], [17],

[18], [19]. In particular, many students lack background in

low-level programming languages and tools. Second, access

to GPU hardware is often challenging and most courses

leverage the use of remote access to a computer lab, super-

computing cluster, or other cloud-based computing resource.

Third, most successful GPU programming courses include

project-based learning, both through laboratory and problem-

set assignments, as well as large final projects.

In response to these challenges, and building on best prac-

tices in the literature, we have developed a course aimed at

demystifying these topics through the lens of state-of-the-art

robotics applications. Importantly, this course’s prerequisites

are only courses drawn from the required undergraduate

introductory core curriculum1. The course is structured into

four distinct modules, first introducing foundational topics,

before moving to integrated applications of these topics in

robotics research, and then ending with a final project.

Through our robotics framing, and low prerequisite ap-

proach, we hope that this course attracts a broad range of

students and helps address the problematic diversity gaps in

these fields. Excitingly, in our first offering of the course

we attracted 27 students (one third identifying as women)

without prior experience in these topics, and found that an

overwhelming majority of the students felt that they learning

both technical and soft skills such that they felt prepared for

future study in these fields.

II. COURSE DESIGN

This course introduces undergraduate students to the fun-

damental concepts of (GPU) parallel programming and nu-

merical optimization through the applied context of robotics.

Through a structured, four-module curriculum, students gain

1Our course prerequisites include 2-3 required courses for the Comptuer
Science major, namely: multivariable calculus, linear algebra, and one of
Advanced Programming (taught in C), Fundamentals of Computer Systems,
or prior experience in C(++) programming.



a comprehensive understanding of both theoretical founda-

tions and practical applications of these rapidly evolving

fields. Hands-on coding assignments, in-depth problem sets,

and an integrative final project empower students to develop

essential skills and apply their knowledge to real-world

robotics challenges while also ensuring the development of

softer skills such as teamwork and scientific writing. A high

level timeline of the course can be found in Figure 1. Detailed

descriptions of the course design, and topics covered, can be

found in the following sections.

Fig. 1: High-Level Course Overview

A. Guiding Principles and Learning Goals

As our course’s guiding motivation is to increase the

accessibility of these topics, we designed the course to

scaffold topics and assignments through combinations of

formative and summative assessment. We also focused on

teaching both foundational technical skills, as well as soft-

skills, to ensure that students learn skills they can leverage

in both future courses and careers. This was done via the

choices of topics covered, implementation of problem sets

and office hours, as well as the design of the final project.

Accessible Foundational and Applied Topics: As the

fields of parallel programming, numerical optimization, and

optimization for robotics are all large fields in their own

right, we cannot cover all topics, even at a high level. Instead

we focus on deeply exploring key fundamental topics and

then connecting them to select more complex application

driven examples. By initially separating the core topics of

programming and mathematics, the course allows students

to immerse themselves in each subject and solidifying their

understanding and mastery of key skills before moving

on. This structure caters to diverse learning styles, offering

programming-inclined and mathematically-inclined students

a chance to shine in separate modules. Furthermore, by later

linking and integrating these concepts through active areas

of robotics research, students were exposed to examples

of how these fundamentals can be leveraged for real-world

applications. Finally, to give all students free access to GPUs

both during and beyond the course, we leveraged the Google

Colaboratory Programming Environment [20].

Formative Problem Sets and Structured Availability

of Office Hours: To make sure students had opportunities

for formative learning and could attend office hours, for

each problem set, a full class day is turned into a “lab

session” to work through the assignment with the professor

and TAs. This not only ensures that any confusion with

assignment directions can be clarified quickly, but more

importantly ensures that all students can access office hours

style feedback even if their particular life schedules and

demands preclude them from attending formal professor

or TA office hour times. Similarly, where possible, coding

assignments leverage autograders with a policy that students

can submit infinite times until the assignment deadline. This

ensures that typos and syntactical errors have a minimal

impact on student grades and instead allows students to focus

on learning key algorithmic concepts.

Research Integration and Project-Based Learning: The

course enables the integration of cutting-edge research into

the academic curriculum and offers undergraduates the op-

portunity to explore such topics through the large final

project component. This experience is invaluable, especially

for undergraduates, as it provides a safe environment to

explore and contribute to ongoing research, fostering a sense

of ownership and independence in their learning journey, and

exposing them to the opportunities of a career in research.

We begin this phase of the course with a module pro-

viding examples of such active, integrative research and the

techniques used, and challenges faced by, the researchers

in executing these projects. Then, during the project phase,

instead of traditional (guest) lectures, we transform 4 weeks

of class time into dedicated “lab sessions,” to give students

ample time for informal feedback and implementation. We

also scaffold the project with multiple opportunities for

formal feedback including: a proposal, mid-project update,

and final report. To further reduce the risks of taking on a

more risky, but exciting and potentially impactful, project, we

explicitly note in our project instructions that evaluation is

not done on the success of the project, but on how the project

demonstrates comprehension of the concepts, techniques,

and tradeoffs explored in this course. Finally, by requiring

students to submit multiple written documents and meet

with the course staff multiple times, we aim to foster the

development of scientific writing and communication skills.

Through the use of these guiding principles, by the end of

the course, our learning goals for students are that they:

• Understand the fundamental concepts of (GPU) paral-

lel programming and numerical optimization including

their computational and theoretical tradeoffs.

• Understand how to design and implement (efficient)

parallel algorithms for GPUs using CUDA C++.

• Understand the opportunities and challenges of numer-

ical optimization for robotics problems.

• Work effectively in teams to develop a final project.

• Communicate technical concepts clearly and concisely

through presentations and reports.

B. Module 1: Parallel Computing (on GPUs)

Module 1 equips students with the theoretical and practical

skills for efficient (GPU) parallel computing. This module

includes both written and coding based assignments, with a

focus on programming skills. Topics include:

• Basic Parallelism: Review of computer systems and

memory hierarchy, introduction to threads, atomics, and

synchronization primitives.

• GPU Architecture and Programming: Programming

in CUDA C++, the GPU computational model (blocks,

threads, warps, SMs) and memory hierarchy (shared,



global, local, host, unified), host-device communication

and synchronization.

• Advanced (GPU) Topics: Exploring recently released

features (e.g., Cooperative Groups).

C. Module 2: Numerical Optimization (for Robotics)

Module 2 equips students with the theoretical and com-

putational tools for numerical optimization with a focus on

applications to robotic motion planning and control. This

module includes both written and coding based assignments,

with a focus on mathematics. At the end of Module 2 there

is a midterm exam covering both Modules 1 and 2 to ensure

all students have learned all of the foundational knowledge

needed to excel in their final projects. Topics include:

• Theoretical Foundations: Understanding convexity,

global vs. local optima, gradient descent, and the ap-

plication of vector calculus in optimization.

• Nonlinear Optimization Techniques: Utilizing Taylor

expansions for function approximation, implementing

line search and trust region methods.

• Constrained Optimization: (Non-)holonomic con-

straints, the use of penalty methods, augmented and

regular Lagrangians, active sets, and their KKT systems.

• Trajectory Optimization: Direct methods, dynamic

programming based methods, and their connections.

D. Module 3/4: Putting it All Together and Final Project

In Module 3, students explore how recent research in-

tegrates parallel programming to accelerate numerical opti-

mization algorithms for improved robot performance. Course

content focuses on how leveraging both instruction-level and

algorithm-level parallelism, in combination with code gen-

eration techniques, can enable the development of portable

and performant solutions.

Module 4, the capstone of the course, is the integrative

final project. Students work in teams to tackle real-world

robotics challenges. This intensive project engages the full

spectrum of acquired knowledge and skills both technical and

non-technical in nature. Students are required to: formulate a

relevant (robotics) problem that can be solved through GPU

parallel programming and/or numerical optimization (ideally

both); design, implement, and optimize their solution and

measure its performance; and communicate their findings.

Most importantly, they must do all of this while collaborating

on a team. Through this rigorous project, students gain valu-

able experience in integrating and applying their knowledge

to solve complex engineering problems, preparing them for

research and development in their future careers.

III. PRELIMINARY EVALUATION

This course was run for the first time in the Spring 2023

semester. 27 students (one third identifying as women) en-

rolled in the course from across Barnard College, Columbia

College, and the Columbia School of Engineering and Ap-

plied Science. The instructor was supported by a masters

student TA who had previously done research with the

instructor on related topics. Throughout the course, students

were polled pseudonymously to both understand student

background, as well as get feedback on the workload,

clarity of topics, and pace of the course. These polls were

pseudonymous and not anonymous in order to correlate pre-

and post-unit knowledge of the students through the inclusion

of a handful of quiz questions on the surveys. Unfortunately,

as these polls were optional, and many students forgot

their pseudonyms, we did not collect paired responses from

all students. Similarly, the final official course evaluations

at Barnard are not mandatory and as such again we did

not collect responses from all students. And, due to the

different systems being used, the questions are not identical.

However, the responses we did receive provide a positive

indication that we attracted students to the course that had

no prior background in these topics, that students learned

both technical and soft skills during the course, and that the

course increased students’ interest in these fields.

As shown in Figure 2, on a scale of 1 (No Background)

to 5 (Expert), most students (n=25) gave themselves a 1

in course topics: parallel programming (62%), numerical

optimization (65%), trajectory optimization (72%), robot

motion planning and control (60%). Furthermore, no student

gave themselves a 5 across any of those topics. Similarly,

despite the course requiring some background in C(++),

80% of students gave themselves a 3 or lower for C(++)

programming, while 84% gave themselves a 4 or higher in

Python programming. As such, low-level programming was

a perceived prior weakness for students.

Fig. 2: Self-reported prior knowledge of students entering

the course (n=25).

Figure 3 shows the results of the pseudonymous quizzes

indicating that across all topics, responding students learned

core concepts during the foundational units. Figure 4 then

shows select summarized results from the official course

feedback. Excitingly, over 90% of responding students per-

ceived that they grew their quantitative, presentation, and

writing skills, as well as their interest in and understanding

of the field “quite a bit” or “very much” (the two highest

options). Similarly, 90% of responding students “agreed” or

“strongly agreed” (the two highest options) that they felt

prepared for a future course in (GPU) parallel programming.

As the course was taught in CUDA C++, this also indicates

student comfort with low-level programming following the

course. While, the results were less positive for (trajectory)

optimization, the majority of the class, 60-70%, still “agreed”

or “strongly agreed” that they would be prepared for a future

course. Most importantly, a number of students have since

pursued research and jobs leveraging these skills.



Fig. 3: Pseudonymous quiz results reveal that across all

topics responding students learned core concepts.

IV. LIMITATIONS AND FUTURE WORK

While the pilot run of this course yielded promising

results, one key limitation is the small sample size, both of

enrolled students (27), of questions used to gauge their learn-

ing progress (one per quiz topic), as well as the response-rate

on the surveys. Furthermore, the lack of consistently format-

ted and worded questions hinders our ability to objectively

measure student understanding.

Despite these limitations, the pilot provided invaluable

insights that we are using to improve the course this spring.

First, we aim to scale enrollment from 27 to 75 students and

incorporate dedicated in-class survey time. This should both

allow us to collect better data for future evaluations, as well

as offer expanded office hour times, which students noted

would be helpful. Additionally, improving the standard-

ization of assessment questions will enable more accurate

measurement of student learning. We also hope to explore

additional opportunities for hands-on lab style sessions by

introducing select content in a flipped classroom style. Also,

exploring alternative platforms beyond Google Colaboratory,

which proved cumbersome for some use cases, will help

improve student experience and foster more comprehensive

projects. Finally, we hope to enable other educators to

leverage our work by releasing our materials open-source.

V. CONCLUSION

While GPU parallel programming and numerical opti-

mization offer immense potential across disciplines, their

complexity often provides a barrier-to-entry. To break down

these barriers and excite undergraduates, we created a course

on these topics framed through the lens of robotics that only

required core CS courses as prerequisites. Through a focus

on research applications and a large final project, students

were given the opportunity to connect theory to practice.

Our first offering of the course had 27 students who entered

the course as novices and left feeling equipped with both

technical and soft skills for further study in these fields.

REFERENCES

[1] B. Plancher and S. Kuindersma, “A Performance Analysis of Paral-
lel Differential Dynamic Programming on a GPU,” in International

Workshop on the Algorithmic Foundations of Robotics (WAFR).
[2] B. Plancher, et al., “Accelerating robot dynamics gradients on a cpu,

gpu, and fpga,” IEEE Robotics and Automation Letters, vol. 6, no. 2,
pp. 2335–2342, 2021.

Fig. 4: Self-reported learning from students on the final

course evaluations.

[3] ——, “Grid: Gpu-accelerated rigid body dynamics with analytical gra-
dients,” in IEEE International Conference on Robotics and Automation

(ICRA), May 2022.

[4] E. Adabag, et al., “Mpcgpu: Real-time nonlinear model predictive
control through preconditioned conjugate gradient on the gpu,” in
IEEE International Conference on Robotics and Automation (ICRA),
Yokohama, Japan, May. 2024.

[5] E. Frachtenberg and R. D. Kaner, “Underrepresentation of women in
computer systems research,” Plos one, vol. 17, no. 4, 2022.

[6] S. K. Prasad, et al., “Nsf/ieee-tcpp curriculum initiative on parallel and
distributed computing: status report,” in ACM Technical Symposium on

Computer Science Education, 2018, pp. 134–135.

[7] S. Ghafoor, D. W. Brown, and M. Rogers, “Integrating parallel
computing in introductory programming classes: an experience and
lessons learned,” in Euro-Par 2017: Parallel Processing Workshops,

Revised Selected Papers. Springer, 2018, pp. 216–226.

[8] M. A. Kuhail, et al., “Teaching parallel programming with active learn-
ing,” in 2018 IEEE International Parallel and Distributed Processing

Symposium Workshops (IPDPSW), 2018, pp. 369–376.

[9] D. J. Conte, et al., “Teaching parallel programming for beginners in
computer science,” in 2020 IEEE Frontiers in Education Conference

(FIE), 2020, pp. 1–9.

[10] A. A. Younis, et al., “Developing parallel programming and soft
skills: A project based learning approach,” Journal of Parallel and

Distributed Computing, vol. 158, pp. 151–163, 2021.

[11] S. M. Morse, et al., “The impact of reducing numerical methods and
programming courses on undergraduate performance,” in 2014 ASEE

Annual Conference & Exposition, 2014, pp. 24–1223.

[12] A. Alpers and L. E. Trotter, “Teaching computational discrete op-
timization at the undergraduate level,” INFORMS Transactions on

Education, vol. 9, no. 2, pp. 63–69, 2009.

[13] M. Bailey and S. Cunningham, “A hands-on environment for teaching
gpu programming,” ACM Sigcse Bulletin, vol. 39, no. 1, pp. 254–258,
2007.

[14] D. Bunde, et al., “Adding gpu computing to computer organization
courses,” in 2013 IEEE International Symposium on Parallel &

Distributed Processing, Workshops and Phd Forum, 2013, pp. 1275–
1282.

[15] R. Geist, J. A. Levine, and J. Westall, “A problem-based learning
approach to gpu computing,” in Proceedings of the Workshop on

Education for High-Performance Computing, 2015, pp. 1–8.

[16] J. A. Shamsi, “A laboratory based course on gpu programming:
Methods, practices, and lessons,” in 2017 IEEE International Parallel

and Distributed Processing Symposium Workshops (IPDPSW), 2017,
pp. 367–374.

[17] J. Gutierrez, F. Previlon, and D. Kaeli, “Employing student retention
strategies for an introductory gpu programming course,” in 2018

IEEE/ACM Workshop on Education for High-Performance Computing

(EduHPC), 2018, pp. 31–40.

[18] G. Fenwick and C. Norris, “Gpgpu programming for cs undergrad-
uates: Which one is superman?” in Proceedings of the 2020 ACM

Southeast Conference, 2020, pp. 2–9.

[19] M. Ohkawara, H. Saito, and I. Fujishiro, “Experiencing gpu path
tracing in online courses,” Graphics and Visual Computing, vol. 4,
p. 200022, 2021.

[20] E. Bisong and E. Bisong, “Google colaboratory,” Building machine

learning and deep learning models on google cloud platform: a

comprehensive guide for beginners, pp. 59–64, 2019.


	Introduction and Motivation
	Course Design
	Guiding Principles and Learning Goals
	Module 1: Parallel Computing (on GPUs)
	Module 2: Numerical Optimization (for Robotics)
	Module 3/4: Putting it All Together and Final Project

	Preliminary Evaluation
	Limitations and Future Work
	Conclusion
	References

