Parallel Optimization for Robotics: An Undergraduate Introduction to
GPU Parallel Programming and Numerical Optimization Research

Brian Plancher!

Abstract— While parallel programming, particularly on
graphics processing units (GPUs), and numerical optimization
hold immense potential to tackle real-world computational
challenges across disciplines, their inherent complexity and
technical demands often act as daunting barriers to entry. This,
unfortunately, limits accessibility and diversity within these
crucial areas of computer science. To combat this challenge and
ignite excitement among undergraduate learners, we developed
an application-driven course, harnessing robotics as a lens to
demystify the intricacies of these topics making them tangible
and engaging. Our course’s prerequisites are limited to the
required undergraduate introductory core curriculum, opening
doors for a wider range of students. Our course also features a
large final-project component to connect theoretical learning
to applied practice. In our first offering of the course we
attracted 27 students without prior experience in these topics
and found that an overwhelming majority of the students felt
that they learned both technical and soft skills such that they
felt prepared for future study in these fields.

I. INTRODUCTION AND MOTIVATION

The fields of parallel programming, particularly on graph-
ics processing units (GPUs), and numerical optimization
hold immense potential for tackling complex computational
challenges across diverse disciplines. Recently, our research
has shown that integrating these approaches can lead to
significant performance improvements for robotic planning
and control [1], [2], [3], [4]. However, these areas currently
suffer from high barriers to entry due to their perceived
complexity and technical demands, limiting accessibility
and diversity within these areas of computing. In fact, the
required topics for study in these fields, low-level systems
programming and vector calculus, are colloquially referred
to as “weed-out” topics, and there is a well documented
under representation of women in research in both computer
systems (a Female Author Ratio of only 11%), as well as
and theory and algorithms (8%) [5].

At the same time, while concepts of parallelism are
increasingly found in undergraduate curricula, both through
dedicated courses and by weaving the concepts into core
classes, and GPUs are now a recommend topic in the updated
NSF/IEEE-TCPP Curriculum Guidelines [6], many studies
on undergraduate parallel programming do not address the

This material is based upon work supported by the National Science
Foundation (under Award 2246022). Any opinions, findings, conclusions,
or recommendations expressed in this material are those of the authors and
do not necessarily reflect those of the funding organizations.

This pseudonymous and anonymous student survey study was approved
as exempt by the Institutional Review Board (IRB) of Barnard College on
January 18, 2023 (Approval 2223-0505-031E).

1Brian Plancher is with Barnard College, Columbia University, New
York, NY. bplancher.barnard.edu

underutilized potential of GPUs [7], [8], [9], [10]. Further-
more, numerical optimization is rarely taught below the
graduate level, beyond coverage in standard calculus and
linear algebra courses, or a brief module in interdisciplinary
engineering courses [11], [12]. These gaps are concerning
given the increasing prominence of GPUs in real-world
computational applications and the fact that numerical opti-
mization underlies much of modern algorithms that students
aim to explore (e.g., training neural networks).

That said, the few studies that do focus on GPU program-
ming do find a handful of common pitfalls and opportunities
for increasing student learning [13], [14], [15], [16], [17],
[18], [19]. In particular, many students lack background in
low-level programming languages and tools. Second, access
to GPU hardware is often challenging and most courses
leverage the use of remote access to a computer lab, super-
computing cluster, or other cloud-based computing resource.
Third, most successful GPU programming courses include
project-based learning, both through laboratory and problem-
set assignments, as well as large final projects.

In response to these challenges, and building on best prac-
tices in the literature, we have developed a course aimed at
demystifying these topics through the lens of state-of-the-art
robotics applications. Importantly, this course’s prerequisites
are only courses drawn from the required undergraduate
introductory core curriculum!. The course is structured into
four distinct modules, first introducing foundational topics,
before moving to integrated applications of these topics in
robotics research, and then ending with a final project.

Through our robotics framing, and low prerequisite ap-
proach, we hope that this course attracts a broad range of
students and helps address the problematic diversity gaps in
these fields. Excitingly, in our first offering of the course
we attracted 27 students (one third identifying as women)
without prior experience in these topics, and found that an
overwhelming majority of the students felt that they learning
both technical and soft skills such that they felt prepared for
future study in these fields.

II. COURSE DESIGN

This course introduces undergraduate students to the fun-
damental concepts of (GPU) parallel programming and nu-
merical optimization through the applied context of robotics.
Through a structured, four-module curriculum, students gain

'Our course prerequisites include 2-3 required courses for the Comptuer
Science major, namely: multivariable calculus, linear algebra, and one of
Advanced Programming (taught in C), Fundamentals of Computer Systems,
or prior experience in C(++) programming.

a comprehensive understanding of both theoretical founda-
tions and practical applications of these rapidly evolving
fields. Hands-on coding assignments, in-depth problem sets,
and an integrative final project empower students to develop
essential skills and apply their knowledge to real-world
robotics challenges while also ensuring the development of
softer skills such as teamwork and scientific writing. A high
level timeline of the course can be found in Figure 1. Detailed
descriptions of the course design, and topics covered, can be
found in the following sections.

o

N ical Revi Applications .
(GPU) Parallel u.rm?rlca? eview .pp ! . Final
Programming Optimization and in Robotics Project
(for Robotics) Exam Research
3 Weeks 4 Weeks 1.5 Weeks 1.5 Weeks 4 Weeks

Fig. 1: High-Level Course Overview

A. Guiding Principles and Learning Goals

As our course’s guiding motivation is to increase the
accessibility of these topics, we designed the course to
scaffold topics and assignments through combinations of
formative and summative assessment. We also focused on
teaching both foundational technical skills, as well as soft-
skills, to ensure that students learn skills they can leverage
in both future courses and careers. This was done via the
choices of topics covered, implementation of problem sets
and office hours, as well as the design of the final project.

Accessible Foundational and Applied Topics: As the
fields of parallel programming, numerical optimization, and
optimization for robotics are all large fields in their own
right, we cannot cover all topics, even at a high level. Instead
we focus on deeply exploring key fundamental topics and
then connecting them to select more complex application
driven examples. By initially separating the core topics of
programming and mathematics, the course allows students
to immerse themselves in each subject and solidifying their
understanding and mastery of key skills before moving
on. This structure caters to diverse learning styles, offering
programming-inclined and mathematically-inclined students
a chance to shine in separate modules. Furthermore, by later
linking and integrating these concepts through active areas
of robotics research, students were exposed to examples
of how these fundamentals can be leveraged for real-world
applications. Finally, to give all students free access to GPUs
both during and beyond the course, we leveraged the Google
Colaboratory Programming Environment [20].

Formative Problem Sets and Structured Availability
of Office Hours: To make sure students had opportunities
for formative learning and could attend office hours, for
each problem set, a full class day is turned into a “lab
session” to work through the assignment with the professor
and TAs. This not only ensures that any confusion with
assignment directions can be clarified quickly, but more
importantly ensures that all students can access office hours
style feedback even if their particular life schedules and
demands preclude them from attending formal professor

or TA office hour times. Similarly, where possible, coding
assignments leverage autograders with a policy that students
can submit infinite times until the assignment deadline. This
ensures that typos and syntactical errors have a minimal
impact on student grades and instead allows students to focus
on learning key algorithmic concepts.

Research Integration and Project-Based Learning: The
course enables the integration of cutting-edge research into
the academic curriculum and offers undergraduates the op-
portunity to explore such topics through the large final
project component. This experience is invaluable, especially
for undergraduates, as it provides a safe environment to
explore and contribute to ongoing research, fostering a sense
of ownership and independence in their learning journey, and
exposing them to the opportunities of a career in research.

We begin this phase of the course with a module pro-
viding examples of such active, integrative research and the
techniques used, and challenges faced by, the researchers
in executing these projects. Then, during the project phase,
instead of traditional (guest) lectures, we transform 4 weeks
of class time into dedicated “lab sessions,” to give students
ample time for informal feedback and implementation. We
also scaffold the project with multiple opportunities for
formal feedback including: a proposal, mid-project update,
and final report. To further reduce the risks of taking on a
more risky, but exciting and potentially impactful, project, we
explicitly note in our project instructions that evaluation is
not done on the success of the project, but on how the project
demonstrates comprehension of the concepts, techniques,
and tradeoffs explored in this course. Finally, by requiring
students to submit multiple written documents and meet
with the course staff multiple times, we aim to foster the
development of scientific writing and communication skills.

Through the use of these guiding principles, by the end of
the course, our learning goals for students are that they:

o Understand the fundamental concepts of (GPU) paral-
lel programming and numerical optimization including
their computational and theoretical tradeoffs.

o Understand how to design and implement (efficient)
parallel algorithms for GPUs using CUDA C++.

o Understand the opportunities and challenges of numer-
ical optimization for robotics problems.

o Work effectively in teams to develop a final project.

o Communicate technical concepts clearly and concisely
through presentations and reports.

B. Module 1: Parallel Computing (on GPUs)

Module 1 equips students with the theoretical and practical
skills for efficient (GPU) parallel computing. This module
includes both written and coding based assignments, with a
focus on programming skills. Topics include:

o Basic Parallelism: Review of computer systems and
memory hierarchy, introduction to threads, atomics, and
synchronization primitives.

e GPU Architecture and Programming: Programming
in CUDA C++, the GPU computational model (blocks,
threads, warps, SMs) and memory hierarchy (shared,

global, local, host, unified), host-device communication
and synchronization.

o Advanced (GPU) Topics: Exploring recently released
features (e.g., Cooperative Groups).

C. Module 2: Numerical Optimization (for Robotics)

Module 2 equips students with the theoretical and com-
putational tools for numerical optimization with a focus on
applications to robotic motion planning and control. This
module includes both written and coding based assignments,
with a focus on mathematics. At the end of Module 2 there
is a midterm exam covering both Modules 1 and 2 to ensure
all students have learned all of the foundational knowledge
needed to excel in their final projects. Topics include:

o Theoretical Foundations: Understanding convexity,
global vs. local optima, gradient descent, and the ap-
plication of vector calculus in optimization.

o Nonlinear Optimization Techniques: Utilizing Taylor
expansions for function approximation, implementing
line search and trust region methods.

o Constrained Optimization: (Non-)holonomic con-
straints, the use of penalty methods, augmented and
regular Lagrangians, active sets, and their KKT systems.

o Trajectory Optimization: Direct methods, dynamic
programming based methods, and their connections.

D. Module 3/4: Putting it All Together and Final Project

In Module 3, students explore how recent research in-
tegrates parallel programming to accelerate numerical opti-
mization algorithms for improved robot performance. Course
content focuses on how leveraging both instruction-level and
algorithm-level parallelism, in combination with code gen-
eration techniques, can enable the development of portable
and performant solutions.

Module 4, the capstone of the course, is the integrative
final project. Students work in teams to tackle real-world
robotics challenges. This intensive project engages the full
spectrum of acquired knowledge and skills both technical and
non-technical in nature. Students are required to: formulate a
relevant (robotics) problem that can be solved through GPU
parallel programming and/or numerical optimization (ideally
both); design, implement, and optimize their solution and
measure its performance; and communicate their findings.
Most importantly, they must do all of this while collaborating
on a team. Through this rigorous project, students gain valu-
able experience in integrating and applying their knowledge
to solve complex engineering problems, preparing them for
research and development in their future careers.

III. PRELIMINARY EVALUATION

This course was run for the first time in the Spring 2023
semester. 27 students (one third identifying as women) en-
rolled in the course from across Barnard College, Columbia
College, and the Columbia School of Engineering and Ap-
plied Science. The instructor was supported by a masters
student TA who had previously done research with the
instructor on related topics. Throughout the course, students

were polled pseudonymously to both understand student
background, as well as get feedback on the workload,
clarity of topics, and pace of the course. These polls were
pseudonymous and not anonymous in order to correlate pre-
and post-unit knowledge of the students through the inclusion
of a handful of quiz questions on the surveys. Unfortunately,
as these polls were optional, and many students forgot
their pseudonyms, we did not collect paired responses from
all students. Similarly, the final official course evaluations
at Barnard are not mandatory and as such again we did
not collect responses from all students. And, due to the
different systems being used, the questions are not identical.
However, the responses we did receive provide a positive
indication that we attracted students to the course that had
no prior background in these topics, that students learned
both technical and soft skills during the course, and that the
course increased students’ interest in these fields.

As shown in Figure 2, on a scale of 1 (No Background)
to 5 (Expert), most students (n=25) gave themselves a 1
in course topics: parallel programming (62%), numerical
optimization (65%), trajectory optimization (72%), robot
motion planning and control (60%). Furthermore, no student
gave themselves a 5 across any of those topics. Similarly,
despite the course requiring some background in C(++),
80% of students gave themselves a 3 or lower for C(++)
programming, while 84% gave themselves a 4 or higher in
Python programming. As such, low-level programming was
a perceived prior weakness for students.

100% F .
80% ‘ "’
60%

40%

20%

0%
Python C++ Parallel Numerical Trajectory Robot Motion
Programming Programming Programming Optimization Optimization Planning and

1(NoKnowledge) =2 =3 m4 mS5 (Expert) Control

Fig. 2: Self-reported prior knowledge of students entering
the course (n=25).

Figure 3 shows the results of the pseudonymous quizzes
indicating that across all topics, responding students learned
core concepts during the foundational units. Figure 4 then
shows select summarized results from the official course
feedback. Excitingly, over 90% of responding students per-
ceived that they grew their quantitative, presentation, and
writing skills, as well as their interest in and understanding
of the field “quite a bit” or “very much” (the two highest
options). Similarly, 90% of responding students “agreed” or
“strongly agreed” (the two highest options) that they felt
prepared for a future course in (GPU) parallel programming.
As the course was taught in CUDA C++, this also indicates
student comfort with low-level programming following the
course. While, the results were less positive for (trajectory)
optimization, the majority of the class, 60-70%, still “agreed”
or “strongly agreed” that they would be prepared for a future
course. Most importantly, a number of students have since
pursued research and jobs leveraging these skills.

Pre-Unit Quiz Post-Unit Quiz
e | I | D
Patterns
Parallel 7
. Theoretical I I -
Quiz :
=12 Complexity
[T | IIEEDE | YR
Complexity
oomieton | MM | DI
. Optimization
Optimization N
; pinzeion | IS | I I
Quiz o
Optimization
n=10 —
* ronete | NS | N
Robotics

0% 20% 40% 60% 80% 100% 0% 20% 40% 60% 80% 100%

Wincorrect ™ Partially Correct M Correct

Fig. 3: Pseudonymous quiz results reveal that across all
topics responding students learned core concepts.

IV. LIMITATIONS AND FUTURE WORK

While the pilot run of this course yielded promising
results, one key limitation is the small sample size, both of
enrolled students (27), of questions used to gauge their learn-
ing progress (one per quiz topic), as well as the response-rate
on the surveys. Furthermore, the lack of consistently format-
ted and worded questions hinders our ability to objectively
measure student understanding.

Despite these limitations, the pilot provided invaluable
insights that we are using to improve the course this spring.
First, we aim to scale enrollment from 27 to 75 students and
incorporate dedicated in-class survey time. This should both
allow us to collect better data for future evaluations, as well
as offer expanded office hour times, which students noted
would be helpful. Additionally, improving the standard-
ization of assessment questions will enable more accurate
measurement of student learning. We also hope to explore
additional opportunities for hands-on lab style sessions by
introducing select content in a flipped classroom style. Also,
exploring alternative platforms beyond Google Colaboratory,
which proved cumbersome for some use cases, will help
improve student experience and foster more comprehensive
projects. Finally, we hope to enable other educators to
leverage our work by releasing our materials open-source.

V. CONCLUSION

While GPU parallel programming and numerical opti-
mization offer immense potential across disciplines, their
complexity often provides a barrier-to-entry. To break down
these barriers and excite undergraduates, we created a course
on these topics framed through the lens of robotics that only
required core CS courses as prerequisites. Through a focus
on research applications and a large final project, students
were given the opportunity to connect theory to practice.
Our first offering of the course had 27 students who entered
the course as novices and left feeling equipped with both
technical and soft skills for further study in these fields.

REFERENCES

[1] B. Plancher and S. Kuindersma, “A Performance Analysis of Paral-
lel Differential Dynamic Programming on a GPU,” in International
Workshop on the Algorithmic Foundations of Robotics (WAFR).

[2] B. Plancher, et al., “Accelerating robot dynamics gradients on a cpu,
gpu, and fpga,” IEEE Robotics and Automation Letters, vol. 6, no. 2,
pp. 2335-2342, 2021.

| learned sufficient basic knowledge such
that | am well positioned to succeed in a
future course on the following topics:

i Writing L Interest in
Skills Skills Skills of Field the Field
n=11 n=12 n=10

How much has this course improved your
skills and understanding in the following:

100%
%
%
%
20%
Q ive P

®
&

@
]

IS
5

5]

0%

Pl P Optmiaton TeCCrY

m Not at All / Strongly Disagree
® Quite a Bit / Agree

Very Little / Disagree Some / Neither Agree Nor Disagree

m Very Much / Strongly Agree

Fig. 4: Self-reported learning from students on the final
course evaluations.

[3] ——, “Grid: Gpu-accelerated rigid body dynamics with analytical gra-
dients,” in IEEE International Conference on Robotics and Automation
(ICRA), May 2022.

[4] E. Adabag, et al., “Mpcgpu: Real-time nonlinear model predictive

control through preconditioned conjugate gradient on the gpu,” in

IEEE International Conference on Robotics and Automation (ICRA),

Yokohama, Japan, May. 2024.

E. Frachtenberg and R. D. Kaner, “Underrepresentation of women in

computer systems research,” Plos one, vol. 17, no. 4, 2022.

[6] S. K. Prasad, et al., “Nsf/ieee-tcpp curriculum initiative on parallel and
distributed computing: status report,” in ACM Technical Symposium on
Computer Science Education, 2018, pp. 134-135.

[7]1 S. Ghafoor, D. W. Brown, and M. Rogers, “Integrating parallel
computing in introductory programming classes: an experience and
lessons learned,” in Euro-Par 2017: Parallel Processing Workshops,
Revised Selected Papers. Springer, 2018, pp. 216-226.

[8] M. A. Kuhalil, et al., “Teaching parallel programming with active learn-
ing,” in 2018 IEEE International Parallel and Distributed Processing
Symposium Workshops (IPDPSW), 2018, pp. 369-376.

[9] D. J. Conte, et al., “Teaching parallel programming for beginners in
computer science,” in 2020 IEEE Frontiers in Education Conference
(FIE), 2020, pp. 1-9.

[10] A. A. Younis, et al., “Developing parallel programming and soft
skills: A project based learning approach,” Journal of Parallel and
Distributed Computing, vol. 158, pp. 151-163, 2021.

[11] S. M. Morse, et al., “The impact of reducing numerical methods and
programming courses on undergraduate performance,” in 2014 ASEE
Annual Conference & Exposition, 2014, pp. 24-1223.

[12] A. Alpers and L. E. Trotter, “Teaching computational discrete op-
timization at the undergraduate level,” INFORMS Transactions on
Education, vol. 9, no. 2, pp. 63-69, 2009.

[13] M. Bailey and S. Cunningham, “A hands-on environment for teaching
gpu programming,” ACM Sigcse Bulletin, vol. 39, no. 1, pp. 254-258,
2007.

[14] D. Bunde, et al., “Adding gpu computing to computer organization
courses,” in 2013 IEEE International Symposium on Parallel &
Distributed Processing, Workshops and Phd Forum, 2013, pp. 1275-
1282.

[15] R. Geist, J. A. Levine, and J. Westall, “A problem-based learning
approach to gpu computing,” in Proceedings of the Workshop on
Education for High-Performance Computing, 2015, pp. 1-8.

[16] J. A. Shamsi, “A laboratory based course on gpu programming:
Methods, practices, and lessons,” in 2017 IEEE International Parallel
and Distributed Processing Symposium Workshops (IPDPSW), 2017,
pp. 367-374.

[17] J. Gutierrez, F. Previlon, and D. Kaeli, “Employing student retention
strategies for an introductory gpu programming course,” in 2018
IEEE/ACM Workshop on Education for High-Performance Computing
(EduHPC), 2018, pp. 31-40.

[18] G. Fenwick and C. Norris, “Gpgpu programming for cs undergrad-
uates: Which one is superman?” in Proceedings of the 2020 ACM
Southeast Conference, 2020, pp. 2-9.

[19] M. Ohkawara, H. Saito, and I. Fujishiro, “Experiencing gpu path
tracing in online courses,” Graphics and Visual Computing, vol. 4,
p. 200022, 2021.

[20] E. Bisong and E. Bisong, “Google colaboratory,” Building machine
learning and deep learning models on google cloud platform: a
comprehensive guide for beginners, pp. 59—-64, 2019.

[5

—

	Introduction and Motivation
	Course Design
	Guiding Principles and Learning Goals
	Module 1: Parallel Computing (on GPUs)
	Module 2: Numerical Optimization (for Robotics)
	Module 3/4: Putting it All Together and Final Project

	Preliminary Evaluation
	Limitations and Future Work
	Conclusion
	References

