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Abstract

Classical multidimensional scaling (CMDS) is a technique that embeds a set
of objects in a Euclidean space given their pairwise Euclidean distances. The
main part of CMDS involves double centering a squared distance matrix and
using a truncated eigendecomposition to recover the point coordinates. In
this paper, motivated by a study in Euclidean distance geometry, we explore
a dual basis approach to CMDS. We give an explicit formula for the dual
basis vectors and fully characterize the spectrum of an essential matrix in the
dual basis framework. We make connections to a related problem in metric

nearness.
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1. Introduction

The origin of our work is the following inverse problem: given a set of
squared Euclidean distances {D; ; }1<i<j<n, among n objects, arranged into a

matrix D € R™" find points p;, ps, ..., p, in R” that realize these distances.
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The matrix P € R™*" comprises the points arranged as its rows. We assume
that n > r and the set of points span R". If all distances are given, the
problem can be solved via classical multidimensional scaling (CMDS) (Young
and Householder, 1938; Torgerson, 1952, 1958; Gower, 1966). An important
result in CMDS states that D is a squared FEuclidean matrix if and only if
X = —%J DJ is positive semidefinite, where J = I — %11T is the centering
matrix (Schoenberg, 1935). A useful fact is that rank(X) = rank(P). With
that, an r-truncated eigendecomposition, where r = rank(P) = rank(X),
then recovers P from X.

However, if some distances are missing, the problem is studied under the
name Euclidean distance geometry (EDG). It is of fundamental importance
in many applications (Fang and Toh, 2013; Lavor et al., 2012; Ding et al.,
2010; Biswas et al., 2006). Building off of matrix completion theory (Recht
et al., 2010; Candes and Recht, 2009), the work in (Tasissa and Lai, 2019)
analyzes the EDG problem using a dual basis approach. A key part of that

work was to represent any zero-centered Gram matrix X by the expansion
X =) (X, wa)va, (1)
acl
where {w,} is a basis of the zero-centered symmetric matrices, {veo} is its
dual basis, and I denotes the universal set {(4,7) : 1 <14 < j < n}, which has
size L = n(n —1)/2. In particular, for a = (ay, as), (Tasissa and Lai, 2019)
defined
Wa = €ay,01 T €ag,a0 — €y a2 — €az,an (2)
where e; ; represents the matrix of zeros except a 1 at the (4, j)-th entry. The

matrix H denotes the inner product matrix defined entrywise as Ho g =



1 -1.0 0 3 5 1 1
1 100 115 3 1 1
w2 = 'U1,2:E
0 00 0 1 1 -1 -1
0 00 0 1 1 -1 -1
411110 5 -1 -1 -1 -1 1
141101 1 5 -1 -1 1 -1
114011 1|1 -1 5 1 -1 -1
H: H_:—
110411 1611 -1 1 5 -1 -1
1011 41 1 1 -1 -1 5 -1
011114 1 -1 -1 -1 -1 5

Figure 1: Dual basis objects w2, v1 2, H and H~! for n = 4

(wq, wg) where (-, -) denotes the trace inner product and

Va = Y [H o, pwp. (3)

Bel

By construction, {vs} is a dual basis of {wg} satisfying (v, ,wg) = 68
where 6% = 1 if & = 3 and zero otherwise. Note that @ = 3 holds if a; = 3
and oy = 5. The matrix H~! is an inner product matrix of the dual basis.
Specifically, [H a3 = (va,vg). Figure 1 gives some concrete examples
of the core objects that occur in the dual basis approach of (Tasissa and
Lai, 2019), for the case n = 4. Despite the centrality of these objects, the
spectrum of H was not completely characterized, and the only known form
for v, (that did not involve H ') had multiple cases.

In this work, we look to complete the picture. We study the exact case,
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where we have complete distance information in D, and so our work can be
considered a dual basis approach to CMDS. However, we characterize and
analyze objects that were developed for the EDG problem, and so our results

remain applicable to that setting.

Contributions. The contributions of this paper are as follows. First, we char-
acterize all eigenvalues of the matrix H, by relating the structure of H to
a well-studied graph in spectral graph theory (Cameron, 2001). The second
contribution of this paper is a simple and explicit form for both the dual
basis matrices {vg} and their non-zero eigenvalues and corresponding eigen-
vectors. The third contribution is to express the stability of the map from D
to X in (1) in terms of the entries of D. Finally, we connect the matrix H
to a matrix studied in the metric nearness problem; we use our new under-
standing of H to give a proof of an empirical observation made in (Dhillon

et al., 2003). Notation used throughout the paper is given in Table 1.

2. Spectrum of H

Consider a set of n points {p;}?_, in R". Let L = (g) denote the number
of pairs (i,5),1 < i < j < n. In (Tasissa and Lai, 2019), the authors
defined an inner product matrix H € RY*Y with entries Hp g = (Wa, wg).
They noted that H is positive definite and symmetric, and, with indices
a = (o, ), 8 = (P, P2), the entries of H are

(

4 if y = fy and o = S
Haﬂ =40 if {Oél,C(Q}m{ﬁl,ﬂz} =

1 otherwise.

\



x Vector Index set {(i,7): 1 <i<j<n}
T Vector entry 11, Identity matrix

X Matrix Graph

Xij, [ X Matrix entry K, Complete graph on n vertices
X(4,:),X(:,7) | Matrix row, column A(G) | Adjacency matrix of G

a, (ay,as), (i,7) | Basis index J Centering matrix I — 2117
Weq, W; j Basis matrix H Inner product matrix of {wq,}
V@, Uk Dual basis matrix vec(X) | Vectorized matrix

1 All-ones vector () Mean of vector or matrix

€; Standard basis vector || ® Hadamard product

€qa, € ; Standard basis matrix | 62 Kronecker delta (a = 3)
(X.,Y) Trace inner product (xz,y) | Dot product

Table 1: Notation

For the spectrum of H, the work in (Tasissa and Lai, 2019) only gave bounds
for the minimum and maximum eigenvalues, despite empirically observing
that for any n, H has only three distinct eigenvalues: 2, n, and 2n.

In contrast, we are able to completely characterize the spectrum of H.
Before we discuss our results, few definitions are in order. A graph is a
mathematical object that consists of a set of vertices and a set of edges that
connect these vertices. A complete graph is a graph in which every pair of
its vertices is connected by an edge. The complete graph with n vertices
is denoted by IC,. Our result is based on relating the analysis of spectrum
of H to the well-studied graph 7, called the triangular graph (Cameron,
2001). The graph 7, is formed from the complete graph on n vertices, IC,:

add a vertex v;; in 7, for each edge e;; in K,, and connect two vertices

Vi, Vkg € T, with an edge if e;; and ej; share a common vertex in /C,.



Claim 2.1. H =4I, + A(T,), where A(T,) is the adjacency matriz of the
triangular graph T,.

Proof. We first note that the diagonal entries of H are all 4 and the off-
diagonal entries are either 0 or 1. With that, H has a natural decomposition
as H =4I + A, where A is the adjacency matrix of some graph. We next
consider consider KC,,. In the map from K,, to 7, each edge e; ; of K,, becomes
a vertex v;; of T,, and two vertices v; j, vy, are joined with an edge in 7,
if the distinct edges e;; and e;; meet at a vertex in K. This is equivalent
to the condition that {i,j} N {k,l} # @. Now, if we identify the n vertices
of IC,, with the points {p;} , and the L edges with the basis vectors {wq}
(where o = (4,7),7 < j), then we see that the vertices of 7, are the basis
vectors {wq} and two vertices wq, wg share an edge in 7, if and only if

(wq, wg) = 1. Thus A is exactly the adjacency matrix A(7,) of T,,. O

Corollary 2.2. The inner product matrix H has three distinct eigenvalues:

2, n and 2n with multiplicity L —n, n — 1 and 1 respectively.

Proof. The spectrum of A(7,) is known: it has eigenvalues —2,n — 4, and
2n — 4, with respective multiplicities L — n,n — 1 and 1 (Hoffman, 1959).
Since we have that H = 41}, + A(7,), the result follows. O

3. Representation of the dual basis

The work (Tasissa and Lai, 2019) gave an expression for the dual basis
vectors {vq }, but it was presented with multiple cases. This motivates our

first result of this section: a simple dyadic form for v,.



Claim 3.1. For any a € 1, v, has the form
1 T T
Vo = —3 ab' +ba’ ),
where a = (e; — 21) = J(:,4) and b= (e5 — 21) = J(:, j).

Proof. To show this is the dual basis, it suffices to certify biorthogonality.
Specifically, for a = (7,j) and B = (k,[), with ¢ < 7 and k < [, we must
show that (wq,vg) = 08. Let a = (e — +1) and b = (e, — £1). We have
1
(Wq,vg) = —§<wi7]~, ab' +ba')
1
= —§<6m' + €j7j — ei,j — ejji, abT + baT>
1
= —5 ([abT + baT]m' + [abT =+ baT}j,j — 2[abT + baT]m)
1
= —5 2@161 + Qajbj — 2(aibj + biaj)

= Clibj + Ctjbi — aibi — ajbj

= () D))
G CEDEICEIEE

= dta] = ot o - - et
_5f5§+%6§+%5f—%—5f5§+%5j+%5§_%

_ gtgl + 858

=016} (since i < 5,k <)

= 0

which is the desired biorthogonality. O

From this representation, we can obtain the spectrum of each v,.
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Claim 3.2. For any o € I, vy, is a rank 2 matriz with nonzero eigenvalues
% and —% + % and corresponding eigenvectors a — b and a + b, independent

of dimension.

Proof. For now, we ignore the —% factor in v,. We observe that (ab' +
ba') = CA, where C is a matrix whose columns are a and b respectively
and A is a matrix whose rows are b' and a' respectively. A has rank 2, and
since @ and b are always linearly independent, rank(C A) = rank(A) = 2. To
find the nonzero eigenvalues, we guess the eigenvectors to be a+b and a — b.
Noting that ||a]|? = [|b]|? = = and @b = —2, this gives us eigenvalues of
—% + % and %, respectively.

]

To illustrate the utility of this representation, we immediately use it to
prove the following result. We know that if X is a Gram matrix, then
(X, wq), a = (1,7), is a distance D, j; but if D, ; are distances, is it always

the case that ) D; jvq is a Gram matrix? We show that this is indeed true.

Claim 3.3. Given distances D; j, X = Z( D, jv;; is a Gram matriz.

ij)€el
Proof. We have that

X = Z Di,j’ui,j

(3,5)€l

1 : ‘ : :
= _5 Di,j(J(:aZ)'](:aj)T+J(:7])'](:7Z)T)
(i,7)€l
1
=—3 Dij(J(C0)T(G,5)T) (distances are symmetric)
i#]
1
=3 Z Dij(J(G)T(G )T (self-distance is 0).



Letting D := [D; ;], we consider a particular entry (a,b) of X:
1 . .
Xup=—1 [Z Doy (I(,i)T ()T
1,J

1
— _5 Z Z D@jn]a,i‘]jab
7 J

1
=|—=JD .
[ 2J Jab

a,b

We see X = —%JDJ, and so X is a Gram matrix.

4. Stability of Gram matrix under additive noise

In many applications, the observed distances contain measurement errors.
Here, we study a simple model where a true squared distance matrix D
is corrupted with additive noise D. We prove the following result on the

stability of the underlying Gram matrix.

Claim 4.1. Let D,y = D + D, X denote the true Gram matriz, and X
be the Gram matriz corresponding to Dhgisy. Then | X — X|loo < 4] Do,

where || - || gives the largest entry of a matriz in absolute value.



Proof. Using the dual basis expansion, we have that
Z [vi,j]a,bDi,j
(i,9)€l

1 ~
—3 Z (Jaidip + Jajdip)Di;

(3,9)€l

| X — X||oo = max
a,b

= Imax
a,b

B 1
A
1 ~ ~
< 5(%6}} > aidisl|Digl +max > |Ja,sz‘,bHDz',j|)
T (ig)el T (ig)el
1 =~
1Dl (3 3 Vsl + s 3 1,
(3,5)€l (¢,9)€l

"D‘\m(f%%X Z ‘Ja,it]j,b’>- (symmetry of J)

(i,7)€l

Z (Juidip + JajJin)Dij

(4,5)€l

IN

The expression |J,;J;;| can take on three possible values: ((n — 1)/n)?
(n — 1)/n?, and 1/n?. There is at most one term with value ((n — 1)/n)?
when a < band i = a,j = b. Any term with exactly one of i = a or j = b will
have |J,;J;5] = (n — 1)/n?, and there is a strict upper bound of 2n on the
number of such terms that can occur. Finally, there are max{L — 2n — 1,0}
terms remaining in the sum over (4, j) € I, which must have value 1/n?. Thus
we get the bound

- ~ n—1\" n—1
1Dl (e 3 1osdial) < 101 () 20 ")

(4,7)€l

1
+max{L —2n — 1, 0}—2]
n

< 4||D||so.
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5. The Metric Nearness Problem

In (Dhillon et al., 2003), (Sra et al., 2004), and (Brickell et al., 2008),
the authors studied a problem related to but distinct from EDG, called the
metric nearness problem. In this section, we explain and prove an empirical
observation of (Dhillon et al., 2003).

Some background is first required. Let D,, denote the set of “dissimilarity
matrices”: non-negative, symmetric matrices with zero diagonal, and M,, be
the set of distance matrices: matrices in D,, whose entries satisfy the triangle
inequality. Given an input matrix D € D,, and a weight matrix W € D,,,
the metric nearness problem seeks to find a nearest valid distance matrix M,
in the sense that

M = argmin |W & (X — D),
XeMy,

for some norm, where © is the Hadamard (elementwise) product.

As part of their approach to this problem, the authors in (Dhillon et al.,
2003) defined a tall matrix A that encodes the constraints enforced by the
triangle inequality. Specifically, A has 3(;) rows and (Z) columns: each
column represents a distance between two points, and each row represents a
triangle inequality constraint among a set of three distances: D;j; — D;; —
D;i < 0. The entries in A are the sign of each distance in a particular
inequality.

It is easier to see with an example, here among four points pi, ps, P3, Ps-
We label the distance D; ; as (p;, p;) and the inequality D, —D; ;—D;; <0
as (p;, Pk, P;); the first two points in the latter list refer to the index of D
with positive sign in the inequality. Our 18 x 6 matrix A (abbreviated for
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(1%172) (plaPS) (P17P4) (p2> P3) (p2> P4) (Ps, p4)
(plaanPS) 1 -1 0 -1 0 0
(p17p37p2) -1 1 0 -1 0 0
(P2, P3, P1) -1 -1 0 1 0 0
(P2, P3, P4) 0 0 0 1 -1 -1

Table 2: Triangle inequality constraint matrix A (four points).

brevity) is given in Table 2
The authors in (Dhillon et al., 2003) made the empirical observation

that A has three distinct singular values: /3n —4,v/2n — 2,v/n — 2 with
multiplicities n(n — 3)/2, (n-1), and 1. However, they did not provide a
proof of this fact except for the largest singular value. This motivates our

following result.
Claim 5.1. AT A and —H are identical up to diagonal scaling.

Proof. Let L = (g), and let T refer to the set of all tuples (p;, p;, px) for all
i,7,k € [n] (i.e., the row indices of A). We are interested in the entries of
the L x L matrix AT A.

The diagonal entries are easier to compute. Given any o = (p;, p;),? < J,
we have

(AT Al =) A7, =3(n—2),
teT

as this is just the number of nonzero entries in column «, which was already

given by (Dhillon et al., 2003). The off-diagonal entries require more analysis.
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For some o = (p;, p;), B = (pk, p1), we are interested in

[ATAlos =) AraAigs.

teT
If none of the constituent points of o and S are the same, then the en-
try [AT A], s is 0. If the first point is shared, such that a = (p;,p;), 8 =
(pi, pr), then the rows that will have nonzero entries are t; = (p;, pr, pi), t2 =
(Pi, js Pk), t3 = (P Dry ;). We have Ay o =1, 4,3 =-1; Apya =1, A5 =
-1; Ay o = -1, A4, 5 = 1. So the sum is -1. And, in fact, this is true whether
it is the first point or the second point of a and  that are shared. So in this
case, [ATA], 53 =-1.

From this, we can see that AT A captures the same structure as the inner

product matrix H that arises from the dual basis approach. Specifically, we

have that ATA = (3n — 2)I;, — H. O

With this result and Corollary 2.2, we see that the eigenvalues of AT A
are 3n —4,2n — 2, n — 2 with the multiplicities L —n = n(n —3)/2, n—2, and
1, which, after taking square roots, exactly matches the result of (Dhillon
et al., 2003).
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7. Conclusion

In this paper, motivated by a previous work in distance geometry, we stud-

ied a dual basis framework for classical multidimensional scaling (CMDS).
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We characterized the spectrum of the inner product matrix H, gave a sim-
ple form for the dual basis vectors v,, analyzed the stability of an important
map, and explained an empirical observation of a related work in metric near-
ness. Our work considered only the exact case, so an important direction for
future work is to develop more theory for the sampled regime. In addition,
we surmise that further theoretical analysis of the spectrum of X, the Gram

matrix, can be done using tools from the theory of matrix pencils (Ikramov,

1993).
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