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A B S T R A C T

Testing code for floating-point exceptions is crucial as exceptions can quickly propagate and produce unreliable
numerical answers. The state-of-the-art to test for floating-point exceptions in heterogeneous systems is quite
limited and solutions require the application’s source code, which precludes their use in accelerated libraries
where the source is not publicly available. We present an approach to find inputs that trigger floating-point
exceptions in black-box CPU or GPU functions, i.e., functions where the source code and information about
input bounds are unavailable. Our approach is the first to use Bayesian optimization (BO) to identify such
inputs and uses novel strategies to overcome the challenges that arise in applying BO to this problem. We
implement our approach in the Xscope framework and demonstrate it on 58 functions from the CUDA Math
Library and 81 functions from the Intel Math Library. Xscope is able to identify inputs that trigger exceptions
in about 73% of the tested functions.

1. Introduction

Testing numerical applications is a significant challenge for most
scientific computing developers. Most applications use floating-point
arithmetic, compilers optimizations can drastically affect floating-point
results, and developers must ensure that round-off error does not
negatively impact numerical results. While controlling rounding error
is essential, floating-point exceptions, such as division by zero, infinity
or Not a Number (NaN), must also be detected and either eliminated
or reduced below acceptable thresholds.

In heterogeneous computing programs (composed of GPU and CPU
code), tools to detect or predict floating-point exceptions are scarce and
today developers lack practical solutions to the problem. Recent work
can detect such exceptions in CPU programs by reading hardware-level
registers that are set when the exception occurs [1]. However, such
methods are hardware-dependent, and are limited in their ability to
trace back the exact line of code that caused the exception and/or the
input values that triggered it. In NVIDIA GPUs—the most used GPUs
in HPC systems—the situation is even worse. NVIDIA GPUs do not
provide such register flags and CUDA provides no mechanism to detect
such exceptions.1 Compiler-based solutions, such as [2], require sources
and can detect exceptions at runtime, but only for given inputs. Ideally,
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developers would want to know the inputs that induce exceptions
so those inputs can be controlled and explored systematically during
testing.

There is prior work on identifying inputs that induce floating-
point exceptions in CPU programs [3]. While these methods could
(in principle) be implemented on GPU kernels, their drawback is that
they use SMT solvers and symbolic execution, which requires analyz-
ing the source code. Unfortunately, practical GPU codes running on
NVIDIA GPUs involve using proprietary accelerated libraries, such as
cuBLAS, cuFFT, cuSOLVER, CUDA Math Lib, cuTENSOR, cuSPARSE,
and cuDNN [4], for which the source code is not publicly available.
Even popular machine learning frameworks, such as PyTorch [5], make
heavy use of cuBLAS and cuDNN. As a result, methods that require the
source code are limited to test accelerated libraries or code that use
them.

Our Contributions. This paper presents Xscope,2 a framework
to find inputs that trigger floating-point exceptions in heterogeneous
program functions, i.e., in a function f (x), where the function user
has limited knowledge of how the function operates. More specif-
ically, the source of f (x) is not available—the function is a black
box from the user’s perspective—and the user does not know a priori
the input bounds that the function expects, i.e., inputs can be any
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normal floating-point number. Our method relies on using Bayesian
optimization (BO) to explore f in a guided manner with the objective
of pinpointing extreme cases in f . These extreme cases make f return
the result of exceptions to the user, i.e., infinity (positive and negative),
underflows (i.e., subnormal numbers), or NaN (not a number). Finally,
the user is provided the inputs of f that triggered such exceptions.
Developers can also use Xscope to test functions where the code is avail-
able and/or input bounds are known, which only improves Xscope’s
chances of success. To the best of our knowledge, we are the first to apply
BO to identify inputs that trigger floating-point exceptions.

While BO is well suited to optimize black-box functions [6] and
fits our problem well, we encounter two significant challenges when
directly applying BO to our problem. The first is that BO naturally max-
imizes (or minimizes, depending on how it is implemented) a given a
function, and can find inputs that return infinity (positivity or negative)
but cannot find inputs that return underflows—the region of floating-
point underflows is not necessarily in the extremes of an arbitrary
function. We propose a method called function twisting that transforms
f into another function f

® so that maximizations/minimizations are
guided into the underflows regions. Function twisting prevents BO from
getting stuck in zero or a smaller number when BO attempts to search
for underflows.

The second problem is that, since we assume the space of possible
inputs is unbounded, there is no guarantee that BO identifies the
global maxima or minima [7,8]. We tackle this challenge using two
divide-and-conquer approaches, called input range splitting and exponent
sampling. The first allows BO to try different input bounds on different
function parameters in an iterative fashion, which improves its chances
of success in triggering exceptions. The second samples exponents of
floating-point numbers, as opposed to sampling the numbers per se—
since the range of possible exponents is smaller, this can speedup the
search. In summary:

• We present the first approach to identify inputs that trigger
floating-point exceptions in GPU functions for which the source
code is not available and information about input bounds is
limited (or unavailable). Our approach is the first to apply BO
to search for such inputs. We present two strategies to address
the main challenges in using BO to this problem: guiding BO
to explore the floating-point underflows region and helping BO
identify global minima/maxima for unbounded inputs.

• We implement our methods in the Xscope framework and test
it in Intel CPUs and NVIDIA GPUs. Xscope takes as input the
signature of the function f (x) to test, generates a wrapper CUDA
code or C code w(x) that calls f (x) and that can be passed as target
to the BO optimizer (a Python module). We design and present
an algorithm that implements the function transformations and
considers different approaches to sample numbers. When Xscope
finishes, it provides a report to the user about the category of the
exceptions found and the inputs that triggered them.

• We demonstrate the usefulness of Xscope in 58 double-precision
functions from the CUDA Math Library3 and 81 functions from
the Intel Math Library for which the source is unavailable and
on functions from ten HPC programs for which the source is
available. Xscope identifies inputs that trigger exceptions in 72%
of the tested functions from the CUDA Math Library and 75% of
the tested functions from the Intel Math Library. We also present
cases where Xscope’s findings augment the specification provided
in the library documentation—for example, Xscope indicates that
infinity is generated in a function f with a specific input, but the
documentation of f does not specify the behavior for such input.

• We present a comparison of the inputs found in functions that
are provided in both CPU and GPU implementations of the Math
Library. Xscope is able to identify a few functions that exhibit in-
consistent behavior between the CPU and GPU implementations.

3 https://developer.nvidia.com/cuda-math-library

Table 1
Floating-point exceptions as defined by the IEEE 764 standard.
Event Description

Inexact Result is produced after rounding
Underflow Result could not be represented as normal
Overflow Result did not fit and it is an infinity
DivideByZero Divide-by-zero operation
Invalid Operation operand is not a number (NaN)

Comparison to Previous Work. A previous version of this idea
was published in [9]. The current methodology has been significantly
improved and new results have been obtained, which reveal insights
not published before. In particular:

• The new Xscope approach produces more accurate results in
finding inputs that trigger underflows (subnormal numbers) and
infinity. The earlier algorithm used in [9] reported inputs caused
negative infinity in functions that could never return such cases,
for example, exp(x). The algorithm in this paper avoids such
cases for improved accuracy.

• The method in [9] reported duplicated inputs for the same ex-
ception. As a consequence, the results presented here are much
more accurate than those presented in [9]. The current version
only reports unique inputs that cause exceptions.

• The previous version was designed only for GPU programs. We
have extended the framework to generate tests for CPU and GPU
code, which allows us to test functions in both devices.

• We present results from the Intel Math Library, which runs in the
CPU—the previous version in [9] only considered the CUDA Math
Library. We compare the results from both libraries and present
interesting results not presented in [9].

2. Background and overview

In this section, we provide background on floating-point exceptions
in heterogeneous systems, and give a high-level description of BO,
which will be useful to understand our contributions. We refer the
reader to [6,10] for a more detailed description of BO. Then, we
describe the challenges of applying BO to triggering exceptions and,
finally, an overview of Xscope.

2.1. IEEE 754 exceptions

We recap the IEEE 754 Standard for floating-point arithmetic and
exceptions—all fundamental to explaining how Xscope approaches
these. A floating-point number has the form

x = ±s ù �
e (1)

where the sign, the significant s, the exponent e can be stored in
memory or a register. We assume � = 2, since this is the most used
format for representing floating-point numbers.

The IEEE 754 Standard defines five classes of exceptions, that can
result from arithmetic operations. Table 1 shows these five events.
When one of these events occurs, the floating-point unit can set a status
register specifying which event occurred. Existing frameworks for CPU
analysis, such as [1] read these registers to detect the occurrence of
such events. Additionally, with the help of the compiler and system
routines, they raise a floating-point exception signal (e.g., SIGFPE)
when these events occur in the CPU. Unlike CPUs, NVIDIA GPUs have
no mechanism to detect floating-point exceptions, set a status register
or raise a signal when an exception occurs.

Exceptional Quantities. Except for the Inexact exception in Ta-
ble 1, the rest of the events will result in either a NaN (not a number),
INF (infinity, positive or negative), or a subnormal number (i.e., a
number smaller than a normal floating-point number but that is not

https://developer.nvidia.com/cuda-math-library
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zero). More specifically, Overflow and DivideByZero result in INF, and
Invalid result in NaN. Underflow can result in zero or a subnormal
number—in our case, we are interested in underflows that result in
subnormal numbers. The Inexact event results in a rounding operation;
however, this occurs frequently in numerical programs and it is usually
of no interest to programmers. In summary, our goal is to identify
inputs that produce any of these cases: NaN, INF+, INF-, or subnormal
number quantities (positive or negative).

Subnormal Numbers. Note that while subnormal numbers can
represent specific real number quantities, they are often dangerous for
several reasons. First, they indicate that computational results are be-
coming too small to be represented in the current precision. Second, if
they propagate to the denominator of a division, the result can produce
INF. For example, 1

x
, where x =1e*309 (a FP64 subnormal number),

produces INF4. Third, when subnormal numbers are combined with
compiler optimizations, they can cause reproducibility issues [11].
Therefore, it is crucial to mitigate them and understanding when they
occur as well as NaN and INF.

2.2. Bayesian optimization

Bayesian optimization (BO) is a class of machine-learning-based
optimization methods focused on solving the problem

max
xÀA

f (x), (2)

where A is the feasible input set, which is typically a hyper-rectangle
{x À Rd : ai f xi f bi}, i.e., it is a bounded optimization method. BO
is useful in situations when (a) f is a black box for which no closed
form is known (nor its gradients), (b) f is expensive to evaluate, and
(c) evaluations of y = f (x) may be noisy. The function f is also known
as the target function. In the case of the problem we want to tackle,
we define target functions as program functions executed in the CPU
or GPU, for which the code may or may not be available, where the
inputs and outputs are floating-point numbers.

BO Algorithm in a Nutshell. BO attempts to find the global max-
ima of f through a method known as surrogate optimization—a sur-
rogate function is an approximation of the target function (which is
unknown). Based on the surrogate function, BO identifies which points
are a promising maxima, and decides to sample more from these
promising regions and update the surrogate function accordingly. In
each iteration, it continues to look at the current surrogate function,
learn more about areas of interest by sampling, and update the func-
tion. After a certain number of iterations, BO is expected to arrive to
the global maxima of f 5.

The surrogate function is represented by a Gaussian processes (GP),
which can be thought of as a probabilistic function that returns several
functions with probabilities attached to them. The GP models the target
function with the observed information, i.e., is Bayesian in nature.
The surrogate function is updated with an acquisition function, which
is responsible for suggesting new points to test. The acquisition has
an exploration and exploitation trade-off: exploitation seeks to sample
where the surrogate model predicts a good objective; exploration seeks
to sample in locations with high uncertainty.

2.3. Challenges of applying BO

Let us consider a CPU/GPU function with the following signature

1 __device__

2 double compute(double x, ...);

4 This behavior may depend on the platform, compiler, and optimizations
applied to the code.

5 Unless the function’s shape is very unconventional (e.g., it has large and
sudden swings), on which case it may find a local maxima.

Fig. 1. Sample function f (x). When BO searches for the f maxima it can arrive to
INF+; alternatively when it searches for the minima, INF- can be found. However, the
underflow regions (positive and negatives) are missed.

The function has a scalar input x, could have other non-floating-point
input parameters, and returns a scalar output. The input and output is
of FP64 (double precision) type. We map compute(double x, ...) to
f (x) and use BO to identify extreme cases with the hope that such cases
correspond to floating-point exceptional quantities. At each iteration
point, BO provides both the input and the maxima of f (x) observed so
far. Note that we may or may not have the source code of the function.
Let us suppose that Fig. 1 shows the output of the function with respect
to the input.

Major Difficulties and Solutions. We now encounter two major
difficulties on identifying inputs that trigger exceptional floating-point
quantities. The first problem we encounter is that BO cannot identify
inputs that trigger subnormal numbers (which are the result of under-
flows) in the function. The reason is that the regions of subnormal
numbers are in the middle of the returned values domain. In other
words, if the function is maximized, we may reach the INF+ point and
if the function is minimized we may reach the INF- point; however,
neither the maximization nor minimization loop in BO would stop at
any point in the subnormal regions (since there will always be a larger
or smaller point, respectively).

We tackle the above problem using a method we call function
twisting. The idea is to transform the function so that underflow regions
are seen as minima or maxima to BO by flipping a quadrant of the
function up or down (as if a portion the plot in Fig. 1 is twisted over
the x axis but not the entire plot—more on Section 3.3). We need
to consider the zero case carefully (+0.0 and *0.0). For example, if
we are minimizing, BO could believe that 0.0 is the smallest value;
however, subnormal numbers are very close to zero, but they are not
zero (e.g., 1e*309 for double precision) and we would like BO to return
a subnormal number as the minima, not zero.

The second problem we encounter is that, since we assume that
users do not have prior knowledge of the input bounds for x, there is
no guarantee BO finds the global optimum. This is a known problem—
application of the BO framework when the search region is unknown
remains an open challenge in the community [7,8]. We tackle this
challenge using a divide-and-conquer approach (inspired by interval
analysis [12]) where instead of asking BO to find extremes in an
unbounded range—where an input x can be any floating-point number
between the minimum and maximum normal number—we ask BO to
operate over combinations of intervals in that range. It turns out that
this helps BO identify more interesting inputs at the cost of more
iterations (see Section 3.4).
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Fig. 2. Overview of Xscope’s workflow.

Fig. 3. Location of max and min of normal and subnormal numbers.

2.4. Overview of Xscope

Fig. 2 shows an overview of Xscope’s workflow. We start by the
user providing the signature of the function to test, which includes the
return type and the input parameters. After this, Xscope generates a
C++ program (.cpp) or CUDA program (.cu) that contains: (a) a kernel
wrapper that calls the function to test and (b) a C-linkage function that
calls the kernel wrapper. Next, everything is compiled and linked into a
shared library by the compiler (for CUDA we use nvcc). Alternatively,
the user can provide the shared library directly that already contains
the C-linkage function. Later the shared library is loaded in Python and
a pointer of the C-linkage function is passed to the BO engine (which
is written in Python).

The BO framework works by taking as input several methods to sam-
ple floating-point numbers (see Section 3.4) and considering different
input bounds. It then search for inputs that generate exceptions and,
when it finds them, it provides a report to the user about the category
of the exceptions and the inputs that triggered them.
Xscope’s Practical Utility. Xscope has a wide range of practical

applications. First, given specific exception-triggering inputs, develop-
ers can add assertions in the code to check for such inputs before they
propagate to the functions that trigger the exception—currently, there
are few tools (if any) to help developers create such assertions. Second,
the exception-triggering inputs can be used in testing campaigns to
strengthen the code and understand how program inputs affect internal
functions or code fragments—today, GPU developers are in need for
such tools to help test GPU code. Third, such ‘‘dangerous’’ inputs can
be documented better so that users of a library API avoid them. Fourth,
when exceptional quantities (e.g., NaN, INF) are combined with high
compiler optimizations (e.g., -fast-math), they can introduce numeri-
cal reproducibility issues [11]; Xscope can help in isolating inputs that
lead to this behavior.

3. Approach

We present the technical aspects of our approach.

3.1. Floating-point number ranges

Before describing our method, it is useful to review the floating-
point input ranges allowed by the IEEE 754 standard for floating-point
arithmetic. We focus on double precision since it is the precision most
used in scientific computing applications; however, our methods can be
applied in other precisions (e.g., FP32 or FP16). Our approach needs
these ranges—and the minimum and maximum values—to perform the
unbounded search in the inputs of f . Table 2 shows the minimum
and maximum values for normal and subnormal numbers (positive and
negative). Fig. 3 illustrates their location. Note that a computation that
produces a value greater than N

+
max

(i.e., the max normal positive) will
result in INF+.

Table 2
Minimum and maximum floating-point values for double precision (FP64).
Number Symbol Value

Min Subnormal (positive) S
+
min

˘ 4.941e*324
Max Subnormal (positive) S

+
max

˘ 2.225e*308
Min Normal (positive) N

+
min

˘ 2.225e*308
Max Normal (positive) N

+
max

˘ 1.798e308

Max Subnormal (negative) S
*
max

*S+
min

Min Subnormal (negative) S
*
min

*S+
max

Max Normal (negative) N
*
max

*N+
min

Min Normal (negative) N
*
min

*N+
max

3.2. Function optimization

By default, our BO implementation maximizes f . To minimize f ,
we maximize y = *f (x). We assume the target function f has one or
more floating-point input parameters, and that it returns a scalar dou-
ble precision value. If the function returns multiple values {r1, r2,…}
(e.g., it writes results to an array), we assume the user can transform the
returned values to a scalar, e.g., by applying max(r1, r2,…), or another
transformation function.

Multiple Output Function Example. Consider the Jacobi Singular
Value Decomposition function from Eigen C++ template library for
linear algebra [13], which solves the following system of equations:
Ax = b, where A is the input matrix of shape nùm, b is the m*dimension
input vector, and x is the n * dimension output vector.

To test this function, we can wrap it as follow:

1 __device__

2 double JacobiSVD(MatrixXd A, VectorXd b) {

3 JacobiSVD svd(A);

4 VectorXd x = svd.solve(b);

5 double scalar_x = x.maxCoeff(NaNPropagation=

PropagateNaN);

6 return scalar_x;

7 }

Here we transform the output to scalar floating-point value by
applying the maxCoeff() function on x with the NaNPropagation flag
set to return NaN upon encounter. Now we can search for inputs that
trigger exceptions in the function using Xscope as usual. Note that
some functions, such as min and max from the standard C library, have
inconsistent behaviors when dealing with NaN or INF. Thus, a better
strategy would be to search through the outputs for exception values
first before applying any transformation.

3.3. Function twisting

Let us suppose we want to search for inputs that produce subnormal
numbers (the result of underflows) in the positive underflow region. Let
us assume f is a normalized sigmoid function. The following listing
shows the implementation of f and Fig. 4 plots it for the parameter
k = 0.9:

1 __device__

2 double sigmoid(double x, double k) {

3 double d = x - (k*x);
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Fig. 4. Sample of a normalized sigmoid function.

Fig. 5. Illustration of the function twisting idea.

4 double n = k - 2.0*k*abs(x) + 1.0;

5 return d/n;

6 }

Since we are searching for small returned values, we ask BO to
minimize f . BO might begin trying random points, e.g., x = 0.75
and get f (x) = 0.1363. It may keep trying lower values following
the suggestions of the acquisition functions. For example, it could try
x = 4e*308, which is a normal number, and get f (x) = 2.105e*309.
Note that 2.105e*309 is a subnormal number since it is smaller than
S
+
max

. However, there is no guarantee that BO stops at this point since
there are even smaller values for f and BO is minimizing the function;
for example, f (0.0) = 0.0 and f (*0.1) = *0.00581. Note also that there is
no guarantee that BO even finds f (x) = 2.105e*309 since it may jump
quickly to smaller values of f .

To address this issue, we propose an approach that we call function
twisting, which allows BO to move towards the positive underflow
region and stay in that region until the smallest subnormal number
is found, at which point BO has identified the function minima. The
idea is to twist the quadrant III of the function to quadrant II so the
underflow region is exposed to BO as the smallest region and it stops
in that region when minimizing. Fig. 5 illustrates the idea.

In other words, we transform f into a new function f
® and ask BO

to minimize f
®. More formally f

® is defined as:

f
®(x) =

h
n
l
nj

� if f (x) = 0.0 or f (x) = *0.0
f (x) if f (x) g S

+
min

*f (x) if f (x) < S
+
min

.

(3)

Note that zero is a special case. Since zero is smaller than S
+
min
, BO could

think zero is the smallest point and would not stop at any subnormal
number. We assigned zero the parameter � with the condition that it
must be greater than the largest subnormal, i.e., S+

max
. In practice, we

have found that � = 1.0 works well.
What about negative subnormals? For the negative underflow region

we want BO to maximize f and use a similar approach where the
quadrant I is flipped down to quadrant IV. More formally:

f
®(x) =

h
n
l
nj

*� if f (x) = 0.0 or f (x) = *0.0
f (x) if f (x) f S

*
max

*f (x) if f (x) > S
*
max

.

(4)

Note that function splitting is not simply flipping the function on the
x or y axis since we only flip one quadrant (flipping moves both
quadrants) and zero must be handled differently. Also note that for
finding inputs that trigger INF+ and INF-, function flipping is not
required.

3.3.1. Reporting correct exceptions sign
When f returns an exception, we need to consider the sign of the

exception carefully. If the exception came from the part of the function
that was negated (i.e., *f (x)), the sign of the exception must be negated
to reflect the correct original sign. We use *f (x) in two situations: (1)
when we ask BO to minimize (by default our BO maximizes), and (2)
when a part of the function is twisted. This was not considered in [9].
As a result, if ✏ is an exception returned from *f (x), we correctly record
*✏.

3.4. Input range splitting

Since we assume that the user has limited (or null) a priori knowl-
edge of the input bounds, in the general case, input values can be any
normal floating-point number or zero—we discard exceptional cases,
such as INF or NaN, as input since they are usually not used to compute
anything. This, however, is a very large input range, which challenges
BO and there is no guarantee it can arrive to a global maxima/min-
ima [7,8]. To address this challenge, we use various divide-and-conquer
methods to split the input bounds and sample numbers:

• Whole-range approach: inputs can be any floating-point number
g À F, where F is the domain of acceptable input floating-point
numbers (i.e., normal numbers or zero).

• Two-range approach: we split the whole input range into two
ranges: [N*

min
,*0.0] and [+0.0,N+

max
]. Inputs are sampled from any

of these two ranges.
• Many-range approach: we split the whole input range into many
ranges, according to the following:

F = {N*
min

,*1e+100,*1e+10,*1e+1,*1e0,*1e*1,
* 1e*10,*1e*100,*1e*307, 0.0, 1e*307, 1e*100, 1e*10,
1e*1, 1e0, 1e+1, 1e+10, 1e+100, 1e+307,N+

max
} (5)

Bfp = [ga, gb]  ga À F , gb À F , ga < gb (6)

sample_fp() : … ô F = {g À Bfp} (7)

In the below ranges, F corresponds to cutting points of F, Bfp is the
bounds of floating-point input ranges, and sample_fp() is the sampling
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function.6 We call this approach the fp approach as we sample pure
floating-point numbers (hence sets are denoted with the fp subindex).

Sampling Exponents. The above approach (fp) for sampling is
computationally expensive, particularly on the many-range mode of
operation since there are many combinations of ranges to explore.
Range combinations increase exponentially with the number of input
parameters. We study a different approach, called exp, which samples
the exponents of floating-points, as opposed to sampling numbers
from F. The idea is that the ranges of exponents is approximately
[*307,+307], which is significantly smaller than the range of F.

Here, we also consider the whole-range, two-range, and many-range
modes of operation. For the whole-range approach, we simply sample
exponents in the range of [*307,+307] and create a floating-point
number with mantissa s = 1.0. For the two-range mode, we split it in
two: [*307, 0] and [0,+307]. The many-range mode splits the original
range in many as follows:

E = {*307,*100,*10,*1, 0,+1,+10,+100,+307} (8)

Bexp = [ea, eb]  ea À E, eb À E, ea < eb (9)

sample_exp() : … ô F = {±1.0 ù �
e  e À Bexp} (10)

Here, E corresponds to cutting points of the original range [*307,+307],
Bexp is the bounds (or range) of allowed exponents, and sample_exp()
is the sampling function. Note that this approach will trade off success
in identifying exceptional values for speed—as Section 4 shows, it
requires running the target function fewer times compared to the fp
method.

3.5. Algorithm

We present the logic for input searching in Algorithm 1. The algo-
rithm requires as input a function pointer of f (so it can be invoked in
the BO loop), the number of parameters p of f , and the approaches for
input splitting and number sampling (fp or exp). The algorithm loops
on the different goals it tries to achieve, i.e., trying to find INF+, INF-,
and positive and negative underflows (lines 5–7). For each goal, it sets
f to the corresponding target function depending on whether the goal
is achieved by maximizing/minimizing f and using function twisting
(lines 8–11).

We then get combinations of bounds, assign them to B, depending
of the methods we are using (as explained earlier in this section), and
iterate on them. B is a list of different input ranges. These bounds are
used to set the BO optimizer (line 12). Next, the algorithm enters the BO
main loop, on which a point is suggested by the acquisition function,
it is evaluated in f , and the Gaussian process (and BO algorithm) is
updated with the result v = f (next_point).

At each iteration in the BO loop, we call the function
is_exceptional_number() to check if the current value is the result of an
exception, which could include INF, subnormal numbers or NaN. If that
is the case, we inform the user of the input and result obtained, and
break the current loop iteration as we have arrived to the goal.7

The algorithmic complexity (worst case) of Algorithm 1 is O(C �
k � rp), where C is the cost of updating the Gaussian process and BO
framework at each iteration—this cost is implementation dependent;
k is the maximum number of samples explored by BO (denoted as
max_iterations) in the algorithm; r is the number of inputs ranges (or
bounds) explored. r is 1 for the whole-range range approach but it
is larger for the approaches that split the input in several chunks
(e.g., two-range and many-range).

6 This choice of F is meant to reflect the clustering of floating-point
numbers around 0.

7 An added reason for breaking out is that adding the input and an
exceptional value output on line 18 can result in an ill-defined Gaussian
process update.

Algorithm 1 FindProblematicInputs
Require: f : Target function pointer
1: p : Number of input parameters of f
2: i : Input splitting method (whole, two, many)
3: n : Number sampling method (fp, exp)
4: procedure Find_inputs(f , p, i, n)
5: Goals } {find_inf+, find_inf-,
6: find_under+, find_under-}
7: for g À Goals do
8: if g == find_inf+ then f } f . do nothing
9: else if g == find_inf- then f } *f
10: else if g == find_under+ then f } *f ®

11: else if g == find_under- then f } f
®

12: B } get_bounds(i, n, p) . create bounds set
13: for b À B do
14: set_BO_bounds(b)
15: while n < max_iterations do
16: next_point } suggest_next_point()
17: v } f (next_point)
18: update_Gaussian_process(v)
19: if is_exceptional_number(v) then
20: report_user(v)
21: break

22: end if
23: end while
24: end for
25: end for
26: end procedure

Unique Input Tracing. Our method maintains a global table where
keys are functions f (i.e., the function name tested) and the input
values found to generate exceptions. In some situations, Xscope can
find duplicated inputs that generate a known exception. Our current
implementation maintains a set of unique exception-triggering inputs
for each function (previous implementations did not consider this [9]).

3.6. Implementation details

We implement Xscope in Python, C++, and CUDA. We use the
Bayesian Optimization Python package [14] to implement the BO
search, which depends on Numpy, Scipy, and Scikit-learn. We compile
the C++ examples with the Intel compiler, and the CUDA examples
with the NVIDIA nvcc compiler, using clang/LLVM as the host compiler.
While we focus on CUDA and NVIDIA GPUs, Xscope can be applied to
other classes of GPUs, such as AMD and Intel GPUs.

Acquisition Functions. We evaluate the approach under three
acquisition functions: Upper Confidence Bound (UCB), Expected Im-
provement (EI), and Probability of Improvement (PI) [6,10], which
are widely used in BO. We set the acquisition functions to use ‘‘ex-
ploration’’ mode—since input bounds are very large (essentially un-
bounded), ‘‘exploration’’ increases the chances of identifying extreme
cases (compared to the ‘‘exploitation’’ mode).

3.7. Limitations

Our approach is not without limitations. The most important limi-
tations are the following:

• While our approach is designed to systematically search for in-
finity and subnormal numbers, it not specifically designed to
trigger NaN. However, as Section 4 shows, Xscope has proven to
be useful in identifying inputs that trigger NaN in many of the
evaluated functions. The main reason for this is that several NaNs
are the result of calculations that involve infinity; for example the
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following expressions generate NaN: 0 ù INF, 0
INF , and INF * INF.

Therefore, while NaNs are not directly targeted by BO, it can
identify inputs that generate them and reports them to the user.

• The run time of the many-range approach can significantly in-
crease with the number of input parameters because it tries many
combinations of small input bounds for different combinations
of parameters. The approaches with fewer bounds to try (two-
range and whole-range) are much faster but may not find as many
exceptions as the many-range approach. We experimented with
functions with 1–3 inputs—we found that for functions with 4 or
more inputs, the many-range approach would take more than 12 h
(the maximum allocation time of our clusters). In future, work we
plan to study methods to improve the scalability of many-range.

• Because we assume that functions to test are black boxes, Xscope
cannot identify exceptions that occur internally in the function
but do not propagate to the return value. While we believe this is
rare in most functions, it could happen, for example, when a value
v is computed and used only in a branch (e.g., if(v) {...}), but v
does not affect directly the final computed value. We are working
on developing a binary-analysis method (that uses NVBit [15])
which is able to detect exceptions at the binary inside the tested
function while BO runs. We leave studying this improvement in
Xscope to future work.

4. Evaluation

Our evaluation aims to answer the following questions:

Q1: Can Xscope identify inputs that trigger exceptions in black-box CPU
or GPU functions?

Q2: What approach for sampling and input splitting works best to
search for such inputs?

Q3: Can Xscope identify exception-triggering inputs that impact a CPU
function but not the GPU counterpart, or vice versa?

Q4: How does the performance of Xscope compares to random sam-
pling?

4.1. Tested functions and programs

CUDA Math Library. NVIDIA provides several proprietary acceler-
ated libraries, such as cuBLAS, cuFFT, cuSOLVER, CUDA Math Library,
and cuDNN, that are widely used in closed- and open-source software.
We evaluate Xscope on the double-precision functions provided in the
CUDA Math Library8; these functions are widely used in scientific soft-
ware, the source code is not publicly available, and the documentation
about expected inputs is limited (the NVIDIA documentation, however,
informs the user of expected return values for some inputs).

While all functions return a double-precision value, we analyze only
the functions that receive scalar double-precision parameters—we omit
functions that use integer parameters or arrays as input. In total, we
analyze 58 functions from the CUDA Math Library (about 68% of the
library functions).

Intel Math Library. We evaluate Xscope in the Intel C++ Compiler
Classic Math Library.9 In contrast to the CUDA Math Library functions
that run in NVIDIA GPUs, the Intel Math Library function run a CPU.
Several of the functions provided in the CUDA Math Library are also
provided in the Intel library. This allows Xscope check if similar func-
tions behave equally on different platforms (despite being developed
by different vendors). In total, we analyze 81 functions from the Intel
Math Library.

8 https://developer.nvidia.com/cuda-math-library
9 https://www.intel.com/content/www/us/en/developer/tools/oneapi/

dpc-compiler-documentation.html

Table 3
Comparison of coverage metrics for three acquisition functions: Upper Confidence
Bound (UCB), Expected Improvement (EI), Probability of Improvement (PI).
Acquisition
function

Total
exceptions

Exception-
triggering
functions

Exception
types

UCB 1303 44 5
EI 1305 44 5
PI 1305 44 5

4.2. System

NVIDIA GPU Experiments. For the GPU experiments in CUDA, we
use an IBM Power9 system with 44 ppc64le Cores/Node, 4 NVIDIA
V100 GPUs per node, 256 GB of CPU Memory/Node, with 795 nodes
in total. The system uses Linux 4.14.0-115.21.2.1chaos.ch6a.ppc64le,
CUDA version 10.1.243 and Python 3.7.2 compiled with GCC 4.9.3.

Intel CPU Experiments. For the Intel CPU experiments, we an
Intel Xeon E5-2695 v4, with 36 cores/node, 128 GB of CPU Mem-
ory/Node, with 3,018 nodes in total. The system uses Linux 3.10.0-
1160.76.1.1chaos.ch6.x86_64, and Python 3.7.2 compiled with GCC
4.9.3, and the Intel compiler version 19.0.4.227.

4.3. CUDA math library

We start by analyzing the impact of using different maximum
iteration bounds for BO and the acquisition functions used in BO, since
this can impact the rest of the experiments. We start with the CUDA
Math Library since errors in the GPU have a higher impact (NVIDIA
GPUs have no mechanisms to detect exceptions).

Iterations Analysis. Fig. 6 shows a comparison of the approaches
for sampling and input splitting for different maximum iterations set-
tings for BO, using the EI acquisition function. Fig. 6(a) shows the total
number of inputs found; since the methods have different sampling
numbers, we normalize each method by dividing the total exception-
triggering inputs found by the maximum number of samples allowed.
Fig. 6(b) shows the number of different exception-triggering functions
from the CUDA Math library.

From Fig. 6 we observe the following. First, the number of maxi-
mum BO iterations do not affect the results significantly when we vary
this maximum between 5–30. Second, the whole-range method appears
to be effective in identifying exception-triggering inputs per trial (or
sample) when one looks at the total counts. While whole-range can
find many inputs that trigger a single exception class (e.g., INF), it
can get stuck easily. On the other hand, the many-range approach is
more expensive, but does not get stuck easily and can find many more
different classes of exception-triggering inputs on different functions.

Acquisition Function Results.
Table 3 compares three metrics for three different acquisition func-

tions: UCB, EI, and PI [6,10] using 30 max samples for BO and the
many-range method. As described in Section 3, the acquisition func-
tions use the exploration mode. We observe no significant difference
in the results: EI and PI are slightly better than UCB in terms of total
exceptions found, but they all identify the same number of exception-
triggering functions and exception types. The rest of the experiments
focus on using the EI function.

Coverage Results.We now dig into coverage results for the individ-
ual functions of the CUDA Math Library. Fig. 7 presents the number of
exception-triggering inputs for the two approaches to sample numbers:
fp and exp method. We only present the results for the whole-range and
many-range approach. We evaluated the two-range approach and the
results sit in between the whole-range and many-range, so we left them
out to save space.

We observe that, while our BO search does not target NaNs, it is
capable to find inputs that generate NaNs in many functions. Xscope is

https://developer.nvidia.com/cuda-math-library
https://www.intel.com/content/www/us/en/developer/tools/oneapi/dpc-compiler-documentation.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/dpc-compiler-documentation.html
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Fig. 6. (a) Total exception-triggering inputs divided by the maximum number of samples allowed; (b) Number of different exception-triggering functions from the CUDA Math
Lib.

Fig. 7. Number of inputs found for the CUDA Math Library functions. SUB+ mans positive subnormal and SUB- means negative subnormal.
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Fig. 8. Number of runs of the target f for the fp+many-range approach.

Fig. 9. Number of runs of the target f for the exp+many-range approach.

able to find inputs that generate NaN in 15 functions from the library
(25% of the tested library functions). We also observe that the many-
range approach to split input ranges is capable of finding offending
inputs in more cases than the whole-range approach.

In general, we find that the fp method for sampling numbers is able
to identify more offending inputs than the exp method. There are a few
cases, however, where exp finds offending inputs but fp cannot. For
example, exp+many-range finds inputs that generate NaN in the erfinv
function but the fp+many-range cannot.

Outcome 1: Xscope proves to be effective at identifying inputs
that trigger exceptions in black-box CUDA functions with limited
information of input bounds. It is able to finds triggering inputs
in 72% of the tested functions in the CUDA Math Library.

Performance Results. The different approaches we try trade off
speed versus coverage. To understand this trade-off, we show in Fig. 9
and Fig. 8 the number of runs (of the target function) that BO executes,
which is the factor that dominates execution time. As we expected,
the many-range method finds more offending inputs than the other
methods at the expense of many more runs of the target function. In
light of these results, we expect that users will consider the trade-off of
coverage versus runtime when using Xscope.

Outcome 2: The many-range approach to split input bounds iden-
tifies inputs that trigger exceptions many more times than the
whole-range and two-range approach; however, this comes at the
price of significantly more execution runs of the target. In general,
the fp approach to sample numbers works better in practice than
the exp approach; however, exp is successful a few times where
fp is not.

Execution Time.
Fig. 10 shows the execution time of Xscope in finding inputs for

the fp method (we omit the exp approach here as it provides inferior
results). The plots are sorted by the values of the Many method. The
execution time for a given function is dominated by two factors: (1) the
function execution time, and (2) the time to update the BO optimizer,
and (3) the number of times the optimizer runs. The function execution
time varies depending on its code—a black box from the point of view
of Xscope. We have measured the time to update the BO optimizer,
and have found that it is mostly constant, in the order of 0.027 s for
the BO library we use (this time may change with a different library).
Finally, the number of times the optimizer runs is presented in Figs. 8.
The larger execution times (order of minutes) correspond to functions
with two parameters (e.g., hypot).

4.4. Example: cosh(double x)

As an example of specific inputs found by Xscope, consider the
cosh(double x) from the CUDA Math Library, which calculates the hy-
perbolic cosine of the input argument x. This is an increasing function,
which is expected to produce INF as input values increase. However,
from the library documentation it is not very clear what specific inputs
would produce INF. Particularly, the library documentation specifies
that the function returns:

• 1.0 for cosh(0)
• INF+ for cosh(INF±)

Xscope finds specific inputs that trigger INF+, such as 4.35e+3, 1e+47,
and 4.17+306. This provides to users more specific information than
that provided in the documentation. We observe similar benefits in
other functions, such as erfinv(), where Xscope improves the user’s
knowledge over what is provided in the documentation regarding
exception-inducing inputs.
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Fig. 10. Execution time (seconds) of the fp approach for sampling. The plots are sorted by the values of the Many method. The larger execution times (order of minutes)
correspond to functions with two parameters (e.g., hypot).

Fig. 11. Comparison of Xscope with two random sampling approaches: Random stops the input search when the first exception is found (this is how Xscope operates);
Random_unbounded does not stop when an exception is found.

4.5. Comparison to random sampling

We compare Xscope (with fp and whole-range) to random sampling,
which would be the only method available to programmers to find
exception-triggering inputs in black-box functions. We use two ap-
proaches: (1) Random, which stops sampling inputs when the first
exception is found—note that this is how Xscope operates as well; (2)
Random_unbounded, which does not stop sampling when an exception is
found. For each method, we set the maximum number of samples to be
the same, so the all have equal chances to find offending inputs. Fig. 11
shows the number of different exceptions types found (the maximum
is five) for each function.

Outcome 3: We observe that Xscope is superior than random
sampling as it is able to identify many more different exception
types in most functions than random sampling.

4.6. Intel math library

Fig. 12 shows the number of inputs found for the Intel Math Library
functions for the five categories of exceptions. Xscope identifies inputs
that trigger exceptions in 62 functions out of 81 tested functions
(i.e., about 75% of the tested functions). The effectiveness of Xscope
in the CPU functions is comparable of that for GPU functions, where
exception-triggering inputs were found in 72% of the CUDA functions.

The Intel and CUDA libraries provide several similar functions.
Scientific applications can use a given math function, e.g., sqrt(), in

the code with the expectation that the compiler and linker defines
the actual implementation used at runtime, depending on where the
function is executed (CPU or GPU).

Table 4 shows a comparison of the inputs found for the same
function executed in the CPU or GPU. The CPU version is compiled
with the Intel compiler and the GPU version is compiled with the
NVIDIA compiler. As expected, most functions exhibit similar behav-
ior, i.e., Xscope identifies the same number of inputs that trigger
exceptions. In some cases, however, we observe some differences. For
example, for functions y0 and y1, Xscope finds inputs that produce INF-
in the CPU, not in the GPU, while the same functions produce NaN in
the GPU, but not in the CPU.

Outcome 4: While most functions executed in CPUs and GPUs
behave in similar ways with respect to inputs that trigger ex-
ceptions, Xscope identified a few cases where the behavior is
inconsistent between the CPU and GPU implementation.

Such findings are important in order to alert designers who may port
code from CPUs to GPUs: they must plan for such exception differences
in the overall code.

5. Related work

Floating-Point Error-Inducing Input Generation. Several pre-
vious methods have been proposed to generate inputs that induce
floating-point error. S3FP [16] is a tool for determining the input
settings to a floating point routine that maximizes its result error,
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Fig. 12. Number of inputs found for the Intel Math Library functions for the five categories of exceptions.

using a heuristic search algorithm called Binary Guided Random Test-
ing (BGRT). S3FP iteratively divides the search range of each input
variable into two and permutes them randomly to generate a tighter
search space. The tool evaluates each subspace by sampling inputs
and selecting one for further exploration. FPGen [17] formulates the
problem of generating high error-inducing floating-point inputs as a
code coverage maximization problem and solves it using symbolic
execution, focusing on detecting large precision loss and cancellation.
FPGen applies symbolic execution to generate inputs that exercise
specialized branches that when covered by a given input, are likely to
lead to large errors in the result. In [18] authors propose a heuristic
search-based approach to automatically generating test inputs that
aim to trigger significant inaccuracies in floating-point programs. It
builds a reliable fitness function to guide the search. The work in [19]
proposes a testing approach to trigger high floating-point inaccuracies
by utilizing heuristic rules drawn from error analysis to guide the
process of global search of test cases. It compares the approach to
random and BGRT-based methods and show its stability. The methods
in this domain attempt to maximize or induce floating-point rounding
error and inaccuracies, such as cancellation; however, they do not
target triggering exceptions, are not available in GPU programs and
require analyzing the source code.

The closest work to Xscope is perhaps Ariadne [3], which trans-
forms a program to explicitly check exception triggering conditions, by
symbolically executing the transformed program using real arithmetic
to find candidate real-valued inputs that can reach and trigger an ex-
ception. The main difference with respect to our work is this approach
is designed to operate in the CPU (host) code and requires analyzing
the source code via symbolic execution.

Floating-Point Exception Detection. A number of tools have been
designed to detect floating-point exceptions at runtime. The goal of
these tools is not to find inputs that trigger exceptions but to detect
them when the program is run with a specific input. FPSpy [1] monitors
floating-point behaviors in CPUs using operating-system facilities and
hardware flags; it reports floating-point exceptions at the binary level
for x86 binaries. FPChecker [2] performs exception detection in CUDA
programs at the LLVM level and reports the root cause of the exception
(file and line numbers) at runtime, while GPU-FPX [20] is a similar
tool that works based on binary instrumentation of NVIDIA SASS in-
structions. Other tools such as CADNA [21] and Verificarlo [22] report
large cancellations in an addition or subtraction—but not other forms
of exceptions. The work in [23] examines the ways in which different
exceptions are handled in numeric programs (particularly overflow and
underflow), with emphasis on making numeric code run faster. Excep-
tion scenarios are handled purely in numerical programs because often
programmers do not understand floating-point arithmetic—researches

in [24] conduct a study of different groups from academia, national
labs, and industry, and found that developers poorly understood which
compiler optimizations were non-standard.

6. Conclusion

In this work, we demonstrate that Bayesian optimization (BO) can
be applied systematically to find inputs that trigger floating-point ex-
ceptions in black-box functions, where the source is unavailable and
users have limited information about the expected function inputs. We
have implemented various methods for number sampling and input
exploration to guide BO in triggering such exceptions. To the best
of our knowledge, we are the first to apply BO and such methods
to identify exception-triggering inputs. We present an algorithm and
the implementation of ideas in Xscope. While we evaluate Xscope
in NVIDIA GPUs and Intel CPUs, the situation in CPU programs is
less complicated than in GPUs, because CPU architectures (e.g., x86)
traditionally provide hardware register flags for exceptions, whereas
NVIDIA GPUs and CUDA do not offer support for exception detection.
We demonstrate Xscope in 58 functions from the CUDA Math Library
and 81 functions from the Intel Math Library. Xscope is able to iden-
tify inputs that trigger exceptions in about 72% of the CUDA tested
functions, and in about 75% of the Intel Math Library. When Xscope
is compared to random sampling, Xscope triggers a significantly larger
number of exceptions, proving its superiority to random sampling.
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Table 4
Comparison of inputs that trigger exceptions in CPU (Intel Math Library) and GPU (CUDA Math Library) found by
Xscope.

Func.
CPU GPU

INF- INF+ SUB- SUB+ NaN INF- INF+ SUB- SUB+ NaN

acos 0 0 0 0 8 0 0 0 0 8
asin 0 0 2 1 8 0 0 2 1 8
atan 0 0 2 1 0 0 0 2 1 0
atan2 0 0 7 5 0 0 0 7 5 0
cos 0 0 0 0 0 0 0 0 0 0
cospi 0 0 0 0 0 0 0 0 0 0
sin 0 0 2 1 0 0 0 2 1 0
sinpi 0 0 2 1 0 0 0 2 1 0
tan 0 0 2 1 0 0 0 2 1 0
acosh 0 0 0 0 14 0 0 0 0 14
asinh 0 0 2 1 0 0 0 2 1 0
atanh 0 1 2 1 0 0 1 2 1 0
cosh 0 6 0 0 0 0 6 0 0 0
tanh 0 0 2 1 0 0 0 2 1 0
cbrt 0 0 0 0 0 0 0 0 0 0
exp 0 3 0 0 0 0 3 0 0 0
exp10 0 3 0 0 0 0 3 0 0 0
exp2 0 3 0 0 0 0 3 0 0 0
expm1 0 1 2 1 0 0 1 2 1 0
hypot 0 0 2 1 0 0 0 2 1 0
log 0 0 0 0 9 0 0 0 0 9
log10 0 0 0 0 9 0 0 0 0 9
log1p 1 0 2 1 4 1 0 2 1 4
log2 0 0 0 0 9 0 0 0 0 9
logb 0 0 0 0 0 0 0 0 0 0
pow 0 50 0 2 126 0 50 0 1 126
erf 0 0 2 1 0 0 0 2 1 0
erfc 0 0 0 0 0 0 0 0 0 0
erfcx 0 3 0 0 0 0 3 0 0 0
erfcinv 0 0 0 0 13 0 0 0 0 13
erfinv 0 1 2 1 0 0 1 2 1 0
j0 0 0 0 0 0 0 0 0 0 0
j1 0 0 2 1 0 0 0 2 1 0
lgamma 0 5 0 0 0 0 5 0 0 0
tgamma 0 3 0 0 2 0 3 0 0 2
y0 9 0 0 0 0 0 0 0 0 9
y1 9 0 0 0 0 0 0 0 0 9
ceil 0 0 0 0 0 0 0 0 0 0
floor 0 0 0 0 0 0 0 0 0 0
nearbyint 0 0 0 0 0 0 0 0 0 0
rint 0 0 0 0 0 0 0 0 0 0
round 0 0 0 0 0 0 0 0 0 0
trunc 0 0 0 0 0 0 0 0 0 0
fmod 0 0 51 6 1 0 0 49 6 3
remainder 0 0 50 11 1 0 0 49 12 3
copysign 0 0 25 2 0 0 0 25 2 0
fabs 0 0 2 1 0 0 0 2 1 0
fdim 0 0 0 1 0 0 0 0 1 0
fmax 0 0 25 2 0 0 0 25 2 0
fmin 0 0 25 2 0 0 0 23 2 0
nextafter 0 0 28 5 0 0 0 28 5 0
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