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We present an excerpt from an in-class group activity where students generate equipotential curves for

a quadrupole using: a whiteboard, a Mathematica notebook, and a 3D plastic graph. Applying Shaaron

Ainsworth’s framework for the functions of multiple external representations, we analyze how the students

used the three representations in concert. We found that the students used different processes for generating

each representation. The highly complementary nature of the representations facilitated the group’s direct com-

parisons between representations, helping them to construct deeper understanding about the system and the

representations. This case study also exemplifies a limitation of the Functions framework for multiple represen-

tations, namely that it does not consider the role of generating representations. We echo the calls to account for

student generation in future analyses of the use of multiple representations, when relevant.
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I. INTRODUCTION & METHODS

Physicists use a variety of representations for solving prob-

lems and communicating concepts. These representations are

sometimes used separately, but are often used in concert, as

a set of multiple external representations (MERs). Much re-

search has already studied the uses of various representations

in physics; a subset of which investigates environments with

MERs. (See, e.g., Refs [1–3].) The research presented here

contributes to the existing body of literature about the use of

MERs by applying Ainsworth’s Functions framework [4, 5]

to a specific context: a single group of students working

through an activity involving MERs (shown in Fig. 1). Al-

though Ainsworth’s framework is widely cited, more pa-

pers demonstrating its use, particularly within physics and in

classroom environments, are needed. This paper is intended

to fill that gap.

The case study presented here is interpretive [6], because

it will both illustrate the use of the representations through

the Functions framework for MERs, and challenge some of

the assumptions of the framework. For example, we will

discuss how the students had to generate certain aspects of

each representation, which is not addressed by the Functions

framework. Ainsworth et al. [7] have recognized the need

for more focus on multi-representational construction when

thinking about how students learn with representations. In the

work presented here, we found agreement with Ainsworth,

Prain, Tytler, and others that future research should consider

how students generate multiple representations. We believe

this particular case is also interesting because the represen-

tations used have significant overlap in information and in-

clude a novel representation (the plastic graph). Our research

question is: What facets of this group’s use of the MERs are

captured by the Functions framework?

The instructional context of our research is an in-class ac-

tivity that took place on the second day of an upper-division

course on electrostatics in the Paradigms in Physics sequence,

a set of reformed junior-level courses at Oregon State Univer-

sity [8]. For this activity, students were assigned to work in

groups of three. Each group was prompted to draw on a table-

top whiteboard the equipotential curves due to four identical

positive point charges at the corners of a square. After work-

ing together for some time to complete this part of the activity,

the groups were directed to look at a pre-programmed Mathe-

matica notebook displaying many different graphs of the elec-

tric potential for the system. Then, after some whole-class

wrap-up discussion, the groups were given a second prompt:

to sketch the equipotential curves for a new system consisting

of a quadrupole square. During this time the groups contin-

ued to have access to the whiteboard and the Mathematica

notebook and were invited to use a dry-eraseable 3D plastic

graph, in which the height corresponds to the value of the

electric potential in the plane of the quadrupole.

As part of a larger study of this activity, we examined video

data of one three-student group (with pseudonyms Olive, For-

est, and Sage, see Fig. 2). The larger study focuses on the

FIG. 1. The students produced equipotential curves on a tabletop

whiteboard, a Mathematica notebook, and a dry-eraseable plastic

graph.

relationship between each representation and the students’

science practices. In the process of analyzing that data, we

identified moments where students were using the represen-

tations together. The focus of this paper is on some of those

moments, which took place primarily in the second part of

the activity. Author JA selected a portion of the transcript

to specifically code for possible instances of each Function,

and then discussed together with the other authors what those

lines of code demonstrated. Author JA originally transcribed

the video and has also periodically reviewed the video and

transcript to ensure accurate summaries throughout.

II. THEORETICAL PERSPECTIVE

We use Ainsworth’s framework as the lens for studying the

relationship between representations. This framework specif-

ically addresses the use of multiple representations in terms

of three different functions: complement, constrain, and con-

struct.

Complement: MERs can complement each other by sup-

porting different thinking processes or by containing differ-

ent/partially redundant information about the same system.

Processes contain strategies and tasks; a particular represen-

tation might be chosen to accomplish some task, or because

it permits a particular problem-solving strategy.

Constrain: One (or more) representation(s) may also con-

strain the interpretation of some other representation(s), ei-

ther by leveraging a user’s greater familiarity with a repre-

sentation or due to the inherent properties of the representa-

tion(s). For example, some representations may be ambigu-
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ous or unfamiliar to users and a more familiar representation

can help with interpretation of the less familiar representa-

tion. Regarding inherent properties, we can consider the com-

mon practice of presenting a problem statement with both a

diagram and a written description. The diagram constrains

the written description to clarify a physical situation through

the inherent properties of the diagram.

Construct: The third function of MERs is to help stu-

dents construct deeper understanding via abstraction, exten-

sion, and relation. For this analysis, abstraction is how stu-

dents use MERs to understand the essential elements of a con-

cept itself, while extension and relation are the use of MERs

to understand more about the representations themselves.

III. OVERVIEW AND DESCRIPTION OF THE ACTIVITY

In the first part of the activity, this group investigated

the equipotential curves due to a collection of four positive

charges on the corners of a square. The students drew curves

on the whiteboard, considering the behavior close to single

point charge as well as the spacing of the curves and behavior

far away from the collection.

After some time working on this prompt, there was a

whole-class wrap-up discussion where all the groups were di-

rected to look at the pre-programmed Mathematica notebook

and directly compare this with the whiteboard image. This

notebook was available for the remainder of the activity.

The lead instructor then announced:

“Now I want you to make a quadrupole. So, the

quadrupole is going to be two positive charges

on opposite corners and two negative charges on

opposite corners. Two positive charges and two

negative charges. And I want you to draw the

cross-sections of the equipotential surfaces for

this plane.”

The group began drawing curves on the whiteboard and al-

most immediately modified the Mathematica notebook to rep-

resent the quadrupole. They then compared their whiteboard

image and the Mathematica image. A few minutes later,

the instructor announced that the plastic graphs were dry-

erasable, and one of the students suggested that they should

request a plastic graph and draw level curves on it. The group

then drew level curves on the plastic graph and compared with

their whiteboard image and the Mathematica image.

IV. RESULTS

We now describe the complement and construct functions

of these three representations, and provide specific evidence

for these two functions. Our data contains limited evidence

of how any one representation constrains any other represen-

tation in this system, and we discuss this in Sec. VI.

A. Complementary Processes and Information

When this group studied the quadrupole, producing the

three different representations of the equipotential curves

each recruited different processes for reasoning about the

shape. For the whiteboard image, the students first con-

structed some curves using their models for point charge elec-

tric potential. The students went through several brief rea-

soning steps for producing the equipotential curves; for ex-

ample, they examined what happens very close to one of the

point charges. They soon identified that, with the Mathemat-

ica notebook, they could change the signs of the charges to

represent the new system:

Olive: “So then, we just need to change one of

the negatives and one of the positives. So why

don’t I just make this positive and make the other

one negative [pause] right [pause] here.”

Mathematica allows precise scalar superposition at all

points, which is not feasible with the whiteboard but is done

for the students in Mathematica. After configuring the Math-

ematica notebook to represent the quadrupole, the students

compared with and corrected their whiteboard image. They

also used the Mathematica image to help them draw the rest

of the curves on their whiteboard.

The students’ processes for generating curves on the white-

board changed when the Mathematica notebook became

available. Instead of using their physical reasoning to produce

the curves on the whiteboard, the students simply referred to

the Mathematica notebook. (Consider, for example, the first

quote from Olive in Sec. IV B.) Forest recognized this at the

very end of the activity, when he reflected:

Forest: “I also appreciate that we can success-

fully use technology to not have to think about

stuff. I like that. [Olive and Sage nod]”

These students thus acknowledged the shift in process that

occurred during this portion of the activity.

The plastic graph introduced another new process: draw-

ing level curves and viewing the projection. This different

approach influenced the students to request a plastic graph.

When the instructor interrupted the class to announce that

the plastic graphs are dry-eraseable, Forest suggested to the

group that they use one.

Forest: ‘‘Oh, shoot. Let’s do that.”

Olive: “What?’’

Forest: ‘‘When we get the [plastic graph], let’s

draw some rings on them.”

Olive: “Oh! Cool.”

Forest: “We can look at the projection.”

The students then asked for a plastic graph and went

through the steps of drawing level curves on it and comparing

it to the whiteboard.
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FIG. 2. Olive, Forest, and Sage (left to right) drawing equipotential

surfaces. Olive points out the difference between the whiteboard

image and the Mathematica image.

There is a great deal of overlap in the information each

representation contains. The similarity between the con-

tours on Mathematica and the whiteboard image facilitated

direct comparisons by the students. Initially, the plastic graph

represents potential using height, but once the level curves

were drawn, the representations are scaled in such a way that

the students could directly compare by overlaying the plas-

tic graph on the whiteboard. This overlapping information

is connected to the other function we observed, constructing

deeper understanding, which we discuss next.

B. Construct Deeper Understanding

Here we describe examples of the students using the repre-

sentations for relation and abstraction. Extension is about

using a familiar representation to learn something about an

unfamiliar representation, but we did not see particular ev-

idence for extension is our data set. No one representa-

tion was more useful for understanding the others—once the

group had all three representations, they related them bi-

directionally for each pair.

At several instances, the students compared the same

feature of each representation to determine the similari-

ties/differences. Once the group modified the Mathematica

notebook to represent a quadrupole, Sage exclaimed,

Sage: “Yeah, I was right! [Points to computer

screen.] On the asymptotes it’s zero because

along those lines, there’s equal push/pull.”

Which Olive followed up with,

Olive: “Right. And then, yeah, so it is actually

spaced farther out that way and closer this way

[Pointing to the computer screen. See Fig. 2]. So

it’s the opposite of what you [Forest] drew.”

We see in this interaction that the students immediately re-

lated what was on the computer screen with their whiteboard

image and were particularly attentive to the lines of zero po-

tential. They also discussed what the spacing of the equipo-

tential curves looked like. This relation between the Math-

ematica notebook and the whiteboard continued through the

rest of the activity.

When the group decided to get a plastic graph, they asked

a learning assistant:

Forest: “Can we snag one? We’re trying to de-

cide whether or not we think it’ll be fatter this

way [toward the center of the collection] or fat-

ter on the back end [on the outside of the collec-

tion].”

We see in this quote a plan to relate the plastic graph with

the other representations, and to continue investigating the

spacing of the curves.

The learning assistant gave a plastic graph to Forest and,

once the group finished drawing some level curves together,

Forest pointed out that there are straight line equipotentials on

the plastic graph and commented on the spacing of the other

curves,

Forest: “I mean you can definitely see though

that there’s a line across this way [Draws

straight line on plastic graph.], and you can see

it, how they printed it, there’s a line across that

way. [Draws perpendicular straight line on plas-

tic graph.]

Olive: “Uh-huh.”

Forest: “So that’s clear. And those get fatter out

that way. [Draws curve on plastic graph around

negative pole. Curves from this interaction can

be seen in Fig. 3]

This interaction demonstrates the group’s efforts toward ab-

straction with regard to the lines of zero potential and the

spacing of the oval-shaped curves. Moments after this, Forest

sought to investigate outside the domain of the plastic graph,

Forest: “I’m just trying. . . I like our picture. I

want to know what these do farther out. . . Is there

a way?. . . Let’s do this. [Pulls up the laptop.

Fig. 3]

The group then worked together to expand the range of the

Mathematica notebook to view a more zoomed-out image.

By comparing Mathematica and their whiteboard image, the

group constructed deeper understanding about both spacing

and the lines of zero potential. Not only did the students relate

representations, but they also used this relating to reveal the

essential aspects of the equipotential curves.

V. DISCUSSION & CONCLUSIONS

Our research question is: What facets of this group’s use

of the MERs are captured by the Functions framework? We
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FIG. 3. The students drew level curves on the plastic graph, then

overlayed it directly above the whiteboard image. We also see here

that the students turned to the Mathematica notebook for investigat-

ing the curves outside the domain of the plastic graph.

identified complementary processes and information. The

processes that the students used were different depending on

the representation they chose. Producing the curves on the

whiteboard resulted in the students making some qualitative

arguments about the shape of the curves. Using the Mathe-

matica notebook allowed the students to modify an equation

and apply superposition. The plastic graph let the students

draw level curves and see a projection of those curves. These

latter two representations helped the students make decisions

about how to generate the whiteboard image. The informa-

tion that each representation contains is very similar once

produced (they are all images of level curves) and this re-

sulted in a significant amount of direct comparison between

representations. While Ainsworth considers different or par-

tially redundant information to be complementary, we have

seen that the students found value in the highly redundant in-

formation contained by these representations.

The students used these MERs to construct deeper un-

derstanding. The availability of MERs provided opportu-

nities for connecting between representations, letting the

students explore the system to grasp underlying patterns

(abstraction). The Mathematica notebook and the plastic

graph were each used to explore something that was observed

on the other representation. The students chose to draw the

equipotential curves on the plastic graph and placed it on top

of the whiteboard, despite having already viewed these curves

on the Mathematica notebook. Conversely, the students ex-

plored Mathematica when it was necessary to expand the do-

main, since the other representations have limited domains.

Although the plastic graph was likely a new representation

for these students (they had not seen it in class before and

these are custom graphs), they did not use the whiteboard and

Mathematica notebook to extend understanding for the plas-

tic graph. Rather, they related all three representations. This

indicates to us that the (novel) plastic graph did not signif-

icantly increase the amount of interpretation these students

had to exercise.

Using the Functions framework, we have identified a dis-

tinction in the students’ processes due to complementing rep-

resentations. Once the students had access to Mathematica

for producing curves, they could use the software to gener-

ate the curves by choosing the appropriate signs of charges.

With the plastic graph, the students could draw level curves

and look at a projection. Our analysis also found that these

students sought out the plastic graph precisely because of its

potential for representing the level curves with high similar-

ity to the whiteboard image. This implies that even repre-

sentations with high degrees of similar information can result

in constructing deeper understanding of a physical system,

and students may even benefit from the highly similar nature.

The implication for practitioners is that concerns about cog-

nitive load from interpreting multiple representations may be

minimal. Providing representations that support multiple pro-

cesses engaged these students in forming deeper understand-

ing of the physical system.

The representations are extremely similar—they are all 2-D

curves—but each one is produced in a different medium us-

ing different reasoning and strategies. These considerations

around generation are an interesting aspect of the comple-

mentary processes the students engage in, but it is difficult

to describe with the Functions framework, because there is a

tacit assumption that the representations have already been

produced. Considering the affordances of representational

construction [9, 10] appears to be a necessary part of under-

standing learning environments where students generate mul-

tiple representations.

VI. LIMITATIONS & FUTURE WORK

This study of in-class video has given us in situ informa-

tion about the functions of these representations. Due to the

in-class group setting, we did not gain much insight into each

student’s familiarity with the representations, and this limited

our evidence about the constraining function of the MERs.

The high degree of similarity between representations also

meant that constraint by inherent properties was not appar-

ent in the students’ use of these representations. So we can-

not make claims about the constraint function. A particularly

valuable extension would be to conduct individual interviews

to see more of how individual differences and inherent prop-

erties play a role in the constraining function of these repre-

sentations.
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