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Transport coefficients for higher dimensional quantum Hall effect

Dimitra Karabali 1,3,* and V. P. Nair 2,3,†

1Physics and Astronomy Department, Lehman College, CUNY, Bronx, New York 10468, USA
2Physics Department, City College of New York, CUNY, New York, New York 10031, USA

3The Graduate Center, CUNY, New York, New York 10016, USA

(Received 8 August 2023; accepted 13 November 2023; published 29 November 2023)

An effective action for the bulk dynamics of the quantum Hall effect in arbitrary, even spatial dimensions was
obtained some time ago in terms of a Chern-Simons term associated with the Dolbeault index theorem. Here we
explore further properties of this action, showing how electronic band structures can be incorporated, obtaining
Hall currents and conductivity (for arbitrary dimensions) in terms of integrals of Chern classes for the bands. We
also derive the expression for Hall viscosity from the effective action. Explicit formulas for the Hall viscosity
are given for 2 + 1 and 4 + 1 dimensions.
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I. INTRODUCTION

The quantum Hall effect has been intensively investigated
for several decades from both theoretical and experimental
points of view [1]. An interesting variant has been its gener-
alization to higher dimensions [2–8]. Even though seemingly
this is only of mathematical interest, it is intriguing that this
may in fact be experimentally realizable using the idea of
synthetic dimensions [9,10]. Shortly after the initial work on
higher dimensional quantum Hall effect (QHE) [2], it was
realized that complex manifolds present a class of spaces for
which one can explicitly solve the Landau problem, construct
states, analyze edge excitations, etc., and therefore uniformly
extend the QHE to all even spatial dimensions [4–6]. Since
holomorphicity is the key feature for states in the lowest
Landau level, the Dolbeault index theorem provides a conve-
nient mathematical technique for analyzing the phenomenon
in arbitrary dimensions [11]. Some time ago we used this
connection to construct the topological effective bulk action
for a quantum Hall system of integer filling fraction in arbi-
trary even dimensions, including both gauge and gravitational
fluctuations, in terms of a Chern-Simons action associated to
the Dolbeault index density [12]. We were able to construct
such effective actions for arbitrary integer filling fraction and
Abelian and non-Abelian gauge fields, the latter being a novel
possibility in higher dimensions. We may note here that ef-
fective actions in 2 + 1 dimensions, including gravitational
contributions, have been constructed by many authors; see,
for example, Refs. [13–16].

In this paper we will investigate the general effective ac-
tion obtained in Ref. [12], further focusing on the derivation
of response functions and relevant transport coefficients in
higher dimensions. For simplicity we will focus on the case
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of Abelian gauge fields but arbitrary even spatial dimensions.
The response of the system to gauge and gravitational fluc-
tuations is characterized by the electromagnetic current and
the energy-momentum tensor, which can be straightforwardly
derived from the effective action.

The transport coefficient related to the electromagnetic cur-
rent is the Hall conductivity expressed in terms of the filling
fraction. In the construction of the effective action from the
Dolbeault index, the filling fraction was one of the input ingre-
dients. However, in deriving the effective action we essentially
considered an appropriate gauge-covariant Laplacian as the
Hamiltonian for the Landau problem, which means that we
formulated the action in terms of Landau levels for fermions
in free space. More realistically, though, the fermions corre-
spond to extended states in an energy band in the material. The
Hall current and the filling fraction relevant to the quantum
Hall state should thus be expressed in terms of the integrals
of the Chern classes for the Berry curvature of the bands, as
was done long ago for the two-dimensional case [17]. This
is particularly important if we seek experimental realizations
for the higher dimensional cases. This is the first problem we
address in this paper. We show how the band structure can
be incorporated in the effective action. The electromagnetic
currents we obtain by this method agree with results obtained
for four- and six-dimensional (4D, 6D) QHE using Hamilto-
nian perturbation theory for wave packets [18]. Furthermore,
we obtain explicit expressions for the currents in arbitrary
even dimensions, including contributions due to the spatial
curvature.

Another transport coefficient of interest is the Hall viscos-
ity. This is obtained from the response to perturbations of the
metric, from the two-point function for the energy-momentum
tensor [14,15]. We show how the Hall viscosity can be derived
from the effective action, giving explicit formulas for 2 + 1
and 4 + 1 dimensions. While the Hall viscosity has been
derived in 2 + 1 dimensions by explicit calculation of the
responses, our derivation places it within a uniform procedure
easily applicable in any number of dimensions.
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II. REVIEW OF THE DERIVATION OF THE EFFECTIVE
ACTION USING AN INDEX THEOREM

In this section we give a brief resume of the bulk effective
action and how it is obtained from the index theorem [12].
Although we may need to consider general perturbations of
the metric later, to begin with, the spatial manifold of interest
for us is a complex Kähler manifold, such as CPk . The single-
particle Hamiltonian is of the form DiD̄ī, where Di and D̄ī are
the holomorphic and antiholomorphic covariant derivatives,
which include background gauge and gravitational fields.
Thus the wave functions for the lowest Landau level obey the
holomorphicity condition

D̄ī! = 0. (1)

The number of normalizable solutions to this equation is given
by the index theorem for the twisted Dolbeault complex as

Index(D̄) =
∫

K
td(TcK ) ∧ ch(V ), (2)

where td(TcK ) is the Todd class on the complex tangent space
of K , and ch(V ) is the Chern character of the relevant vector
bundle [11].

An explanation of the various terms and terminology in
(2) might be useful before we proceed. Generally the spin
connections and curvatures take values in the Lie algebra of
the holonomy group, which is SO(2k) for a real manifold in 2k
dimensions. For a complex manifold, coordinate transforma-
tions which preserve the complex structure are holomorphic
transformations. This restricts the holonomy group to U (k) ⊂
SO(2k). Correspondingly, the frame fields can be taken to be
holomorphic and antiholomorphic 1-forms, which are combi-
nations of the real ones given by the complex structure. The
tangent space also has similar combinations which give TcK .
The Todd class is given in terms of the curvature 2-form for
TcK . It has the expansion [11]

td = 1 + 1
2 c1 + 1

12

(
c2

1 + c2
)
+ 1

24 c1 c2

+ 1
720

(
−c4 + c1 c3 + 3 c2

2 + 4 c2
1 c2 − c4

1

)
+ · · · , (3)

where ci are the Chern classes. For any vector bundle with
curvature F , the Chern classes are defined by1

det
(

1 + i F
2π

t
)

=
∑

i

ci t i. (4)

Various terms in the expansion (3) can thus be expressed as
powers of the curvature 2-form. The Todd class may also be
represented, via the splitting principle, in terms of a generating
function as

td =
∏

i

xi

1 − e−xi
, (5)

where xi represents the “eigenvalues” of the curvature in a
suitable canonical form (diagonal or the canonical antisym-
metric form for real antisymmetric i F). The expansion in (3)

1We start with connections and curvatures in an anti-Hermitian
basis since they are natural, allowing us to write F = dA + AA, etc.
This leads to some factors of i in various expressions at this stage.
Later we will move to a Hermitian basis.

is obtained by using this generating function and rewriting it
using traces of powers of curvatures.

In the case of the index as in (2), F is to be taken as the
curvature 2-form R for TcK . The first few Chern classes for
the complex tangent space can then be explicitly written, using
(4), as

c1(TcK ) = Tr
iR
2π

c2(TcK ) = 1
2

[(
Tr

iR
2π

)2

− Tr
(

iR
2π

)2
]

c3(TcK ) = 1
3!

[(
Tr

iR
2π

)3

− 3 Tr
iR
2π

Tr
(

iR
2π

)2

+ 2 Tr
(

iR
2π

)3
]

c4(TcK ) = 1
4!

[(
Tr

iR
2π

)4

− 6
(

Tr
iR
2π

)2

Tr
(

iR
2π

)2

+ 8 Tr
iR
2π

Tr
(

iR
2π

)3

+ 3 Tr
(

iR
2π

)2

Tr
(

iR
2π

)2

− 6 Tr
(

iR
2π

)4
]

. (6)

The curvatures R take values in the Lie algebra of U (k),
which is the holonomy group for a complex manifold of real
dimension 2k. The traces in the above formula are thus over
the U (k) Lie algebra.

Turning to the other set of terms in the index formula (2),
we may first note that the terminology of the Dolbeault com-
plex being twisted, as often used in mathematics literature, is
equivalent to saying that we have background gauge fields. In
other words, the vector bundle V relevant for us is defined by
the internal gauge symmetry structure of the fermion fields.
The fermion wave functions are sections of this bundle. The
Chern character is given by

ch(V ) = Tr(eiF/2π )

= dim V + Tr
iF
2π

+ 1
2!

Tr
iF ∧ iF

(2π )2
+ · · · , (7)

where dimV is the dimension of the bundle V . Here F is the
gauge field strength F . If spin is included, F will also include
the curvature of the spin bundle.

By definition, the Dolbeault index gives the degeneracy of
the lowest Landau level. If we consider a fully filled Landau
level with filling fraction ν = 1 and assign a unit charge to
each fermion, the index will also give the total charge. The
charge density may therefore be identified with the index
density allowing us to construct an effective action. Thus in
terms of an effective action Seff , we can then write

δSeff

δA0
= J0 = Index density. (8)

This shows that the leading term of the effective action may
be taken as a Chern-Simons term CS(A) whose variational
derivative with respect to A0 will give the index density.
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In other words, we can “integrate up” the relation (8), and
appropriately covariantize to obtain the topological part of
the action Seff . (There can be subleading terms arising from
dipole and higher multipole terms in J0 which integrate to
zero in the total charge. They can contribute terms involving
derivatives of the fields in the effective action; they are also
nontopological in nature. The Chern-Simons form associated
to the index density is the leading term in the sense of a
derivative expansion; see [12] for more details on this point.)
This procedure, as described so far, does not determine the
purely gravitational terms in Seff . However, even though we
are interested in the bulk action, one could envisage the sit-
uation of a droplet with edge modes; these will generate a
gravitational anomaly. The purely gravitational terms in Seff
will be determined by the gravitational anomaly via the de-
scent method used for anomalies [19]. This was the procedure
we used in [12] to obtain the effective bulk action for a higher
dimensional quantum Hall effect.

In the case of a fully filled lowest Landau level, we derived
a compact form for the topological effective action for a gen-
eral complex manifold of even spatial dimension 2k, given by

Seff =
∫ [

td(TcK ) ∧
∑

p

(CS)2p+1(A)
]

2k+1
+ 2π

∫
%

grav
2k+1.

(9)

Here (CS)2p+1(A) is the Chern-Simons term associated with
just the gauge part and is defined by

1
2π

d (CS)2p+1 = 1
(p + 1)!

Tr
(

iF
2π

)p+1

. (10)

One should expand the terms in the square brackets in (9) in
powers of curvatures and F and pick out the term correspond-
ing to the (2k + 1)-form. This is indicated by the subscript

2k + 1 for the square brackets. The purely gravitational term
%

grav
2k+1 in (9) is defined by

[td(TcK )]2k+2 = d %
grav
2k+1. (11)

Notice that here we start with the (2k + 2)-form and define
the appropriate Chern-Simons form. The justification for this
is via the well-known descent equations for anomalies, see
[12,19].

These results can be further extended to include higher
Landau levels for some special cases. For many manifolds,
such as CPk , the degeneracy for spinless fermions in the
sth Landau level is identical to the degeneracy for fermions
of spin s in the lowest Landau level. One can then use the
index theorem as before to construct the effective action. The
procedure is exactly as outlined above, except that F in the
Chern character now includes the curvature for the spin bundle
as well. Explicitly, what this means is that

F = F + Rs = F + s R01 + RaTa, (12)

where R0 and Ra denote the curvatures for the U (1) and SU (k)
factors in U (k) ⊂ SO(2k). Ta are the generators of SU (k) in
the appropriate representation of the appropriate spin. The
general effective action has the form

S(s)
eff =

∫ [
td(TcK ) ∧

∑

p

(CS)2p+1(ωs + A)
]

2k+1

+ 2π

∫
%

grav
2k+1, (13)

where ωs is the spin connection for sR01 + RaTa.
Specifically, the effective actions for 2 + 1, 4 + 1, and

6 + 1 dimensions were worked out in detail. In 2 + 1 dimen-
sions, the result for the sth Landau level is

S(s)
2+1 = i2

4π

{ ∫
A
[

dA + 2
(

s + 1
2

)
dω0

]
+

[(
s + 1

2

)2

− 1
12

] ∫
ω0 dω0

}

= i2

4π

∫ {[
A +

(
s + 1

2

)
ω0

]
d
[

A +
(

s + 1
2

)
ω0

]
− 1

12
ω0 dω0

}
. (14)

In 4 + 1 dimensions, we find

S(s)
4+1 = i3(2 j + 1)

(2π )2

∫ {
1
3!

(A + (s + 1)ω0)[d (A + (s + 1)ω0)]2

− 1
12

(A + (s + 1)ω0)
[

(dω0)2 −
[

4 j( j + 1) − 1
2

]
1
2

(Ra ∧ Ra)
]}

, (15)

where j = s/2. For a complex manifold such as CP2 in four dimensions, the holonomy group (which is where the grav-
itational curvatures and connections take values) is U (2) ⊂ SO(4). In (15), ω0 denotes the U (1) spin connection, with
U (2) ∼ SU (2)×U (1), and Ra is the curvature for SU (2).
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In 6 + 1 dimensions, the action for the lowest Landau level (s = 0) was obtained as

S(0)
6+1 = 1

(2π )3

∫ {
1
4!

(
A + 3

2
ω0

)[
d
(

A + 3
2
ω0

)]3

− 1
16

(
A + 3

2
ω0

)
d
(

A + 3
2
ω0

)[
(dω0)2 + 1

3
Tr(R̃ ∧ R̃)

]

+ 1
1920

ω0dω0[17(dω0)2 + 14 Tr(R̃ ∧ R̃)] + 1
720

ω0Tr(R̃ ∧ R̃ ∧ R̃)
}

+ 1
120

∫
(CS)7(ω̃). (16)

Here we are only displaying the result for the lowest Landau
level for simplicity. Similar to the 4 + 1-case, we have a U (1)
subgroup of the holonomy group with spin connection ω0 and
an SU (3) subgroup with spin connection ω̃. The curvature R̃
corresponds to ω̃; it is in the fundamental representation of
SU (3), as given in Eqs. (A11) and (A12) in Appendix A. Also,
(CS)7(ω̃) in (16) is the standard Chern-Simons 7-form for this
spin connection.

III. HALL CURRENTS AND CHARACTERISTIC CLASSES
FOR ELECTRONIC BANDS

In this section we describe how the effective actions de-
rived in [12] (relevant for electrons in free space) should
be modified to incorporate the geometrical properties of the
electronic bands. We start by reiterating that the expressions
for the effective actions (9), (13) are valid for both Abelian and
non-Abelian gauge fluctuations. By construction, the variation
of the effective action is of the form

δSeff =
∫

δA I

I =
k∑

l=0

1
(k − l )!

(
F
2π

)k−l

∧ [td(TcK )]2l . (17)

Here I is a differential 2k-form. Formally, it is identical to the
index density, but here we are interpreting it as a form in the
(2k + 1)-dimensional spacetime. Thus it defines a dual vector,
which is the Hall current. In the following, for simplicity we
only consider Abelian gauge fields and consider the electro-
magnetic Hall current, and focus on the lowest Landau level,
s = 0.

The expressions for the Hall current obtained as in (17)
correspond to fermions in free space. To work out the required
modification, taking account of the fact that the fermions are
from an energy band appropriate to the material, we consider
the motion of a particle, viewed as a wave packet with position
xi and momentum ki. The dynamics of such a wave packet is
described by the action [20]

S =
∫

kiẋi − E (k) + eφ(x) − Aiẋi + Aik̇i. (18)

The wave packet is to be viewed as describing a single-particle
extended state within an energy band, with energies given by
E (k). Here φ is the electrostatic potential, Ai is the magnetic
vector potential, and Ai is the Berry connection defined by

Ai(k) =
∫

[dx] !†
k (x)

∂

∂ki
!k (x). (19)

We are considering a 2k-dimensional spatial manifold, and
[dx] in (19) gives the appropriate volume element. The canon-
ical symplectic structure associated with the action (18) is

easily read off as

ωsymp = dki dxi − 1
2 Fi jdxi dx j + 1

2%i jdki dk j, (20)

where the gauge and Berry curvatures are given by

Fi j = ∂

∂xi
A j − ∂

∂x j
Ai,

%i j = ∂

∂ki
A j − ∂

∂k j
Ai. (21)

The canonical structure (20) shows that the commutators
[xi, x j] and [ki, k j] will be nonzero, since there are dki dk j

and dxi dx j terms in ωsymp, in addition to the standard term
dki dxi. Our aim now is to choose variables so as to eliminate
mixing between the two sectors. Towards this we write

ki = λi j pj + σi jx j . (22)

This introduces pi, which will take the place of ki. In the
following we consider Fi j and %i j to be approximately con-
stant; this is appropriate to the lowest order in what may be
considered as a gradient expansion. With the substitution (22),
ωsymp becomes

ωsymp = [λ − σ T %λ]i j d pi dx j

+
[
−σ − 1

2 F + 1
2σ T %σ

]
i jdxi dx j

+ 1
2 [λT %λ]i jd pi d pj . (23)

The term mixing xi and pi can be eliminated by imposing

λ − σ T %λ = 0. (24)

The solution to this equation is given by σ = −%−1. We can
then simplify ω as

ωsymp = 1
2 (%−1 − F )i jdxi dx j + 1

2 (λT %λ)i jd pi d pj . (25)

We have separated the x- and p-dependent terms, but λ is not
determined by our considerations so far. We will make the
simplest choice that it is the identity matrix; this will suffice
for our purpose. In this case we have

ωsymp = 1
2 (%−1 − F )i jdxi dx j + 1

2%i jd pi d pj . (26)

Recall that the lowest Landau-level dynamics for fermions
in free space coupled to a magnetic field is governed by
the canonical structure ωsymp = − 1

2 Fi jdxidx j . We see that the
present case where we include the band structure is equivalent
to using fermions in free space with a modified field, namely,
(F − %−1)i j in place of F . The phase volume corresponding
to this ωsymp is given by

dµ = 1
k!

(
%

2π

)k 1
k!

(
F − %−1

2π

)k

. (27)

205155-4



TRANSPORT COEFFICIENTS FOR HIGHER DIMENSIONAL … PHYSICAL REVIEW B 108, 205155 (2023)

This shows that we also have an overall factor of (%)k with
integration over all momenta; this factor will take the place of
the filling fraction.

The effective action we obtained was the Chern-Simons
action associated with the Dolbeault index density, consider-
ing the Landau problem as fermions in free space coupled to
the magnetic field. In light of the modified structure (26) and
(27), we see that we can transcribe the action to the case of
interest (with fermions drawn from energy bands) by making
two changes, namely, making the replacement F → F − %−1

and including an integration over all momenta with the den-
sity 1

k! ( %
2π

)k . Thus if Seff denotes the Chern-Simons action
obtained from the Dolbeault index density as given in [12],
the action for the case of fermions in electronic bands will be

Seff/band =
∫

BZ

1
k!

(
%

2π

)k

Seff (F → F − %−1). (28)

The integration over the momenta is over the Brillouin zone
of momentum states for the energy band. From this effective
action one can easily extract a general expression for the Hall
currents for a fully filled band with Abelian gauge fields. By
taking the variation with respect to Aµ, we get

∗J =
∫

BZ

1
k!

(
%

2π

)k

[I]F→F−%−1 ,

Jµ = ϵµα1α2···α2k

∫

BZ

1
k!

(
%

2π

)k[
Iα1α2···α2k

]
F→F−%−1 , (29)

where I is given in (17).
This is the general expression, but it may be somewhat

cryptic for straightforward application. Therefore we will first
consider Seff given in (14)–(16) for the case of 2 + 1, 4 + 1,
and 6 + 1 dimensions and work out the Hall currents. The
general formula valid for all dimensions and with nonzero
background curvatures will be worked out at the end of this
section.

(2 + 1) dimensions. The current is given by

Ji = ϵi j
(

Ej

2π
+ 1

2
Rj0

2π

)
ν1, (30)

where Ei = Fi0 and ν1 is the integral of the first Chern class,
given by

ν1 =
∫

BZ

%

2π
. (31)

The curvature Rj0 takes values in U (1) as explained in the
Introduction.

Expression (30) agrees with previous results in the case of
flat two-dimensional (2D) spaces. An interesting feature of
(30), which is also valid in all higher dimensions, is that a
Hall current can be generated from time variation of the metric
even if there is no external electric field applied to the system.
While we make a note of this interesting fact, in deriving the
Hall current in higher dimensions we will neglect this effect
for simplicity and consider manifolds whose curvature is time
independent.

(4 + 1) dimensions. The relevant expression for I in
(4 + 1) dimensions is

I = 1
2

F
2π

∧ F
2π

+ F
2π

∧ c1

2
+ 1

12

(
c2

1 + c2
)
, (32)

where c1, c2 are given in (6). Making the substitution
F → F − %−1 and integrating over the momentum space
with density 1

k! ( %
2π

)k , as explained above in Eq. (29), produces
the following expression for the electromagnetic Hall current:

Ji = 1
2

1
(2π )2

ϵi jkl E j

(
Fkl + Tr Rkl

2

)
ν2 + 1

2π
Ejν

i j
1 , (33)

where νk and ν
i j
1 are given by

νk =
∫

BZ

1
k!

(
%

2π

)k

, (34)

ν
i j
1 =

∫

BZ

%i j

(2π )2k−1
d2k p. (35)

Here νk in (34) is the integral of the kth Chern class over the
band of electronic states. In deriving (33) we used the relation

(%−1)i jϵα1α2···α2k %
α1α2 · · ·%α2k−1α2k

= −2kϵi jα1···α2k−2%
α1α2 · · · %α2k−3α2k−2 . (36)

The expression (33) for the current agrees with the expression
derived in [18] for flat manifolds, but now includes general-
ization to curved manifolds, in addition to the virtue of being
derived purely from a topological point of view.

(6 + 1) dimensions. The relevant index density in (6 + 1)
dimensions is

I = 1
3!

(
F
2π

)3

+ 1
2

(
F
2π

)2

∧ c1

2

+ F
2π

∧ 1
12

(
c2

1 + c2
)
+ 1

24
(c1c2). (37)

Using Eq. (29), we obtain the following expression for the
electromagnetic Hall current:

Ji = ϵi jklrs 1
23(2π )3

Ej

[(
Fkl + 1

2
TrRkl

)(
Frs + 1

2
TrRrs

)

− 1
12

Tr(Rkl Rrs)
]
ν3 + 1

2(2π )2
Ej

(
Fkl + 1

2
TrRkl

)
ν

i jkl
2

+ 1
2π

Ejν
i j
1 , (38)

where ν3 is the integral of the third Chern class, ν
i j
1 is defined

in (35), and ν
i jkl
2 is given by

ν
i jkl
2 =

∫
%i j%kl + %il% jk + %ik%l j

(2π )4
d6 p. (39)

In deriving (38) we have used a relation similar to (36). The
general identity is given in (B8) in Appendix B. The specific
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cases we need here are

ν
i j
1 =

∫

BZ

1
3!

(
%

2π

)3

ϵi jα1α2α3α4
1
2!

(%−1)α1α2

2(2π )
(%−1)α3α4

2(2π )
,

ν
i jkl
2 = −

∫

BZ

1
3!

(
%

2π

)3

ϵi jklab (%−1)ab

2(2π )
. (40)

Again, the expression (38) for the Hall current agrees with
previous results derived for flat backgrounds [18] and further
generalizes them to curved manifolds.

(2k + 1) dimensions. We now write down the general ex-
pression for the Hall current for an arbitrary 2k-dimensional
(complex) curved manifold:

Ji = ϵi ji1···i2k−2

k−1∑

s=0

Ej (F k−s−1)i1i2···i(2k−2s−2)

(2π )k2k−1(k − s − 1)!
[(td)s]i(2k−2s−1)···i(2k−2)

νk

+
k−1∑

s=0

k−s−1∑

l=1

Ej (F k−s−l−1)i1i2···i(2k−2s−2l−2)

(2π )k−l2k−l−1(k − s − l − 1)!

× [(td)s]i(2k−2s−2l−1)···i(2k−2l−2)
ν

i ji1···i(2k−2l−2)

k−l , (41)

where [td]s is the 2s-form in terms of curvatures in the expan-
sion of the Todd class as given in (3). νk is the integral of the
kth Chern class defined in (34), and the integrals νk−l over the
subclasses are defined by

ν
i ji1···i(2k−2l−2)

k−l =
∫

d2k p
(2π )k+l

∑

dist.perm.

[%i j%i1i2 · · · %i(2k−2l−3)i(2k−2l−2) ].

(42)
The differential 2s-form corresponding to the Todd class is
written as

(td)s = 1
2s(2π )s

[(td)s]a1···a2s (dxa1 · · · dxa2s ), (43)

so that [(td)s]a1···a2s is given in terms of traces of powers of
the curvature with indices as shown. Factors of 2 and 2π have
been separately included in (41).

IV. HALL VISCOSITY IN HIGHER DIMENSIONS

The effective actions we have derived in [12] also allow
for the direct evaluation of the Hall viscosity beyond two
dimensions. Here we shall illustrate in detail the derivation of
the Hall viscosity in the case of the two- and four-dimensional
QHE, but similar arguments apply to all dimensions. (For the
viscosity we consider QHE with electrons in free space.) Of
course, in the case of the two-dimensional QHE, our results
agree with previous results derived in Refs. [14–16].

We start by recalling that viscosity is defined in terms of the
two-point function ⟨T µν (x)T ρσ (y)⟩ for the energy-momentum
tensor T µν . We can identify the viscosity by considering the
expansion of T µν (obtained from the effective action) in terms
of powers of derivatives of the metric. The term involving the
time derivative of the metric gives the viscosity. In mathemat-
ical terms,

T µν = ηµν
ρσ ġρσ + · · · , (44)

and we identify ηµν
ρσ with the viscosity tensor. Since T µν is

obtained from the variation of the action with respect to the

(inverse) metric gµν , we can also write this as

⟨T µν (x)Tρσ (y)⟩ = 4gµλgντ δ2Seff

δgρσ (y)δgλτ (x)

= ηµν
ρσ

∂

∂x0
δ(2k+1)(x, y) + · · · . (45)

This agrees with the usual definition in terms of the two-point
correlation function for the energy-momentum tensor.

In using Eq. (44) for calculating the Hall viscosity, we
should keep in mind that the effective action was obtained
for complex manifolds. A general variation of the metric,
which does not necessarily preserve the complex structure,
is needed for the correlation function in Eqs. (44) or (45).
Of course, one can, after identifying ηµν

ρσ , set the background
metric to its value appropriate for the complex manifold of
interest. The spin connection involves the U (k) subalgebra
of the vector representation of the Lie algebra of the SO(2k)
holonomy group. Therefore, to carry out a general variation
of the metric, we need the relation between the complex U (k)
spin connection (ω0,ωa) and the corresponding real SO(2k)
quantities ωαβ . This is worked out in detail in Appendix A for
the two- and four-dimensional cases.

The SO(2k) spin connection ω is related to the Christoffel
symbols 1α

µβ by2

ωαβ
µ = eα

i 1i
µ j (e

−1) jβ − ∂µeα
j (e−1) jβ . (46)

In some formulas we will use the form notation ωαβ =
ωαβ

µ dxµ and 1i
j = 1i

µ j dxµ, where eα
i is the frame field in

general. Since we deal with a nonrelativistic system, we also
have the specific values

g00 = 1, g0i = 0, e0
i = ei

0 = 0. (47)

The variation of the expression (46) gives

δωαβ = eα
i

(
δ1i

j

)
(e−1) jβ − (d2 + ω 2 − 2ω)αβ

δ1i
µ j = 1

2 gil (−∇lδgµ j + ∇µδg jl + ∇ jδgµl ) (48)

2 = δeα
i (e−1)iβ .

A. Two-dimensional QHE

The topological bulk effective action in two dimensions for
QHE for the sth Landau level is given by

S(s)
2+1 = 1

4π

∫ [
AdA + 2s̄Adω0 +

(
s̄2 − 1

12

)
ω0 dω0

]
,

(49)

where we defined s̄ = s + 1
2 , and we switched to a Hermitian

basis for the gauge and spin connections, which eliminates the
factor of i2 from (14). Further, as explained in Appendix A,

ω0 = 1
2ϵαβωαβ, ω0dω0 = − 1

2 (ωαβdωβα ). (50)

2Our conventions, given in Appendix A, are that Greek letters from
the beginning of the alphabet denote tangent frame indices, low-
ercase Roman letters indicate spatial components in the coordinate
basis, and Greek letters from later in the alphabet denote coordinate
basis again, but including space and time components.
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Varying ωαβ , we get

δS(s)
3d = 1

4π

∫
s̄ dAϵαβδωαβ −

(
s̄2 − 1

12

)
(δωαβ dωβα ). (51)

We will use (48) and evaluate the two terms in (51) separately. For the first one, we find
∫

dAϵαβδωαβ =
∫

dAϵαβ (eδ1e−1 − d2 − [ω,2])αβ = 1
2

∫
ϵαβeα

i e−1 jβδ1i
µ jϵ

µνσ Fνσ d3x. (52)

In going from the first to the second equality in (52), we used the fact that ϵαβ[ω,2]αβ = 0 in two dimensions. We can evaluate
the second term in (51) in a similar way:

∫
(δωαβ dωβα ) = 1

2

∫
eα

i e−1 jβδ1i
µ jϵ

µνσ (Rνσ )βαd3x = 1
2

∫
δ1i

µ jϵ
µνσ (Rνσ ) j

i d3x. (53)

The curvatures in (52) and (53) are defined by

Fνσ = ∂νAσ − ∂σ Aν, (Rνσ ) j
i = (e−1) jβ eα

i

(
∂νω

βα
σ − ∂σωβα

ν

)
. (54)

Using δ1 as given in (48), we find that the variation of the effective action (51) becomes

δS(s)
3d = 1

16π

∫ (
−∇lδgµ j + ∇µδgl j + ∇ jδgµl

)[
e−1lαe−1 jβϵαβ s̄Fνσ −

(
s̄2 − 1

12

)
(Rνσ ) jl

]
ϵµνσ d3x

= − 1
8π

∫
δgµl

[
s̄(J0)l j∇ jFνσ −

(
s̄2 − 1

12

)
∇ j (Rνσ ) jl

]
ϵµνσ d3x. (55)

In obtaining the last line of (55), we have done an integration by parts and also defined the antisymmetric tensor:

(J0)l j = e−1lαe−1 jβϵαβ . (56)

The energy-momentum tensor can be read off from the variation δSeff using the usual formula

δSeff = −1
2

∫
δgml T ml

√
det gdnx. (57)

Comparing (55) and (57), we identify the energy-momentum tensor for the 2D QHE as

T ml = − 1
4π

√
det g

(gilϵmk + gimϵlk )
[

s̄(J0) j
i ∇ jF0k −

(
s̄2 − 1

12

)
∇ j (R0k ) j

i

]
. (58)

In order to calculate the Hall viscosity, we need to identify the terms in this expression that are proportional to the time derivative
of the metric. For the covariant derivative of F we can use

∇ jF0k = ∂ jF0k − 1n
j0Fnk − 1n

jkF0n = − 1
2 gnl ġl j Fnk + · · · , (59)

where the ellipsis indicates terms that do not contain ġ. As for the curvature term, we find

(R0k ) j
i = 1

2 gjn(∇iġnk − ∇nġik ). (60)

Therefore

∇ j (R0k ) j
i = 1

2∇ j∇i(gjnġnk ) − 1
2 gjn∇ j∇nġik − 1

2 gnl ġl j (Rnk ) j
i . (61)

We can simplify this result further by commuting the covariant derivatives in the first term and writing

∇ j∇i(gjnġnk ) = ∇i∇ j (gjnġnk ) + (Rji ) j
m(gmnġnk ) − (Rji )m

k (gjnġnm). (62)

Using (62) in (61) we get

∇ j (R0k ) j
i = 1

2∇i∇ j (gjnġnk ) − 1
2∇2ġik − 1

2 gnl ġl j (Rnk ) j
i + 1

2 gmnġnk (Rji )
j
m − 1

2 gjnġnm(Rji )m
k . (63)

An arbitrary perturbation of the metric is rather too general for our purpose, since some of it corresponds simply to a coordinate
change or diffeomorphism. A suitable covariant gauge choice which restricts the variations appropriately is the de Donder gauge,
which is given by [21]

∇ j (gjnġnk ) − 1
2∇k (gjr ġ jr ) = 0. (64)

It is possible to choose such a gauge for the perturbations of the metric by using the freedom of coordinate transformations.
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Using (59), (63), and (64) in the expression (58) for the energy-momentum tensor, we find that the term linear in ġ is of the
form

T ml = 1
8π

√
det g

(gilϵmk + gimϵlk )
[[

s̄(J0) j
i grsFsk

]
ġr j +

(
s̄2 − 1

12

)(
1
2
∇i∇k (grnġrn) − ∇2ġik − gnl ġl j (Rnk ) j

i

+ gmnġnk (Rji ) j
m − gjnġnm(Rji )m

k

)]
. (65)

In two dimensions there are further simplifications, since the Riemann tensor has the form

Ri jkl = R
2

(gikg jl − gil g jk ), (66)

where R is the Ricci scalar curvature. Furthermore,

(J0)l j = e−1lαe−1 jβϵαβ = ϵl j

√
det g

. (67)

By use of these expressions, the result (65) for the energy-momentum tensor can be simplified as

T ml = 1
8π

√
det g

(gmiϵlk + gliϵmk )
{[

s̄B +
(

s̄2 − 1
12

)(
R
2

− ∇2
)]

ġki + 1
2

(
s̄2 − 1

12

)
∇i∇k (grnġrn)

}
. (68)

In this expression, we used the magnetic field B given by

Fi j = ϵi jB
√

det g. (69)

Comparing (68) with the expression (44) of the energy-momentum tensor in terms of the Hall viscosity, we see that we can write
√

det gT ml = 1
2 ηH (gmiϵlk + gliϵmk )ġki + 1

2 η(2)
H (gmiϵlk + gliϵmk )∇i∇k (grnġrn), (70)

where the coefficients can be read off as

ηH = 1
4π

[
s̄B +

(
s̄2 − 1

12

)(
R
2

+ k⃗2
)]

η(2)
H = 1

8π

(
s̄2 − 1

12

)
. (71)

The magnetic field and curvature-dependent terms of ηH , and the structure of T ml as in (70), are in agreement with [15].3 Notice
that the coefficient of ġrs in (68) and (70) is an operator, so an expansion in terms of the eigenmodes of the covariant Laplacian
will be needed to identify numerical values. For purposes of comparison, we have indicated the eigenvalue of −∇2 as k⃗2, which
would be appropriate in the flat space limit.

B. Four-dimensional QHE

Turning to 4 + 1 dimensions, we write the action (15) as

S(s)
4+1 = (s + 1)

(2π )2

∫ {
1
3!

(A + (s + 1)ω0)[d (A + (s + 1)ω0)]2

− 1
12

(A + (s + 1)ω0)
[

(dω0)2 + 1
4

Ra ∧ Ra − s
(

s
2

+ 1
)

Ra ∧ Ra
]}

, (72)

where we have removed the overall factor of i3 by going over to the Hermitian forms of the connections. We have also used
j = s/2. The relation between the U (2) spin connections and curvatures used in (72) and the corresponding SO(4) quantities is
derived in (A27) and is given by

ω0 = 1
4ϵαβωαβ, R0 = 1

4ϵαβdωαβ

RaRa = −4R0R0 − RαβRβα. (73)

Using these relations, the effective action (72) can be expressed as

S(s)
4+1 = (s + 1)

(2π )2

∫ [
1
3!

AdAdA − 1
12

∫
A

[
4s

(
s
2

+ 1
)

dω0dω0 +
(

s
(

s
2

+ 1
)

− 1
4

)
Rαβ ∧ Rβα

]]
, (74)

where A = A + (s + 1)ω0.

3We thank A. G. Abanov for discussions resolving a slight discrepancy in the coefficient of k⃗2 in ηH and of η(2)
H between (71) and [15].

Equation (71) is the correct expression.
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The variation of the effective action (74) naturally splits into two types of terms of the form

δS = δS(1) + δS(2), (75)

δS(1) = (s + 1)
(2π )2

∫
δω0 K, (76)

δS(2) = − (s + 1)
12(2π )2

[
s
(

s
2

+ 1
)

− 1
4

] ∫
A δ(RαβRβα ), (77)

K = s + 1
2

dAdA + 2
3

[
(s + 1)2 + 1

2

]
dAdω0 + s + 1

2
dω0dω0 − s + 1

12

[
s
(

s
2

+ 1
)

− 1
4

]
RαβRβα. (78)

The variation and simplification of these terms will proceed along lines similar to the (2 + 1)-dimensional case. Using (48) and
an integration by parts for the d2 term, we find

∫
δω0 K = 1

4

∫
[(J0)l j∇ jδgµl − (δee−1)αβ ([ωµ, ϵ])βα]Kµ

√
det g, (79)

where

Kµ
√

det g = ϵµνστρ

{
s + 1

2
∂νAσ ∂τ Aρ + 2

3

[
(s + 1)2 + 1

2

]
∂νAσ ∂τω

0
ρ + s + 1

2
∂νω

0
σ ∂τω

0
ρ − s + 1

48

[
s
(

s
2

+ 1
)

− 1
4

]
Rαβ

νσ Rβα
τρ

}
,

(80)

and (J0)l j is given in (56). The contribution of the second term in (79) to the symmetrized version of the energy-momentum
tensor is zero. (The variation of the frame field as in (δee−1)αβ can be related to the variation of the metric (which is the symmetric
combination) and an antisymmetric part. It is the symmetric part which is relevant for the energy-momentum tensor.4) With an
integration by parts, (76) simplifies as

δS(1) = − s + 1
8(2π )2

∫
δgml∇ j[(J0)l jKm + (J0)m jKl ]

√
det g. (81)

Comparing this with (57), we find that the contribution to the energy-momentum tensor from (81) is

(T ml )(1) = (s + 1)
4(2π )2

∇ j[(J0)l jKm + (J0)m jKl ]. (82)

For the evaluation of the second type of terms, namely, Eq. (77), we notice that

δtr(R ∧ R) = dtrδ
(
ωdω + 2

3ω3
)

= 2dtr(δωR). (83)

[The trace here, indicated by tr, is for ω, R in the vector representation of SO(2k).] Using Eqs. (83) and (48) in Eq. (77), we then
get

δS(2) = − (s + 1)
6(2π )2

[
s
(

s
2

+ 1
)

− 1
4

] ∫
dAtr[δ1e−1Re + δee−1(dR + [ω, R])]. (84)

The last term in (84) vanishes by the Bianchi identity dR + [ω, R] = 0. After writing δ1 in terms of variations of the metric and
carrying out a partial integration we find

δS(2) = (s + 1)
12(2π )2

[
s
(

s
2

+ 1
)

− 1
4

] ∫
δgµl∇ j[(Rνσ ) jl∂τAρ]ϵµνστρd5x. (85)

Comparing this with (57), we find that the contribution to the energy-momentum tensor from (85) is

(T ml )(2) = − (s + 1)
12(2π )2

[
s
(

s
2

+ 1
)

− 1
4

]
[∇ j[(Rνσ ) jl∂τAρ]

ϵmνστρ

√
det g

+ (m ↔ l )
]
. (86)

In order to identify the Hall viscosity, we have to extract terms linear in ġ in (82) and (86). To simplify the calculation we will
neglect terms of the form ∂ ġ, which will produce momentum-dependent terms for the Hall viscosity.

Focusing first on (T ml )(1) and using the fact that

∇µ(J0)l j = e−1lα[ϵ,ωµ]αβe−1 jβ , (87)

4The antisymmetric part can be related to spin densities and can be relevant for some other transport coefficient related to the correlation
function for the energy-momentum tensor and the spin density. This is not our focus at this stage.
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we find

∇ j ((J0)l jKm) = e−1lαe−1 jβ(
[ϵ,ω j]αβKm + ϵαβ∂ jKm + ϵαβ1m

jρKρ
)
. (88)

The first term in (88) vanishes if ω preserves the U (2) structure as expressed in (A21). For a constant magnetic field the second
term in (88) will contribute only momentum-dependent terms, of the form ∂ ġ, to the expression for the Hall viscosity. The third
term leads to

(T ml )(1) = s + 1
8(2π )2

[gmn(J0)l j + gln(J0)m j]ġn jK0. (89)

Turning to (T ml )(2), we notice that

K̃ jlm = [(Rνσ ) jl∂τAρ]
ϵmνστρ

√
det g

(90)

transforms as a rank-3 contravariant tensor, so its covariant derivative is easy to write down. If any of the indices ν, σ, τ, ρ is
taken to be the time-component, the corresponding contribution will involve covariant derivatives of ġ. Since we are not including
them here, the only contribution is from 1m

j0K̃ jl0 in the expression for the covariant derivative. So the term linear in ġ in (86)
(without covariant derivatives on it) is of the form

(T ml )(2) = (s + 1)
24(2π )2

[
s
(

s
2

+ 1
)

− 1
4

]
[gmn(Rrs)l j + gln(Rrs)m j]ġn j∂pAq

ϵrspq

√
det g

. (91)

These two expressions, namely, Eqs. (89) and (91), give us the momentum-independent terms of the Hall viscosity. To simplify
further, we will consider it in two particular limits: (1) the flat limit where the CP2 radius becomes very large and the curvature
vanishes, and (2) on the manifold CP2 with curvatures set to the values appropriate to this background.

In the flat limit, CP2 space decomposes into C × C, corresponding to the planes (1,2) and (3,4). The flat limit may be
the most pertinent case for the current experimental setups [9,10]. Each plane carries a constant perpendicular magnetic field
F12 = F34 = B = n/2r2. Also, we can write (J0)i j → ϵi j . Since the curvature terms vanish in this limit, the contribution from
(T ml )(2) is zero. The contribution from (T ml )(1) is of the form

T ml = (s + 1)2

8(2π )2
(gmiϵlk + gliϵmk )ġkiB2. (92)

Comparing with (70), we find that the Hall viscosity in this limit is

ηH = 1
4

(
(s + 1)B

2π

)2

. (93)

We have not evaluated the momentum-dependent terms, so there is no result for such terms in the Hall viscosity.
Turning to the Hall viscosity for the CP2 background, it is useful to write the expression for K0 and (T ml )(2) in terms of

differential forms:

d4x
√

det gK0 = s + 1
2

dAdA + 2
3

[
(s + 1)2 + 1

2

]
dAdω0 + s + 1

2
dω0 dω0 − s + 1

12

[
s
(

s
2

+ 1
)

− 1
4

]
RαβRβα. (94)

From the relations given in Appendix A, dA = F = n %K, dω0 = R0 = (3/2)%K, and

RαβRβα = −4R0R0 − RaRa = −6 %2
K, (95)

where %K is the Kähler 2-form for CP2. Using these relations, K0 becomes

K0 =
{

(s + 1)(n/2)2 +
[

(s + 1)2 + 1
2

]
(n/2) + s + 1

8
[(s + 1)2 + 3]

}
. (96)

Similarly, we write (T ml )(2) as

d4x
√

det g (T ml )(2) = s + 1
12(2π )2

{[
s
(

s
2

+ 1
)

− 1
4

]
(gmnRl j + glnRm j )ġn jdA

}
. (97)

A useful relation is to note that Ra ∧ %K = 0, as shown in Appendix A. Also, dA = dA + (s + 1)dω0 = [n + 3
2 (s + 1)]%K. The

expression for (T ml )(2) then simplifies as

(T ml )(2) = s + 1
8(2π )2

{[
s
(

s
2

+ 1
)

− 1
4

][
n
2

+ 3
4

(s + 1)
]}

[gmi(J0)lk + gli(J0)mk]ġki. (98)

Using K0 from (96) in (89) and adding (T ml )(2) from the equation given above, we get

T ml = (s + 1)
8(2π )2

[gmi(J0)lk + gli(J0)mk]ġki

{
(s + 1)

(
n
2

)2

+
[

3
2

(s + 1)2 − 1
4

](
n
2

)
+ (s + 1)

2

[
(s + 1)2 − 3

8

]}
. (99)
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We notice that the tensorial structure of the energy-momentum
tensor in (99) is appropriately modified, with the metric and
the covariant version of J0, for the CP2 background compared
to (92) and that the curvature terms do contribute to the overall
factor. However, the contribution from the curvature terms is
relatively negligible in the large-B limit, as expected.

V. DISCUSSION

In this paper we have considered some of the transport
properties of quantum Hall systems in arbitrary, even spatial
dimensions. The effective action obtained in [12] provides a
uniform approach and a convenient starting point for this, as
transport coefficients can be obtained by varying this action
with respect to the external fields and the metric. Specifically,
we focus on the Hall conductivity and the Hall viscosity,
which are the transport properties most relevant from an ex-
perimental point of view. Towards this, we first generalized
the effective action from [12] to take account of the fact
that electrons belong to an energy band in a solid, rather
than being in free space. We derived an expression for the
electromagnetic Hall current, valid for any even spatial di-
mension, displaying various terms proportional to integrals
of the Chern classes of the Berry curvature of the electronic
bands. Additionally, our expressions include the contributions
due to the spatial curvature. We expect that these expressions,
with or without the spatial curvature, will be directly relevant
for proposed experimental realizations in higher dimensions
[9,10].

We have also given explicit expressions for the Hall viscos-
ity in two and four spatial dimensions, including terms which
depend on the curvature. While the result for two dimensions
agrees with previous work on the calculation of responses,
it should be emphasized that our approach places it within a
uniform method of derivation. The results for four dimensions
are obviously new.

An important point worth noting is that, in general, there
are several additional transport coefficients or response func-
tions possible. Already in two spatial dimensions, we see from
(30) that the second term is of the form

Ji = ν1

4π
ϵi j R j0 = ν1

8π
ϵi jϵkl

∇k (glnġn j )√
det g

. (100)

This shows that there is a new transport coefficient ζ i
mn we can

define by

⟨Ji(x) Tmn(y)⟩ = ζ i
mn

1√
det g

∂0δ
(3)(x − y)

ζ i
mn = − ν1

8π
ϵi j (gm jϵkn + gn jϵkm)gkl∇l . (101)

(As written, ζ i
mn is an operator and must be interpreted in

terms of eigenfunctions of the gradient operator or in terms
of Fourier components.) This transport coefficient exists for
the higher dimensional cases as well, although we have not
calculated explicit formulas for it.

Higher dimensions also allow for the possibility of non-
Abelian background gauge fields. The responses to varying
the non-Abelian gauge field background will constitute an-

other set of transport coefficients. Finally, we have already
noted, in the footnote after Eq. (80), that one can also have
transport coefficients with correlation functions involving the
spin density. In principle, all such additional transport coeffi-
cients can be calculated using the effective action from [12],
but we leave this to future work.
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APPENDIX A: BASIC FEATURES AND GEOMETRY
OF CPk SPACES

Let tA denote the generators of SU (k + 1) as matrices in
the fundamental representation, normalized so that Tr(tAtB) =
1
2δAB. These generators are classified into three groups. The
ones corresponding to the SU (k) part of U (k) ⊂ SU (k + 1)
will be denoted by ta, a = 1, 2, . . . , k2 − 1, while the gen-
erator for the U (1) direction of the subgroup U (k) will be
denoted by tk2+2k . The 2k remaining generators of SU (k + 1)
which are not in U (k) are the coset generators, denoted
by tα , α = k2, . . . , k2 + 2k − 1. (To distinguish the various
components, we use Greek letters from the beginning of the
alphabet here; the corresponding E ′s defined below will be the
components in the tangent frame, not the coordinate frame.
Lowercase Roman letters from the middle of the alphabet
onwards will denote components in the coordinate frame, for
spatial directions only. When spacetime coordinate frames are
involved, we use Greek letters from later in the alphabet for
the coordinate frame.)

We can now use a (k + 1) × (k + 1) matrix g in the funda-
mental representation of SU (k + 1) to coordinatize CPk , with
the identification g ∼ gh, where h ∈ U (k). We can expand
g−1dg, which is an element of the Lie algebra, as

g−1dg = (−iEk2+2ktk2+2k − iEata − iEαtα )

= (−iEk2+2ktk2+2k − iEata − iE+I t+I − iE−I t−I ),

(A1)

where

E+I = Ek2+2I−2 − iEk2+2I−1,

E−I = Ek2+2I−2 + iEk2+2I−1, I = 1, . . . , k. (A2)

Eα are 1-forms corresponding to the frame fields in
terms of which the Cartan-Killing metric on CPk is given
by

ds2 = gi jdxidx j = Eα
i Eα

j dxidx j . (A3)

The Kähler 1-form on CPk is given by

α = i

√
2k

k + 1
Tr(tk2+2kg−1dg) =

√
k

2(k + 1)
Ek2+2k . (A4)
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The corresponding Kähler 2-form %K = dα is given by

%K = −i

√
2k

k + 1
tr(tk2+2kg−1dg ∧ g−1dg)

= −1
4

√
2k

k + 1
f(k2+2k)αβEα ∧ Eβ = −1

4
ϵαβEα ∧ Eβ .

(A5)

fABC are the SU (k + 1) structure constants, defined by
[tA, tB] = i fABC tC . In deriving the last line of (A5), we used
the fact that f(k2+2k)αβ =

√
k+1
2k ϵαβ , where

ϵαβ = −ϵβα = 1 for α = k2 + 2I − 2,

β = k2 + 2I − 1, I = 1, 2, . . . , k
= 0 for all other choices. (A6)

The volume of CPk is normalized so that
∫

CPk

(
%K

2π

)k

= 1. (A7)

The Maurer-Cartan identity d (g−1dg) = −g−1dgg−1dg, along
with (A1), leads to

dEk2+2k = −1
2

f (k2+2k)αβEα ∧ Eβ = 2

√
k + 1

2k
%K

dEa + 1
2

f abcEb ∧ Ec = −1
2

f aαβEα ∧ Eβ (A8)

dEα = − f αAβEA ∧ Eβ .

The U (k) spin connection ωIJ is defined in terms of the
holomorphic frame fields E+I by

dE+I + ωIJE+J = 0, I = 1, . . . , k. (A9)

ωIJ takes values in the Lie algebra of U (k), so one can write

ωIJ = −i(ω01 + ωata). (A10)

The curvature 2-form is given by

R = dω + ω ∧ ω = −i(R01 + Rata), (A11)

R0 = dω0

Ra = dωa + 1
2 f abcωbωc. (A12)

Even though equations up to (A8) used specific properties of
CPk , Eqs. (A9)–(A12) hold for any manifold with a complex
structure so that the holonomy group is U (k). In deriv-
ing the effective actions, including gauge and gravitational
fluctuations, for higher dimensional QHE we have used the
topological property of the Dolbeault index to move away
from the specific gauge and curvature background values. So
the equations which hold, in general, are (A9)–(A12).

If we now specialize to the case of CPk , using Maurer-
Cartan identities (A8) we can identify the ωIJ as

ω = ω̄ = −i
(√

k + 1
2k

Ek2+2k1 + Eata

)
≡ −i

(
ω01 + ωata

)
.

(A13)

The curvature components for CPk are then given by

R̄0 = k + 1
k

%K

R̄a = −1
2

f aαβEα ∧ Eβ , (A14)

where we have indicated the background values with an over-
bar, as in R̄. Notice that in the tangent frame, the curvatures
are given in terms of the U (k) structure constants.

We can now use the freedom of h transformations to
parametrize g in terms of complex coordinates zi, z̄i. We
choose a parametrization such that

gi,k+1 = zi√
1 + z · z̄

, i = 1, . . . , k, gk+1,k+1 = 1√
1 + z · z̄

.

(A15)

Using this parametrization, one can write the Kähler 2-form
%K in (A5) in terms of the local complex coordinates in the
following, more familiar form:

%K = i
[

dz · dz̄
1 + z · z̄

− z̄ · dzz · dz̄
(1 + z · z̄)2

]
. (A16)

We further choose the relation between the complex coordi-
nates and the real ones to be the usual one:

zi = x2i−1 + ix2i, z̄i = x2i−1 − ix2i, i = 1, . . . , k.
(A17)

The parametrizations (A17) and (A15) determine the ap-
propriate choice for the Cartesian frame fields in the
following way. For simplicity we will work with CP1 =
S2, but the argument works in general. Using Eq. (A15),
one finds that the complex frame field E+ = E1 − iE2 =
idz/(1 + zz̄). In the flat limit, where the radius of the sphere
becomes large, E+ = E1 − iE2 = i(e1 + ie2) ∼ i(dx + idy),
where (e1, e2) = (−E2,−E1). It is the e′s that provide the
conventional Cartesian frame fields given the choices (A17)
and (A15). More generally, for CPk ,

(e2I−1, e2I ) = (−Ek2+2I−1,−Ek2+2I−2), I = 1, . . . , k.

(A18)

In terms of the Cartesian frame fields e, the Kähler 2-form %K
and the metric gi j can be written as

%K = 1
4ϵαβeα ∧ eβ , gi j = eα

i eα
j , (A19)

where α = 1, . . . , 2k and ϵ12 = ϵ34 = · · · = ϵ2I−1,2I = 1 for
I = 1, . . . , k.

The spin connection and the corresponding curvature de-
fined in Eqs. (A9)–(A12) involve the U (k) subalgebra of
the vector representation of the Lie algebra of the SO(2k)
holonomy group. In the effective actions for quantum Hall
effect in higher dimensions we have considered fluctuations of
the holomorphic U (k) spin connection away from their back-
ground values. Further, in obtaining the energy-momentum
tensor from the effective actions, we must consider arbitrary
variations of the metric. For this we will need to consider
the connection and curvature in SO(2k). Thus it is important
to know how the U (k) spin connection and curvature are
embedded in SO(2k). We will now derive this relation for
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the four-dimensional quantum Hall effect on CP2, although
similar expressions hold for all CPk .

The real components of the SO(4) spin connection can be
identified via

deα + ωαβeβ = 0. (A20)

Using (A2), (A9), and (A18), we find

ωαβ = ϵαβω0 + (Ja)αβωa

Rαβ = ϵαβR0 + (Ja)αβRa, (A21)

where ω0, R0 and ωa, Ra are the U (1) and SU (2) components
of the complex spin connection and curvature as defined in
Eqs. (A10) and (A11). The (4×4) matrices Ja are related to
the SU (3) structure constants f aαβ via

(Ja)αβ = ( f 1,− f 2, f 3)3+α,3+β . (A22)

In particular,

J1 = 1
2

⎡

⎢⎢⎣

0 0 0 1
0 0 −1 0
0 1 0 0

−1 0 0 0

⎤

⎥⎥⎦,

J2 = 1
2

⎡

⎢⎢⎣

0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0

⎤

⎥⎥⎦, (A23)

J3 = 1
2

⎡

⎢⎢⎣

0 1 0 0
−1 0 0 0

0 0 0 −1
0 0 1 0

⎤

⎥⎥⎦.

Similar expressions hold for all CPk manifolds.
The matrices Ja form a basis for the Lie algebra of SU (2),

obeying the commutation rules:

[Ja, Jb] = ϵabcJc. (A24)

Further, they satisfy the following relations:

ϵαβ (Ja)βα = 0, Tr(JaJb) = −δab

(Ja)αβ (Ja)γ δ = 1
4 (δαγ δβδ − δαδδβγ ) − 1

4ϵαβγ δ. (A25)

Using (A25), we can write the relation between the complex
U (k) components of the spin connection and curvature in
terms of the real SO(2k) components of the corresponding
quantities. In particular, we have the following relations:

CP1 case:

ω0 = 1
2ϵαβωαβ = ω12 (A26)

CP2 case:

R0 = 1
4ϵαβRαβ

RaRa = −4R0R0 − RαβRβα (A27)

In formulating QHE on CPk , one has to choose the back-
ground values for the gauge fields as well. We take the U (1)
and SU (k) background gauge fields as proportional to Ek2+2k

i

and Ea
i . Specifically,

Āk2+2k = −in

√
2k

k + 1
Tr(tk2+2kg−1dg) = n

2

√
2k

k + 1
Ek2+2k

Āa = Ea = 2iTr(t ag−1dg). (A28)

The corresponding U (1) and SU (k) background field
strengths are

F̄ = n %K, F̄ a = R̄a. (A29)

We see from (A29) that the background field strengths are
proportional to the background curvature components, which
are constant in the appropriate frame basis, proportional to
the U (k) structure constants (A14). It is in this sense that the
field strengths in (A29) correspond to uniform magnetic fields
appropriate in defining QHE.

In terms of the frame fields eα , the curvatures for CP2 are
given by

R0 = 3
2%K = 3

4 (e1e2 + e3e4)

R1 = 1
2 (e1e4 − e2e3), R2 = − 1

2 (e2e4 + e1e3) (A30)

R3 = 1
2 (e1e2 − e3e4).

In particular, we have the relation Ra ∧ %K = 0.
A few other relations, which might be of interest for CPk ,

for arbitrary k are the following:
∫

CPk
td (TcK )|2k = 1, (A31)

where td (TcK ) is the Todd class in the complex tangent space,
and in (A31) the 2k-form is selected as the integrand. Explic-
itly, the Todd class has the expansion given in (3) as

td = 1 + 1
2 c1 + 1

12

(
c2

1 + c2
)
+ 1

24 c1 c2

+ 1
720 (−c4 + c1c3 + 3 c2

2 + 4 c2
1 c2 − c4

1 ) + · · · ,

(A32)

where ci are the Chern classes. The first few Chern classes can
be easily evaluated using (A14) as

c1 = Tr
iR
2π

= (k + 1)
%K

2π

c2 = 1
2

[(
Tr

iR
2π

)2

− Tr
(

iR
2π

)2]
= 1

2 k(k + 1)
(

%K

2π

)2

.

(A33)

In deriving the expression for c2, we used the fact that

Ra ∧ Ra = 1
4

f aαβ f aγ δEαEβEγ E δ = −2
k + 1

k
%2

K

Tr[iR ∧ iR] = k(R0)2 + 1
2

(Ra)2 = (k + 1)%2
K. (A34)

These can be easily shown using completeness relations
for the matrices tA in the fundamental representation. More
generally, the Chern classes for CPk can be written as

ci = k!
i!(k − i)!

(
%K

2π

)i

. (A35)
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Using Eqs. (A7) and (A33), we can easily check the validity
of (A31) for CP1, CP2, and CP3, the needed integrals being

∫

CP1
c1 = 2

∫
%K

2π
= 2

∫

CP2
c2

1 + c2 = (32 + 3)
∫ (

%K

2π

)2

= 12 (A36)

∫

CP3
c1c2 = 4×6

∫ (
%K

2π

)3

= 24.

APPENDIX B: AN IDENTITY ON DETERMINANT OF !

In this Appendix we give a derivation of the identity (40)
for k = 3 and the more general case used in text. [In what
follows, % is the Berry curvature given in (21).] Consider
Grassmann variables Qa and ηa, a = 1, 2, . . . , 2k, and start
with the identity

∫
[dQ]eQ%Qeη·Q = K eη%−1η/4

K =
[

1
k!

ϵa1a2···a2k %
a1a2%a3a4 · · · %a2k−1a2k

]
. (B1)

We equate the term with 2l powers of η on both sides. We
also carry out the integration on the Q’s on the left-hand side
by expanding eQ%Q. This gives us the relation

[
(−1)l

(2l )!(k − l )!

]
ηa1 · · · ηa2l ϵa1···a2l a2l+1···a2k

× (%a2l+1a2l+2 · · · %a2k−1a2k )

= K
1

4l l!
ηa1 · · · ηa2l [(%−1)a1a2 · · · (%−1)a2l−1a2l ]. (B2)

We can remove the η’s by writing [(%−1)a1a2 · · · (%−1)a2l−1a2l ]
in the fully antisymmetrized form, so that

[
(−1)l

(2l )!(k − l )!

]
ϵa1···a2l a2l+1···a2k (%a2l+1a2l+2 · · · %a2k−1a2k )

= K
1

4l l!
[(%−1)a1a2 · · · (%−1)a2l−1a2l ]antisym. (B3)

This is the basic identity. In calculating the Hall currents, we
get this expression multiplied by a factor of ϵi jk···a1···a2l . This

allows us to write the identity
[

(−1)l

(2l )!(k − l )!

]
(2l )! δi j···

a2l+1···a2k
(%% · · · )a2l+1···a2k

= K
1

4l l!
ϵi j···a1···a2l [(%−1)a1a2 · · · (%−1)a2l−1a2l ]. (B4)

Because of the antisymmetry of δ
i j···
a2l+1···a2k , we get all permuta-

tions of all indices in (%% · · · )a2l+1···a2k on the left-hand side
of this equation. Since permutations of the %′s themselves
[(k − l )! of these] and the permutation of the two indices on
each % (2k−l of these) do not change the expression, we can
write

δi j···
a2l+1···a2k

(%% · · · )a2l+1···a2k = (k − l )! 2k−l
∑

dist.perm.

(%% · · · )i j···.

(B5)
The number of terms in the sum in this equation is given by

Number of distinct permutations = (2k − 2l )!
2k−l (k − l )!

. (B6)

Since

1
k!

(
%

2π

)k

= 1
2k (2π )k

K d2k p, (B7)

we can use (B5) to bring (B4) to the form
∫

1
k!

(
%

2π

)k

ϵi j···a1···a2l

{
(−1)l

l!

[(
(%−1)a1a2

2(2π )

)

· · ·
(

(%−1)a2l−1a2l

2(2π )

)]}
= ν

i j···
k−l , (B8)

where we define

ν
i j···
k−l =

∫
1

(2π )k+l

∑

dist.perm.

(%% · · · )i j···. (B9)

Notice that there are 2k − 2l indices in this expression, so we
can make this explicit by writing it out as

ν
i1i2···i(2k−2l )

k−l =
∫

1
(2π )k+l

∑

dist.perm.

(%i1i2 %i3i4 · · · %i(2k−2l−1)i(2k−2l ) ).

(B10)
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