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To understand the conceptual challenges of discretization that students face, we present an instrumental case

study of one student. This student took a junior-level quantum mechanics course and the accompanying compu-

tational lab course in the Winter 2021 term. The following year, she became an undergraduate teaching assistant

for the computational lab course. Using a video elicitation interview, the participant reviewed a video clip of

herself and a partner working on a kinetic energy operator computational activity. During the interview, she

reflected on her understanding of discretization and identified two challenges associated with it: recognizing

functions as column vectors and interpreting ∆x. These challenges were productive for students in considering

the nuances of discretization.
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I. INTRODUCTION

The traditional position-first approach to teaching quantum

mechanics uses the Schrödinger equation early on to intro-

duce the position basis and the energy basis for the infinite

square well (ISW), also known as the particle in a box. In

the spins-first approach, the postulates of quantum mechan-

ics are introduced in the context of sequential Stern-Gerlach

experiments of spin-1/2 particles, which have a finite, discrete

basis. The spins-first approach to teaching quantum mechan-

ics has been shown to improve aspects of students’ learning

compared to the traditional position-first approach [1].

While there is good motivation for using the spins-first

approach, instructors at Oregon State University have no-

ticed students’ difficulty in transitioning from discrete sys-

tems (like spin-1/2 particles) to continuous ones (like the

ISW). Computation can be a powerful tool for facilitating this

transition, as oftentimes continuous objects (like wave func-

tions) and operations (like integration) must be discretized to

be implemented into code. We developed a set of computa-

tional activities that introduced some of the ways continuous

objects and operations can be approximated discretely. We

believe that ideas of discretization can build a foundation for

students and help them identify the connections between dis-

crete and continuous systems. To explore this, we ask the

following:

Research Question: What are the conceptual

challenges of discretization that students engage

with?

We answer this question by presenting an instrumental case

study of a student, Mary (a pseudonym), who experienced a

discretization-focused computational activity as both a stu-

dent and an undergraduate teaching assistant (TA). Our quali-

tative analysis highlights some of the challenges of discretiza-

tion students encounter and the productive elements of those

challenges. This case study will inform the ways that instruc-

tors can support students’ productive ideas of discretization,

which may have implications for students’ building connec-

tions between discrete and continuous quantum systems.

A. Instructional Context

Upper-division physics students at Oregon State University

take an intensive five-week long, seven-contact-hour quan-

tum mechanics course called Paradigms in Physics: Quantum

Fundamentals. This course uses a spins-first approach to in-

troducing quantum mechanics and the course ends with the

ISW. In the Winter 2021 term, students concurrently took a

computational physics lab course where they used numerical

methods to solve quantum mechanics problems. Due to the

ongoing COVID-19 pandemic during the Winter 2021 term,

both of these courses were taught over Zoom.

B. Broader Research Context

In the Winter 2021 term, Mary was longitudinally observed

by one of the authors in the computational lab course. One

year later in the Winter 2022 term, Mary became a TA for the

computational lab course. The rapport developed between

Mary and the observing author perhaps helped her feel more

comfortable sharing her thoughts during the interview. Addi-

tionally, the rapport was helpful during the analysis process

because the authors had the additional context of Mary’s ex-

periences as a student.

II. METHODS

A. Video Elicitation Interview

In the Winter 2022 term, we conducted an in-person, one-

hour-long, semi-structured interview with Mary. The inter-

view employed video elicitation [2], also known as stimulated

recall [3–5] where a participant views a video of themselves

during an event. This method typically results in participants

recalling their understandings and feelings and reflecting on

their thoughts and actions during an event [2].

During the interview, Mary watched a 10-minute video

clip of herself as a student working with a partner, Dave (a

pseudonym), on a computational activity (described later in

this section). Following the interview protocol, the video was

paused at particular time stamps, and Mary was asked to re-

flect on the portion of the clip she saw, compare her under-

standing as a student and as a TA, and describe how she would

assist students who had questions about the activity.

This interview differs from other video elicitation inter-

views in that the events of the video clip and the interview

take place a year apart. Lyle suggests video elicitation inter-

views happen soon after the recorded event so that the study

participant can better recall their thoughts and experiences

[3]. At a few points during the interview, Mary mentioned

not remembering what she thought in the moment as a stu-

dent in the video clip. Because of this, the perspectives she

gave during the interview were likely more informed by her

experience as a teaching assistant rather than as a student.

Data captured during the interview included video and au-

dio recordings of Mary, video of a nearby whiteboard that

Mary wrote on during the interview, and a screen recording

of the video clip. The interview was transcribed and reviewed

to identify salient experiences, understandings, and perspec-

tives that Mary shared related to our research question.

1. Activity Description

The computational lab course consisted of four activities

in the quantum mechanics context developed by the instruc-

tor and one of the authors. Each activity of the computational

lab course was related to the ISW. The third activity of the
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computational lab course, taking place before students were

introduced to wave functions in the Quantum Fundamentals

course, focused on finding the eigenvalues and eigenvectors

of the finite-difference approximation of the kinetic energy

operator [6]. The goal of the activity was to demonstrate how

a differential operator can be implemented computationally

using a finite difference approximation and how wave func-

tions can be discretized.

Students were tasked with first coding a matrix to repre-

sent the finite difference approximation of the kinetic energy

operator T̂ . Students were given the equation below to show

how the approximated operator acts on a wave function. The

equation below shows the finite difference approximation of

the kinetic energy operator T̂ matrix acting on a wave func-

tion, represented by a collection of coefficients ψ(n∆x) in a

column vector.
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Students were then asked to calculate the eigenvalues and

eigenvectors of the T̂ matrix and to observe what happens

when the size of ∆x is decreased. Because the ISW has a

defined length, decreasing the step size ∆x will increase the

number of steps required to iterate over the entire box, result-

ing in a T̂ matrix and a wave function column vector with

more entries.

2. Video Clip Description

The video clip Mary watched during the interview opened

with the observer asking Mary and Dave how the length of

the ISW, the size of ∆x, and the number of entries in the

wave function column vector correspond to each other. The

pair then looked at their wave function column vector com-

posed of ψ(∆x), ψ(2∆x), ψ(3∆x), and so on. They noticed

that the number of entries in that vector did not change as

they varied the step size ∆x or the length of the square well.

Mary was confused as to why that should be the case and

Dave attempted to explain why through verbal descriptions

and drawings.

B. Analysis

We used an instrumental case study to analyze Mary’s in-

terview responses. In instrumental case studies, a particular

case is used to provide insight into a larger issue [7]. The case

we present is that of a student, Mary, who has done a com-

putational activity focused on discretization as both a student

and a TA. We present two conceptual challenges that students

face when introduced to discretization identified by Mary dur-

ing the video elicitation interview. This case will give further

insight into the challenges students face in transitioning from

working with discrete quantum systems like spin-1/2 particles

to working with continuous quantum systems like the ISW.

Mary may be considered an extreme case [8] or an unusual

case. She was part of a larger research project on the compu-

tational lab course and happened to later become a TA for that

same course. She saw the course material multiple times with

new coding and physics expertise being developed between

taking the course as a student and being a TA for the course.

This gave her more experience with the kinetic energy opera-

tor activity and a perspective that most students in the course

would not have. Consequently, Mary was particularly valu-

able to interview because she gave the authors insights into

the challenges of discretization that most students would not

be able to articulate.

III. RESULTS: CHALLENGES OF DISCRETIZATION

The purpose of this case study is to highlight some spe-

cific struggles students face when engaging with discretiza-

tion in a quantum mechanics computational activity. During

the interview, Mary identified two challenges of discretiza-

tion. The first was centered around the difficulty of recogniz-

ing that functions can be represented as a column vector with

a finite number of elements. The second was centered around

students’ interpretation of ∆x. She identified both these chal-

lenges to be productive for her understanding of wave func-

tions and discretization.

In the following presentation of the challenges, all of the

quotes are from Mary during the Winter 2022 (W22) inter-

view rather than from the Winter 2021 (W21) observational

video clip of her as a student.

A. Functions as Discrete Column Vectors

Of the four computational quantum mechanics activities,

the kinetic energy operator activity was the first that required

students to recognize wave functions can be represented as a

column vector. Mary identified this as a challenge of dis-

cretization. During the interview, Mary stated that “...it’s

hard to think about what it even means to have the wave

function in a matrix form and like have an operator in ma-

trix form.” Later in the interview, she described how the code

she and Dave wrote approximates a wave function.

Mary: “Yeah, so we’re approximating a con-

tinuous psi, which is an eigenfunction. We’re ap-

proximating it with a discrete representation and

rather than having some infinitely long set from

like — er, yeah, infinite breaking up from 0 to L,

because it is a particle in a box, it’s not from neg-

ative infinity to infinity. But like we’re breaking it
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up into — we’re only taking certain points along

the line.”

She described that typically the wave function has a defined

value at each position along the length of the ISW, resulting

in an uncountable infinite collection of coefficients. In the

discretized case, however, she stated that the wave function is

being approximated by sub-sampling the infinite set of coef-

ficients. This allows the wave function to be represented by

a finite set of coefficients. In the W21 observation video, she

reached the same conclusion, but she more clearly articulated

the approximation aspect of this during the W22 interview.

Part of the activity required plotting the eigenfunctions of

the kinetic energy operator. Mary had identified this task as

“unintuitive” in the following description.

Mary: If you fed in np.arange from 0 to L and

just any number of x, you wouldn’t have enough

values for your eigenfunction to plot versus, so

it would run an error on the code. That is very

unintuitive for someone who’s like ‘Well, I should

just be able to plot a function, and if you just give

it any x value it should be able to spit something

out.’ There’s just a lot of elements to it that are

confusing I think.

Because the wave function and kinetic energy operator had

been discretized in the code, the calculated eigenfunctions

had to be plotted against “certain points along the line”. She

described this as being unintuitive because typically wave

functions have a value at every point along the length of the

ISW, but the discretized wave function does not. In both the

W21 observational video and the W22 interview, she found

the challenge of understanding a wave function as a column

vector productive to her understanding of discretizing a wave

function. In particular, she noted her experience as a TA for

the course helped her recognize that the size of ∆x corre-

sponded to how well the wave function was being approxi-

mated. She did not remember learning this in W21.

B. Interpreting ∆x

In the W21 observational video, Mary was confused about

why the number of elements in the discretized wave function

changed with the value of ∆x. Her partner, Dave, then drew

a representation of the system on their shared virtual white-

board, shown in Fig. 1. During the W22 interview, Mary was

asked about her thoughts on Dave’s drawing. She drew a plot

on the whiteboard as shown in Fig. 2 and said:

Mary: “I think just seeing ∆x on a page is nice,

because then you’re like, ‘Okay, what was ∆x
supposed to be?’. Um, except for that what I’m

learning now is that ∆x isn’t actually like on a

bar graph where you have between two points

[sic]. It’s literally just a point on the graph.”

FIG. 1. Dave drew a graphical representation of the particle in a

box and labeled ∆x as the spacing between points x1 and x2 for the

length of the box.

FIG. 2. During the interview, Mary drew a graphical representation

of a wave function and discretized wave function. She used color to

show how the element of the column vector corresponded to a point

on the graph of the wave function.

In this quote, Mary reflected that Dave’s drawing was help-

ful because it labeled what ∆x was in relation to the length

of the ISW. She then identified two interpretations of ∆x that

could impact one’s understanding of the discrete wave func-

tion. The first was an understanding of ∆x as the space “be-

tween two points”, as reflected in Fig. 1. She compared this

to a bar graph, where the bars occupy a space between two

points. The second interpretation she offered, as drawn in Fig.

2, was that ∆x, 2∆x, etc. were single points with uniform

spacing along the length of the ISW. In the W22 interview,

Mary shared that as a TA she saw some students in the com-

putational lab course use the “space between points” (SBP)

interpretation and others use the “single point” interpretation.

Mary noted that she had the SBP interpretation of ∆x in the

W21 observational video, but after an additional year of ex-

perience she developed the “single point” interpretation.

The SBP interpretation of ∆x had implications on how

Mary and Dave thought about other parts of the activity.

Specifically, it affected how they understood ψ(∆x) and how

they graphically represented the ISW. Even with these impli-

cations, Mary reflected that the SBP interpretation was pro-
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ductive for her in the W21 observational video because it

helped her visualize the problem and connect the size of ∆x
to the number of elements in the discretized wave function.

The SBP interpretation of ∆x introduced challenges to un-

derstanding ψ(∆x) as a value of a function. During the inter-

view, Mary said the following:

Mary: “[The instructor] just showed this in

class where you have ψ(∆x), ψ(2∆x), ψ(3∆x)
and so on. And that would map to a discrete

point on the curve [underlines ψ(∆x) in purple

and marks ∆x on the plot in Fig. 2]. Like this

is ∆x and then this’d be some 2∆x [underlines

ψ(2∆x) in orange and then marks 2∆x on the

plot in Fig. 2]. So then, I guess, I didn’t un-

derstand...why a discretized representation even

worked. Like it isn’t a one-to-one, it’s just an ap-

proximation of the curve. I don’t think I had any

understanding of that.”

She reflected that in W21 as a student with the SBP inter-

pretation, she did not fully understand how to coordinate the

discretized wave function with a plot of the wave function vs.

position. With the understanding that ∆x is a space between

points, it was not clear to her in W21 how to evaluate ψ(∆x).
After experiencing the activity for a second time, in the W22

interview, Mary noted that the “single point” interpretation of

∆x helped her understand that ψ(∆x) is the wave function

evaluated at a point.

Mary did, however, reflect that the SBP interpretation was

productive for her and her partner. As shown in Fig. 1,

Dave’s drawing of the ISW labeled ∆x as the space between

points. In the W21 observational video, the drawing helped

Mary understand “breaking up L into ∆x” and how chang-

ing ∆x would change the number of entries in the discrete

wave function. Mary was asked to reflect on the drawing dur-

ing the W22 interview. She explained that even though the

drawing was not completely physically accurate, it did help

her in W21 to understand the connection between ∆x and the

discrete wave function. Additionally, she noted the charac-

teristics of the drawing that might be inaccurate or confusing

for students, such as the x- and y-axes and the box not being

aligned with the origin.

IV. DISCUSSION AND CONCLUSION

We have presented two challenges of discretizing wave

functions in a quantum mechanics computational activity as

highlighted by a participant who has experienced the compu-

tational activity as a student and as a TA. The kinetic energy

operator computational activity was productive and valuable

in light of these challenges, as it encouraged students to en-

gage with some of the nuanced ideas of discretization.

The first challenge we identified was in representing func-

tions as discrete column vectors. A wave function, an un-

countably infinite collection of points, can be approximated

with a finite set of points. Recognizing that wave functions

are, by definition, a collection of points may be one of the

reasons that the idea of discretization was challenging. Ac-

cording to an analysis of the structural features of quantum

notations [9], wave function notation exhibits a low degree

of individuation while matrix notation exhibits a high degree

of individuation. Individuation refers to how well the impor-

tant features of an object are represented as elemental pieces

of a whole in a given notation. The uncountably infinite set

of points comprising the wave function is obfuscated, which

makes it more difficult to see how a function could possibly

be represented by a column vector.

The second challenge was interpreting ∆x. Some students

interpret it to be the space or gap between points rather than

a point. This led to some difficulty in understanding ψ(∆x)
as a value function and manifested in the graphical represen-

tation of the ISW. Mary mentioned that the course instructor

drew a plot similar to the one in Fig. 2 that highlighted the

connection between the ∆x in the column vector and in the

plot of a wave function. She said that this was helpful for

orienting students to the activity, but it did not completely

eliminate some students from understanding ∆x as the space

between two points. The “single point” interpretation of ∆x
was particularly productive for Mary as a TA because it al-

lowed her to coordinate the discretized wave function with a

graphical representation of the ISW.

We believe this study has further implications for high-

lighting the ways that continuous quantum systems like the

ISW relate to discrete quantum systems such as spin-1/2 par-

ticles. Activities centered around turning a continuous object

into a discrete object may illuminate the ways that common

calculations like inner products, probabilities, and time evo-

lution are isomorphic for discrete and continuous quantum

systems. For example, writing Python code that calculates

the inner product of two wave functions would require writ-

ing an integral as a sum, resembling an inner product for a

spin-1/2 system.

We offer some implications for instructors, as informed by

our study. Terms like ∆x may carry connotations from previ-

ous courses which can affect students’ interpretations of them

in a new context like a computational course. Additionally,

providing multiple representations of wave functions (graphs,

code, function representations, matrix representations, etc.)

encourages students to consider the role of ∆x in discretiza-

tion. The study also provides evidence that students may

benefit from additional instruction on the similarities of func-

tions and vectors to facilitate students’ understanding of how

a wave function can be represented as a column vector.
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