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To understand the conceptual challenges of discretization that students face, we present an instrumental case
study of one student. This student took a junior-level quantum mechanics course and the accompanying compu-
tational lab course in the Winter 2021 term. The following year, she became an undergraduate teaching assistant
for the computational lab course. Using a video elicitation interview, the participant reviewed a video clip of
herself and a partner working on a kinetic energy operator computational activity. During the interview, she
reflected on her understanding of discretization and identified two challenges associated with it: recognizing
functions as column vectors and interpreting Ax. These challenges were productive for students in considering
the nuances of discretization.
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I. INTRODUCTION

The traditional position-first approach to teaching quantum
mechanics uses the Schrodinger equation early on to intro-
duce the position basis and the energy basis for the infinite
square well (ISW), also known as the particle in a box. In
the spins-first approach, the postulates of quantum mechan-
ics are introduced in the context of sequential Stern-Gerlach
experiments of spin-1/2 particles, which have a finite, discrete
basis. The spins-first approach to teaching quantum mechan-
ics has been shown to improve aspects of students’ learning
compared to the traditional position-first approach [1].

While there is good motivation for using the spins-first
approach, instructors at Oregon State University have no-
ticed students’ difficulty in transitioning from discrete sys-
tems (like spin-1/2 particles) to continuous ones (like the
ISW). Computation can be a powerful tool for facilitating this
transition, as oftentimes continuous objects (like wave func-
tions) and operations (like integration) must be discretized to
be implemented into code. We developed a set of computa-
tional activities that introduced some of the ways continuous
objects and operations can be approximated discretely. We
believe that ideas of discretization can build a foundation for
students and help them identify the connections between dis-
crete and continuous systems. To explore this, we ask the
following:

Research Question: What are the conceptual
challenges of discretization that students engage
with?

We answer this question by presenting an instrumental case
study of a student, Mary (a pseudonym), who experienced a
discretization-focused computational activity as both a stu-
dent and an undergraduate teaching assistant (TA). Our quali-
tative analysis highlights some of the challenges of discretiza-
tion students encounter and the productive elements of those
challenges. This case study will inform the ways that instruc-
tors can support students’ productive ideas of discretization,
which may have implications for students’ building connec-
tions between discrete and continuous quantum systems.

A. Instructional Context

Upper-division physics students at Oregon State University
take an intensive five-week long, seven-contact-hour quan-
tum mechanics course called Paradigms in Physics: Quantum
Fundamentals. This course uses a spins-first approach to in-
troducing quantum mechanics and the course ends with the
ISW. In the Winter 2021 term, students concurrently took a
computational physics lab course where they used numerical
methods to solve quantum mechanics problems. Due to the
ongoing COVID-19 pandemic during the Winter 2021 term,
both of these courses were taught over Zoom.
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B. Broader Research Context

In the Winter 2021 term, Mary was longitudinally observed
by one of the authors in the computational lab course. One
year later in the Winter 2022 term, Mary became a TA for the
computational lab course. The rapport developed between
Mary and the observing author perhaps helped her feel more
comfortable sharing her thoughts during the interview. Addi-
tionally, the rapport was helpful during the analysis process
because the authors had the additional context of Mary’s ex-
periences as a student.

II. METHODS

A. Video Elicitation Interview

In the Winter 2022 term, we conducted an in-person, one-
hour-long, semi-structured interview with Mary. The inter-
view employed video elicitation [2], also known as stimulated
recall [3—5] where a participant views a video of themselves
during an event. This method typically results in participants
recalling their understandings and feelings and reflecting on
their thoughts and actions during an event [2].

During the interview, Mary watched a 10-minute video
clip of herself as a student working with a partner, Dave (a
pseudonym), on a computational activity (described later in
this section). Following the interview protocol, the video was
paused at particular time stamps, and Mary was asked to re-
flect on the portion of the clip she saw, compare her under-
standing as a student and as a TA, and describe how she would
assist students who had questions about the activity.

This interview differs from other video elicitation inter-
views in that the events of the video clip and the interview
take place a year apart. Lyle suggests video elicitation inter-
views happen soon after the recorded event so that the study
participant can better recall their thoughts and experiences
[3]. At a few points during the interview, Mary mentioned
not remembering what she thought in the moment as a stu-
dent in the video clip. Because of this, the perspectives she
gave during the interview were likely more informed by her
experience as a teaching assistant rather than as a student.

Data captured during the interview included video and au-
dio recordings of Mary, video of a nearby whiteboard that
Mary wrote on during the interview, and a screen recording
of the video clip. The interview was transcribed and reviewed
to identify salient experiences, understandings, and perspec-
tives that Mary shared related to our research question.

1. Activity Description

The computational lab course consisted of four activities
in the quantum mechanics context developed by the instruc-
tor and one of the authors. Each activity of the computational
lab course was related to the ISW. The third activity of the



computational lab course, taking place before students were
introduced to wave functions in the Quantum Fundamentals
course, focused on finding the eigenvalues and eigenvectors
of the finite-difference approximation of the kinetic energy
operator [6]. The goal of the activity was to demonstrate how
a differential operator can be implemented computationally
using a finite difference approximation and how wave func-
tions can be discretized.

Students were tasked with first coding a matrix to repre-
sent the finite difference approximation of the kinetic energy
operator T'. Students were given the equation below to show
how the approximated operator acts on a wave function. The
equation below shows the finite difference approximation of
the kinetic energy operator T matrix acting on a wave func-
tion, represented by a collection of coefficients ¢)(nAz) in a
column vector.

Ty(Ax) 2 1.0 0 W(Ax)
Ty(2A7) , [-12 -1 0 V(2A7)
Ty(3Az) | — 0 -1 2 -1 ¥(3Az)

2mAz | 0 0 -1 2 W(4Az)

T(4Ax)

Students were then asked to calculate the eigenvalues and
eigenvectors of the T matrix and to observe what happens
when the size of Az is decreased. Because the ISW has a
defined length, decreasing the step size Az will increase the
number of steps required to iterate over the entire box, result-
ing in a T matrix and a wave function column vector with
more entries.

2. Video Clip Description

The video clip Mary watched during the interview opened
with the observer asking Mary and Dave how the length of
the ISW, the size of Az, and the number of entries in the
wave function column vector correspond to each other. The
pair then looked at their wave function column vector com-
posed of (Ax), 1 (2Ax),(3Ax), and so on. They noticed
that the number of entries in that vector did not change as
they varied the step size Ax or the length of the square well.
Mary was confused as to why that should be the case and
Dave attempted to explain why through verbal descriptions
and drawings.

B. Analysis

We used an instrumental case study to analyze Mary’s in-
terview responses. In instrumental case studies, a particular
case is used to provide insight into a larger issue [7]. The case
we present is that of a student, Mary, who has done a com-
putational activity focused on discretization as both a student
and a TA. We present two conceptual challenges that students
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face when introduced to discretization identified by Mary dur-
ing the video elicitation interview. This case will give further
insight into the challenges students face in transitioning from
working with discrete quantum systems like spin-1/2 particles
to working with continuous quantum systems like the ISW.

Mary may be considered an extreme case [8] or an unusual
case. She was part of a larger research project on the compu-
tational lab course and happened to later become a TA for that
same course. She saw the course material multiple times with
new coding and physics expertise being developed between
taking the course as a student and being a TA for the course.
This gave her more experience with the kinetic energy opera-
tor activity and a perspective that most students in the course
would not have. Consequently, Mary was particularly valu-
able to interview because she gave the authors insights into
the challenges of discretization that most students would not
be able to articulate.

III. RESULTS: CHALLENGES OF DISCRETIZATION

The purpose of this case study is to highlight some spe-
cific struggles students face when engaging with discretiza-
tion in a quantum mechanics computational activity. During
the interview, Mary identified two challenges of discretiza-
tion. The first was centered around the difficulty of recogniz-
ing that functions can be represented as a column vector with
a finite number of elements. The second was centered around
students’ interpretation of Az. She identified both these chal-
lenges to be productive for her understanding of wave func-
tions and discretization.

In the following presentation of the challenges, all of the
quotes are from Mary during the Winter 2022 (W22) inter-
view rather than from the Winter 2021 (W21) observational
video clip of her as a student.

A. Functions as Discrete Column Vectors

Of the four computational quantum mechanics activities,
the kinetic energy operator activity was the first that required
students to recognize wave functions can be represented as a
column vector. Mary identified this as a challenge of dis-
cretization. During the interview, Mary stated that “...it’s
hard to think about what it even means to have the wave
function in a matrix form and like have an operator in ma-
trix form.” Later in the interview, she described how the code
she and Dave wrote approximates a wave function.

Mary: “Yeah, so we’re approximating a con-
tinuous psi, which is an eigenfunction. We're ap-
proximating it with a discrete representation and
rather than having some infinitely long set from
like — er, yeah, infinite breaking up from 0 to L,
because it is a particle in a box, it’s not from neg-
ative infinity to infinity. But like we’re breaking it



up into — we’re only taking certain points along
the line.”

She described that typically the wave function has a defined
value at each position along the length of the ISW, resulting
in an uncountable infinite collection of coefficients. In the
discretized case, however, she stated that the wave function is
being approximated by sub-sampling the infinite set of coef-
ficients. This allows the wave function to be represented by
a finite set of coefficients. In the W21 observation video, she
reached the same conclusion, but she more clearly articulated
the approximation aspect of this during the W22 interview.

Part of the activity required plotting the eigenfunctions of
the kinetic energy operator. Mary had identified this task as
“unintuitive” in the following description.

Mary: If you fed in np.arange from 0 to L and
just any number of x, you wouldn’t have enough
values for your eigenfunction to plot versus, so
it would run an error on the code. That is very
unintuitive for someone who'’s like ‘Well, I should
just be able to plot a function, and if you just give
it any x value it should be able to spit something
out.” There’s just a lot of elements to it that are
confusing I think.

Because the wave function and kinetic energy operator had
been discretized in the code, the calculated eigenfunctions
had to be plotted against “certain points along the line”. She
described this as being unintuitive because typically wave
functions have a value at every point along the length of the
ISW, but the discretized wave function does not. In both the
W21 observational video and the W22 interview, she found
the challenge of understanding a wave function as a column
vector productive to her understanding of discretizing a wave
function. In particular, she noted her experience as a TA for
the course helped her recognize that the size of Az corre-
sponded to how well the wave function was being approxi-
mated. She did not remember learning this in W21.

B. Interpreting Ax

In the W21 observational video, Mary was confused about
why the number of elements in the discretized wave function
changed with the value of Az. Her partner, Dave, then drew
a representation of the system on their shared virtual white-
board, shown in Fig. 1. During the W22 interview, Mary was
asked about her thoughts on Dave’s drawing. She drew a plot
on the whiteboard as shown in Fig. 2 and said:

Mary: “I think just seeing Ax on a page is nice,
because then you're like, ‘Okay, what was Az
supposed to be?’. Um, except for that what I'm
learning now is that Ax isn’t actually like on a
bar graph where you have between two points
[sic]. It’s literally just a point on the graph.”
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FIG. 1. Dave drew a graphical representation of the particle in a
box and labeled Az as the spacing between points =1 and x> for the
length of the box.

oX O

FIG. 2. During the interview, Mary drew a graphical representation
of a wave function and discretized wave function. She used color to
show how the element of the column vector corresponded to a point
on the graph of the wave function.

In this quote, Mary reflected that Dave’s drawing was help-
ful because it labeled what Az was in relation to the length
of the ISW. She then identified two interpretations of Az that
could impact one’s understanding of the discrete wave func-
tion. The first was an understanding of Ax as the space “be-
tween two points”, as reflected in Fig. 1. She compared this
to a bar graph, where the bars occupy a space between two
points. The second interpretation she offered, as drawn in Fig.
2, was that Az, 2Ax, etc. were single points with uniform
spacing along the length of the ISW. In the W22 interview,
Mary shared that as a TA she saw some students in the com-
putational lab course use the “space between points” (SBP)
interpretation and others use the “single point” interpretation.
Mary noted that she had the SBP interpretation of Az in the
W21 observational video, but after an additional year of ex-
perience she developed the “single point” interpretation.

The SBP interpretation of Az had implications on how
Mary and Dave thought about other parts of the activity.
Specifically, it affected how they understood 1 (Az) and how
they graphically represented the ISW. Even with these impli-
cations, Mary reflected that the SBP interpretation was pro-



ductive for her in the W21 observational video because it
helped her visualize the problem and connect the size of Az
to the number of elements in the discretized wave function.

The SBP interpretation of Az introduced challenges to un-
derstanding ¢ (Ax) as a value of a function. During the inter-
view, Mary said the following:

Mary: “[The instructor] just showed this in
class where you have (Ax), Y(2Ax), ¥(3Ax)
and so on. And that would map to a discrete
point on the curve [underlines ¥ (Ax) in purple
and marks Ax on the plot in Fig. 2]. Like this
is Ax and then this’d be some 2Ax [underlines
Y(2Ax) in orange and then marks 2Ax on the
plot in Fig. 2]. So then, I guess, I didn’t un-
derstand...why a discretized representation even
worked. Like it isn’t a one-to-one, it’s just an ap-
proximation of the curve. I don’t think I had any
understanding of that.”

She reflected that in W21 as a student with the SBP inter-
pretation, she did not fully understand how to coordinate the
discretized wave function with a plot of the wave function vs.
position. With the understanding that Ax is a space between
points, it was not clear to her in W21 how to evaluate ¢ (Ax).
After experiencing the activity for a second time, in the W22
interview, Mary noted that the “single point” interpretation of
Az helped her understand that ¢(Axz) is the wave function
evaluated at a point.

Mary did, however, reflect that the SBP interpretation was
productive for her and her partner. As shown in Fig. 1,
Dave’s drawing of the ISW labeled Az as the space between
points. In the W21 observational video, the drawing helped
Mary understand “breaking up L into Az” and how chang-
ing Az would change the number of entries in the discrete
wave function. Mary was asked to reflect on the drawing dur-
ing the W22 interview. She explained that even though the
drawing was not completely physically accurate, it did help
her in W21 to understand the connection between Az and the
discrete wave function. Additionally, she noted the charac-
teristics of the drawing that might be inaccurate or confusing
for students, such as the x- and y-axes and the box not being
aligned with the origin.

IV. DISCUSSION AND CONCLUSION

We have presented two challenges of discretizing wave
functions in a quantum mechanics computational activity as
highlighted by a participant who has experienced the compu-
tational activity as a student and as a TA. The kinetic energy
operator computational activity was productive and valuable
in light of these challenges, as it encouraged students to en-
gage with some of the nuanced ideas of discretization.

The first challenge we identified was in representing func-
tions as discrete column vectors. A wave function, an un-

330

countably infinite collection of points, can be approximated
with a finite set of points. Recognizing that wave functions
are, by definition, a collection of points may be one of the
reasons that the idea of discretization was challenging. Ac-
cording to an analysis of the structural features of quantum
notations [9], wave function notation exhibits a low degree
of individuation while matrix notation exhibits a high degree
of individuation. Individuation refers to how well the impor-
tant features of an object are represented as elemental pieces
of a whole in a given notation. The uncountably infinite set
of points comprising the wave function is obfuscated, which
makes it more difficult to see how a function could possibly
be represented by a column vector.

The second challenge was interpreting Az. Some students
interpret it to be the space or gap between points rather than
a point. This led to some difficulty in understanding 1 (Az)
as a value function and manifested in the graphical represen-
tation of the ISW. Mary mentioned that the course instructor
drew a plot similar to the one in Fig. 2 that highlighted the
connection between the Az in the column vector and in the
plot of a wave function. She said that this was helpful for
orienting students to the activity, but it did not completely
eliminate some students from understanding Ax as the space
between two points. The “single point” interpretation of Ax
was particularly productive for Mary as a TA because it al-
lowed her to coordinate the discretized wave function with a
graphical representation of the ISW.

We believe this study has further implications for high-
lighting the ways that continuous quantum systems like the
ISW relate to discrete quantum systems such as spin-1/2 par-
ticles. Activities centered around turning a continuous object
into a discrete object may illuminate the ways that common
calculations like inner products, probabilities, and time evo-
lution are isomorphic for discrete and continuous quantum
systems. For example, writing Python code that calculates
the inner product of two wave functions would require writ-
ing an integral as a sum, resembling an inner product for a
spin-1/2 system.

We offer some implications for instructors, as informed by
our study. Terms like Az may carry connotations from previ-
ous courses which can affect students’ interpretations of them
in a new context like a computational course. Additionally,
providing multiple representations of wave functions (graphs,
code, function representations, matrix representations, etc.)
encourages students to consider the role of Az in discretiza-
tion. The study also provides evidence that students may
benefit from additional instruction on the similarities of func-
tions and vectors to facilitate students’ understanding of how
a wave function can be represented as a column vector.
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