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Abstract

Classical multidimensional scaling (CMDS) is a technique that embeds a set

of objects in a Euclidean space given their pairwise Euclidean distances. The

main part of CMDS involves double centering a squared distance matrix and

using a truncated eigendecomposition to recover the point coordinates. In

this paper, motivated by a study in Euclidean distance geometry, we explore

a dual basis approach to CMDS. We give an explicit formula for the dual

basis vectors and fully characterize the spectrum of an essential matrix in the

dual basis framework. We make connections to a related problem in metric

nearness.
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1. Introduction

The origin of our work is the following inverse problem: given a set of

squared Euclidean distances {Di,j}1≤i<j≤n among n objects, arranged into a

matrix D ∈ Rn×n, find points p1,p2, ...,pn in Rr that realize these distances.
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The matrix P ∈ Rn×r comprises the points arranged as its rows. We assume

that n > r and the set of points span Rr. If all distances are given, the

problem can be solved via classical multidimensional scaling (CMDS) (Young

and Householder, 1938; Torgerson, 1952, 1958; Gower, 1966). An important

result in CMDS states that D is a squared Euclidean matrix if and only if

X = −1
2
JDJ is positive semidefinite, where J = I − 1

n
11⊤ is the centering

matrix (Schoenberg, 1935). A useful fact is that rank(X) = rank(P ). With

that, an r-truncated eigendecomposition, where r = rank(P ) = rank(X),

then recovers P from X.

However, if some distances are missing, the problem is studied under the

name Euclidean distance geometry (EDG). It is of fundamental importance

in many applications (Fang and Toh, 2013; Lavor et al., 2012; Ding et al.,

2010; Biswas et al., 2006). Building off of matrix completion theory (Recht

et al., 2010; Candès and Recht, 2009), the work in (Tasissa and Lai, 2019)

analyzes the EDG problem using a dual basis approach. A key part of that

work was to represent any zero-centered Gram matrix X by the expansion

X =
∑︂
α∈I

⟨X ,wα⟩vα, (1)

where {wα} is a basis of the zero-centered symmetric matrices, {vα} is its

dual basis, and I denotes the universal set {(i, j) : 1 ≤ i < j ≤ n}, which has

size L = n(n− 1)/2. In particular, for α = (α1, α2), (Tasissa and Lai, 2019)

defined

wα = eα1, α1 + eα2, α2 − eα1, α2 − eα2, α1 , (2)

where ei,j represents the matrix of zeros except a 1 at the (i, j)-th entry. The

matrix H denotes the inner product matrix defined entrywise as Hα,β =
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w1,2 =

⎡⎢⎢⎢⎢⎢⎢⎣
1 −1 0 0

−1 1 0 0

0 0 0 0

0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦ v1,2 =
1

16

⎡⎢⎢⎢⎢⎢⎢⎣
3 −5 1 1

−5 3 1 1

1 1 −1 −1

1 1 −1 −1

⎤⎥⎥⎥⎥⎥⎥⎦

H =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4 1 1 1 1 0

1 4 1 1 0 1

1 1 4 0 1 1

1 1 0 4 1 1

1 0 1 1 4 1

0 1 1 1 1 4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
H−1 =

1

16

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

5 −1 −1 −1 −1 1

−1 5 −1 −1 1 −1

−1 −1 5 1 −1 −1

−1 −1 1 5 −1 −1

−1 1 −1 −1 5 −1

1 −1 −1 −1 −1 5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Figure 1: Dual basis objects w1,2,v1,2,H and H−1 for n = 4

⟨wα,wβ⟩ where ⟨·, ·⟩ denotes the trace inner product and

vα =
∑︂
β∈I

[H−1]α,βwβ. (3)

By construction, {vα} is a dual basis of {wα} satisfying ⟨vα ,wβ⟩ = δβα

where δβα = 1 if α = β and zero otherwise. Note that α = β holds if α1 = β1

and α2 = β2. The matrix H−1 is an inner product matrix of the dual basis.

Specifically, [H−1]α,β = ⟨vα ,vβ⟩. Figure 1 gives some concrete examples

of the core objects that occur in the dual basis approach of (Tasissa and

Lai, 2019), for the case n = 4. Despite the centrality of these objects, the

spectrum of H was not completely characterized, and the only known form

for vα (that did not involve H−1) had multiple cases.

In this work, we look to complete the picture. We study the exact case,
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where we have complete distance information in D, and so our work can be

considered a dual basis approach to CMDS. However, we characterize and

analyze objects that were developed for the EDG problem, and so our results

remain applicable to that setting.

Contributions. The contributions of this paper are as follows. First, we char-

acterize all eigenvalues of the matrix H , by relating the structure of H to

a well-studied graph in spectral graph theory (Cameron, 2001). The second

contribution of this paper is a simple and explicit form for both the dual

basis matrices {vβ} and their non-zero eigenvalues and corresponding eigen-

vectors. The third contribution is to express the stability of the map from D

to X in (1) in terms of the entries of D. Finally, we connect the matrix H

to a matrix studied in the metric nearness problem; we use our new under-

standing of H to give a proof of an empirical observation made in (Dhillon

et al., 2003). Notation used throughout the paper is given in Table 1.

2. Spectrum of H

Consider a set of n points {pi}ni=1 in Rr. Let L =
(︁
n
2

)︁
denote the number

of pairs (i, j), 1 ≤ i < j ≤ n. In (Tasissa and Lai, 2019), the authors

defined an inner product matrix H ∈ RL×L with entries Hα,β = ⟨wα,wβ⟩.

They noted that H is positive definite and symmetric, and, with indices

α = (α1, α2),β = (β1, β2), the entries of H are

Hα,β =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
4 if α1 = β1 and α2 = β2

0 if {α1, α2} ∩ {β1, β2} = ∅

1 otherwise.
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x Vector I Index set {(i, j) : 1 ≤ i < j ≤ n}

xi Vector entry I, In Identity matrix

X Matrix G Graph

Xi,j, [X]i,j Matrix entry Kn Complete graph on n vertices

X(i, :),X(:, j) Matrix row, column A(G) Adjacency matrix of G

α, (α1, α2), (i, j) Basis index J Centering matrix I − 1
n
11⊤

wα,wi,j Basis matrix H Inner product matrix of {wα}

vβ,vk,l Dual basis matrix vec(X) Vectorized matrix

1 All-ones vector µ(·) Mean of vector or matrix

ei Standard basis vector ⊙ Hadamard product

eα, ei,j Standard basis matrix δβα Kronecker delta (α = β)

⟨X ,Y⟩ Trace inner product ⟨x ,y⟩ Dot product

Table 1: Notation

For the spectrum of H , the work in (Tasissa and Lai, 2019) only gave bounds

for the minimum and maximum eigenvalues, despite empirically observing

that for any n, H has only three distinct eigenvalues: 2, n, and 2n.

In contrast, we are able to completely characterize the spectrum of H .

Before we discuss our results, few definitions are in order. A graph is a

mathematical object that consists of a set of vertices and a set of edges that

connect these vertices. A complete graph is a graph in which every pair of

its vertices is connected by an edge. The complete graph with n vertices

is denoted by Kn. Our result is based on relating the analysis of spectrum

of H to the well-studied graph Tn, called the triangular graph (Cameron,

2001). The graph Tn is formed from the complete graph on n vertices, Kn:

add a vertex vi,j in Tn for each edge ei,j in Kn, and connect two vertices

vi,j, vk,l ∈ Tn with an edge if eij and ek,l share a common vertex in Kn.
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Claim 2.1. H = 4IL +A(Tn), where A(Tn) is the adjacency matrix of the

triangular graph Tn.

Proof. We first note that the diagonal entries of H are all 4 and the off-

diagonal entries are either 0 or 1. With that, H has a natural decomposition

as H = 4IL +A, where A is the adjacency matrix of some graph. We next

consider consider Kn. In the map from Kn to Tn, each edge ei,j of Kn becomes

a vertex vi,j of Tn, and two vertices vi,j, vk,l are joined with an edge in Tn

if the distinct edges ei,j and ek,l meet at a vertex in Kn. This is equivalent

to the condition that {i, j} ∩ {k, l} ≠ ∅. Now, if we identify the n vertices

of Kn with the points {pi}ni=1 and the L edges with the basis vectors {wα}

(where α = (i, j), i < j), then we see that the vertices of Tn are the basis

vectors {wα} and two vertices wα,wβ share an edge in Tn if and only if

⟨wα,wβ⟩ = 1. Thus A is exactly the adjacency matrix A(Tn) of Tn.

Corollary 2.2. The inner product matrix H has three distinct eigenvalues:

2, n and 2n with multiplicity L− n, n− 1 and 1 respectively.

Proof. The spectrum of A(Tn) is known: it has eigenvalues −2, n − 4, and

2n − 4, with respective multiplicities L − n, n − 1 and 1 (Hoffman, 1959).

Since we have that H = 4IL +A(Tn), the result follows.

3. Representation of the dual basis

The work (Tasissa and Lai, 2019) gave an expression for the dual basis

vectors {vα}, but it was presented with multiple cases. This motivates our

first result of this section: a simple dyadic form for vα.
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Claim 3.1. For any α ∈ I, vα has the form

vα = −1

2

(︃
ab⊤ + ba⊤

)︃
,

where a = (ei − 1
n
1) = J(:, i) and b = (ej − 1

n
1) = J(:, j).

Proof. To show this is the dual basis, it suffices to certify biorthogonality.

Specifically, for α = (i, j) and β = (k, l), with i < j and k < l, we must

show that ⟨wα,vβ⟩ = δβα. Let a = (ek − 1
n
1) and b = (el − 1

n
1). We have

⟨wα,vβ⟩ = −1

2
⟨wi,j,ab

⊤ + ba⊤⟩

= −1

2
⟨ei,i + ej,j − ei,j − ej,i,ab

⊤ + ba⊤⟩

= −1

2

(︃
[ab⊤ + ba⊤]i,i + [ab⊤ + ba⊤]j,j − 2[ab⊤ + ba⊤]i,j

)︃
= −1

2

(︃
2aibi + 2ajbj − 2(aibj + biaj)

)︃
= aibj + ajbi − aibi − ajbj

=
(︁
δki −

1

n

)︁(︁
δlj −

1

n

)︁
+
(︁
δkj −

1

n

)︁(︁
δli −

1

n

)︁
−

(︁
δki −

1

n

)︁(︁
δli −

1

n

)︁
−
(︁
δkj −

1

n

)︁(︁
δlj −

1

n

)︁
= δki δ

l
j −

1

n
δki −

1

n
δlj +

1

n2
+ δkj δ

l
i −

1

n
δli −

1

n
δkj +

1

n2

− δki δ
l
i +

1

n
δli +

1

n
δki −

1

n2
− δkj δ

l
j +

1

n
δkj +

1

n
δlj −

1

n2

= δki δ
l
j + δkj δ

l
i

= δki δ
l
j (since i < j, k < l)

= δβα,

which is the desired biorthogonality.

From this representation, we can obtain the spectrum of each vα.
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Claim 3.2. For any α ∈ I, vα is a rank 2 matrix with nonzero eigenvalues

1
2
and −1

2
+ 1

n
and corresponding eigenvectors a− b and a+ b, independent

of dimension.

Proof. For now, we ignore the −1
2
factor in vα. We observe that (ab⊤ +

ba⊤) = CA, where C is a matrix whose columns are a and b respectively

and A is a matrix whose rows are b⊤ and a⊤ respectively. A has rank 2, and

since a and b are always linearly independent, rank(CA) = rank(A) = 2. To

find the nonzero eigenvalues, we guess the eigenvectors to be a+b and a−b.

Noting that ∥a∥2 = ∥b∥2 = n−1
n

and a⊤b = − 1
n
, this gives us eigenvalues of

−1
2
+ 1

n
and 1

2
, respectively.

To illustrate the utility of this representation, we immediately use it to

prove the following result. We know that if X is a Gram matrix, then

⟨X,wα⟩, α = (i, j), is a distance Di,j; but if Di,j are distances, is it always

the case that
∑︁

α Di,jvα is a Gram matrix? We show that this is indeed true.

Claim 3.3. Given distances Di,j, X =
∑︁

(i,j)∈I Di,jvi,j is a Gram matrix.

Proof. We have that

X =
∑︂
(i,j)∈I

Di,jvi,j

= −1

2

∑︂
(i,j)∈I

Di,j

(︁
J(:, i)J(:, j)⊤ + J(:, j)J(:, i)⊤

)︁
= −1

2

∑︂
i ̸=j

Di,j(J(:, i)J(:, j)
⊤) (distances are symmetric)

= −1

2

∑︂
i,j

Di,j(J(:, i)J(:, j)
⊤) (self-distance is 0).
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Letting D := [Di,j], we consider a particular entry (a, b) of X:

Xa,b = −1

2

[︃∑︂
i,j

Di,j(J(:, i)J(:, j)
⊤)

]︃
a,b

= −1

2

∑︂
i

∑︂
j

Di,jJa,iJj,b

= [−1

2
JDJ ]a,b.

We see X = −1
2
JDJ , and so X is a Gram matrix.

4. Stability of Gram matrix under additive noise

In many applications, the observed distances contain measurement errors.

Here, we study a simple model where a true squared distance matrix D

is corrupted with additive noise D̃. We prove the following result on the

stability of the underlying Gram matrix.

Claim 4.1. Let Dnoisy = D + D̃, X denote the true Gram matrix, and X̄

be the Gram matrix corresponding to Dnoisy. Then ∥X̄ − X∥∞ < 4∥D̃∥∞,

where ∥ · ∥∞ gives the largest entry of a matrix in absolute value.
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Proof. Using the dual basis expansion, we have that

∥X̄ −X∥∞ = max
a,b

⃓⃓⃓⃓ ∑︂
(i,j)∈I

[vi,j]a,bD̃i,j

⃓⃓⃓⃓

= max
a,b

⃓⃓⃓⃓
− 1

2

∑︂
(i,j)∈I

(Ja,iJj,b + Ja,jJi,b)D̃i,j

⃓⃓⃓⃓

=
1

2

(︃
max
a,b

⃓⃓⃓⃓ ∑︂
(i,j)∈I

(Ja,iJj,b + Ja,jJi,b)D̃i,j

⃓⃓⃓⃓)︃

≤ 1

2

(︃
max
a,b

∑︂
(i,j)∈I

|Ja,iJj,b||D̃i,j|+max
a,b

∑︂
(i,j)∈I

|Ja,jJi,b||D̃i,j|
)︃

≤ 1

2
∥D̃∥∞

(︃
max
a,b

∑︂
(i,j)∈I

|Ja,iJj,b|+max
a,b

∑︂
(i,j)∈I

|Ja,jJi,b|
)︃

= ∥D̃∥∞
(︃
max
a,b

∑︂
(i,j)∈I

|Ja,iJj,b|
)︃
. (symmetry of J)

The expression |Ja,iJj,b| can take on three possible values: ((n − 1)/n)2,

(n − 1)/n2, and 1/n2. There is at most one term with value ((n − 1)/n)2,

when a < b and i = a, j = b. Any term with exactly one of i = a or j = b will

have |Ja,iJj,b| = (n − 1)/n2, and there is a strict upper bound of 2n on the

number of such terms that can occur. Finally, there are max{L− 2n− 1, 0}

terms remaining in the sum over (i, j) ∈ I, which must have value 1/n2. Thus

we get the bound

∥D̃∥∞
(︃
max
a,b

∑︂
(i,j)∈I

|Ja,iJj,b|
)︃

< ∥D̃∥∞
[︃(︃

n− 1

n

)︃2

+ 2n

(︃
n− 1

n2

)︃

+max{L− 2n− 1, 0} 1

n2

]︃
< 4∥D̃∥∞.

10



5. The Metric Nearness Problem

In (Dhillon et al., 2003), (Sra et al., 2004), and (Brickell et al., 2008),

the authors studied a problem related to but distinct from EDG, called the

metric nearness problem. In this section, we explain and prove an empirical

observation of (Dhillon et al., 2003).

Some background is first required. Let Dn denote the set of “dissimilarity

matrices”: non-negative, symmetric matrices with zero diagonal, and Mn be

the set of distance matrices: matrices in Dn whose entries satisfy the triangle

inequality. Given an input matrix D ∈ Dn and a weight matrix W ∈ Dn,

the metric nearness problem seeks to find a nearest valid distance matrix M ,

in the sense that

M = argmin
X∈Mn

∥W ⊙ (X −D)∥,

for some norm, where ⊙ is the Hadamard (elementwise) product.

As part of their approach to this problem, the authors in (Dhillon et al.,

2003) defined a tall matrix A that encodes the constraints enforced by the

triangle inequality. Specifically, A has 3
(︁
n
2

)︁
rows and

(︁
n
2

)︁
columns: each

column represents a distance between two points, and each row represents a

triangle inequality constraint among a set of three distances: Di,k − Di,j −

Dj,k ≤ 0. The entries in A are the sign of each distance in a particular

inequality.

It is easier to see with an example, here among four points p1,p2,p3,p4.

We label the distance Di,j as (pi,pj) and the inequality Di,k−Di,j−Dj,k ≤ 0

as (pi,pk,pj); the first two points in the latter list refer to the index of D

with positive sign in the inequality. Our 18 × 6 matrix A (abbreviated for
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(p1,p2) (p1,p3) (p1,p4) (p2,p3) (p2,p4) (p3,p4)

(p1,p2,p3) 1 −1 0 −1 0 0

(p1,p3,p2) −1 1 0 −1 0 0

(p2,p3,p1) −1 −1 0 1 0 0
...

...
...

...
...

...
...

(p2,p3,p4) 0 0 0 1 −1 −1

Table 2: Triangle inequality constraint matrix A (four points).

brevity) is given in Table 2.

The authors in (Dhillon et al., 2003) made the empirical observation

that A has three distinct singular values:
√
3n− 4,

√
2n− 2,

√
n− 2 with

multiplicities n(n − 3)/2, (n−1), and 1. However, they did not provide a

proof of this fact except for the largest singular value. This motivates our

following result.

Claim 5.1. A⊤A and −H are identical up to diagonal scaling.

Proof. Let L =
(︁
n
2

)︁
, and let T refer to the set of all tuples (pi, pj, pk) for all

i, j, k ∈ [n] (i.e., the row indices of A). We are interested in the entries of

the L× L matrix A⊤A.

The diagonal entries are easier to compute. Given any α = (pi, pj), i < j,

we have

[A⊤A]α,α =
∑︂
t∈T

A2
t,α = 3(n− 2),

as this is just the number of nonzero entries in column α, which was already

given by (Dhillon et al., 2003). The off-diagonal entries require more analysis.
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For some α = (pi, pj), β = (pk, pl), we are interested in

[A⊤A]α,β =
∑︂
t∈T

At,αAt,β.

If none of the constituent points of α and β are the same, then the en-

try [A⊤A]α,β is 0. If the first point is shared, such that α = (pi, pj), β =

(pi, pk), then the rows that will have nonzero entries are t1 = (pj, pk, pi), t2 =

(pi, pj, pk), t3 = (pi, pk, pj). We have At1,α = −1, At1,β = −1; At2,α = 1, At2,β =

−1; At3,α = −1, At3,β = 1. So the sum is −1. And, in fact, this is true whether

it is the first point or the second point of α and β that are shared. So in this

case, [A⊤A]α,β = −1.

From this, we can see that A⊤A captures the same structure as the inner

product matrix H that arises from the dual basis approach. Specifically, we

have that A⊤A = (3n− 2)IL −H .

With this result and Corollary 2.2, we see that the eigenvalues of A⊤A

are 3n−4, 2n−2, n−2 with the multiplicities L−n = n(n−3)/2, n−2, and

1, which, after taking square roots, exactly matches the result of (Dhillon

et al., 2003).
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7. Conclusion

In this paper, motivated by a previous work in distance geometry, we stud-

ied a dual basis framework for classical multidimensional scaling (CMDS).
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We characterized the spectrum of the inner product matrix H , gave a sim-

ple form for the dual basis vectors vα, analyzed the stability of an important

map, and explained an empirical observation of a related work in metric near-

ness. Our work considered only the exact case, so an important direction for

future work is to develop more theory for the sampled regime. In addition,

we surmise that further theoretical analysis of the spectrum of X, the Gram

matrix, can be done using tools from the theory of matrix pencils (Ikramov,

1993).
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