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Compact objects across the mass spectrum—-from neutron stars to
supermassive black holes—are progenitors and/or central engines for some of
the most cataclysmic phenomena in the Universe. As such, they are associated
with radio emission on a variety of timescales and represent key targets for
multi-messenger astronomy. Observations of transients in the radio band can
unveil the physics behind their central engines, ejecta, and the properties of
their surroundings, crucially complementing information on their progenitors
gathered from observations of other messengers (such as gravitational waves
and neutrinos). In this contribution, we summarize observational opportunities
and challenges ahead in the multi-messenger study of neutron stars and black
holes using radio observations. We highlight the specific contribution of current
U.S. national radio facilities and discuss expectations for the field focusing on the
science that could be enabled by facilities recommended by the 2020 Decadal
survey such as the next generation Very Large Array (ngVLA).

KEYWORDS

gravitational waves, high energy neutrino astrophysics, radio astronomy, radio array,
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1 Introduction

The study of compact objects across the mass spectrum—from neutron stars with
masses comparable to that of the Sun to supermassive black holes at the center of
galaxies hundreds of thousands to billions times more massive—has entered a golden
era. Indeed, electromagnetic observations of transients associated with compact objects
are being enriched, if not revolutionized, by observations of completely independent
messengers, namely, gravitational waves and high-energy neutrinos (e.g., Abbott et al.,
2017b; IceCube Collaboration et al., 2018a). While currently multi-messenger studies of
compact objects remain limited to a relatively small number of sources, continued effort and
investment in the field an greatly impact our understanding of the physics of compact objects
across the whole mass spectrum of neutron stars and black holes. Indeed, the mass spectrum
of neutron stars and black holes includes regions that are currently poorly characterized,
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such as the mass range where the dividing line between neutron
stars and stellar-mass black holes (the lower mass gap, e.g.,
Abbott et al., 2020b; Gupta et al., 2020) lies, and the mass range
thought to be populated by intermediate-mass black holes (e.g.,
Abbott et al,, 2020a; 2020; Abbottetal.,, 2024).
Improved gravitational-wave and particle detectors envisioned to

Greene et al.,

be operational in the next decade and beyond are key to opening
new opportunities for multi-messenger discoveries ahead. At the
same time, it is critical that our observational capabilities across
the bands of the electromagnetic spectrum continue to improve
in parallel with that of gravitational-wave and particle detectors.
Otherwise, we will soon reach a stage at which multi-messenger
studies of transients associated with compact objects will be limited
by the sensitivity of electromagnetic facilities rather than by the
horizon distances of gravitational-wave and particle detectors (the
current major limitation).

In this short review, we discuss the role that the radio band
of the electromagnetic spectrum plays in multi-messenger studies
of compact objects, focusing on the science enabled by current
and future U.S. national radio facilities. Our paper is organized as
follows. In Section 2, we briefly summarize the past and present
of time-domain multi-messenger astronomy done with radio
observations; in Section 3, we discuss some future opportunities that
have great potential for enabling new discoveries and conclude.

2 The radio contribution to
multi-messenger studies of compact
objects

Radio observations play a key role in all three scientific priorities
for the coming decade identified in the Pathways to Discovery in
Astronomy and Astrophysics for the 2020s report (hereafter, Astro
2020; National Academies of Sciences Engineering and Medicine,
2021), and are critical to the “New Windows on the Dynamic
Universe” science priority area. This priority includes using “time-
resolved multi-wavelength electromagnetic observations from space
and the ground with non-electromagnetic signals to probe the
nature of black holes, neutron stars, and the explosive events
and mergers that give rise to them” In fact, radio wavelength
observations play a crucial role in the study of black holes and
neutron stars, as emission in this band probes the presence of fast,
non-thermally emitting ejecta largely independently of geometric
effects. Radio wavelength observations also are critical for enabling
very high-resolution observations that can either resolve the ejecta
and/or enable proper motion measurement of the source structure
(unveiling fast jet components via observations of superluminal
motion). Several recent observational results demonstrate the
central role played by observations in the radio band in multi-
messenger discoveries that are revolutionizing the way we study the
cosmos. We briefly summarize these key discoveries in what follows.

2.1 Radio observations and
gravitational-wave astronomy

The multi-messenger discovery of GW170817 (Abbott et al.,

2017b), a binary neutron star merger for which
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the gravitational-wave siren  was
(LIGO Scientific Collaboration et al., 2015) Virgo
2015), initiated what can be considered a
revolution in time-domain multi-messenger astronomy of stellar-

unveiled by LIGO
and
(Acernese et al.,

mass compact objects. GW170817 was accompanied by a short
y-ray burst (GRB; Abbott etal.,, 2017a), and extensive follow-up
identified its kilonova counterpart—a quasi-thermal transient
associated with r-process nucleosynthesis occurring in the
merger neutron-rich debris (Chornock et al.,, 2017; Coulter et al.,
2017; Cowperthwaite et al., 2017; Drout et al., 2017; Evans et al.,
2017; Kasliwal et al., 2017; Nicholl et al., 2017; Pian etal., 2017;
Smartt et al., 2017; Soares-Santos et al., 2017; Tanvir et al., 2017;
Valenti et al., 2017; Villar et al., 2017). The kilonova identification
enabled the arcsec localization of GW170817 and measurement of
its distance at approximately 40 Mpc (Hjorth et al., 2017; Im et al.,
2017; Levanetal, 2017; Palmeseetal., 2017; Panetal., 2017).
Subsequent X-ray-to-radio follow up probed the GRB afterglow
(Alexander et al., 2017; Haggard et al., 2017; Hallinan et al., 2017;
Margutti etal., 2017; Trojaetal, 2017; Mooleyetal, 2018a;
Mooley et al., 2018b; Margutti et al., 2018). The radio band, in
particular, proved unique. Extensive monitoring of GW170817
with the Karl G. Jansky Very Large Array (VLA) revealed a steady
increase of the optically thin 3 GHz flux during the first =100 d since
merger (Hallinan etal., 2017; Mooley et al.,, 2018a; Mooley et al.,
2018b)—something very different from the power-law decaying
radio afterglows of cosmological short GRBs. The sensitivity of
the VLA was essential to probe the rising part of the afterglow
light curve without interruptions that affected, e.g., the X-ray
band due to the Sun’s proximity. The resolution provided by the
VLA in its most extended configurations was essential to avoid
contamination of the measured radio flux from the nearby, radio-
emitting core of the host galaxy NGC 4993 (e.g., Hallinan et al., 2017;
Levan et al., 2017). Radio monitoring, including importantly Very
Long Baseline Interferometry (VLBI) observations (Mooley et al.,
2018a; Ghirlanda et al., 2019), proved critical to establish that the
delayed afterglow was produced by an off-axis structured jet—the
first off-axis jet to be securely identified after about 20 years since
the discovery of GRB afterglows (Costa et al., 1997).

Overall, radio observations of compact binary mergers containing
at least one neutron star can constrain the ejecta structures (energy-
speed distributions), the viewing geometries, the densities of the media
around the merger sites, the structure of the magnetic field, and
provide hints on the nature of the merger remnant (e.g., Nakar and
Piran, 2011; Metzger and Bower, 2014; Fong et al., 2016; Horesh et al.,
2016; Mooley et al., 2018a; Mooley et al., 2018b; Corsi et al., 2018;
Dobie etal,, 2018; Hotokezaka etal,, 2018; Lazzatietal, 2018;
Kathirgamaraju et al., 2019; Gill and Granot, 2020; Liu et al., 2020;
Balasubramanian et al., 2021; Makhathini et al., 2021; Nedora et al.,
2021; Teboul and Shaviv, 2021; Balasubramanianetal., 2022;
Nedora et al., 2023; Sadeh et al., 2024). Looking to the future, as the
sensitivities of the LIGO, Virgo, and KAGRA detectors continue to
improve (Akutsu et al. 2019; Abbott et al., 2021; Abbott et al., 2022), a
collection of a larger sample of multi-messenger detections with deep
radio follow-up observations would shed light on many currently open
questions (e.g., Corsi et al., 2024). For example, what is the diversity
of radio counterparts to compact binary mergers? Do all neutron star
binary mergers power jets? As the horizon of multi-messenger studies
of neutron star binary mergers reaches the peak of star formation with
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~1 uJy/bm at 2.5 GHz in ~10 hrs.

This Figure is an updated version of Figure 9 in Selina et al. (2018). The effective collecting area for the ngVLA is plotted versus frequency and
compared to that for other existing (VLA and ALMA) or planned (SKA; Braun et al., 2019) facilities. Compared to the VLA, the ngVLA will have 10xthe
sensitivity and 10xthe resolution at comparable frequencies. As highlighted by Murphy E. et al. (2018), this implies that with the ngVLA it will become
possible to map a ~10 deg®region (i.e., the localization uncertainty expected by gravitational wave detectors when ngVLA is operational) to a depth of
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next-generation, ground-based gravitational-wave detectors such as
Cosmic Explorer and the Einstein Telescope (=10 x the sensitivity of
LIGO detectors; Branchesi et al., 2023; Evans et al., 2023; Gupta et al.,
2023), it would be possible to link each short GRB radio afterglow
to a progenitor (as probed in gravitational waves) and understand
the physics behind such mapping (e.g., Ronchini et al., 2022). Key to
this end is that the sensitivity and resolution of PI-driven national
radio arrays, such as the VLA, continue to increase in parallel with the
improving sensitivity of gravitational-wave detectors (§3).

Radio observations also promise to be critical for extending
multi-messenger studies of gravitational wave sources to the highest
end of the mass spectrum of compact objects, i.e., the region
populated by supermassive black holes found at the center of
galaxies (Volonteri et al., 2021). Pulsar timing arrays (PTAs), such
as the North American Nanohertz Observatory for Gravitational
(NANOGrav), and the Laser Interferometer Space
Antenna (LISA) are opening, or will soon open, complementary

Waves

observational windows on massive black-hole binaries. While
PTAs currently probe the stochastic gravitational-wave background
from massive black-hole binary populations, over the next
decade, both PTAs and LISA will detect individual black hole
binaries. Multi-messenger studies of these massive black holes
in binaries are critical to constrain, on large scales, the merger
rate of massive galaxies and, on smaller scales, the dynamics
of stars and gas in galactic cores (e.g., Burke-Spolaor etal,
2019; Arzoumanian etal., 2021; Mangiagli et al., 2022; Amaro-
Seoane et al., 2023; Arzoumanian et al., 2023; Agazie et al., 2023;
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D’Orazio and Charisi, 2023; Liuetal., 2023; Stegmann etal.,
2023). Currently, the uncertainties that affect the dynamics of
massive black-hole binaries leave open various scenarios predicting
different delay times between the galaxy mergers and the black-hole
coalescences. This delay time determines, e.g., the LISA detection
rate, and depends critically on the residence time (or how long
the binary stays) at parsec-scale separations (Katzetal, 2020;
DeGrafetal, 2024). The residence time at a given separation
can in turn be constrained via radio observations. In fact,
when one or both black holes are actively accreting, their AGN
jets produce radio emission and jet cores trace the location of
the black holes at small separations (1pc-100pc), which are
spatial scales that can be sampled via very long baseline radio
interferometry (VLBI, Burke-Spolaor, 2011; Breiding et al., 2021).
Radio wavelength observations also can probe jets that may
form right before, during, and after the merger phase, via the
interaction between the plasma surrounding the black holes and
the magnetic fields, as well as jets originating from accretion on
the black holes or their final merger remnant (Schnittman, 2011;
Bogdanovi¢ et al., 2022).

2.2 Radio observations and high-energy
neutrino astronomy

Neutrino astronomy has boomed in recent years, as

multi-messenger observations of high-energy neutrinos have

frontiersin.org


https://doi.org/10.3389/fspas.2024.1401792
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles

10.3389/fspas.2024.1401792

Corsi et al.
> 4 N
Legend 5 S0°00°N >
° RevD_SBA e S0 o
e RevD_Core i S k. e
e RevD_Spiral 9 S Moftna O REAT Do ‘g' et T~ y
=P # PL AL -° - X 0
e RevD_Mid wieonst BEY (i e ¥* C
Sl F >,
@ RevD_LBA Bl s 5 o] = A e
Wyoming, @ N e
1 = Nebrapka \"
b . ?
United R GRS
Nytada kol States i entueey
- Colatado Kansas Missourh orth .
b axolin
'
?h e Oklahoma % sousss < -
() \ ® o 11 sissips g
o tizona, ngevice Anabama } Geor®
'\) o g e ®
: e ' e ¢
7 & GSING) W ° { "00"N
ureesqESHiGarminiuSG exas Louisiand
. e ® -
PLor 8
° éBD“D'U'N
L ] 2
o pand 'S
aitsof
&
Cub DO
Mexico TR
ORAY
SurcesqESGarminiUSG:
= 3
CeS4EST! SYNOAA\ Sources: Esri, Garmin WSGS| NPS!
1 ] WEIT E @ A
/de 2 .. 7 r/ 5N . A
i ’ s R '
Legend S ~ A i ®
[ai8T,a ,/, L pratealu @ SantaFe
° )i ¢ < ° ’ Gallu,
RevD_SBA | = %) ARLZON A ' Albuquerque
e RevD_Core [ & o ,‘ o * | /NEW wpwo
r 4 Tonis P R i
7 i) g { MEXICO
® RevD_Spiral (4 Lo "l o
o7 ° $ o::homu Presse? Rowenn | ESTJCADO
i O N oswel
e RevD_Mid : L= ey s d® 1 Y. °
”~ - ¢ EserT ° 4 ® i 5 1 (staxqo PLAN]
P - e Tucsong L] guces Carlsbad
pria: 3 M Y | od
g °
o ..»4“; ‘ # ° ) e e ° -
/ /Y [ °
& "ein ] .
/2 e ° ° ° &
o o 0625125 250 o _ ®ources: Esri, USGS, NOAA, Sources: |
° + & —— Esri, Garmin, USGS, NRS ]
(4 ° ° 9
S~ e ° )
° °
° o ‘o o ©
° L)
M ° °
o
e °
°
4 ° °
° ° °
Coordinate System: NM Contiguous Lambert Conformal Conic
Projection: Lambert Conformal Conic
Datum: North American 1983 ]
False Easting: 0.0000
False Northing: 0.0000 -
Central Meridian: -106.0000 ‘
Standard Parallel 1: 33.0000 °
Standard Parallel 2: 35.0000 ~ @
Latitude Of Origin: 34.0000 -4V 5
Units: Meter Sources/ ES/ USGS, NOAA
FIGURE 2
This Figure is reproduced from Murphy (2022). Top: A potential configuration layout for the ngVLA showing all 263 antennas spread across the North
American Continent. The Array is centered at the current VLA site on the plains of San Agustin in New Mexico. The legend associates each antenna with
a logistical sub-component of the full array. Each of the long-baseline stations (purple dots) consists of three antennas. Bottom: A zoom-in of the main
array showing the five-arm spiral pattern (54 18 m antennas) and dense core (114 18 m antennas). The maximum baseline of the spiral and core
antennas is 29.3 and 4.3 km, respectively. The 19 6 m Short Baseline Array antennas are located within the central core.

been enabled by the IceCube detector (Aartsen etal, 2017b).

Cosmic neutrinos

rays (high-energy nuclei) interact
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(photons) or with matter. Because neutrinos can traverse the
Universe without being deflected by magnetic fields, they
can pinpoint the astrophysical sources that produce them.
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Identifying the sources of high-energy neutrinos can also shed
light on their parent cosmic rays and the physics behind
their acceleration (e.g., Ahlers and Halzen, 2018; Halzen
and Kheirandish, 2022).

IceCube has discovered an extra-galactic diffuse flux of
cosmic high-energy neutrinos (IceCube Collaboration, 2013).
The radio band offers key insights for understanding the role of
stellar-mass compact objects and their jets as sources of high-
energy neutrinos and contributors to the high-energy neutrino
background. While stacking analyses have shown that transients
such as cosmological GRBs do not contribute a major fraction
of the all-sky neutrino flux (Aartsenetal, 2017a; Abbasi et al,
2022; IceCube Collaboration et al., 2023; Lucarelli et al., 2023),
theoretical models suggest that radio-emitting but y-ray-dark,
choked jets may lead to efficient high-energy neutrino production
(e.g., Murase, 2015; Senno et al., 2016; Esmaili and Murase, 2018;
Senno et al., 2018; Chang et al., 2022). Recently, Guarini et al. (2023)
have emphasized that, while a significant fraction of the explosion
energy of astrophysical transients associated with collapsing massive
stars can be emitted in the infrared-optical-ultraviolet band, the
optical signal alone is not optimal for neutrino searches. Instead,
neutrino emission is strongly correlated with radio emission
arising from either strong circumstellar medium interactions or
with the presence of a central engine (e.g., Corsietal, 2014;
Corsietal, 2023). Perhaps one of the most exciting prospects
for future multi-messenger detections of stellar-mass compact
objects would be to identify compact binary mergers containing
neutron stars that could be probed not only via gravitational waves
and radio light (as for the case of GW170817) but also via high-
energy neutrino counterparts (e.g., Albert et al., 2017; Aartsen et al.,
2020; Abbasi et al., 2023b; Mukhopadhyay et al., 2024). The last
would probe dissipation mechanisms in relativistic outflows
driven by the mergers (Albertetal, 2017; Abbasietal., 2023a;
Matsui et al., 2023).
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The identification of the cosmic neutrino IceCube-
170922A  from the known blazar TXS0506 + 056
(IceCube Collaboration et al., 2018a) has also established a link
between high-energy neutrinos and supermassive black holes in
AGNs with jets aligned with our line of sight (y-ray emitting
blazars). Additional associations of high-energy neutrinos with
sources other than blazars, such as the Seyfert IT galaxy NGC 1068
(IceCube Collaboration et al., 2022) and a few tidal disruption
event (TDE) candidates (e.g., Steinetal., 2021), leave open the
debate on the relative role of potential y-ray bright and y-ray
dark (or jet-quiet) high-energy neutrino emitters (Senno etal.,
2017; Franckowiak et al., 2020; Kreter et al., 2020; Murase et al.,
2020; Plavin et al., 2020; Kimura etal., 2021; McDonough et al.,
2023; Murase and Stecker, 2023). In fact, IceCube identified a six-
month-long cluster of events from TXS0506 + 056 in 2014-2015
that was not accompanied by increased y-ray activity. Both the
2014-2015 neutrino flare and the IceCube-170922A neutrino event
from TXS0506 + 056 are associated with intervals of enhanced
radio emission (IceCube Collaboration et al., 2018b). In July 2019,
the high-energy neutrino event IC190730A was found spatially
coincident with the bright flat-spectrum radio quasar PKS 1502 +
106. While PKS 1502 + 106 was not found to be in a particularly
elevated p-ray state, it exhibited a bright radio outburst at the
time of the neutrino detection. In 2022, the IceCube neutrino
event 1C220225A was identified in spatial coincidence with the
flat-spectrum radio quasar PKS0215 + 015 in a high optical and
y-ray state accompanied by a bright radio outburst (Eppel et al.,
2023a; Eppel et al., 2023b).

In AGN jets, radio emission is a good proxy for the general
jet activity (Hovatta etal, 2021). An increase in the radio flux
density before a y-ray flare could signal a long-term increase in
the total jet power. Statistical studies aimed at understanding the
connection between radio-loud AGNs and high-energy neutrinos
are particularly important. For example, Plavinetal. (2020)

frontiersin.org
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investigated the association of neutrinos with radio-bright AGN
and found an average increase of radio emission at frequencies
above 10 GHz around neutrino arrival times for several AGNs.
Plavin et al. (2021) found a 30 significance for the correlation
between the IceCube point-source likelihood map and the VLBI
radio fundamental catalog of AGN. Hovatta etal. (2021) found
that observations of flares in OVRO-monitored blazars (at 15 GHz)
at the same time as a neutrino events are unlikely to be random
coincidences. Suray and Troitsky (2024) highlighted how IceCube
neutrinos with energies over 200 TeV previously found to be
associated with bright radio blazars are significantly more likely to
be accompanied by flares of lower-energy events, compared to those
lacking blazar counterparts. On the other hand, Zhou et al. (2021)
investigated the possibility that radio-bright AGN are responsible for
the TeV-PeV neutrinos detected by IceCube using 3,388 radio-bright
AGN selected from the Radio Fundamental Catalog and found that
stacking analyses show no significant correlation between the whole
catalog and IceCube neutrinos. In summary, it is clear that radio
plays an important role in shedding light on supermassive black
holes as sources of high-energy neutrinos, though a larger number
of high-confidence multi-messenger detections are needed to clarify
the exact link between radio emission and sources high-energy
neutrinos.

3 Discussion

Among the so-called “Large Programs That Forge the Frontiers,”
the Astro2020 report recognized as essential that “the Karl Jansky
Very Large Array (VLA) and Very Long Baseline Array (VLBA),
which have been the world-leading radio observatories, be replaced
by an observatory that can achieve roughly an order of magnitude
improvement in sensitivity compared to those facilities. The Next
Generation Very Large Array (ngVLA) will achieve this, with a
phased approach where design, prototyping, and cost studies are
completed and reviewed in advance of commencing construction.”
Indeed, the ngVLA promises to be a key facility enabling studies of
radio emission from sources of gravitational waves and high-energy
neutrinos described in Section 2 to be extended to the larger distance
horizons (Ahlers and Halzen, 2014; Aartsen et al., 2021; Evans et al.,
2023; Gupta et al., 2023; Corsi et al., 2024).

The ngVLA (Murphy E. J. et al., 2018) is being designed as an
interferometric array of 263 antennas with =10 x greater sensitivity
and spatial resolution than the current VLA and ALMA, operating in
the frequency range of 1.2 GHz-116 GHz (Figures 1-3). ThengVLA
configuration includes an ~4km diameter core consisting of 114
antennas centered at the current VLA site; a five-arm spiral of 54
antennas with a maximum baseline of 40k m (i.e., similar to the
current VLA A-configuration); a set of 46 mid-baseline antennas
that achieve a maximum baseline length of 1000 km; and, finally,
a long-baseline antenna stations with ten sites spread across the
North American Continent (for a maximum baseline of 8,857 km),
each site equipped with three antennas. Hence, the ngVLA will
greatly expand current U.S. VLBI capabilities by both replacing
existing VLBA antennas/infrastructure with ngVLA technology and
providing additional stations on 1000 km baselines to bridge the
gap between the =40km VLA-like baselines and the =~9000 km
VLBA-like or Continental baselines. Plans are already underway
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to lay out a community-led plan for enabling a smooth transition
from the VLA/VLBA to the ngVLA. To this end, a Transition
Advisory Group (TAG)—a group of 18 members of the U.S. and
international astronomical community—is working to develop,
quantitatively assess, and evaluate a set of possible VLA/VLBA-
to-ngVLA transition options prioritized based on their scientific
promise (given the scientific opportunities for the coming decade),
of their cost, and their technical/personnel impacts.

Based on the summary of §2, we expect the ngVLA to
begin operations at the culmination of a phase of rapid growth
in gravitational-wave and high-energy neutrino astronomy. The
detection of radio emission from cataclysmic multi-messenger
sources associated with neutron stars and black holes across the mass
spectrum can enable their precise localization, help measure their
energetics, and provide clues on their surrounding environments.
The combination of multi-messenger information will provide a
complete picture of the life-cycle of massive stars, the micro-physics
of their explosive deaths, and the formation and evolution of neutron
stars, stellar-mass black holes, and supermassive black holes. The
future of multi-messenger astronomy looks bright, and it is key that
the U.S. keeps aleading role in enabling this multi-messenger science
in the radio band'.
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