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Abstract—Automatic oracle synthesis (AOS) provides a promis-
ing route to speed up the process of constructing a complex quan-
tum oracle. Here, we expand the existing AOS in the Microsoft
Quantum Development Kit (QDK) by adding new functionalities
and introducing a new workflow. We also optimize the AOS
process by reducing the number of T gates using measurement-
based uncomputation. Furthermore, we compare the resource
requirements of the oracles generated using AOS to those of the
existing QDK library oracles using the Azure Quantum Resource
Estimator. The results suggest that the oracles generated using
AOS perform better in runtime but use more qubits compared
to the corresponding QDK library oracle. With the presented
workflow, one can easily implement and estimate the quantum
resources required for oracles with complex arithmetic functions.
Finally, we present a strategy that can further reduce the number
of physical qubits needed in AOS.

I. INTRODUCTIONS

Quantum oracles are often elusive and needed to be hand-
crafted in different quantum algorithms [1], [2]. Automatic
oracle synthesis (AOS) using Q# [3] is a promising route to
implement arbitrary quantum oracles. In addition, Q# can be
compiled into LLVM [4] quantum intermediate representation
(QIR) [5], which allows AOS to be performed using logic net-
works such as XOR-AND-Inverter graphs (XAGs) [6]. Here,
we expand the existing AOS from the Microsoft Quantum
Development Kit (QDK) [7], [8], [9] with new arithmetic
operators and 64-bit integer input type. With the help of our
expansion on AOS, one can write a quantum program as
follows:

onamespace OracleGenerator. Classical {
internal function AddMultiply (x: Int, y:
Int): Int {
return (x + y#*z);
}
}
snamespace Operation {
operation AddMultiply (
inputs: (Qubit[], Qubit[],
output: Qubit[]
): Unit {}

@EntryPoint ()

operation Program(): Unit {
use (x, y, z) = (Qubit[],
use v = Qubit[];
AddMultiply ((x, vy,

}

Int, z:

Qubit[]) ,

Qubit[], Qubit[]);

z), V),

}
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Fig. 1. Compilation flow for automatic oracle synthesis.

The program contains an oracle blueprint AddMultiply in the
Classical namespace. The operation AddMultiply is empty and
will be generated using AOS. We also compare the resources
required for the oracles generated using AOS with similar
existing Q# library functions. In addition, a measurement-
based uncomputation [10] was incorporated to optimize the
AOS process and reduce the quantum resources.

II. WORKFLOW AND CASE STUDY

The workflow of AOS [3], as shown in Fig. 1, can be
described in the following. First, a desired blueprint is first
defined in Q# and an empty holder is also declared to hold the
forthcoming AOS codes. The Q# file is compiled into a QIR
file (11) and read by the AOS program, which generates and
optimizes XAGs networks [11]. Finally, a reversible quantum
logic circuit is generated using universal quantum gates (NOT,
CNOT, and Toffoli gates) in the QIR file. The QIR file can
be simulated using QIR-runner and loaded by Azure Quantum
Resource Estimator [12] for quantum resource estimation. Our
work’s main contributions can be identified through the blue
arrows, as depicted in Fig. 1.

Now, we apply the same workflow for Grover’s algorithm
to search for a missing ISBN digit of a book. This case study
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Fig. 2. Resources required for library functions in Q# compared with
their respective AOS functions.

is referenced from [13]. Here, the oracle uses the (z + a - y)

mod N operation to determine which digit (0 to 9) satisfies

the ISBN rule, where a and N are constant inputs, and x and

y are qubit registers. We can simply define the oracle blueprint

as

onamespace OracleGenerator. Classical {
internal function addmod(x: Int, y:

let (a, N) (6, 11);
return ((x + ((axy)%N))%N);

Int): Int {

III. AOS RESOURCE ESTIMATION

We compare the resource needed for the oracles generated
using AOS with similar Q# library oracles. The library oracles
used here are Addl, Multiplyl, and MultiplyAndAddByModularInteger,
which corresponds to AOS implementations x+y, xxy, and (x+a
xy) mod N, respectively. x and y represent qubit registers inputs
while a and N are constants, which do not count as inputs. The
only difference between the two is that the library oracles use
in-place computation. The resource estimation result is shown
in Fig. 2. We estimate the resources on six different qubit
parameters [12] which have the operational characteristic that
may correspond to future ion-based qubits, superconducting
qubits, and Majorana qubits. As shown in Fig. 2, the library
oracles require fewer qubits, but a longer runtime than oracles
generated using AOS, which can be explained by the in-
place computation differences. A reduction in the runtime can
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be seen between the optimized (green) and original (orange)
AOS from the measurement-based uncomputation. Finally, the
resources required to run Grover’s algorithm in both oracles
show similar results as before. Note that we used the ns_e3
qubit parameter here.

Algorithm Physical Qubits | Total Runtime
AOS oracle 621,740 4ms 752us
Library oracle 572,850 77ms 646us

IV. CONCLUSIONS AND OUTLOOK

The AOS workflow empowers developers to implement
complex arithmetic functions without requiring in-depth
knowledge of the library functions that map such arithmetic
functions to qubit registers. The path forward is to include
the support of floating point and fixed point data types and
incorporate the in-place computation to reduce the number of
qubits required for the AOS. The source code used in this
project can be found here [14].
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