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ABSTRACT

The melting temperature is important for materials design because of its relationship with thermal stability, synthesis, and processing
conditions. Current empirical and computational melting point estimation techniques are limited in scope, computational feasibility, or
interpretability. We report the development of a machine learning methodology for predicting melting temperatures of binary ionic solid
materials. We evaluated different machine-learning models trained on a dataset of the melting points of 476 non-metallic crystalline binary
compounds using materials embeddings constructed from elemental properties and density-functional theory calculations as model inputs.
A direct supervised-learning approach yields a mean absolute error of around 180 K but suffers from low interpretability. We find that the
fidelity of predictions can further be improved by introducing an additional unsupervised-learning step that first classifies the materials before
the melting-point regression. Not only does this two-step model exhibit improved accuracy, but the approach also provides a level of inter-
pretability with insights into feature importance and different types of melting that depend on the specific atomic bonding inside a material.
Motivated by this finding, we used a symbolic learning approach to find interpretable physical models for the melting temperature, which
recovered the best-performing features from both prior models and provided additional interpretability.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0207033

I. INTRODUCTION Motivated by the challenges in the experimental measurement
of melting temperatures, various theoretical and computational
methods for estimating melting temperatures have been proposed.
We distinguish between four general techniques of attaining melt-
ing temperatures: (a) pure theoretical approaches based on theories

The compound melting temperature is an essential thermo-
dynamic quantity for many processes, for example, for develop-

ing electrolytes for the electrolytic recycling of metals from spent
15
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electronics' "' and for smelting processes to extract a base metal e

from its ore.''” The melting point can be measured directly or that apply to specific classes of materials,” = (b) direct molecu-
obtained from phase diagrams when available for the chemical ~ lar dynamics (MD) simulations of melting either based on first-
compositions in question, which is often not the case for non- principles calculations”® ™ or empirical interatomic potentials,”*
metallic inorganic materials with high melting temperatures. For a (c) thermodynamic models based on the CALPHAD (CALculation
large portion of inorganic chemical space, currently, no well-curated of PHAse Diagrams) method,””"’ and (d) machine learning (ML)
non-commercial public melting-temperature databases exist, to the models for the direct prediction of melting temperatures without
author’s knowledge. simulation.”' ™
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Theories describing melting have been mostly limited to metals
and metallic alloys. The first such theory, the Lindemann melt-
ing criterion, proposed by Frederick Lindemann in 1910,% relates
melting to the displacement of atoms from their equilibrium lat-
tice sites: as temperature rises, the average amplitude of thermal
vibrations in the lattice increases, and melting begins when the
vibrations become severe enough that atoms collide with surround-
ing atoms. Lindemann used a closed-form equation to connect
the melting point to either the Debye frequency or the Debye
temperature. This criterion has been demonstrated to apply to
single-component metal and metalloid systems,”’ but when the
system’s complexity increases, such as in the case of high-entropy
alloys, modifications to this melting rule are required.”’ ' The
Lindemann criterion does not generally apply to non-metallic
compounds.

Direct molecular dynamics (MD) melting simulations are chal-
lenging with first-principles methods, such as density-functional
theory (DFT),”>”’ because of the long timescales required at tem-
peratures close to the melting point. However, various accelerated
MD-based first-principles techniques have been proposed, such
as the large-size coexistence method’””*® and the fast-heating
method.”” DFT-based schemes have also been used to calculate the
Gibbs/Helmholtz free energy values of solid and liquid phases and
then solve for the melting temperature by equating these thermo-
dynamic quantities for separate phases.””” Despite such acceler-
ation techniques, first-principles approaches are computationally
demanding and limited to comparatively small simulation cells and
timescales, reducing the accuracy of melting-temperature predic-
tions. The computational cost of MD simulations is far lower with
interatomic potentials, but accurate potentials that can describe
both the crystal and the melt of an inorganic material are often
unavailable.®’

Thermodynamic models based on the CALPHAD approach
can yield highly accurate phase diagrams, including melting
transitions.”"* Unfortunately, few CALPHAD models of inorganic
materials have been published, so model availability is a limiting
factor.

The methodologies reviewed above are restricted to certain
compound classes and are constrained by method accuracies and
a lack of experimental data. These limitations motivated the devel-
opment of techniques that combine ML models with physics-based
models for melting-point prediction. Seko et al. demonstrated that
incorporating DFT features into element-based materials finger-
prints improves the predictive power of ML models for predicting
melting temperatures of binary and single-component solid mate-
rials.*! The authors found that support vector regression led to the
best melting-temperature prediction model. Guan and Viswanathan
developed an artificial neural network with Bayesian optimization
for hyperparameter tuning that could successfully learn the melting
temperatures of alloy systems using melting data from CALPHAD.*
Hong and co-workers demonstrated melting temperature prediction
for an extensive dataset of more than 9300 materials utilizing a graph
neural network for materials embedding from compositions and
a residual neural network for melting temperature prediction.”
The dataset used in their work mostly contained compounds with
melting temperatures below 2000 K (about 90% of the dataset).
As seen from the reviewed examples, the prior work on combin-
ing ML with first principles for melting temperature prediction was
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generally limited to certain types of materials and/or narrow ranges
of melting temperatures.

In the present study, we address the limitations of melting
temperature models through a combination of supervised and unsu-
pervised learning. Our focus lies on binary inorganic solids with
melting temperatures up to 4000 °C because of the tremendous
technological relevance”'” of this compound space. We particu-
larly focused on binary inorganic materials because of the lack of
experimental data and models. However, we made sure that our fea-
turization methods are transferable to more complex compositions
such that, given the availability of an extended dataset of more com-
plex materials, new ML models can be fitted without the need to
revise the materials embedding method. We considered additional
unsupervised learning tasks to study the physics behind melting,
motivated by the observation that melting is directly related to the
bonding types within a material, and different bond-related features
may affect melting differently (Lindemann criterion’”). To this end,
we employed unsupervised learning to partition our dataset into
separate groups based on bonding within materials. To learn more
about the underlying physics of melting and approach interpretabil-
ity, we used symbolic regression””"’ to learn a closed-form equation
for melting.

Il. METHODS
A. Model development

To develop a machine learning model to predict the melt-
ing temperatures of non-metallic, inorganic solids, we followed an
approach consisting of the following five steps: (1) data collection,
where we compiled a dataset of experimentally measured melt-
ing temperatures from various sources; (2) featurization, where
we explored a range of features and used domain knowledge to
select the most appropriate ones for representing the materials; (3)
model selection and training/construction, where we evaluated sev-
eral machine learning models on the featurized data to identify the
best-performing ones; (4) model evaluation, where we tested the per-
formance of the best model on an independent dataset to ensure
generalizability; and (5) result interpretation, where we constructed
symbolic regression models to understand the underlying relation-
ships better. Detailed descriptions of each step are provided in the
following Secs. II A 1-1T A 5.

1. Melting-temperature data

We compiled a dataset of 476 binary ionic compound melting
temperatures spanning a temperature range of 04000 °C. Figure S1
provides violin plots that show the distributions of these melting
points over the various partitions of our dataset. The experimen-
tal melting temperature data were primarily obtained from two
CRC handbooks.”*” Compounds in our dataset are exclusively of
the metal-nonmetal, metal-metalloid, and metalloid-nonmetal ele-
ment combinations, with metal-metal (alloys with predominantly
metallic bonding), metalloid-metalloid, and nonmetal-nonmetal
(with mostly covalent bonding) compound types excluded. We
imposed the constraint on compound types since we are primarily
interested in ionic compounds and minerals. Note that the records of
compounds with high melting points (>2000 °C) often report ranges
of temperatures rather than single points. In addition, melting tem-
perature data from different sources occasionally had conflicting
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values. In these cases, we include the average reported melting
temperature as one single point in our dataset for a given compound.

We partitioned our melting temperature dataset into train-
ing and test sets for ML model training. The first set was used to
build models, while the second was only used to evaluate them.
We included those materials in the test set whose elastic moduli
were not available in the Materials Project database’’”" and were
calculated by ourselves (see Sec. II C for details). This makes the
test set performance especially meaningful since the model will, in
practice, be primarily evaluated for compounds that have not pre-
viously been characterized, and thus, the elastic moduli values will
have to be manually calculated. This resulted in a 420/56 (88%/12%)
training/test split.

Figure S2 illustrates the elemental distributions within the
training and test sets. In terms of the statistical distribution of ele-
ment types, the test set is representative of the training set. It is
apparent from the melting temperature distributions that the test set
is biased to lower melting temperatures. We consider this accept-
able since the experimental values for high melting temperatures are
generally subject to significant uncertainties.

TABLE 1. Compound and elemental features, their symbols, and units.

Property of Feature Symbol Unit
Cohesive energy Econ eV/atom
Formation energy H eV/atom

Compound Bulk modulus K GPa
Shear modulus G GPa
Density P g/ cm’
Bond ionic character %IC e
Molar mass M g/mol
Atomic number Z e
Atomic radius R A

Element Molar volume Vi m?/mol
Pauling electronegativity EN
Periodic row number Nr
Periodic group number Ng e
Elemental melting temperature T K
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2. Feature construction and selection

We based our materials representation on a combination
of compound features, i.e., properties of a given compound, and
element-based features, i.e., features built from elemental proper-
ties using different statistical moments and averaging approaches,
as shown in Table I.

Except for the bond ionic character, the compound features
were obtained from DFT calculations extracted from the Materi-
als Project’” using the most stable entry for the given composition,
i.e., the entry with energy on or closest to the lower convex hull
of formation energies. We performed DFT calculations of the bulk
and shear moduli (see Sec. IT C for details) for those compounds
for which elastic moduli values were unavailable in the Materials
Project (or were only available as ML predictions)’® and included
these compounds in the independent test set. The bond ionic char-
acter %IC was originally suggested by Pauling’* as a measure of
the percentage of ionicity in the bonds between two atoms A and
B and is constructed from elemental electronegativities as % IC
= (1 — exp [7(EN";ENB)2 ]) -100% , where EN; is the electronegativity
of element i.

To obtain compound material features from elemental prop-
erties, we employed five statistical moments and averaging
approaches, either accounting for stoichiometry/composition or
only based on the combination of elements: the arithmetic aver-
age, standard deviation, harmonic average, quadratic average, and
geometric average (see Table II). These moment and averaging
methods were chosen to ensure that the features are symmetric with
respect to the permutation of atomic species. The features addition-
ally generalize without modifications to simpler unary systems and
more complex systems (ternary, quaternary solids, or higher-order
compositions).

Overall, we obtained 86 features (six compound features: five
DFT features from the Materials Project and the bond ionic charac-
ter, and 80 composed features from eight elemental features with five
statistical moment and averaging methods and both composition-
based and composition-agnostic weighting). This means our mate-
rials fingerprint encodes elemental properties, compositions, and
compound-specific physical properties. We note that the inclusion
of DFT-based features makes it possible to distinguish between

TABLE II. Statistical moments and averaging methods for elemental feature Z and compound AyBy.

Notations for composition-based
and composition-agnostic
features, respectively

Method

Equations for composition-based
features (for composition-agnostic
features, x =y = 1)

Arithmetic average

Standard deviation

Harmonic average

Quadratic average

Geometric average

(Z)aw and (Z)a
(Z)sw and (Z)s
(Z)hw and (Z)h
(Z)qw and (Z)q

(Z)gw and (Z)g

xZpa+yZy
x+y
[XZa—yZs|
X+y
x+y
X7

Zy 7B

fo\erle3
x+y

xty [ r7x 7Y

V ZAZB
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polymorphs, such as, for instance, rutile and anatase titanium
dioxide.

Applying these different averaging methods to our set of eight
elemental features led to the creation of expectedly correlated fea-
tures, as shown by a Pearson correlation coefficient analysis in Fig.
S3. We provided our model with all of these features to investigate
which averaging method would perform best. Furthermore, the best-
performing models were mostly ensemble tree-based, and based on
our experience, even minor non-collinearity in features can result in
better ensemble tree-based models.

3. Supervised-learning model selection
and evaluation

We considered different regression models: (a) a linear regres-
sion model for benchmark purposes, as implemented in the scikit-
learn Python package;”” (b) Gaussian process regression, kernel
ridge regression, and support vector regression models (scikit-learn);
(c) avanilla light gradient boosting machine (LGBM) and a standard
LGBM regressor, as implemented in lightGBM;’® and (d) a random
forest (RF) model, LGBM RF, as implemented in the xgboost’” and
lightGBM Python packages, respectively.

The performance of the models was measured by several error
metrics: the mean absolute error (MAE), the root-mean-square error
(RMSE), the mean absolute percentage error (MAPE), and the coef-
ficient of determination (R?). These metrics were computed for
the training set with fivefold (fivefold CV), leave-one-out cross-
validation (LOO-CV), and the test set. We constructed a hyperpa-
rameter grid for all the models, and hyperparameters were tuned
with grid’® and random search’ techniques with fivefold cross-
validation, as implemented in scikit-learn. Although there are too
many parameters to carry out an exhaustive grid search easily, each
parameter was manually adjusted, and the parameters that reduced
the (average) RMSE over the fivefold cross-validation process were
retained.

We tested several possibilities as the model output, including
direct melting temperatures (in both K and °C units), logarithmic
(to base 10) melting temperature (in K), and melting tempera-

ture from Vegard’s law as T vegard = Tm — Z,—ElememsxiT,(ﬁ), where

T, Vegard> Tm> T,(ni ) ,and x; are the melting temperature from Vegard’s
law, the melting temperature of the compound, as well as the melt-
ing temperature and atomic fraction of element i, respectively. We
also considered different data normalization techniques on the input
features, specifically, standardization and min-max scaling as imple-
mented in scikit-learn. Models with the best performance often
resulted from training using standardized features as inputs and the
logarithm of the melting temperatures as outputs.

4. Unsupervised-learning model construction

For the clustering of the materials into different compound
groups, we performed k-means clustering® using a subset of hand-
picked features related to the bond ionicity (bond ionic character
and weighted arithmetic average and weighted standard deviation
of electronegativity, periodic row, and periodic group numbers).
The optimal number of clusters was determined by simultaneous
Silhouette score®’ and Calinski-Harabasz score®” analyses when
considering cases of up to ten clusters. Silhouette analysis shows
the separation distance between the resulting clusters (how similar
a data point is to its own cluster compared to other clusters using
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Euclidean distance). The Calinski-Harabasz score is the ratio of the
sum of between-clusters dispersion and inter-cluster dispersion for
all clusters and measures the separation between clusters based on
Euclidean distances and the compactness of data points within each
cluster. The Silhouette score and Calinski-Harabasz score analy-
ses are presented in Figs. S4-S6, along with the clustering results
projected on a two-dimensional space with principal component
analysis (PCA) in Fig. $7.%

With the combined unsupervised/supervised model, predicting
the melting temperature of a material from the test set involves two
steps. First, the cluster to which the test point belongs is identified
using the (unsupervised) k-means model, and then, the regression
model for the selected cluster is used to make the temperature
prediction.

5. Symbolic regression model construction
and validation

We employed the variable-selection assisted sure inde-
pendence screening and sparsifying operator (VS-SISSO)®”
to construct physically interpretable descriptors of the melt-
ing temperatures. VS-SISSO composes derived features from
a set of input physical features using a set of operators. The
present work uses the {x1+x2,x1 — X2, |x1 — X2|, %1 X X2, %1
+ x2,exp (x), exp (—x),In (x),x7, 2%, %%, /%, ¥/x} set of opera-
tors, where x; can be either an input or a previously derived feature.
Models take the form Tm =co + 1 X1 +---+cpXp, where ¢; are
linearly optimized coefficients that minimize the training RMSE,
given a combination of D derived features X. Each model has a
dimensionality D, i.e., the number of derived features that the model
depends on, and a feature complexity f, which is the maximal
number of operations used within one derived feature.

The iterative variable selection of VS-SISSO (compared to reg-
ular SISSO)“° allows for efficient screening of large feature spaces
by considering subsets (S) of the entire feature space that combine
new features (S;) with those of the best-performing models (Sp).
Here, model construction uses nine different sets of hyperparam-
eters where D and f take on values of 1, 2, or 3. S, introduces
four physical features at each step, S has a maximal size of 16, and
model construction is considered converged when no improvement
in training RMSE is seen over 50 iterations. Up to 10000 of the
best models are output from each calculation, and for 1D, 2D, and
3D models, the SIS-selected subspace of derived features contains a
maximum of 100 000, 10 000, and 1000 items, respectively.

B. SHAP analysis

SHAP (SHapley Additive exPlanations) is a model inter-
pretability method that uses Shapley values from game theory to
estimate the predictive importance (SHAP score) of the features of
a model.** Note that the SHAP method explains the ML model and
not the data: SHAP importance is not a measure of the importance of
a given feature according to the physics of a problem, but it instead
shows how important a feature is to a given ML model.

We calculated the SHAP values to understand the predictions
of the constructed models. The shap Python module® was used to
estimate these values. SHAP values are generated for each model
feature and have the same unit as the anticipated target (melting
temperature or its derivatives). In our case, the best models resulted
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from training on logarithmic melting temperatures and, hence, the
scale of the SHAP values. Furthermore, SHAP values are additive,
meaning that adding all the SHAP values for a specific prediction
plus a base value (the mean of the target melting temperature val-
ues of the dataset) yields the model prediction value. For example, a
SHAP value of 0.5 indicates that adding that particular feature value
to which the SHAP value corresponds will increase the logarithmic
melting temperature by 0.5 units from the base (mean) value.

We visualize SHAP analysis in the form of layered violin plots.
The ten most important features are displayed in decreasing order
of importance from top to bottom in these charts. The higher the
importance, the greater the influence of that feature on the melt-
ing temperature prediction for the given model. For visualization
purposes, for each SHAP value, the lighter colors (lower feature val-
ues) are closer to the horizontal line, while the darker colors (higher
feature values) are closer to the edges of the layered violin plot.

C. Elastic moduli computations with DFT

A well-converged stress tensor is essential to derive correct
elastic constants, such as bulk and shear moduli, from DFT. All
DFT results reported in the present work were based on the pro-
jector augmented wave (PAW) method”*” as implemented in the
Vienna Ab Initio Simulation Package (VASP).”**%% We used the
exchange-correlation functional by Perdew, Becke, and Ernzerhof
(PBE).” The plane-wave energy cutoff was 700 eV, and the k-point
density was 7000 pra (per reciprocal atom). Energies converged to
less than 0.01 meV. The atomic positions and lattice constants were
relaxed until the residual forces became less than 0.001 eV/A. When
the elastic tensor or the ionic-relaxation step failed to converge, the
computation was restarted, but this time with new DFT parameters.
As a result, the numerical parameters reported above were typical
of many of our computations, but in certain circumstances, other

(a)
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parameters were employed (energy cutoff of 520 eV and/or k-point
density of 1000 pra).

To ensure compatibility with the data gathered from the Mate-
rials Project,/"('”"I calculations of the moduli in this work take the
Voigt-Reuss-Hill (VRH) average form”' of the bulk modulus Kvru

and the shear modulus Gyry calculated as

Kv + K Gv + G
=7( v R) and GVRH=7( v R)

K
VRH ) )

>

where the subscripts V and R indicate the upper (Voigt) and lower
(Reuss) bounds, respectively, defined by

9KV = ((,‘11 + Cpp + C33) + 2((,‘12 + 3 + (,‘31),

1
— = (s11+ 522 +533) + 2(s12 + 523 + 831)5
Kr

15Gy = (611 +Cpp + C33) - (C]z + Cy3 + C31) + 3(C44 + C55 + C66))

15
Gf = 4(511 + S + 533) - 4(512 + S23 + 531) + 3(544 + S55 + 566)-
R
In the above equations, c;; and s;; are the elements of the stiffness and
compliance tensors, respectively.

Illl. RESULTS
A. One-step approach: Direct regression models

We first used direct supervised learning methods to construct
models for melting temperature prediction by training on the entire
training set. The best model resulted from an ensemble gradient-
boosted tree regression (GBR) with a feature set that included

—
o
-~

' T T T
Cluster 1 Training LOO-CV .
¢ Cluster 2 Training LOO-CV 1
@ Cluster 1 Test set
{ Cluster 2 Test set )

4000

Predicted Melting Temperature (K)
= - N N w w
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FIG. 1. Correlation plots between the experimental and predicted melting temperatures for the best models trained on the (a) whole training dataset and (b) training sets of
clusters 1 and 2 separately. The training LOO-CV and test set labels represent ensemble averaged predictions over ten seeds. Table |Il shows the reported error metrics.
The feature set used for training the model in (a) and for cluster 1 in (b) included compound features and both composition-based and composition-agnostic harmonic and
quadratic average features of elemental properties. The feature set used for training the model for cluster 2 in (b) included compound features and both composition-based and
composition-agnostic harmonic and arithmetic average features of elemental properties. The best model for the one-step approach in (a) resulted from the gradient-boosted
tree regression, while random forest regression was the best model for clusters 1 and 2 in (b).
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TABLE |lIl. Error metrics for the best models for both the one-step approach and individual clusters in the two-step approach. We report LOO-CV and fivefold CV scores for
the training set. We report MAE, RMSE, MAPE, and R? metrics. All scores listed are the average metrics for models across ten different seeds. For MAE and RMSE, besides
the average metric, standard deviations are also listed. For the two-step approach, we also report a metric evaluated on the combination of clusters 1 and 2 to facilitate the
comparison with the one-step approach.

Approach Cluster MAE (K) RMSE (K) MAPE (%) R?
Training set (LOO-CV)
One-step e 177 £ 1 243 +2 14 0.91
Two-step 1 169 + 2 246 + 4 17 0.89
Two-step 2 198 + 1 267 £ 1 13 0.89
Two-step Combined 184 +2 257 +3 15 0.89
Training set (fivefold CV)
One-step e 201 +1 266 + 2 17 0.89
Two-step 1 189 +3 264 + 4 19 0.87
Two-step 2 211 +2 276 £ 2 14 0.88
Two-step Combined 201 +2 271+3 17 0.88
Test set

One-step e 165 + 4 2187 15 0.89
Two-step 1 136 £5 169 £ 6 15 0.92
Two-step 2 189 +7 229+6 16 0.90
Two-step Combined 156 + 4 194 + 4 15 0.92

compound properties and harmonic and quadratic (composition-
based and composition-agnostic) averages of elemental properties
[Fig. 1(a)]. We performed ensemble averages using ten differ-
ent random seeds (statistics are presented in Fig. S8), and the
error metrics are presented in Table III. Figure 1(a) shows the
correlation of the predicted melting temperatures from the best
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Ensemble Feature Importance

model of the one-step approach with the reference experimen-
tal values. Figure 1(a) shows that the predictions strongly corre-
late with the actual values and are scattered around the perfect
diagonal without a systematic error. Figure S9 shows that the dis-
tribution of the errors for the test set is similar to that of the
training set, further indicating that the model is not overfitted. An
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FIG. 2. Feature importance for the one-step approach and the best ensemble model trained on the whole training dataset computed using (a) the ensemble tree method and
(b) the SHAP analysis. The features are ranked in order of their importance from top to bottom. Only the top ten most important features are present for both approaches.
The ensemble tree importance analysis in (a) represents ensemble-averaged results over ten seeds, and the horizontal error bars indicate values of importance one standard
deviation above and below their respective average values over ten different seeds. In (b), a positive/negative SHAP value shows that the feature increases/decreases the
melting temperature prediction. For each SHAP value in (b), the lighter colors (lower feature values) are closer to the horizontal line, while the darker colors (higher feature

values) are closer to the edges of the layered violin plot.
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overview of the performance of other considered models is shown in
Table S1.

Figure 2 represents feature importance through ensemble fea-
ture importance’” and SHAP analysis.** Both feature importance
methods identified the cohesive energy and elastic moduli features
as the most important.

B. Two-step approach: Combined clustering and
regression models

The feature-importance analysis of Fig. 2 identified the shear
modulus and cohesive energy as the two most important features
for melting temperature prediction with a tree-based model. As
reviewed in the Introduction, melting occurs when the binding
between atoms is partially overcome, so the importance of cohe-
sive energy also agrees with intuition. The binding between atoms
in a compound is due to different interactions, most importantly,
covalent, ionic, and metallic bonding. The nature of the bonding
determines, for example, how the cohesive energy changes with the
coordination number. For instance, in ionic compounds, the cohe-
sive energy is proportional to the coordination number, while it
behaves as the square root of the coordination number in metals.

Motivated by these considerations, we investigated a second
class of models involving an additional clustering step before the
regression, in which materials were grouped based on features
related to the bonding character. For this two-step approach, we
first used an unsupervised-learning method to separate our dataset
into clusters and then fit supervised learning models within each
cluster separately. For melting temperature prediction, first, the clus-
ter a material belongs to is identified, and then, the corresponding
regression model is used for the melting point prediction.

Our clustering approach was based on k-means clustering.®
Clustering was based on features that we intuitively associated
with the bond ionicity (bond ionic character and weighted arith-
metic average and weighted standard deviation of electronegativity,
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periodic row, and periodic group numbers) to facilitate the inter-
pretation of different melting behaviors based on bonding in our
dataset. The optimal number of clusters was chosen from simultane-
ous Calinski-Harabasz score®” (Fig. $4) and silhouette score®! (Figs.
S5 and S6) analyses, both of which resulted in an optimal number
of two clusters. Clusters 1 and 2 contained 198 and 222 compounds,
respectively. The clustering results projected on a two-dimensional
space with principal component analysis (PCA) are presented
in Fig. S7.

Within each cluster, we fitted regression models for melting
temperature prediction. The best models resulted from an ensem-
ble random forest regression (RFR) for both clusters with feature
sets that included compound properties and (both composition-
based and composition-agnostic) harmonic and quadratic averages
of elemental properties for cluster 1 and compound properties and
(both composition-based and composition-agnostic) harmonic and
arithmetic averages of elemental properties for cluster 2 [Fig. 1(b)].
We performed ensemble averages over ten different seeds (statis-
tics are presented in Fig. S8), and the error metrics are presented
in Table TII. An overview of the performance of other considered
models is shown in Table S1.

We carried out a feature importance analysis through the
ensemble feature importance (Fig. S10) and SHAP method for both
clusters (Fig. 3).

To compare the results from the two-step approach to those
from direct supervised learning of Sec. III A, we evaluated the over-
all error scores for the complete dataset, including both clusters
(Table IIT and Fig. S11).

C. Symbolic models from VS-SISSO

While our model evaluation found tree ensemble methods to
perform best for the melting temperature dataset, these models are
not readily interpretable. This makes it challenging to determine

(b)
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FIG. 3. Feature importance analysis from the SHAP method for (a) cluster 1 and (b) cluster 2. The features are ranked in order of their importance from top to bottom. Only the
top ten most important features are present for both clusters. A positive/negative SHAP value shows that the feature increases/decreases the melting temperature prediction.
For each SHAP value, the lighter colors (lower feature values) are closer to the horizontal line, while the darker colors (higher feature values) are closer to the edges of the

layered violin plot.
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TABLE IV. VS-SISSO-generated models for melting temperature for the one- and two-step approaches with the lowest average RMSE scores of the training and test sets of all
generated 1D models with feature complexity f = 3 using all available features. Two models are provided for the entire training set and cluster 2 cases since providing SISSO
with the different types of averaging methods yields slightly better performance. For cluster 1, the best models contain only the arithmetic averages. Here, we report RMSE and

RZ scores for the training and test sets. For models constructed using dimensionless features and melting temperatures, consult Table S2.

T'm (K) equation/model Training set Test set
Approach Cluster from VS-SISSO RMSE (K) R? RMSE (K) R?
3

One-step 389 +56(/G - Econ - (R),) 368 0.78 337 0.75

282 + 61(ln (G) - Econ - (R)qw) 342 0.81 310 0.79

1 276 +58(/G - Econ - (R),) 358 0.76 324 0.69
Eloy

Two-step 2 730 + 129( m) 318 0.84 287 0.84
Eoon

2 685 + 58( G ) 310 0.85 290 0.83

in which way the materials in the two clusters of Sec. III B behave and the sum of the energy of isolated atoms. It is also an intu-

differently when melting.

Table IV provides VS-SISSO-generated symbolic expressions
for the melting temperature based on the entire dataset as well
as for the two clusters individually, giving qualitative insights
into the melting physics that dominate within each one. Table S2
shows models with dimensionless features for dimensionless melt-
ing temperature model construction. Models selected for inclusion
in Table IV and Table S2 have the lowest averaged training and test
RMSEs of all generated 1D models with feature complexity f =3
from the set of features that yields the best training RMSE.

IV. DISCUSSION

We constructed models for predicting the melting tempera-
ture of inorganic, non-metallic compounds using a direct one-step
supervised learning approach and a two-step approach based on an
additional unsupervised clustering step.

Fitting models without elastic moduli features yielded errors
greater than 400 K, so we decided that incorporating and comput-
ing elastic features is necessary. We began our studies with a dataset
of about 600 compounds. For high melting temperature compounds
that lacked elastic moduli data in the Materials Project database, we
computed elastic moduli ourselves but experienced numerical and
convergence errors in some cases. This led us to exclude these com-
pounds from our dataset, and as a consequence, very high melting
temperatures are absent from the test set.

For the best-performing direct one-step regression model, the
first and third most important features are the shear and bulk mod-
uli, respectively. The elastic moduli relate to the resistance to elastic
deformation when stress is applied to the compound. As such, these
quantities are related to the bonding within the materials that deter-
mine how easily bonds within a material can be bent and eventually
broken, which is an intuitive measure for melting temperatures.
Intuition tells us that soft, deformable materials have a lower melting
temperature than hard, brittle materials. The second most important
feature, cohesive energy, is the difference between the bulk energy

itive feature since this energy needs to be partially overcome during
melting.

While other top features, such as the statistical combinations
of elemental periodic group number and elemental melting temper-
atures, are also important based on chemical intuition, our model
cannot provide specific interpretable rules that relate these features
to melting. This is a general limitation of black-box tree-based ML
models since the decision criteria a model uses to generate pre-
dictions are often too complex to be interpreted directly. For this
reason, we confirm our importance studies with SHAP analysis,
which clearly shows the same ranking of feature importances for
the five most important features for the model. For the first three
most important features, elastic moduli and cohesive energy, SHAP
analysis shows that high feature values tend to increase the pre-
dicted melting temperatures, while low feature values decrease the
predicted melting temperature. This can also be seen in the correla-
tion plot of the cohesive energy with the melting temperature (Fig.
$12) and the correlation plot of the cohesive energy with the elastic
moduli (Fig. S13). Higher cohesive energies result in higher melting
temperatures.

Results from the two-step approach provide further insights.
The distribution of elements within the two clusters (Fig. S14) shows
that cluster 1 contains most halides and oxides, while cluster 2 con-
tains B-, C-, N-, and O-group compounds except oxides. Given the
types of materials that are included in our dataset and based on
the elemental distributions, we conclude that cluster 1 incorporates
more ionic compounds, while cluster 2 comprises less ionic and
more covalent solid materials. The melting temperature distribution
of the two clusters (Fig. S1b) shows that very-high (>3150 K) melting
temperatures appear only in cluster 2. The compounds with extreme
melting temperatures are mostly metal carbides known for their high
melting temperatures resulting from a combination of inter- and
intra-molecular covalent bonds that form covalent solid networks
for this category of materials.””*

For cluster 1, the ranking and relative importances of the first
four features are similar to those found in the one-step approach for
the entire dataset. For cluster 2, though, we observe significant dif-
ferences. By far, the most important feature for cluster 2 is cohesive
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energy related to the melting temperature, as described above. In the
SHAP analysis of Fig. 3, it is seen that very high cohesive energy
values increase the predicted melting temperatures with a greater
extent and, vice versa, very low cohesive energy values significantly
decrease the predicted melting temperatures. While elastic moduli
are the next important features for cluster 2, they have less impact
on the model output when compared to the cohesive energy feature.
Here, we conclude that cohesive energy across the entire range of
values is crucial to melting point prediction for more covalent solid
materials. We also see that, in general, other features are evenly split
in terms of the feature value and SHAP value, meaning they enter
the melting point prediction in more complex relationships.

Table III compares the predictive power of the one- and two-
step approaches with tree ensemble methods. In terms of the train-
ing set LOO-CV scores, the MAE for cluster 2 is higher (by ~20 K)
than that of the entire training set from the one-step approach,
while the MAPE score is reduced because the fraction of very-high
(>3150 K) melting temperature materials in cluster 2 is higher than
that in cluster 1. The training set LOO-CV scores are very compa-
rable among the one- and two-step approaches when computing
the combined error metrics for clusters 1 and 2. The same can be
noted for the training set fivefold CV scores. Note that we gener-
ally observe lower RMSE and MAE error metrics from the test set
because it is limited to a lower melting temperature range, so this
does not indicate underfitting. The main differences are noticeable
in the test set metrics. Specifically, the test set MAE and RMSE for
cluster 1 are lower than that of the one-step approach by 29 and
49 K, respectively. This also comes with the cost of increasing the
aforementioned metric values for cluster 2. However, overall, when
comparing the whole test set to the combination of clusters 1 and 2,
we see only a slight improvement in predictive power compared
to the one-step approach (reduction in MAE of 9 K and RMSE
of 24 K). This is not surprising since decision-tree-based models
can internally perform a feature-based clustering so that a one-step
tree-ensemble model can effectively replace the combined k-means
clustering and regression steps.

However, this is not the case for other models, such as linear
regression models, and here, the difference between the one-step and
two-step approaches is much more significant. From Table S1, lin-
ear models (also with regularization) always result in MAE scores of
greater than 240 K and RMSE scores greater than 340 K. These scores
are at least 100 K higher than the respective best-performing models
reported in Table I1] and are also significantly higher (by about 30 K)
than what is attainable by the two-step approach when using the
same linear models. Note that the linear models can be considered a
benchmark of what is attainable with the simplest models, but they
achieve poor metrics compared to the non-linear models we have
evaluated in this work (Table S1). We also attempted model stack-
ing but decided not to report more complex and less interpretable
models with only slightly better performance.

Since clustering is beneficial for linear regression, we expected
it also to facilitate symbolic regression with SISSO. For the mod-
els trained on the whole dataset, the 11 best-performing 1D models
with f =3 with average train-test RMSEs of 326-382 K all involve
combinations of the shear modulus (G), cohesive energy (Econ), and
the statistical combination of elemental atomic radii ((R)). Model
complexity can significantly affect feature selection; the top 15 1D

ARTICLE pubs.aip.org/aipl/jcp

and f =2 models for both clusters all include E. and the sta-
tistical combination of elemental electronegativities ((EN)) while
spanning a slightly higher range of average train-test RMSEs from
341 to 407 K. Larger models offer relatively limited gains in accuracy
while becoming less parsimonious and therefore harder to inter-
pret. For example, the top 3D model with f=3 trained on the
data from clusters 1 and 2 has training and test RMSE values of
312 and 299 K, respectively, comparable to the 1D values of 368
and 337 K. Another example, the best-performing 3D model with
2

f =3 trained on the cluster 2 takes the form Tm =co + cl%

(Ng)
+o <p)'(E(§))'(N“> +c 28 (<(b]§1?1))) and is significantly more complicated

than the model shown in the bottom row of Table IV, but the aver-
aged training and test RMSEs of this 3D model improve on those of
the 1D one by only 22 K.

Comparing which physical features are commonly selected by
SISSO across various model complexities can provide insights into
which features are most essential to describing each cluster. The
cohesive energy, Econ, is present in all 1D models of Table IV, but
it is often absent in cluster 1 models that perform nearly as well
(e.g., with an average train and test RMSE of 377 K). On the other
hand, the shear modulus, G, regularly appears in cluster 1 or one-
step approach models but is never selected in a 1D cluster 2 model
with f = 2. These patterns suggest that G is particularly important
for describing the melting temperature of cluster 1 compounds, and
Econ is likewise the key for cluster 2. Additionally, as Table IV illus-
trates, cluster 2 models tend to have higher ¢y values. While this can
lead to overestimating relatively low melting temperatures, cluster
2-only RMSEs are lower than in either case where cluster 1 com-
pounds are present, which have intercepts near room temperature.
We also investigated how exactly each feature enters the melting
equation. In general, we noted that physical feature selection is more
critical than operator choice for SISSO. Even though we noted that
for ionic compounds, the cohesive energy is proportional to the
coordination number, while it behaves as the square root of the coor-
dination number in metals, as seen in Fig. S15, there appears to be no
distinct mathematical operator that leads to decreased test set RMSE
metric when acted on E.,, (although a few such as E_}, rarely appear
in well-performing simple models).

Indeed, with a combined average test-set RMSE of 304 K,
weighted by the number of materials in each cluster, the two-step
SISSO model is slightly better than the model fitted to the entire
dataset with an RMSE of 310 K. However, the most interesting
observation is that the data in cluster 2 can be represented well
with symbolic models depending only on two features: the squared
cohesive energy and the inverse square root of either the statistical
combination of elemental periodic groups or the electronegativities
(Table IV). The interchangeability of the periodic group and elec-
tronegativity is intuitive as the electronegativity strongly correlates
with the group in the Periodic Table for cluster 2. The expression

\/5;37) with a = 685 K and b = 58 K/eV? and the cohe-
hw

sive energy in eV can thus be used to obtain an estimate of the
melting temperature of non-oxides and non-halides with melting
points above 685 K. The symbolic regression studies also corrobo-
rate that the most important features are those picked up by feature
importances and SHAP analysis of the tree ensemble models.

Tmma+b
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The linear model fitted on the entire 86-feature input results in
the following metrics: for the training set LOO-CV—RMSE: 346 K,
MAE: 259 K, for the training set five-fold CV—RMSE: 378 K, MAE:
289 K, and for the test set—RMSE: 435 K, MAE: 353 K. Similar error
metrics are observed for both clusters 1 and 2. Because of the com-
puting requirements, we did not carry out LOO-CV or fivefold CV
studies for the VS-SISSO models. The test set RMSE scores for the
linear models are higher than those from the VS-SISSO models with
a difference of less than 100 K. This is a very notable advantage of
using a symbolic learning model instead of a simple linear model, as
even the least complex VS-SISSO models with small values of dimen-
sionality (1D) and feature complexity (up to three considered in this
work), such as those shown in Table IV, can result in better fittings
to the data and provide interpretability, albeit at an increased burden
of computational complexity.

To verify that the reported VS-SISSO models have errors that
reflect the capabilities of symbolic machine learning, although less
physically interpretable, we also generated 1D, f =3 complexity
models by providing VS-SISSO with initially dimensionless melting
temperatures and features obtained either through feature normal-
ization, standardization, or scaling, as proposed in work introducing
the idea of dimensionless features to extend the search space of sym-
bolic models.””” The dimensionless approach identifies new models
for the dimensionless melting temperature containing the dimen-
sionless bulk modulus, such as To ~ 0.22 + 0.81(3/? -Econ - (R)a)

and Tf, ~ 1.57 + 0.57(K — 2(EN), ) for the training sets of the entire
dataset and cluster 1, respectively. These models perform particu-
larly well on the test set at the expense of the training set. The error
metrics and feature selections of the best models from these dimen-
sionless feature transformation approaches are shown in Table S2
and are comparable to those shown in Table IV, suggesting that the
reported models are indeed representative.

Although the present work is aimed at simplicity and inter-
pretability, it is educative to compare our results to previously
published models. The best model reported by Seko et al. on their
smaller dataset of 248 unary and binary materials was a support
vector regression model using a feature set composed of com-
pound properties from DFT and elemental properties.*' This model
achieved a tenfold CV RMSE of 265 K for the training set and an
RMSE of 262 K for the test set, metrics that we outperform with
our models. Recently, Hong and co-workers have published multi-
ple versions of deep learning models™* based on a graph neural
network for materials embedding from compositions only and a
residual neural network for melting temperature predictions. Their
models are freely accessible and can be used to predict melting tem-
peratures of compounds containing up to four elements with version
1”7 and also support predictions from an ensemble of 30 deep learn-
ing models with version 2 using the Materials Properties Prediction
Application Programming Interface (API).”*” Unlike our dataset,
Hong’s data contain entries from experiments and DFT-based sim-
ulations. Hong reports an R? training score of 0.99, an R? test score
0f 0.96, a training RMSE of 75 K, and a test RMSE of 138 K for their
model for a dataset containing melting temperatures of more than
9300 materials. With version 1 of Hong’s model, the following met-
rics were obtained: for our training set—RMSE: 304 K, MAE: 200 K,
MAPE: 20%, R%: 0.85, and for our test set—RMSE: 404 K, MAE:
265 K, MAPE: 31%, R%: 0.64. The performance metrics for version
2 of Hong’s model are for our training set - RMSE: 193 K, MAE:
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109 K, MAPE: 10%, R*: 0.94, and for our test set - RMSE: 168 K,
MAE: 116 K, MAPE: 11%, R%: 0.94. Version 2 also reports stan-
dard deviations for the predicted melting temperatures of 63 and
78 K for the training and test sets, respectively. We note that our
dataset might contain materials that Hong’s model was trained on
(that might even have different melting temperature values tabulated
from our dataset), and we have made no effort to correct this bias.
Hong’s model has overall lower reported error metrics and is gen-
eralizable and transferable to larger compositional materials spaces.
While it is not an entirely fair comparison, since Hong’s model is
suitable for a broader range of materials and does not require fea-
tures from DFT calculations, it is encouraging that our simple and
computationally extremely efficient tree ensemble model can deliver
state-of-the-art predictive performance on a similar order of mag-
nitude as significantly more complex ensembles of deep learning
models.

V. CONCLUSION

We evaluated the predictive performance of different machine
learning methods for melting temperature prediction of binary
inorganic solid materials. We first considered a direct supervised-
learning approach, finding that SHAP analysis identified the cohe-
sive energy and elastic moduli as the most important features. We
found that the fidelity of predictions can further be improved by
introducing an additional unsupervised-learning step that first clas-
sifies the materials based on their bonding characteristics before
melting-point regression. Not only does this two-step model exhibit
improved accuracy, but the approach also provides additional
insights into feature importance and different types of melting
that depend on the degree of ionicity in the bonding inside a
material. Finally, we employed symbolic learning to establish inter-
pretable physical models for the melting temperature that high-
lighted the significance of the top-performing features from the
previous approaches and gave more insights into the theory behind
melting and led to a simple linear equation for estimating the
melting temperature of non-oxides and non-halides.

SUPPLEMENTARY MATERIAL

The supplementary material comprises 15 supplementary
figures and two supplementary tables with error metrics.
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