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1 | INTRODUCTION

Recent years have seen a surge in actor-based programming. This is, in part, because many applications today are nat-
urally concurrent and demand some means for distribution and scale-out. Hence, actor-based frameworks!'** have seen
large-scale production deployment>® running real, low-latency services for thousands to millions of concurrent users.
However, despite a stylized message-passing-based concurrency scheme that avoids the complexity of shared memory,
actor systems still contain bugs.” As a result, prior works have sought to bring model checking techniques®® and code
coverage-driven techniques’ to bear on these systems with some success.

However, beyond exploring schedules efficiently, a separate challenge is the more basic problem of specifying invari-
ants and safety properties for these types of complex systems.'®!! One approach that has gained traction in recent
years is manual, black-box testing of systems under complex, concurrent scenarios and comparing against a simple,
sequential reference implementation that meets the same interface as the complex, concurrent system.!? For example,
recording and checking the linearizability'® of a history of responses produced by the larger system against responses
produced by the reference implementation provides a sound and complete means for testing a single, particular execu-
tion schedule of the system.\*!> The problem with this approach is that if interesting schedules are missed by the user
testing the system or if certain schedules are hard to produce, then this approach says little about the overall correctness
of the system.

Our goal is to combine the success of these two techniques (schedule exploration and linearizability checking) in
an automated package for actor systems. These systems often contain subcomponents that provide concurrent imple-
mentations of abstract data types (ADTs) with well-defined inputs and outputs (invocations and responses). Hence,
these subcomponents are amenable both to exhaustive schedule generation and to automated testing against reference
implementations of the corresponding ADTs. This new approach provides a richer set of checks than simple schedule
exploration against user-specified assertions while maintaining simplicity of user provided specification. Of course, to be
practical, such an approach must control explosion both in schedule exploration and in history checking costs.

As a first step toward this goal, this paper attempts to understand how best to control that explosion by assessing
the performance of many classic and state-of-the-art schedule exploration algorithms when considered together with
state-of-the-art linearizability checking algorithms. To that end, we compare several algorithms on multiple actor sys-
tems. For example, we test with a simple distributed register and compare checking costs when that same ADT is lifted for
fault tolerance using standard consensus-based state machine replication protocols.'®!® This shows that beyond testing
individual systems, this approach also works as an easy approach to testing these notoriously subtle black-box replica-
tion techniques. Ultimately, we show that by (1) subdividing systems by the principle of compositionality of linearizabil-
ity!>1419 and (2) exploiting independence between actors for effective dynamic partial order reduction (DPOR),%% we
can limit the number of schedules to make finding bugs in concurrent actors systems practical by comparing against a
simple, sequential reference implementation of the system’s ADT.

Beyond this first step, our analysis informs a larger effort on our framework, an actor-based framework for specifying
and checking distributed protocols. It provides a concise language for specifying systems, and using our framework, users
can manually drive testing on their systems (the framework includes some specialized schedulers specifically for this
kind of test-driven checks), can rely on its automated schedule exploration and linearizability checking, or can extend its
automated schedulers. Our end goal is an easy system for specifying and testing distributed actor systems that can drive
synthesis to practical implementations.

In sum, this paper makes the following contributions:

« Our framework?! that not only made our schedulers fully stateful,” extensible,” re-usable,* composable,$ and modularf
but also reduced our novel algorithms/schedulers implementations to mere predicates on receives (i.e., didEn-
able (receivel,receive2) and areDependent (receivel, receive2)), one for each of our algorithms.

*Saving the entire state of the distributed system in order to back track to it during exploration, instead of the previous implementations of algorithms
that re-run the system controllably from start to end.

TBoth hierarchies of schedulers/algorithms and distributed system model are extensible independently and they will still be compatible with each other.
*Class hierarchies are modularily structured that one can override few methods while keeping the rest intact and still be re-usable.

$Schedulers can be composed, nested, and can save the state and do hand-off between themselves without having to restart explorations.

ISchedulers are structured in a way that all their behavior is overridable in parts or in whole without having to re-write all parts of the scheduler for
example, the main loop.
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These features make schedulers and the networked distributed system model (the context) simple for developers to
extend. The novelty in this work does not stop at an almost no overhead algorithm to dynamically detect causality
between events (zero memory overhead, and almost no compute overhead per the experiments) and at the same time
deduplicating retries. It goes beyond that with a unique declarative environment for exploring actor systems in Scala.
This promotes formalism in software practice.

« An automated approach to correctness testing of subcomponents of actor systems no developer-provided specification
aside from a simple, nonconcurrent (i.e., sequential) specification reference implementation of the component and a
simple test harness.

« An exploration of our approach and its effectiveness on several practical ADTs including quorum-replicated regis-
ters,?>2* a model of Open Chord,?>?® and Multi-Paxos.!8-2%-3!

« Extensible and modular implementations of seven algorithms (six of which are stateful), and two of which are new
(IRed and LiViola). All of which used only four out of sixteen (programmable) operational semantics rules®? provided
by our framework.?1-33:34

« A detailed comparison of these algorithms used for the first time in the context of linearizability checking instead
of simple invariant checking, run side-by-side on the same benchmarks showing how they perform and scale when
checking actor systems. This helps show effectiveness of focusing schedule generation toward revealing linearizability
violations.

2 | BACKGROUND
2.1 | Actor systems

Actors are a model for specifying concurrent systems where each actor or agent encapsulates some state. They do not
share state and have no internal concurrency.” Instead, actors send and receive messages between one another. Internally,
each actor receives an incoming message and performs an action associated with that message. Each action can affect
the actor’s local state and can send messages to other/same actor(s). Each actor executes actions sequentially on a single
thread, but an actor system can run concurrent and parallel actions since the set of receiving actors collectively perform
actions concurrently.

By eliminating complex constructs like threading and shared memory, actors make it easier for developers to reason
about concurrency. For example, data races! are impossible in actor systems. However, race conditions can manifest
in the order of the messages received by the actor in case they interfere. This programming model naturally supports
distribution, since it relies on message passing rather than shared memory. As a result, there are many popular actors
frameworks!*>3>-37 that closely adhere to the actor model.

2.2 | Model checking

Model checking has been applied in many domains to assess the correctness of programs.-42 This includes actor systems,?
real-time actor languages,*’ and the Rebeca Modeling Language.** Model checkers explore states a system can reach
by systematically dictating different interleavings of operations (each of which is called a schedule). In actor systems,
concurrency is constrained by the set of sent-but-unreceived messages in the system, which determines the set of enabled
actions at each point in the execution. Hence, it consists of exploring the set of all possible interleavings of message
receives.

This brings the issue that we are assuming a hand-shake driven model. This is true, but our model (and its operational
semantics rules) is not limited to that, as it offers timed actions (real time, since it is executable, or relative ordering)

#Internal concurrency is any concurrency inside a single actor for example, multithreading. An actor is strictly a sequential communicating process.
Mixing multithreading breaks the actor model’s encapsulation.

IWe distinguish between a data race (which is a race condition over the data in the local state of an actor) and a race condition (which is any
nondeterministic behavior due to the order in which events are processed)
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for blocking and nonblocking actions. However, since that would need users’ modulation of input application times,
schedulers do not implement this yet.

In model checking, exploration is typically coupled with a set of invariants or assertions provided by the developer
of the system under check. By checking that the invariants hold in all states reachable via any schedule, developers can
reason about safety and/or correctness properties of their program.

Many different strategies have been explored for guiding schedule enumeration or reducing its inherent exponential
cost. Ultimately, for nontrivial programs model checkers cannot enumerate all schedules and must bound exploration;
hence, this may lead to algorithms that are sound but with incomplete results, that is, not complete state space coverage.
Randomized scheduling has shown promise, since it explores diverse sets of schedules. Another approach is dynamic
partial order reduction (DPOR),?° which prunes schedule enumeration by only exploring enabled actions that could
interfere”™ with one another. This has been extended to the context of actor-based systems where the extra independence
between actions (due to the lack of shared memory) allows additional pruning.? We describe several of these strategies in
more detail in Section 3.

Importantly, before a developer can use a model checker to check their code for correctness, they must first specify
properties that the scheduler should check as it explores systems’ states. This is a challenge for most developers, especially
in concurrent systems.

2.3 | Linearizability

Linearizability is a consistency model for concurrent objects (e.g., registers, stacks, queues, hash tables).'* Linearizability
has several key properties that makes it common and popular in distributed programming. It is strict about ordering,
which eases reasoning, but it allows enough concurrency for good performance.

From the perspective of an object user (or a system representing it), each operation they invoke appears to happen
atomically (instantaneously) between the time of its invocation until the time of its response, a linearization point in time.
Because operations take effect atomically, that is, totally orders them, the concurrent object has a strong relationship to
a sequential counterpart of the same ADT. For some history of operations (a sequence of invocations and responses) on
that object, there must be a total order of those operations that when applied to a sequential implementation of the same
ADT produces the same responses. This is powerful because any sequential implementation can be used to cross-check
the responses of a concurrent implementation against its sequential counterpart.

Figure 1 visualizes a sequential history of operations on a register that supports a read and write operation. Figure 2
shows a concurrent history using the same abstract type (a register). The operations overlap and run concurrently, but the
register produces the same response to each of the invocations as the history in Figure 1. Hence, the concurrent register
executed the operations in a consistent manner to the sequential counterpart. The user can reason about concurrent
operations on the register in similar way to that of a sequential implementation protected by a mutex. For example, in
Figure 2 res; could return 1, in which case the execution would be equivalent to a different sequential history; this is okay.
However, res; could never return 0, since no sequential history where inv; happens after the completion of res, could
explain that result; otherwise, this would indicate a bug in the concurrent implementation. Importantly, all of this can
be understood by observation only, and basic understanding of the equivalent sequential reference implementation (for
invocations vs. responses).

Linearizability Checking and WGL Algorithm.* This correspondence between sequential and concurrent histo-
ries is what enables automated detection of bugs in concurrent objects. To do this, one can capture a history of operations
from a concurrent structure. Feeding these operations one-at-a-time into a sequential structure, say, in invocation order
may produce the same return values for each response, in which case the captured history is consistent with lineariz-
ability. However, this might not work because the concurrent execution may lead to different responses orderings. Even
repeating the same procedure in response order can be fruitless. Only an exhaustive search over the space of potential
equivalent histories may yield a correspondence. WGL algorithm* generates these permutations which are all of the
same history that (1) never reorders a response before its invocation, and (2) never reorders two invocations. For each
sequential history it finds (a history where each invocation is adjacent to its response) it feeds the history to a sequential
implementation of the ADT being checked to see if all the responses match. If some sequential history that explains the

"We say messages “interfere” when they are received by the same actor and their effects do not commute. Similarly in threads, two operations
interfere when there is a write operation whose effect(s) does not (do not) commute with another write/read operation.
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. Rd—0
inv, f———— res,

, Wr(1)
invy b—— res,

. Rd—1
invy f——— res;

inv, (Rd); res,; (0); inv,(Wr, 1); res,(); inv3(Rd); res;(1)

FIGURE 1 A sequential history of operations on a register. inv stands for invocation. res stands for response. Rd stands for a read
operation. Wr stands for a write operation. Numbers appearing on those operations correspond to the order at which the invocation was issued.

. Rd— 0
inv; | | res;

o Wir(l)
invy p—— res,

inv, (Rd); inv,(Wr, 1); res,(); inv;(Rd); res;(1); res,; (0)

FIGURE 2 A concurrent history of operations on a register. This history is linearizable; it produces an equivalent effect as the
sequential history in Figure 1.

concurrent one is discovered, then the implementation being checked behaved in agreement with linearizability in the
execution described by that one history. Otherwise, the history is deemed nonlinearizable.

3 | OVERVIEW

The focus of this paper is to explore model checking in the context of linearizability checking. That is, model checking
can be used to systematically produce histories. When put together, these techniques would let developers check full,
concurrent actor systems for correctness without manual specification of invariants. The key problem is that both algo-
rithms are exponential; however, this says little about the potential usefulness of combining the techniques. Past works
have proposed many ways to reduce schedules to explore. No prior work explores how these different schedulers impact
the set of histories to check when exploring a structure, nor does any prior work explore the interplay between model
checking costs and history checking costs. Hence, we begin our efforts to improve linearizability checking costs for practi-
cal actor-based systems with a quantitative exploration of existing techniques. Later, we describe our own new schedulers
designed to improve over them.

3.1 | Toolchain flow

Figure 3 shows our setup for checking actor systems. The user specifies an actor-based system that represents some ADT
(e.g., a map) as an instance of our executable model.

In our approach, each scheduler starts with a set of messages destined to a set of actors. For each of these messages
we say a destination’s receive is enabled. At each step, a scheduler’s job is to choose an enabled receive from the enabled
set, to execute the action associated with it on the destination actor, and mark the receive explored so that it will not be
revisited from that specific state. Later, the scheduler may need to backtrack to that state so it explores other interleavings
of remaining receives. Before executing a receive and after marking it as explored, a scheduler snapshots the entire system
state and the different sets of receives.

To start checking an implementation, a user provides the actor system that implements the ADT, and a set of invoca-
tions on it. Our Schedulers use these harnesses to inject these invocations as messages before the scheduler starts, then it
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FIGURE 3 Toolchain workflow. WGL stands for Lowe’s extension of Wing and Gong’s algorithm.*

(5) Check

starts exploring till no more enabled receives remain. Response messages accumulate in a client’s queue to be appended
to the schedule, by the scheduler. The sequence of invocations and responses it discovers form histories.

3.2 | Schedulers

Here, we describe the set of schedulers we compared starting with the simplest ones. The criteria for choosing these seven
algorithms is multifaceted: (1) they are popular; (2) all extend each other toward specialization in a linear inheritance (i.e.,
to implement LiViola—LV—we had to implement all that it refines/inherits) which reduces the amount of duplicated
code and increases modularity; and (3) they form a basis for many other algorithms to extend and specialize them as
needed.

3.2.1 | Systematic random

From the initial enabled set, the systematic random (SR) scheduler chooses a random receive and executes it. This may
enable new receives to add to the previously enabled ones to pick from, and the process repeats until no enabled receives
remain. From there, the scheduler backtracks to the initial state and initial enabled set and repeats until a timeout.

3.2.2 | Exhaustive depth first search

One straightforward approach to exploring systems is to explore schedules depth first. This algorithm nondeterministi-
cally picks an enabled receive that has not been marked explored and performs the associated action. When the enabled
set is empty on some path, it outputs a schedule which later is transformed into a history. Then, it backtracks to the ear-
liest point in time where other, unexplored, receives remain and it repeats this procedure. To bound execution time, all
schedulers have to be stopped at some point, for example, at some count of schedules generated. Hence, in practice, this
policy will tend to mostly make some initial choices of receives, and it will aggressively explore reorderings of the “deep-
est” enabled receives before timing out. As a result, in our experience, this approach tends to explore similar schedules
(before timing out), so it produces many but similar histories.

All of the remaining schedulers are based on exhaustive depth first search (DFS). They cut the search space by
overriding methods that refine the scheduler behavior to prune receives causing redundant schedules/histories.

3.2.3 | Delay-bounded

The delay-bounded (DB) scheduler*® extends the Exhaustive DFS scheduler, and it mainly explores schedules similarly
but randomly delaying some receives. The scheduler starts with a fixed delay budget D. As it explores, for each receive r,
it picks a random natural number d, 0 < d < D. If d > 0 then the scheduler skips over d agents that have enabled receives
in the enabled set in a round robin order, and it explores the next agent’s enabled receive. The sum of chosen values of d
along in a schedule is bounded to D.

" Note that even schedules that lead to these histories are accessible in a construct in the schedulers until the exploration statistics are printed.
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target agent enabled set _ _ backtracking set
{r1>A, r2>A} {r2>A}
transition

enabled set

{r2>A, r3>B}

N
receive ——=r1rA
4

dependent
Receives

\ . en?:)zlii}set

FIGURE 4 Dependent receives in DPOR. r1>A: means receive r1 heading to actor A. enabled set: means the set of receives/messages
that can be scheduled/executed next. dependent receives: Receives/messages that are sent to (to be executed by) the same actor, per DPOR,
TransDPOR definition of dependence. Dependence is redefined later for IRed/LiViola. backtracking set: the set of dependent receives upon
backtracking to that state, a scheduler can prioritize picking a receive/message from this set to execute/schedule.

3.2.4 | Dynamic partial order reduction

Dynamic partial order reducing (DPOR/DP??) scheduler prunes schedules that reorder independent receives that affect
different actors. If two receives target the same actor, then they are considered dependent since the order they are applied
in can influence the behavior of that agent (and transitively those it communicates with). In Figure 4, for example, when
exploring a state of the system, there are two enabled receives; r; destined to agent A and r, destined to agent B. The
scheduler picks one of them nondeterministically (here r;), and it executes the transition, producing r; destined to B. In
the new state, it then chooses to execute r;. Notice that r, and r; are independent so only one interleaving needs to be
explored. However, when r;, is chosen and executed, the scheduler notices that the previously chosen r; is dependent, so it
determines that it must explore the receives in the opposite order as well. Hence, the scheduler first checks if 7, is enabled
in the state from which r; was executed. If so, it adds it to the first state’s backtracking set, which tracks the remaining
receives that need be explored after completing the current path. It only needs to do costly branching if the receives are
dependent.

One complication arises in DPOR (shown in Figure 4) is that it is possible that r, is not in the enabled set of the top state
(labeled start). That is, two receives can be dependent, but they might not always be in one enabled set. This situation
is due to a later executed receive enabling r,. In that case, DPOR takes all receives that executed between the dependent
state (i.e., a previous state from which a receive destined to the same agent as the current receive was executed) and the
current one, and filters them based on whether they were enabled in the dependent state, returning only those that were
enabled in the dependent state. Then, the entire set of filtered receives is added to the dependent state’s backtracking set
to explore later. This is where TransDPOR and IRed improve over DPOR, by being more careful about which one from
the filtered set of receives is added to the dependent state’s backtracking set.

3.2.5 | TransDPOR

The key idea in TransDPOR (TD)? that differentiates it from DPOR is that when a receive becomes enabled that is depen-
dent with a receive earlier in the schedule, it is added to the backtracking set of that earlier state (the dependent state) in
the schedule only if that state’s backtracking set is empty. TransDPOR always over approximates the root enabler receive
(the receive that enabled the current one whether directly or transitively) by always adding the first receive in the schedule
after the one executed from the dependent state to the dependent state’s backtracking set.

3.2.6 | IRed

IRed (IR) is based on TransDPOR, and improves over it in one specific aspect. It tracks causality (i.e., the root enabler
receive) with perfect precision by scanning for the causal chain backwards starting from the current receive until the first
one that enabled it in the schedule. Then it adds that root enabler receive, if found, to the dependent state’s backtracking
set. Otherwise, if a root enabler was not found, it does not update the backtracking set. More concretely, during the scan,
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it checks for the predicate (and keeps track of the earliest receive executed in the schedule that satisfies it) whether the
current receive’s sender is the same as the previous receive’s receiver. The earliest receive that satisfies it becomes the current
root enabler receive. The scanner continues in this manner until it reaches the dependent state, or the predicate is no
more satisfied and the last root enabler receive detected was enabled (co-enabled) in the dependent state. In which case,
the last root enabler receive is the one to explore when the algorithm backtracks to that specific state. The sequence of
receives starting at the root enabler up to and including the current receive is called causal chain, and the root enabler is
the first receive in this sequence. This causal chain pattern is characteristic of actors and purely sequential communicating
processes. This reverse traverse for the root enabler also filters away many unrelated receives effectively, and it improves
backtracking in the presence of retries. This is where our algorithm thrives in complexity that is common in distributed
systems.

3.2.7 | LiViola (LV)

Our second algorithm is based on IRed and is focused on revealing linearizability violations by redefining the dependence
relation of concurrent key-value stores. Linearizability is compositional.!>1*4” However, the only time this was exploited
for verifying linearizability is in P-Compositionality work!# at the history level. In addition, we realized that a lineariz-
ability violation is a race condition on an actor/agent having two interfering receives (due to network re-ordering) or
transitively between the actors/agents composing the distributed ADT (and, hence, a data race on the collective state of
actors composing the ADT) that is exposed clients. We used this fact to restrict the number of interesting schedules that
may produce linearizability bugs by applying it at the schedule generation stage. This was done by first augmenting the
harness with additional internal messaging info, and then overriding the dependence relation to restrict dependent states
to those that satisfy all of the following: (1) the receive executed from that state has to be targeting the same agent/receiver
(same as before); and (2) the receives have to target a certain key in the distributed key-value store (compositionality
of linearizability). So, the hypothesis about our algorithm (LiViola) is that it is expected to perform the worst in a sin-
gle key-value store (e.g., a map that has one key, a register, or a single element set) and perform the best as more keys
are added to the distributed ADT. Hence, our two algorithms above should thrive on complexity more than the other
algorithms. In addition, it is noted in WGL paper* that WGL suffers the most when there are more keys; however, our
algorithms should reduce the number of schedules the most when there are more keys. In other words, the more WGL
has to deal with more keys interleaving, the fewer schedules our algorithms produce in comparison to others and the
more complimentary they are to WGL checking.

While IRed algorithm’s improvement is generic to all problems, LiViola is specialized to linearizability. As a result,
IRed enables a whole class of algorithms that extend it and can be specialized in-lieu LiViola to more precisely address
different problems. That can be done by overriding one/both of the areDependent(receivel, receive2) — Boolean and
didEnable(receivel, receive2) — Boolean methods.

4 | ALGORITHMS IN DETAIL

In this section, we begin with a visual walk through of the TransDPOR and IRed algorithms in order to visually spot the
differences. After that, in next section Section 4.1, we present the differences between them in the form of pseudocode
walk through to remove any confusion, and to make it easier to code the algorithms.

Here, we start by explaining the symbols shown in Figures 5 and 6. Ovals represent states, and arrows represent
the transitions (receives) that are executed from one state and lead to the transition to the next state. Different sets are
represented with two/three letters: The Enabled Set is referred to as EN, The Explored Set (the done set) is symbolized
as EX, and the pending set is referred to as PND (it is {EN} \ {EX}), and finally the Backtracking Set is referred to as
BT. The pending set represents the enabled receives that have not been explored from the specific state; hence, they are
enabled but not in explored/done set. It is made explicit to simplify understanding and to relate to the pseudocode in the
next subsection when we explain algorithms in more detail.

First, we explain TransDPOR visually. Initially, there are two requests (receives) from two different clients (shown
in the enabled set to the left and right of state 0 in Figure 5), shown in the enabled set and the pending set is equal to
the enabled set. Once the algorithm randomly picks receive m1>a (i.e., message m1 heading to agent a), it adds it to the
explored set (EX) and that leads to removing it from the pending set. It executes the receive, transitioning from state 0
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to state 1, that has the corresponding set shown to its left and enabling receive m3>a, that is, by executing the action
to process m1>a and that action has a send statement that sends out m3>a. The algorithm proceeds by doing the same,
now randomly choosing to execute receive m1>b, and ending at state 2. It continues the same way but now the algorithm
detects that the current receive (m3>a) is dependent with a previous receive (namely m1>a); since they are heading to the
same agent (agent a).

Now the algorithm does two checks. In the first check, it checks if the current receive m3>a was co-enabled (resides
in the same enabled set of the state from which the dependent receive was executed, that is, state 0). It does not; hence,
it was not co-enabled with the receive m1>a, so the algorithm cannot update the backtracking set of state 0 to contain
the current receive. In the second check, the algorithm goes to try another option to update the backtracking set (to
explore another possible interleaving). TransDPOR picks the first receive after the dependent receive (symbolized as pre(S, i)
in the next section pseudocode) and assumes it is the receive that enabled the current receive m3>a whose sender is
agent/actor a. That receive (m2p>Db) is then added to the backtracking set of state 0 to be explored upon backtracking to
that state. TransDPOR, at this stage, locks the backtracking set of state 0 by setting a freeze flag, meaning that no more
receives are allowed to be added to that specific backtracking set (that is part of state 0). Hence, it keeps the backtrack-
ing set size to a maximum of one receive at any time. This is how it narrows down the exploration tree in comparison
to the original DPOR that adds more than one receive at a time to a certain backtracking set. TransDPOR then exe-
cutes the transition/receive (m3>a) ending in state 3. At this stage, there are no more pending/enabled receives that the
algorithm can execute, so it backtracks until it reaches a state where the backtracking set is not empty. That is, state 0 at
this point.

Once it is at state 0, it detects that the backtracking set is not empty, so it unfreezes (sets the freeze flag to false) the
state, picks the m2>b receive and executes it transitioning to state 4. It continues in a similar manner until it reaches state
6, and after that, it backtracks and exits since no more backtracking sets are updated. In the next paragraphs, we explain
IRed operation on the same input.

After explaining TransDPOR, we explain IRed algorithm in a similar manner. IRed execution of the system proceeds
exactly as TransDPOR up until state 2. At state 2, it does the first step exactly like TransDPOR does, that is, it checks if
m3p>a is co-enabled with m1p>a in state 0, but it finds it is not. Then, the second option, it tries to find the root enabler
(i.e., the receive that originally, directly or transitively, enabled receive m3>a). The way IRed does it is different from
TransDPOR. TransDPOR, as we saw earlier, assumes that the first receive after the dependent receive (dependent receive
being m1>a and m2pb is the one after it in this example) is the one that enabled m31>a. We know this is not true, and it is
an imprecision of TransDPOR. IRed, however, is precise at picking the root enabler. It scans backwards, checking if the
sender of receive m3>a (We write it as sender(m3>a)) is the same receiver of m2>b (we write it as receiver(m2>b)). The
key idea here is that if m31>a was sent by agent/actor b and m2>b was the last receive received by agent b (same agent),
then receiving m2p>b could have triggered agent b to send m3>b. Hence, the root enabler receive becomes m2>b. At this
stage, it is not true that m2>b is the root enabler since m3>a was sent by agent a not agent b. However, we reached the
dependent state so the algorithm cannot check the same predicate for the current receive versus the dependent receive
(i.e., sender(m3p>a) == receiver(mli>a)) since they are not co-enabled in the first place and the algorithm has no benefit
at running dependent receive itself, m1>a, again from the same state so it stops before doing so. If they were co-enabled,
however, m3>a would have been added to state 0’s backtracking set before the algorithm takes this second scenario/step
of the algorithm.

Elaborating more, assume there was another earlier executed receive (call it m2>a) after the dependent receive, and
now the earlier receive and current one satisfy the predicate above. The algorithm then makes the earlier receive (m2>a)
the current one, and it proceeds until it reaches the dependent receive. The latest current receive tracked by IRed, is then
checked if it was co-enabled with the dependent receive m1>a. If it is, it is added to state 0’s backtracking set; otherwise,
it is not added. To elaborate on the same example, assume there are hundred retries of the same receive m2>a, that is, the
message m2>a was sent a hundred times. There are two scenarios on how the algorithm deals with this situation. The
first scenario is that the sender of these m21>a retries is agent a itself, in which case the algorithm picks the earliest one, as
we saw in the example, as the root enabler. The second scenario is that retries of m2>a were sent by another agent, say b,
in which case the algorithm will pick the latest one, as in closest to current receive, as the new current receive (candidate
root enabler) and filters away all earlier ones. The reason why the other 99 retries are skipped is that they do not satisfy
the IRed predicate. For example, the 99th m2>a does not have the same receiver (agent a) as the 100th m2>a’s sender
(agent b in the second scenario), and such is the case with the rest of retries. It skips 99 retries, and it resumes from
that point on until reaching the dependent receive and proceeds similar to previously explained. Hence, it de-duplicates
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all these retries that represent a common communication pattern in distributed systems. Other algorithms, for example,
TransDPOR, would suffer the classic state space explosion problem in this case.

In the next Section 4.1, we elaborate with more detail these differences, define all the terms used, and redefine a few
relations to address both differences in TransDPOR, IRed, and LiViola.

41 | The pseudocode walk through

In this section we present IRed pseudocode in detail and will contrast it to TransDPOR and LiViola. The algorithm shows
the difference between TransDPOR, IRed, and LiViola. The differences between TransDPOR and IRed are underlined,
while between LiViola and all others (including IRed) are double underlined. However, before we can understand the
algorithm, we need to explain some primitives and notations. We keep most notations the same as in TransDPOR paper?®
to simplify understanding.

4.1.1 | Notations, terms, and definitions

As explained in our operational semantics paper,>? the global state of an actor system is a distributed system state in DS2
terms, and here it is symbolized as s € S, where S is the set of all possible states in a system. Each state s = (a, m) is
comprised ofamap « : A — L where A is the set of all possible agents/actors identifiers in the system, and IL are possible
local states. In that state, m € M is the set of all pending messages, while M is the set of all possible messages in the
system. We, also, use pending(s) to indicate the set of pending messages for a state s € S.

Each actor processes each received message atomically since it does not share any state with any other actor/agent.

That processing step is called a transition (or processing a receive). Processing a transition ¢ € =, where 7 is the set
of all possible transitions in a system, may lead to one of the three outcomes (or a combination of them) depending on
the agent’s/actor’s local state and constrains imposed by its implementation logic. These outcomes are the following:
changing its local state, sending out new messages (we call this enabling new receives/transitions), and/or creating new
agent(s)/actor(s).

Definition 1. The transition t,, for a message m is a partial function t,, : S — S. For a state (a, u) € S, let a
receive be (m, a), where m is the message to be received by actor/agent a. Also, let s be the local state of the
actor a and c, be the constraint on its local state and its messages, ¢, C L X M. The transition ¢, is enabled if
tm({a, u)) is defined (that is a(a) = sand m € u) and (s, m) € c,.If t,, is enabled, then it can be executed and a
new state is produced, updating the state of the actor from s to s, sending out new messages, and/or creating
new actor(s) with their initial state news(t,,,): (a, u)—>"m{ala = 5’1 U newy(tm), u \ {m} U outy(ty)).

Note that the above definition is still verbatim as in TransDPOR paper, only symbols and the way it was stated differs
a little. The message processed causing the transition f,, be executed is denoted as msg(t,,) = m, the actor/agent (also
called destination of the receive) that performed the transition is denoted as actor(t,) = a, the message(s) sent out due
to executing the transition is denoted out(t,,), and actors created as new(t,,). Further, we add our definitions to simplify
the resulting pseudocode and make it more understandable. The sender of a message is denoted as sender(m € M) is the
sender actor/agent of that message.

Next, we also keep TransDPOR® definitions that follow the standard DPOR? presentation style. A schedule (a
sequence of transitions) is defined in Definition 2.

Definition 2. A schedule is a finite sequence of transitions. The set of all possible schedules in a system is
w

denoted as z* and the execution of a finite sequence of transitions w € z* is denoted by s—s’ transitioning

the system from state s to state s'.

To elaborate on Definition 2, A transition sequence S is a finite sequence t;.t, ... t, of transitions where there exists

states s, 81, ... ,Sp such that sy is the initial state and a series of transformations of that state to intermediate states reaching
[ t tn .o, . . .
the terminal state s, as in sgp—$; —> ... ——»s,,. Two transitions are said to be independent when they are not performed

by the same actor/agent.
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Definition 3. Two transitions are said to be dependent when they are performed by the same actor/a-
gent. It follows from that, that the order at which these two receives are executed may lead to differ-
ent local states of the same actor performing them. Hence, algorithms need to explore both execution
orders.

All independent transitions can be left without permuting their execution order, in as much as the system allows, with
respect to each other since they can commute without affecting the resulting state of their different execution orders. Two
transitions ¢; and ¢; are denoted dependent(t;, t;) if and only if they are dependent, per Definition 3 for DPOR/TransDPOR
algorithms and per Definition 8 for IRed/LiViola. We also override that by using only transitions’ ids to say the same, as
in dependent(i, j). From that, two schedules are considered equivalent based on whether all that changed between them
is the relative re-arrangement(s) of independent transitions. Definition 5 defines this relationship between two equiva-
lent schedules. It is crucial, at this point, to define the happens-before relationship in Definition 4 for the definition of
equivalent schedules (Definition 5) to be clear.

Definition 4. The happens-before relation —g for a schedule S=1t ... t, is the smallest relation on
{1, ... ,n} such that:

1. i -»gjifi < jand dependent(t;, t;);
2. the relation — is transitively closed.

The happens-before relation is the first of two constraints that enforces the strict ordering of a subset of the transitions
in a schedule based on the system imposed constraints. This is necessary since it is the basis of partial order reduc-
tion; it imposes partial ordering on some of the transitions during permuting of schedules. The second constraint is the
direct/indirect enablement between two receives/messages, which is defined in Definition 6.

Definition 5. Two transition sequences (schedules) S1 and S2 are equivalent if and only if they satisfy both
of the following:

1. Contain the same set of transitions;
2. They are linearizations of the same happens-before relations.**

We define some auxiliary functions to be used throughout the rest of the paper:

« dom(S) is the set of identifiers assigned to the events in the schedule/trace S to determine their location in the sequence
of events/receives.

« out(S) is the messages sent out after executing/processing schedule/trace S events, also overridden for a single event
for example, out(S;).

Definition 6. In a transition sequence S, the enablement relation i —g m holds for i € dom(S) and message
m if and only if one of the following holds:

1. m € out(S;);
2. dj € dom(S) such thati —g jand m € out(S;).

The above is TransDPOR’s enablement relation. It differs significantly from our (IRed’s) enablement definition we
present shortly. The TransDPOR definition of enablement, shown above in Definition 6, states that: (1) if a message m is
sent from the transition/receive S;, then that receive enabled that message (i.e., enabled the transition that will process it
later when received by the agent it is destined to), or (2) if an earlier transition/receive S; enabled another transition/re-
ceive S; that, in turn, sends a message m, then S; indirectly (but only through one intermediate transition—“exists”) lead
to enabling that message m. We need to pause at the second part of the definition. It allows only one intermediary transi-
tion/receive to enable and indirect enablement of a message/receive. Here is a missed opportunity, that is, the definition
misses partial order reduction opportunities for coarser grained interleaving. In other words, TransDPOR definition of
enablement relation, does not capture the full transitivity of the enablement relation defined by IRed. It approximates to

#We explain what a happens-before relation is next.
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the first transition after the dependent transition as the root-enabler. This over-approximation leads to unnecessary addi-
tional schedules that are uninteresting. This is crucial to take note of as it is the basis of precise causality tracking of both
IRed and LiViola that we define next.

Next we present our new definition of the enablement relation (IRed’s), that is transitive enablement relation (“for
all”) in Definition 7. It, also, is what we call causal chains. That is, we redefine the enablement relation in the pseudocode
to be that of ours, with minimal change to the original TransDPOR algorithm.

Definition 7. In aschedule S the transitive enablement relation denoted as i =g m holds for i € dom(S) and
a message m € M if and only if one of the following holds:

1. m € out(S;)
2. wC SandVj,k € dom(w) |i<j<kandi—gjandj—gs k and [ = max{dom(w)} and m € out(wy)

Note that Definition 7 is significantly different than the way TransDPOR defines the enablement relation. Specif-
ically, it differs in the second case of the definition. Here, we define the transitive enablement relation based on
the observation that a sequence of transitions each enabling the next in a certain execution path (sub-schedule or
sub-sequence) through the same or different actors, then that sub-sequence may enable a message/receive to even-
tually but strictly causally be sent out. The specific criteria to detect that pattern is specified by a Vj, k quantifier
over transitions whose indices are i < j < k in that sub-sequence w. That sub-sequence w, in turn, conforms com-
pletely (all its transitions) to the happens-before relation, it is a total order by itself. To recap, the happens-before
relation in actors is a relation over transitions each of which is enabled by a received message (a receive). This
is why we use transitions and receives interchangeably. This is stated by i —gj for the first transition being fixed
by the relation and for all j,k € dom(w) such that each j happens-before all k’s after it, j —»s k. Further, the mes-
sage m has to be sent out by the last transition w; (m € out(w;)) and whose index is the last in the sub-sequence
w (I = max{domw)}).

For better readability of the algorithm presented next, the term i = m can be read as “the causal-chain that starts with
i and ultimately causes message m to be sent”. For brevity, IRed’s definition of transitive enablement relation means one
transition may enable a series of subsequent acyclic transitions/enablements to eventually enable (send out) a certain
message m. The specific implementation details to detect that pattern will be discussed in context when explaining the
IRed algorithm in the next Section 4.1.2.

Next, we explain IRed and Liviola algorithms with respect to TransDPOR in a much similar style as it was done
for TransDPOR with respect to DPOR. We chose to stick to the same style as it makes understanding the subtle differ-
ences between these algorithms easier to follow, and it binds previous and current publications all together for better
documentation of advancements.

4.1.2 | IRed and LiViola in terms of TransDPOR

In this section we explain the IRed pseudocode shown in Algorithm 1. Again, the underlined parts are the differ-
ences between the original TransDPOR algorithm, while the double underlined is the difference between LiViola
and IRed. We begin by explaining some notations used in the pseudocode to make explaining the algorithm more
streamlined.

For a schedule S = t,.t, ... t,, dom(S) is the set of transitions identifiers {1,2, ... ,n}, while S; for i € dom(S) is the
specific transition ¢; in that schedule S. The state s;_; € S from which a transition ¢; is executed is denoted by pre(S, i).
The state s, € S after a schedule S € ¢* is executed is indicated by last(S). Finally, we use next(s; € S, m) to indicate the
transition ¢ that processes the message m starting from state s;.

As we already know, and like DPOR-based algorithms before it, IRed maintains a backtracking set that keeps track of
all receives/transitions that are to be explored from that specific state s € S to which they were added. However, just like
TransDPOR, that backtracking set can only have one transition/receive at max at all times. That is implemented using the
freezeflag, ifitis set in that specific state, the algorithm does not add anything to that state’s backtracking set, backtrack(s).
Otherwise, it adds one transition/receive, and it sets the freeze flag to prevent more receives from being added, as long
as it is frozen. When the algorithm backtracks to that specific state s € S and backtrack(s) # ¢, it resets the freeze flag
and executes the transition/receive from that backtracking set. Just as a reminder, all our algorithms except Systematic
Random are depth first search algorithms (DFS).
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Algorithm 1. TransDPOR versus IRed versus LiViola

0: Initially: Explore(¢)

1: Explore(S) {

2 let s = last(S);

3: for all messages m € pending(s) {

4: if 3i = max({i € dom(S) | S; is dependent and

may be co-enabled with next(s, m) and i »g m}) {
if(—freeze(pre(S, i))) {
let E = {m’ € enabled(pre(S,i)) | m' = mor
3j € dom(S) | m’ = msg(S)) and
j=min({k € dom(S) | k>i and k = sm})
7: if (E \ backtrack(pre(S,i) # ¢)) {
add any m’ € E to backtrack(pre(S, i));
freeze(pre(S, i)) := true;

[ v

}
8: }
9: }
10: }
11: if (3m € enabled(s)){
12: backtrack(s) := {m};
13: let done = ¢
14: while (Im € (backtrack(s) \ done)) {
15: add m to done;
16: freeze(s) := false;
17: Explore(S.next(s, m));
18: }
19: }
20: }

Next, we explain (line by line) the pseudocode shown in Algorithm 1. IRed starts, like TransDPOR, by finding the
current state s for the input sequence/schedule S (line 2). The algorithm then loops overall pending(s) messages in state s
(line 3) and explores them depth first. Lines 4-10 contain the main logic of the algorithm, while Lines 11-19 contain the
recursive step of the algorithm. At line 4, it starts by searching for the latest (max{ ... }) dependent state pre(S, i) for the
currently being explored transition next(s, m) that are may/not be enabled and both are not governed by the enablement
relationi — /sm. If there is such, the algorithm proceeds to line 5, otherwise it tries with another message m € pending(s).
If there is no more messages in the pending set pending(s), it jumps to line 11. Assuming there was such dependent state,
however, the algorithm will then check if the dependent state’s freeze flag is not set (i.e., reset), ~freeze(pre(S,i)). If it is
set, however, the algorithm proceeds to line 11, again. If the freeze flag is reset, this means the backtracking set of the
dependent state does not have any transition/receive in it, and hence the algorithm will attempt to find a candidate tran-
sition/receive set to add one from it to the backtracking set, Line 6. At line 6, the algorithm tries to do one or two checks,
depending on some criteria to be discussed soon, in order to construct the candidate receives/transitions set (indicated by
E) from which it adds to the backtracking set of the dependent receive backtrack(pre(S, i)). The first check the algorithm
does to find candidate receives/transitions (or similarly messages) to add to E. To do this, it checks if the current mes-
sage being explored is co-enabled with the message processed by the transition executed from the dependent receive,
m' € enabled(pre(S, i)). If there is any, that is added to the candidate set E.

Before we explain the second check, there is a note we want to make. In TransDPOR pseudocode, there was a redun-
dant conjecture of two terms at the end of the line starting with (3j € dom(S) | m’ ... ). We removed that to make it more
readable, since they cause confusion and it is covered by the line that starts with (j = min{ ... }). That conjecture was
“i>iandj »g m”.
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In addition, the algorithm does another check so that if there is a message that was enabled directly or transitively
(indirectly) through what we called earlier a causal chain, that is, a series of receives/transitions for which each earlier
transition/receive enables a later one to be executed. The algorithm tries to find a transition Sy that enabled a message m
directly or transitively through later enabled transitions/receives, k =¢ m. The said message is found by first extracting
a sub-sequence w (Definition 7), using the transitive enablement relation, whose all transitions conform to the predicate
receiver(wi_1) = sender(wy) and whose last transition causes the message m to be sent out. In IRed’s implementation,
the predicate is used to extract the sub-sequence w by traversing the transition sequence in reverse (we call it reverse
traverse) down to the earliest transition t; € w that satisfies it. The reason behind this is that the algorithm only knows
what transition is caused by which one that happened before only after executing all transitions before it. In other words,
the algorithm does not know the future, it only checks the past transitions to detect the root-enabler ¢; where j € dom(S).
That w is a sub-sequence of the schedule S, that is, its transitions is a subset of S transitions, with the same original
relative order in S, that conform to the said predicate. After the algorithm extracts that sequence, it chooses the first
transition of it as the root enabler of the message m, and hence considers it a candidate to be added to E. All of the above
is stated in the pseudocode as: j = min{k € dom(w) | k > i and k =5 m}. What was just explained is the more precise
tracking of the root enabler (i.e., the first transition in the sub-sequence w) that IRed tracks precisely in comparison
to TransDPOR’s redundant over-approximation of the root enabler (the first transition/receive that happened after the
dependent transition/receive in S).

Now, the only difference between LiViola and IRed is that LiViola overrides the dependent(i, j) relation and tightens it
a bit more than just two receives/transitions are dependent if they are executed/performed by the same receiver actor/agent. It
is double underlined in the pseudocode shown in Algorithm 1. Definition 8 redefines the dependence relation for LiViola.

Definition 8. Two transitions/receives are dependent if and only if they satisfy all of the following:

1. They are performed by the same actor/agent;
2. They are affecting the same variables in the local state of the actor/agent;
3. They are not constrained by a happens-before or (transitive) enablement relation.

Lines 11-19, are the recursive step of the algorithm. In line 11, the algorithm checks if the message under investigation
m (that was picked randomly from the pending set) is in the enabled set of the last state in the schedule, 3m € enabled(s).
If not, it tries with other messages m € pending(s) looping back to Line 3. If the message is in the enabled set of that last
state s, the algorithm proceeds to update the backtracking set of s to the randomly picked message m, backtrack(s) := {m}
(Line 12). The reason behind this is that the algorithm always checks the backtracking set for the next message to explore,
it simplifies the implementation. At line 13, the algorithm resets the new state’s explored set done so that it marks future
to-be-explored receives/transitions. The loop in line 14, then, recurses over all messages that are in the backtracking set
of the latest state but that were not explored before, 3m € (backtrack(s) \ done). Each message m is marked as explored,
add m to done (line 15). Then the state is marked as unfrozen, that is, the algorithm can update its backtracking set by
future transitions/receives, freeze(s) := false (line 16). Finally, the algorithm recurses on the next state resulting from
processing the message m (as in performing the transition/receive), Explore(S.next(s, m)), and appending the resulting
transition to the transition sequence/schedule S (line 17). The algorithm continues until there are no more messages in
the pending set.

The next section will detail our experiments for evaluating the performance of all the mentioned algorithms.

5 | EVALUATION
Since the primary goal of this work is to assess the effectiveness of said schedulers, we have devised five different actor

systems. We detail them in the next subsections, use the tool-chain to find linearizability violations, and compare the
various algorithms’ performance in finding violations.

5.1 | Correct distributed register (DR)

The simplest actor system we test with is a register ADT (read (), write (v)) which is primary-backup replicated
(Algorithm 2). One agent is statically designated as primary, and the others are backups (lines 1-5). When any replica
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Algorithm 2. Correct distributed register pseudocode per agent in the ADT

Require: At least 2 agents in the system 21: broadcast ReadReplica to peers
1: if id ==1 then 22: else
2 be leader 23 forward x to leader
3: else 24: end if
4 leader « 1 25: else if x is WriteReplica then
s: end if 26 reg < x.value
6: repeat 27: send WriteReplicaAck(x.params) to x.sender
7 X « receiveMessage 28: else if x is ReadReplica then
8 if x is IAmLeader then 29: send ReadReplicaAck(x.params, reg)
9 leader < x.sender 30: else if x is WriteReplicaAck then
10: else if x is Write then 3L update writes tracker with x.params
11: if isLeader then 32: if reached write majority acks then
12: initWritesAcksTracker(value,client) 33: send WriteAck to x.client
13: reg « value 34 end if
14: broadcast WriteReplica(reg) to peers 35: else if x is ReadReplicaAck then
15: else 36: update reads tracker with x.params
16: forward x to leader 37: if reached read majority acks then
17: end if 38: send ReadAck(reg) to x.client
18: else if x is Read then 30: end if
19: if isLeader then 40: end if
20: initRead AcksTracker(reg) 41: until Agent Stops/Killed

receives awrite (v) message it forwards it to the primary/leader (lines 15-17). When the leader receives thewrite (v)
message, it processes it (lines 11-14) by initiating a count for writes acks (counting self), broadcasting WriteReplica,
waiting for the WriteReplicaAck’s received to reach a majority quorum (lines 30-34), and then sending a WriteAck
to the client if majority acks was reached. When replicas receive WriteReplica messages (lines 25-27), they write
the value to the register and send back a WriteReplicaAck to the sender (the leader). Reads are processed similarly
but with their respective protocol messaging. Algorithm 2 has all the remaining details. If some backups disagree about
the current register state, and the acks count reaches a full count without quorum agreement, the primary retries the
operation. However, we discovered that our implementation of retries is actually dead code (never executes and hence
not shown here).

5.1.1 | Clients

Synthetic clients created by schedulers are empty agents without any behavior. The scheduler creates a client per request.
Each client submits one request in its lifetime and receives at most one response. The scheduler then picks these responses
and appends them to the schedule at hand. After done generating all schedules, the accumulator construct that tracks
these schedules and their associated data statistics generates the histories from the schedules. It is up to the construct
implementation that is accumulating schedules to decide how to use these schedules as a postprocessing step to transform
these schedules.

5.1.2 | Harness details

Beyond the actor system itself, linearizability checking requires some set of client invocations of the ADT methods so that
algorithms can observe the outcomes and produce histories to check. Different patterns of client requests have different
trade offs. Simple harnesses with few invocations may not produce buggy histories, while complex harnesses with many
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invocations may suffer state space explosion. Hence, we explore a few small harnesses chosen for each specific ADT that
attempts to mix method invocations that observe state with those that mutate it.

Linearizability is defined on what clients observe, so harnesses only make sense if they generate multiple
invocations that observe the target state. Furthermore, bugs are most likely to manifest when those observa-
tions could have been affected by interfering mutation operation(s). For the register, we start with a simple har-
ness that generates two read () operations and a write (v) operation (we call this harness the 2r+Iw har-
ness). We also use a harness that includes a second write (v') operation (2R + 2W), since concurrent mutations
are often a source of bugs. The latter case with mutating operations can timeout, so it finds fewer bugs than
first harness.

Each harness has six sections. The first specifies the initial state of the sequential specification and whether the ADT
is a MAP or a SET (a register is a one-key key-value map). The second section specifies sets of target agents’ identifiers
in order to distinguish them from other agents (e.g., synthetic clients). The next three sections indicate how the agents
should be initialized, and it provides patterns that bind messages to message categories that the scheduler can understand.
For example, it provides patterns that let it recognize read, write, and replication messages and their acknowledgments in
agents’ queues. The final section is provided specifically for LiViola to indicate which messages are of interest to interleave,
where the key lies in the payload of these messages (if it is not known until runtime, then a wildcard of —1 can be provided),
whether itis aread-related/write-related/both message. The final section also contains some exclusions for messages; only
LiViola respects these; it does not shuffle these excluded messages with rest, which helps it control state space explosion.
The messages should only be excluded from interleaving if all the following conditions apply: receiving that message at
the destination

« should not interfere or cause potentially interfering messages to be sent back into the ADT cluster (to ADT agents);
« should not mutate agent state (e.g., change the key-value pair);

« should not change the observed value at the client (even if it blue change the state in question).

That being said, we could not apply any exclusions to the correct distributed register harness. Also, note that excluding
a message does not mean that it is not executed, LiViola just does not shuffle it; it executes in whatever order it occurs.
These exclusions are both problem specific (i.e., linearizability in this case) and implementation specific. The source code
gives the precise format and details of the harness format.

5.2 | Buggy/erroneous distributed register (EDR)

Our “buggy” distributed register is nearly identical to the correct distributed register, except it does not wait for
majority agreement among backups before it acknowledges a write (v) operation to a client and some more
buggy behaviors, for example, randomly generated values from thin air. This can lead to an acknowledged write
operation that is not observed by a read operation that started after it, violating linearizability. The write opera-
tion starts and completes; subsequently a read gets issued, but it does not observe the value that should have been
installed in the register by the completed write. We use this buggy register to make sure the various schedulers
are effective at finding linearizability violations in a timely manner. The quorum is fixed to only two acknowledg-
ments. Also, we raised the number of agents to three for bugs to manifest. We use the same harnesses for this
case as we do for the correct one except for one change; we remove the exclusions since it no longer satisfies
the criteria.

5.3 | Another distributed register (ADR)

We implemented another, more complex, distributed register where all agents can issue read and/or write requests. This
simply extends the correct register so that all agents act as a leader, except that concurrent operations some cause retries
in the agents to repeat replication operations that overlapped from competing writes. This implementation of is similar
to Paxos*® in operation.
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FIGURE 7 Abuggy history found by LV in Open Chord Benchmark.

5.4 | Openchord

Open Chord (OC)® is a peer-to-peer scalable and performant distributed hash table (DHT). It is based on a ring
topology of communicating agents that distribute the load of keys and their values using a consistent hash func-
tion. The simplest form of Open Chord ring is a single agent. Then another agent/node can join by finding who is
its successor based on a hash of its identifier. Each node can have backups for other nodes in case it goes miss-
ing, we do not implement this since we do not handle agents leaving/going missing in this work. We implemented
the joining of nodes (agents) into the ring. During that process and during normal operation of Chord processes can
join and/or leave the ring. Since nodes may join during normal operation and they are detectable by clients prior to
completely joining the ring, we made the harness and startup sequence send the joining message FindSucc inter-
leave with client requests. Our tool finds linearizability violations; one violating history that it finds is illustrated
in Figure 7.

Listing 1 shows the schedule that explains and led to that history. The problem that the schedule shows is that N, has
not finished joining the ring before it receives a request to read key k; . Since it believes it is its own successor by default, it
replies to the clients without knowing that a newer value for k; has been stored at N;. Zave’s work?’ also explores similar
correctness issues that arise in the original Chord specification.

Read(k1) Write(k1,10) FindSuccy, IntWriteResp g,
1:IR2 —— NI1;2:IRO0 ——— N1;3:N2 — N1;4:N1 — N1;
WriteResp Read(k1) IntReadRespz, ReadResp(0)
5:N1 —— IR0;6:IR1 —— N2;7:Nl— N1;8:N1 — IR2

SuccFoundy, UpdatePredy, IntReadResp;p, ReadResp

9:N1l — N2;10:N1 —— N2;11:N2 —— > N2;12:N2 — IR1

Listing 1: This schedule (i.e., message exchanges between agents) is what produced the buggy (nonlinearizable)
history shown in Figure 7. Initially, N1 is the only node in the ring, then node N2 starts joining by sending a
FindSucc message but meanwhile there are few reads and writes happening. The second read issued by client IR1
(sent to N2) executes before N2 is fully joined into the ring (i.e., before step 9) reading a stale value of key k1
(specifically at step 6), which causes the linearizability violation. The subscripts track which agent initiated the
message, or its subsequent messages.

5.5 | Paxos-replicated map (PX)

Finally, our most complicated example is a Multi-Paxos-replicated key-value map. Each actor of the system maintains
an ordered log in the style of standard state machine replication-based approaches.*® Client write (k, v) requests
are replicated into a log via majority quorum using Paxos. A designated leader handles read (k) operations directly
returning the most recent v associated with k among the write operations recorded in its log after being voted by majority
quorum. The intuition behind Paxos is to keep a monotonically increasing proposal id (i.e. transaction id) to make sure it
only processes and commits changes by the “latest” operation initiated. Those operations that were initiated earlier but
interfered with later ones, may get rejected in the first phase of the algorithm, retried with a later proposal id till they go
through to the second phase, then they get committed to the logs by the vote of majority quorum acceptance. After this, a
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client gets a response to its request (invocation). For more in depth information about Paxos, please refer to the literature
by Lamport.!8:3

5.6 | Other systems

Unfortunately, we ran out of time to port and debug a few more interesting systems we wanted to explore. Overall, our tool
is suited to similar replication algorithms. For example, we have a mostly-complete port of Zab* that we plan to check
with, which is available with our tool’s source.?! We also experimented with Raft,'® but we were unable to find reliable
Akka implementations for it, so we leave it for future work.

5.7 | Metrics and methodology

We benchmark each of the above systems with each scheduler from Section 3, averaged over three runs since some of
the schedulers are nondeterministic (e.g., Delay-Bounded). All schedulers share a substantial amount of code and mainly
override behaviors on the Exhaustive DFS, so differences in runtime are mainly due to real algorithms differences.

Figures 8 and 9 give the main results, which we step through in detail in the coming subsections; we describe the most
important metrics here.

We call a specific combination of scheduler, actor system, and harness a configuration. Each schedule leads to a history
of invocations and responses. We say a history is unique if, for a given configuration, no other history records the same
events/entries (invocations and responses) in the same order with the same arguments, senders, receivers, and return val-
ues. That is, they are only chronologically unique. So, there could be some histories deemed unique but they are repeated
many times except for re-arrangements of some entries that do not reveal a violation; those independent receives that
materialize to a history’s entries. A history is nonlinearizable if it cannot be generated by a linearizable implementation
of the ADT being checked (e.g., a linearizable register or a map).

For a given configuration we call the ratio of nonlinearizable histories to unique histories that are produced (NL/UH)
the quality of that configuration. A high quality means that this configuration produces many examples of bugs while
avoiding the need to check a large number of histories.

Similarly, we call the ratio of unique histories produced to schedules explored (UH /S) the progression of that config-
uration. Intuitively, a high progression rate means the scheduler of that configuration produces a diverse set of histories
with little exploration.

Finally, we call the ratio of nonlinearizable histories produced to the number of schedules explored (NL/S) the pre-
cision of a configuration. A configuration with high precision finds bugs by exploring fewer schedules, avoiding wasted
work in fruitless ones.

For faster reference, all the above symbols and benchmarks abbreviations and their descriptions are shown in
Table A1, while the raw numbers for the benchmarks results are shown in Tables A2-A11. Each two consecutive tables
starting from Table A2 show results for the same benchmark but one for 3-receives and the other for 4-receives.

As we will show later, our results show that the short histories that our harnesses produce mean that history checking
times are low. Ultimately, this means that for our harnesses, good progression is crucial and good quality of the discovered
histories is less important.

We record two different times for schedule exploration. The default is the time to generate the schedules in a state-
ful manner; meaning, the scheduler keeps snapshots of the actor system’s state during scheduling. The second one is an
approximation of a stateless exploration of the system. This is as if the system is restarted after generating each schedule
and controllably reconstructs different schedules in different runs, visiting different states than previously visited by ear-
lier schedules. The advantage is memory pressure reduction during exploration. However, the stateful approach is faster
to the finish line (overall time) at the expense of capturing states (using more memory) and slower per-iteration compute
time. The reason why the stateful schedulers are faster overall time is that the prefixes of schedules are not executed as
often as in the stateless schedulers. So, that saves a lot of time for stateful schedulers.

For most systems, we can explore the most interesting cases with just a few agents, so we only use two agents to test
all but the buggy register, for which we use three agents. This still has the possibility of producing all of the externally
visible system/ADT behaviors. More complex protocols could require more agents to explore all behaviors; for example,
agent join/leave in protocols like Chord could require more agents to ensure all internal behaviors are exercised during
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FIGURE 9 The second half of performance numbers summaries for all algorithms and benchmarks.

schedules generation. Our implementation, however, does not need more as we do not have leaving processes and/or
dropped messaging; we only implement joining.

Finally, with enough agents and invocations these algorithms can run for exceedingly long periods of time. We ter-
minate exploration after 50,000 schedules per-configuration and then check the resulting histories. This cutoff means
schedulers may miss fruitful parts of the exploration, and we observed such situations. We tried to strike a balance in
choosing this cutoff, but no single cutoff is likely to work well for all configurations.

Last, the specific benchmarks numbers are as follows. The Lines Of Code (LOCs) in each benchmark range from few
hundred lines to around a thousand lines. The number of actions involved range from 6 to 9 actions, not counting the
start action that starts the agent.

All bugs found are real bugs, and all of the benchmarks were buggy (both linearizability and other bugs) before we
debugged them. We kept all previous iterations of them as well in the repository.?! All of the benchmarking was done on
the same machine, with each scheduler being single threaded. The specs of the machine are the following: Dual 3.5 GHz
Intel XEON E5-2690 v3, 192GB DDR4 ECC, HP Z840 workstation.

A final note, we stressed tested IRed on the heaviest (buggy) implementation we have, namely the ADR register, for
over 203 hrs monitoring it using VisualVM profiler and took notes of 20-25% of nonblocking single threaded CPU usage,
0% of Garbage Collector (GC) CPU usage all the time, and 4 GB of average use of heap memory and a max and min of
5 GB and 3 GB, respectively.

5.8 | Results and analysis

Figures 8 and 9 show the results of running the benchmarks across all of the configurations we described. We work
through several dimensions of the table to highlight the key insights from the results.

5.8.1 | Low history checking times

In virtually all cases, configurations avoid an explosion of runtime in checking histories using the exponential WGL
algorithm (TC =~ 0). Some of the configurations produce several unique histories (UH € [6, 3557], Figure 8C), but since
the harness is constrained to just a handful of invocations, checking all of them is still nearly instantaneous (< 1 second).
Hence, though we were worried the complexity of checking histories would be problematic (poor quality), the explosion
in schedulers state space seems to be a more serious issue (poor progression) (Figures 8A and 9A).

QSUADIT suowwoy) dAanea1) djqedrjdde oy Aq pauroaos dre sa[oNIER () $9SN JO SO[NI 10) AIeIqI duluQ AJ[IA\ UO (SUOHIPUOI-PUB-SULIA)/ WO KA[1m’ K1eiqijouljuo//:sdny) Suonipuo)) pue sud [, Y1 998 *[+207/80/60] U0 Areiqr aurjuQ L3I ‘yein JO Ansioatun £q 5z ads/z001 01/10p/wod Ko[im’ Kreiqiaurjuoy/:sdny woiy papeojumo( ‘1| ‘€70 ‘X20L601



2184 AL-MAHFOUDH ET AL.
WILEY

This suggests, just as in conventional model checking, smarter pruning or direction of scheduling is more important
in finding bugs than reducing history checking time. This also reinforces our decision to focus our efforts on improving
schedulers for linearizability checking rather than focusing on improving linearizability checking itself as others have
done.'

58.2 | Systematic random

The Systematic Random scheduler is ineffective in finding bugs (Figure 8B). It progresses well, and it produces
many unique histories quickly (Figure 8D). However, even after doubling its cutoff to let it explore more schedules,
it still finds only one bug in one configuration (the second harness of Open Chord), where other approaches find
many more.

Coupled with the previous conclusion, this suggests that simply generating more histories alone is not sufficient to
find bugs. This also suggests that any approach that simply tries to maximize “coverage” in the space of schedules or in
the space of histories is not likely to yield bugs unless it is efficient enough to provide near-full coverage, which is unlikely
due to the exponential explosion of exploration space.

5.8.3 | Exhaustive and delay-bounded performance

Exhaustive DFS (EX) and delay-bounded (DB) perform similarly in most cases and metrics, even though DB uses
some bounded randomness. By delaying events, DB reorders the space of schedules, but without a cutoff, EX even-
tually explores the same schedules in a different order. So, DB’s limited randomness does little to change the set of
schedules explored.

Both approaches do well at finding bugs with the first harness (2r + 1w). In the other harness (2r + 2w),
they hit the cutoff rather quickly (Figure 8A), which indicates they generated too many fruitless schedules
from the state space. This is reflected in their poor precision (NL/S, Figure 8F) and progression (UH/S,
Figure 8D) ratios. If we removed the cutoff, they will find bugs in the second benchmark but only after gen-
erating large numbers of uninteresting schedules, which indicates they are not effective exploring larger state
spaces.

An important observation is that chronological uniqueness of histories (involved in many measures), indicated by
an asterisk *’ in graphs of Figures 8 and 9) causes an issue. It causes redundancy in the counts of unique histories
particularly so for schedulers exploring more redundant schedules (e.g., SR and DB). It amplifies the illusion of their
effectiveness in generating more unique histories. The following is the list of all schedulers, ordered from most to least
affected by this issue: SR, DB, EX, DP, TD, IR, LV. As we go from left to right in that list, the less amplification effect
we get because there are fewer repeated chronologically unique histories; hence, the more credible the measures are
of that specific scheduler. LiViola is the best due to being the least redundant. Unique histories it produced tended to
have the most diversity among all. Even with this diversity, in Open Chord benchmarks, for example, LV produced
four nonlinearizable histories out of 17 unique histories on the smaller harness. When we cross-checked them with
the larger harness we saw that they are the same history (i.e., the same exact bug), shown in Figure 7, and explained
by the schedule shown in Listing 1. Note that the other write call of the second harness is on a different key (k,);
hence, not shown, since it does not affect LV. However, it does affect all others’ results. If the k, related invocation and
response are placed at the end of the history, one can imagine how many internal schedules that can be repeating the bug
before it.

Another example on the other (most affected) extreme in Open Chord benchmarks, DB produces 3557 unique histories
and that reduce to 357 buggy ones while EX (which covers the same exhaustive state space), produces 325 unique histories
that reduce to 15 buggy histories. None of them is more exhaustive than the other but DB is more repetitive than EX. The
reason behind this is when the bug happens to be closer to the root of the exploration tree and the scheduler is interleaving
things closer to leaves, the prefix containing the bug repeats as many times as the leaves. That has an amplification
effect on bugs reported especially when the later interleavings after the prefix result in more chronologically unique
histories.
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5.8.4 | DPOR, TransDPOR, and IRed performance

In the distributed register, the three algorithms DPOR, TransDPOR, and IRed did better than EX and DB on both har-
nesses. DPOR, however, did slightly less favorably than TD and IR in terms of timing. The latter two did exactly the same.
Otherwise, IR did not show any improvements over TD because this implementation is strongly causally consistent;
hence, IR does not get an advantage over TD’s over-approximation of the root enabler. So, TD represents the worst-case
scenario for IR.

In the second benchmark, DP and TD did mostly the same except for few differences on the 3 invocation test. DP
produced fewer quality unique histories to catch bugs as indicated by NL/UH, and it is less precise as indicated by NL/S
than TD. However, results show it is more precise than IR. This is tempered by what we mentioned regarding repetitive
chronological uniqueness of histories. TD was significantly faster at making progress toward unique schedules than DP.
As for IR in the second benchmark, precision, quality and progression are slightly less than TD, but TD is more repetitive.

5.8.5 | LiViola versus IRed performance

LV performance numbers should have been exactly like IR’s on the register benchmarks, since they are one-key stores. LV
enables developers to tweak the harness with interleaving exclusions (within the constraints we mentioned in Section 5.1
to assure soundness) to indicate which messages are the focus on during exploration (i.e., potentially interfere) which
lead to significant improvements. It explores only 88 schedules in comparison to the second highest runners’ (IR and TD)
2906 on the smaller harness, and does not approach the cutoff on the 4-invocations test, at 7236 schedules. Meanwhile,
IRed ran for over 203 h and still never terminated. However, developers should practice caution using this feature as we
will see why in the next benchmark.

In the second benchmark, IR and LV were the best of the algorithms, too. They performed similarly except LV scored
significantly better but were 2 s slower. In the third benchmark, LV performance was the worst-case scenario showing
exact statistics as IR. Note that on the buggy version of this third (not shown here), when we tweaked the harness aggres-
sively, LV outperformed all others by a large margin in the first harness. However, for the second test, it missed all bugs
and prematurely terminated at a bit over 10 K schedules stating it did not find bugs; when it should not miss bugs. So,
we reverted these tweaks and passed a plain harness, that is, with no tweaks, and re-run the experiments, shown in the
Figures 8 and 9. This is an example of why developers are to practice caution when tweaking the harness while still con-
forming to the criteria presented in Section 5.1. The reader is encouraged to look at the rest of the numbers in tables in
Appendix A for raw numbers, the best results we observed are for Open Chord.

5.9 | Limitations

The model still has a limitation in conditionals for example, If and While statements, in order to enable more sophis-
ticated static and dynamic analyses such as symbolic execution. Another limitation, related to LiViola, stems from
invisibility of where a certain key for a receive lies inside the message payload. That can happen when the key loca-
tion is only determined later during runtime, by users specifying a wildcard location in the harness. If LV cannot
ascertain keys of different receives may conflict, it conservatively interleaves them not to hinder coverage. That, in
turn, can compound rather quickly leading to the classic state space explosion problem but upper bounded by IRed’s
state space.

The solution to the first limitation that relates to conditionals is to add a field that holds an abstract syntax tree (AST),
generated by scalameta® quasi-quotes, of the functional style conditions. That is for some analyses such as symbolic
execution to be able to determine the satisfiability of certain path conditions.’$

One solution to the second limitation is to provide a function to be executed by LV each time to determine the location
of targeted keys/variables based on information available during runtime. That, however, will require some, not many,
modifications to LiViola to enable such feature.

$§ A path condition is the set of control-flow statement’s conditions, for example, an if or while statements, when satisfied (or not), the scheduler can
force the execution (or not to execute) of code blocks in the program along that path, that is, their code blocks, across said statements.
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5.10 | Discussion

In this section we discuss few aspects regarding when our algorithms would be most effective at catching bugs, a com-
parison to the modern commonly used technique of concolic execution,!T and we end the discussion by some static and
dynamic frameworks that can be integrated with ours to achieve more analyses.

We rely on the classification of bugs mentioned in Reference 51 to comment the effectiveness of our technique at
catching said bugs. Lopez et al.’! describe the following classes of actor-specific bugs that, in turn, are sub categorized
further:

« Lack of Progress: which includes communication deadlocks (two or more actors are blocked forever waiting for each
other to do something), behavioral deadlocks (two or more actors waiting for a message to make progress, that is,
a message is never sent to allow for progress), live locks (similar to a deadlock but while involved actor’s states are
changing but without making progress).

« Message Protocol Violation: message order violation (where two or more actors exchange messages in a way violat-
ing the intended protocol), bad message interleaving (happens when a message is processed between the processing of
two messages that are intended to be processed one after another), memory inconsistency (when different actors have
different view of a conceptually shared resource).

Our algorithms address, and catches bugs most effectively, in the second class that is, message protocol violations.
On the other hand, our algorithms will exhibit communication deadlocks, behavioral deadlocks, and/or live locks, in the
case of lack of progress class of bugs. Assuming we have implemented algorithms for catching the first class’ bugs, we
would use these algorithms to first detect and remove that class of bugs. Only then, when the implementation is free from
said bugs, we would use algorithms presented in this work. Our framework does not limit the ability from developing
algorithms targeting lack of progress class of bugs. It, actually, has facilities to ease that task, by making it explicit which
statements do block and whether it is blocking on external communication (e.g., a blocking get on a future, or a timed
blocking statement on a future), and these blocking statements and constructs (a future) allow for the entire gradient
of synchrony and asynchrony in communication and behavioral deadlocks detection. The snapshotting feature, of the
entire global state of the distributed system, of our framework allows for detecting the lack of progress in the case of
a live lock.

Symbolic execution,>*>* and concolic testing>*>> would be a natural extension of our work, as mentioned in Section 5.9.
It is a more advanced technique that incorporates Satisfiability Modulo Theory (SMT) solvers®*>° (or theorem provers)
to determine a model that strictly follows a certain execution path. The set of conditions that forces that path is called
a path condition. The conditions of control flow statements, such as an if or a while statement, are formulated as an
SMT query to find a model to force that execution path in the code. This technique is more effective and more scalable
than any of the DPOR methods used in this work. It provides more coverage, better performance, and more precision at
targeting a certain criteria or code blocks. It enables more checks to be done on more involved implementations more
effectively. Some of the bugs to target with concolic execution includes, but not limited to, dead code detection, deadlock
detection, data races, termination, among other things. In other words, concolic execution is unmistakingly superior to
all techniques presented in this paper. For example, instead of enumerating many equivalent schedules as in some of the
algorithms in this work, a concolic tester can systematically target mostly unique schedules without the need to enumerate
many of them. Once symbolic execution is enabled in our framework, it would be quiet interesting to implement a concolic
algorithm to empirically compare it (both performance, precision, scalability) to our algorithms. That being said, while
our technique only reports real bugs, symbolic execution might report false alarms and can be spurious, that is, report
the same/related bug many times. That is, when a bug falls on the start of a path condition, then all branches starting
with the prefix of that path condition would lead to report that same bug, as many times. For concolic testing, this can
be reduced/eliminated by synthesizing a representative test of that specific bug, running the test, and making sure if
the bug actually manifests in the actual run. Symbolic execution may suffer the limitations of an SMT in case the path
condition is too long having many conditions, conditions along the path have nonlinear arithmetic, the path conditions
involves cryptographic functions, or simply the path conditions involves some computation outside of an SMT solver’s

11Symbolic execution paired with runtime partial runs to fulfill unknown information during static time but that are known only during
dynamic/runtime time.
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capabilities. Still, more than one SMT solver can be mixed to complement each other’s strengths. In case some of the said
limitations are still a limiting factor of symbolic executions, they can be overcome with concolic testing. The parts that are
easy for an SMT solver (or a theorem prover) to figure out would still be solved symbolically; along with inputs that lead
to that part of the code and that was determined by solving the constraints of that path condition(s). The parts that limits
symbolic execution are to be test-ran (the concrete part of concolic) by the concolic tester, and hence the name concolic
for CONCrete and symbOLIC. That enables the concolic tester to overcome the limitations of the symbolic execution
and make progress toward corner cases that are hard to hit otherwise. Hitting the hard corner cases is a weakness for all
algorithms of this paper as the input to the systems’ implementations (and through the scheduler) is done by the user,
rather than a symbolic executor.

Hence, we made sure that only the very advanced analyses may need to call into external static and/or dynamic
frameworks to analyze the model or augment the operation of algorithms/schedulers. The model composes actors/agents
from a local state (a mapping construct with garbage collection that models the variables to values mapping in the scope),
an activation frame stack (for function calls statement types with each activation frame having a LocalState object),
and a mapping from message received to actions to be performed. There are other features but to simplify the overview
for the reader, we omit those. The action is nothing but nested sequences of statement types. Each statement type wraps
an actual statement in the form of a function to call and contains all the meta data a static/dynamic analyzing algorithm
needs to access. All of the above is extensible, that is, if more meta data were needed for a certain advanced algorithm
the user definitely can extend those and add more meta data (i.e., fields/attributes to that class). Analyzing nested lists of
statements, we think, is simple enough not to involve any other framework for the majority of tasks but still can be if the
user chooses to. Similarly, algorithms and their auxiliary methods are all defined and ready to be used.” However, we
understand for example that a more advanced user (or formal methods expert) would want to use for example, SMTs that
have Java/Scala APIs in their schedules/algorithms. That is possible, and there is nothing to interfere with their desire
to involve static and/or dynamic analysis frameworks/tools. An example we tried before is to diagram the message flow
from between actors using Graphviz® via Graph4s,®!' similar to what was mentioned as MFG (message flow graphs) in
Shian Li et al. work.®? Similarly, we visualized the states for a sample run of several of the algorithms, for example, WGL,
while we were at the debugging stages of these algorithms. We took a look at the Backwards Symbolic Execution (BSE) by
Shian Li et al.®* and we do not see anything preventing the integration of such an advanced form of symbolic execution.
The snapshot feature of DS2 definitely enables going back and forth in time without limits while exploring the subject
distributed systems written in its model (a simple and extensible domain specific language—DSL—as mentioned earlier).
As a matter of fact, multiple more complex tools can be integrated into one scheduler and they can hand-off saved states
to each other to do different exploration techniques in one algorithm; hence, forming a collection of the strengths of each
collaboratively. That is, the algorithm can save the state of the system, using DS2’s lightweight snapshot feature, then BSE
can do some kind of symbolic execution and after that returning the results. At this point, another snapshot can be taken,
then either of these snapshots given to another algorithm to do another kind of analysis on the system, taking another
snapshot after done and reporting back and so on. There is literally no limit but the host physical limits (e.g., amount
of memory) on which that system is analyzed. After all, BSE, MFG, and DS2 all define formal operational semantics by
which they can be more intimately integrated.

6 | RELATED WORK

In this section we taxonomize several related works. Covering both linearizability, model checking, tracing, monitoring,
verification, proofs, ... etc.

Linearizability. Linearizability has long been presented and extensively studied in literature; from the decision pro-
cedure perspective (checking) in the original paper by Herlihy,'? Jeanette Wing and Gong,'*> and in WG Lowe.*® Testing
for Linearizability* developed and evaluated five algorithms for randomly testing concurrent data types for linearizability
violations, four of which are new. Also, four of which are generic while one is specific to concurrent queues. Winter et al.%
derive an approach based on the instruction re-ordering rules for weak-memory models hardware in order to enable the
re-use of existing methods and tool support for linearizability checking. Specifically, they target programs running on TSO
(Total Store Order) and XC (Relaxed Consistency-cache coherence model) weak memory models. Ozkan et al.** show

#*We highly encourage the reader to read the operational semantics of DS2*? to realize and appreciate the capabilities there in. A simpler model paper
for an overview is in Reference 33
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that linearizability of a history is often witnessed/realized by a schedule that re-orders small number of operations (< 5),
prioritizing schedules with fewer operations first in the exploration. The algorithm characterizes families of schedules of
certain length of operations (depth) that is guaranteed to cover all linearizability witnesses of that depth. In our work,
we experimented with minimal invocations that allow the subject systems to exhibit all externally observable behaviors,
namely two and three invocations. In recent years, Kyle Kingsbury the author of Jepsen,'? came up with a new library,
called Elle, to analyze histories produced by the former in order to find consistency violations. It is a sound framework,
but since some information may be missing from observed histories, not complete. Hadzilacos et al.®¢ invalidate a con-
juncture that says if we replace an atomic object in an algorithm by another object that is linearizable, then the algorithm
stays the same. One result of their work is that in randomized algorithms, when an atomic register was replaced by a lin-
earizable one, it lead to violating the all-important property of termination with probability of 1. Hence, they propose a
new stronger type of register linearizability called write strong-linearizability. It is strictly stronger than (plain) lineariz-
ability but strictly weaker than strong linearizability and it fixes the above. Bashari et al.®” states that in most algorithms
n-processes updating different array locations in an array, a scan would produce a linearizable snapshot of the array. How-
ever, that requires a O(n) scan operation of the array. They came up with an approach to produce such array in a constant
time complexity, and a O(log n) observe and update operations, hence improving the performance. Sela et al.®® point out
and provide an amendment to the original linearizability paper. The typo addresses the issue of handling invocations in
volatile memory setups and hence it was significant.

Model checking. Doolan et al.®® studied the SPIN”’ model checker algorithm to understand the scalability issues
in an effort to scale automatic linearizability checking and without manual specification of linearization points by the
users. They also provide proof-of-concept implementation. Our work does that, also, and without manual specifica-
tion of linearization points due to the atomic nature of the actor-model actions in our model. However, our algorithms
are generic and can be applied to other problems that can be mapped to race conditions checking and without the
need to write a separate model for example, in Promela” (the implementation is the model). Vechev et al.”?> provide
an experience report summarizing first experience with model checking linearizability. It was the first work to achieve
that with nonfixed linearization points. Zhang et al.”> employed model checking, partial order reduction, and sym-
metry between threads to reduce the state space to model check for linearizability. SAMC!*® is a model checking tool
targeting message-reordering, crashes of processes, and reboots deep bugs in distributed systems. It requires semantic
annotation to reduce the systematic exploration of state space. Our tool-chain is similar in the sense that it uses the
operational semantics to reduce the search space but without the need for users to manually enter annotations. Chong
et al.”* describes a style of applying symbolic model checking developed over the course of four years at Amazon Web
Services (AWS), lists lessons learned, and provides a list of proofs developed throughout their experience developing
for Amazon’s AWS.

Tracing. Cirisci er al.”> propose an approach that points the root-cause of linearizability violations in the form
of code blocks whose atomicity is required to restore linearizability. That is, the problem can be reduced to identi-
fying minimal root causes of conflict serializability violation in an error trace combined with a heuristic to find out
which is the more likely cause of the linearizability violation. Zhang et al.”® present a tool called CGVT to build a
small test case that is sufficient enough for reproducing a linearizability fault. Based on a possibly long history that
was deemed nonlinearizable, the tool locates the offending operations and synthesizes a minimal test-case for fur-
ther investigation. Zhang et al.”” provide a better approach than CGTV by coming up with what is called critical data
race sequence (CDRS) that side steps the shortcoming of the coarse-grained interleaving when linearizability is vio-
lated. The new fine-grained trace model helps in better localizing the linearizability violations using labeled-tree model
of program executions. They implement and evaluate their approach in another (subsequent to CGTV) tool called
FGVT (Fine-Grained-Veri-Trace).

Quasi linearizability. Zhang et al.”® on runtime checking for quasi linearizability. This is a more relaxed form of
linearizability. The authors of a tool called Inspect implemented a fully automatic approach using LLVM to detect and
report real violation of quasi linearizability. Adhikari et al.”® verify quantitative relaxation of quasi linearizability of an
implementation model of the data structure. It is based on checking the refinement relation between the implemen-
tation and a specification model. They implement and evaluate their approach in a framework called PAT verification
framework.

Fixing linearizability. Liu et al.%° address the problem of fixing nonlinearizable composed operations such that they
behave atomically in concurrent data structures. The algorithm (Flint) accepts a nonlinearizable composed-operations
on a map. Its output, if it succeeds at fixing the operations, is a linearizable composed operation that is equivalent to a
sequential data structure execution. The effectiveness of the algorithm is 96% based on 48 incorrect input compositions.
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Verification. Liang et al.¥! propose a program logic with a lightweight instrumentation mechanism which can verify
algorithms with nonfixed linearization points. This work was evaluated on various classic algorithms some of which used
in java.util.concurrent package. Bouajjani et al.%? consider concurrent priority queues, fundamental to many
multi-threaded applications such as task scheduling. It shows that verifying linearizability of such implementations can
be reduced to control-state reachability. This result makes verifying said data-structures in the context of unbounded
number of threads decidable.

Runtime monitoring. Emmi et al.? leverage an observation about properties that admit polynomial-time (instead
of exponential time) linearizability monitoring for certain concurrent collections data types, for example, queues, sets,
stacks, and maps. It uses these properties to reduce linearizability to Horn satisfiability. This work is the first in lineariz-
ability monitoring that is sound, complete, and tractable. Emmi et al.3* identify an optimization for weak-consistency
checking that relies on a minimal visibility relations that adhere to various constraints of the given criteria. Hence, sav-
ing time instead of exponential enumerations of possible visibility relations among the linearized operations. This, as the
work before it, is a monitoring approach.

Proofs/proving. Henzinger et al.%5 argue that the nonmonolithic approaches based on linearization points (auto-
matic or manual) are both complicated and do not scale well for example, in optimistic updates. The work proposes a more
modular alternative approach of checking linearizability of concurrent queue algorithms. Hence, reducing linearizability
proofs of concurrent queues to four basic properties, each of which can be proven independently by simpler arguments.
Sergey et al.%¢ propose a uniform alternative to other approaches in the form of Hoare logic, which can explicitly capture
the interference of threads in an auxiliary state. This work implements the mechanized proof methodology in a Cog-based
tool and verifies some implementations with nonstandard conditions of concurrency-aware linearizability, quiescent and
quantitative quiescent consistency.

Compositionality of linearizability. P-compositionality statically decomposes concurrent objects’ (ADTSs’) histo-
ries based on different operations’ target keys into sub-histories (one per key) to check for linearizability.'® LiViola, our
algorithm, was inspired by the latter but we applied this concept at the more critical scheduler level, as we found out later
in the experiments.

Scheduling. Recently, an approach that uses invariants and dynamic scheduling to achieve consistency-aware
scheduling for weakly consistent geo-replicated data stores has been presented,’” evaluated, and found effective. It was
implemented and evaluated in a model checker for Antidote DB.®

Causality. Prior to that there was what is called Causal Linearizability.® Given some constraints on the clients, a
more generic causality checking can be achieved. The actor model (also our model) conforms to such constraint on a
per-process (per actor) scheduled task. Maximum Causality Reduction®® uses causality information on the trace level
to reduce the state space to explore for TSO (Total Store Order) and PSO (Partial Store Order) to check for Sequential
Consistency. Bita’ is an algorithm used to generate causally-consistent schedules of receives.

Checking histories for linearizability violations. As for the WGL algorithm implementations, there are several
other than ours. A Go-implementation®® that requires invariants input by users to the tool, and another CPP imple-
mentation*’ that works on already output traces exist. A similar tool-chain to ours, called Jepsen!?°2>%% (generates
histories/traces) and its engine Knossos’* (generates schedules) is widely used to check key-value stores linearizability,
black box fuzzing. It needs significant amount of work from the user studying how the subject system works and then
devises a test harness, which takes months of insightful work. It handles faults while our algorithms do not; although,
they can if extended due to the model being readily prepared for simulating faults. LineUp,”® Microsoft Research’s pri-
mary C#/.NET concurrent objects tester, existed for a long time and it is effective at exposing concurrent data structures
linearizability violations.

Fault injection. Peter Alvaro’s work on lineage driven fault injection,”® consistency without borders,”” Automat-
ing Failure Testing Research At Internet Scale®® was an inspiration in designing and steering our framework and its
extensibility.

Runtime scheduling. ARTful” is a model for user-defined schedulers targeting various high performance com-
puting (HPC) systems. HPC systems, a specialized kind of distributed systems, usually experience some load balancing
issues and this work allows users to regain control over wasted resources. Experiments in this work has been conducted
on OpenMP!® and Charm++!! runtime systems.

Specification languages. Pluscal'?? is an algorithm language that is used to specify distributed systems. Users need
to hand write models in this language to enable the runtime to check desired properties.

Learning based approaches. Mukherjee et al.'> developed a technique for controlled concurrency testing (CCT)
using machine learning to address scale of the state space in concurrent programs interleavings. This work developed
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a framework, called QL, where they rely on Q-Learning algorithm to decide the next action to be explored. That, in
turn, is influenced by the previously selected actions in the exploration. This work was benchmarked against a set of
microbenchmarks, complex protocols, and production cloud services and performed well. In future works, we may
employ similar techniques, that is, machine learning, to compare against such algorithms. Another work, Marcén
et al.! tackled the integration problem for machine learning classifiers to augment model driven development (MDD)
in two real industrial setups and it paid off. Our framework still does not have the synthesis functionality. However,
we plan to explore this direction in future work since it showed encouraging results in many other setups for example,
github co-pilot as well.

7 | CONCLUDING REMARKS

In this work, we used only 4 out of 16 semantics rules our model provides, namely: Schedule, Consume, Send, and
Message-Reordering. One can extend these algorithms and utilize them to address more problems. In the near future,
we would like to add more benchmarks, schedulers and address more systems faults. In addition, we want to remove
all model limitations to enable further static and/or dynamic introspection. Also, all our expectations we theorized
were met and exceeded. However, there are still room to improve IRed and LiViola. Some heuristics that may yield
these improvements include the following: (1) prioritizing longer causal-chains execution earlier in the exploration
tree, (2) introspection into code to produce longer causal chains that involve as many enabled receives as possible, and
(3) the conflicting keys (in LiViola) can be viewed as program variables and hence it extends to other than key-value
stores. After conducting this experiment, we realized that many concurrency bugs can reduce/mapped to race condi-
tion detection, for example, LiViola and linearizability. Last, and foremost, we have learned the following lessons out of
this work:

1. Lesson 1: This work informed the fact that focusing on schedules pruning is more effective than focusing on improving
linearizability checking itself.

2. Lesson 2: Any approach that simply tries to maximize “coverage” in the spaces of schedules or histories is not likely
to yield bugs unless it is efficient enough to provide near-full coverage

3. Lesson 3: Chronological uniqueness of histories can mislead that worse algorithms perform better (being too repetitive
amplifies the perception of finding more bugs by revealing the same bug/history more repetitively).

4. Lesson 4: Layering complexity cleanly enables addressing more of it, more easily, and modularily. This is exemplified
by using only four operational semantics rules, and future work adding more complexities using more semantics rules
in future specialized schedulers.

7.1 | Future work

At the end, we would like to mention some of the potential future direction(s) for us. We find that implementing some of
the termination detection algorithms by Dan Plyukhin et al.1%1% interesting to show and test more of the capabilities of
our framework.
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APPENDIX A. RAW DATA FOR THE BENCHMARKS

TABLE Al The legend of all symbols used in the results tables.

Symbol Meaning

EX Exhaustive scheduler

SR Systematic random scheduler

DB Delay-bounded scheduler

DP DPOR-dynamic partial order reducing scheduler

TD TransDPOR-transitive DPOR

IR IRed scheduler-generic precise causality tracking scheduler

LV LiViola-specialized Linearizability Violation Scheduler, and transitive race scheduler
#Agents Number of agents in the system

#Rtry Number of retries per request

Qrm Number of agents forming to form a quorum in the system

#Inv Number of invocations, 2R + 1W means 2 reads and 1 write

#S Number of schedules

#IH Number of incomplete histories

#UH Number of chronologically unique histories

#NL Number of nonlinearizable unique histories

NL/UH Number of nonlinearizable unique histories to total number of unique histories ratio, or the quality
UH/S Number of unique histories to the number of schedules ratio, or the progression

NL/S Number of nonlinearizable unique histories to the number of schedules ratio, or the precision
TS The time spent by the scheduler to generate all schedules

ST The approximate time if the scheduler is to produce the same schedules but statelessly

TC The time spent to check all unique histories in the configuration

TT The total time spent to both generate schedules and check all unique histories, TT = TS + TC
#HF Number of histories before catching the first buggy (nonlinearizable) history

TF The time to hit the first buggy (nonlinearizable) history
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TABLE A2 Correct distributed register results for the 3-receives harness.

Distributed register #Agents
=2 #Rtry =3 Qrm =2

TABLE A3 Correct distributed register results for the 4-receives harness.

Distributed register #Agents
=2#Rtry =3 Qrm =2

#Inv. 2R +1W
Alg. EX SR DB DP TD IR LV
#S 4200 100 K 4200 2984 2906 2906 88
#IH 4195 0 4195 2979 2901 2901 83
#UH 37 26 37 37 37 37 22
#NL 0 0 0 0 0 0 0
NL/UH 0.0 % 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
UH/S 0.88% 0.03% 0.88% 1.24% 1.27% 1.27% 25.0%
NL/S 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
TS 0:06 4:48 0:06 0:05 0:05 0:04 0:00
ST 0:18 1:52 0:21 0:12 0:13 0:17 0:00
TC 0:00 0:00 0:00 0:00 0:00 0:00 0:00
TT 0:06 4:48 0:06 0:05 0:05 0:04 0:00
#HF - - - - - - -
TF 0:00 0:00 0:00 0:00 0:00 0:00 0:00
#Inv. 2R +2W
Alg. EX SR DB DP TD IR LV
#S 50K 100 K 50K 50K 50K 50K 7,236
#IH 50K 100 K 50K 50K 50K 50K 7,236
#UH 8 91 8 8 8 8 147
#NL 0 0 0 0 0 0 0
NL/UH 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
UH/S 0.02% 0.09% 0.02% 0.02% 0.02% 0.02% 2.03%
NL/S 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
TS 1:27 5:49 1:22 1:36 1:34 1:34 0:09
ST 9:27 2:55 6:27 7:09 7:42 7:05 0:34
TC 0:00 0:00 0:00 0:00 0:00 0:00 0:00
TT 1:27 5:49 1:22 1:36 1:34 1:34 0:09
#HF - - - - - - -
TF 0:00 0:00 0:00 0:00 0:00 0:00 0:00
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TABLE A4 Erroneous distributed register results for the 3-receives harness.

Erroneous distributed register #Agents
=3#Rtry=3Qrm =2

TABLE A5 Erroneous distributed register results for the 4-receives harness.

Erroneous distributed register #Agents
=3#Rtry=3Qrm =2

#Inv. 2R +1W
Alg. EX SR DB DP TD IR LV
#S 252 100 K 252 20 20 14 14
#IH 247 0 247 15 15 11 11
#UH 11 66 11 11 12 8 8
#NL 2 0 2 3 4 2 2
NL/UH 18.18% 0.0% 18.18% 27.27% 33.33% 25.0% 25.0%
UH/S 4.37% 0.07% 4.37% 55.0% 60.0% 57.14% 57.14%
NL/S 0.79% 0.0% 0.79% 15.0% 20.0% 14.29% 14.29%
TS 0:00 4:09 0:00 0:00 0:00 0:00 0:00
ST 0:01 1:39 0:01 0:00 0:00 0:00 0:00
TC 0:00 0:00 0:00 0:00 0:00 0:00 0:00
TT 0:00 4:09 0:00 0:00 0:00 0:00 0:00
#HF 2 - 2 0 0 1 1
TF 0:00 0:00 0:00 0:00 0:00 0:00 0:00
#Inv. 2R +2W
Alg. EX SR DB DP TD IR LV
#S 50K 100K 50K 50K 50K 30,063 28,517
#IH 49,996 0 49,996 49,894 49,875 29,995 28,441
#UH 20 459 18 79 152 97 116
#NL 0 0 0 11 18 6 10
NL/UH 0.0% 0.0% 0.0% 13.92% 11.84% 6.19% 8.62%
UH/S 0.04% 0.46% 0.04% 0.16% 0.3% 0.32% 0.41%
NL/S 0.0% 0.0% 0.0% 0.02% 0.04% 0.02% 0.04%
TS 1:31 4:34 1:50 1:48 1:46 1:11 1:13
ST 5:19 2:00 5:56 6:29 5:46 3:01 3:02
TC 0:00 0:00 0:00 0:00 0:00 0:00 0:00
TT 0l:31 4:34 1:50 1:48 1:46 1:11 1:13
#HF - - - 0 0 0 0
TF 0:00 0:00 0:00 0:00 0:00 0:00 0:00
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TABLE A6 Another correct distributed register results for the 3-receives harness.

Another distributed register #Agents =
2#Rtry=3Qrm =2

TABLE A7 Another correct distributed register results for the 4-receives harness.

Another distributed register #Agents =
2#Rtry =3 Qrm =2

#Inv. 2R +1W
Alg. EX SR DB DP TD IR LV
#S 1680 100 K 1680 908 818 802 802
#IH 887 0 887 462 419 412 412
#UH 148 28 148 140 132 124 124
#NL 0 0 0 0 0 0 0
NL/UH 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
UH/S 8.81% 0.03% 8.81% 15.42% 16.14% 15.46% 15.46%
NL/S 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
TS 0:22 8:54 0:20 0:06 0:07 0:07 0:07
ST 1:12 1:10 1:07 0:19 0:21 0:20 0:22
TC 0:00 0:00 0:00 0:00 0:00 0:00 0:00
TT 0:22 8:54 0:20 0:06 0:07 0:07 0:07
TF 0:00 0:00 0:00 0:00 0:00 0:00 0:00
#Inv. 2R +2W
Alg. EX SR DB DP TD IR LV
#S 50K 100 K 50K 50K 50K 50K 50K
#IH 42,890 95,060 42,890 40,152 39,564 39,884 39,884
#UH 718 131 718 1,610 1,876 1,907 1,907
#NL 0 0 0 0 0 0 0
NL/UH 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
UH/S 1.44% 0.13% 1.44% 3.22% 3.75% 3.81% 3.81%
NL/S 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
TS 693:56 4:44 660:41 876:36 835:39 859:53 845:30
ST 2635:48 1:52 2608:10 2871:33 2703:56 2889:04 2857:07
TC 0:00 0:00 0:00 0:00 0:00 0:00 0:00
TT 693:56 4:44 660:41 876:36 835:39 859:53 845:30
#HF - - - - - - -
TF 0:00 0:00 0:00 0:00 0:00 0:00 0:00
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TABLE A8 Multi-Paxos results for the 3-receives harness.

Multi-Paxos #Agents = 2 #Rtry = * Qrm
= majority

TABLE A9 Multi-Paxos results for the 4-receives harness.

Multi-Paxos #Agents = 2 #Rtry = * Qrm
= majority

#Inv. 2R +1W

Alg. EX SR DB DP TD IR LV
#S 50K 100 K 50K 50K 50K 50K 50K
#IH 0 0 0 0 0 0 0
#UH 14 26 14 12 12 12 12
#NL 0 0 0 0 0 0 0
NL/UH 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
UH/S 0.03% 0.03% 0.03% 0.02% 0.02% 0.02% 0.02%
NL/S 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0,0%
TS 68:19 6:25 67:51 74:44 32:15 80:51 76:13
ST 306:30 3:22 318:48 332:29 149:52 350:19 325:29
TC 0:00 0:00 0:00 0:00 0:00 0:00 0:00
TT 68:19 6:25 67:51 74:44 32:15 80:51 76:13
#HF - - - - - - -

TF 0:00 0:00 0:00 0:00 0:00 0:00 0:00
#Inv. 2R +2W

Alg. EX SR DB DP TD IR LV
#S 50K 100K 50K 50K 50 K 50K 50K
#IH 0 0 0 0 0 0 0
#UH 6 85 6 6 6 6 9
#NL 0 0 0 0 0 0 0
NL/UH 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
UH/S 0.01% 0.08% 0.01% 0.01% 0.01% 0.01% 0.02%
NL/S 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
TS 35:54 6:12 35:28 56:50 57:22 70:57 75:48
ST 286:39 3:40 307:22 581:43 570:32 706:18 635:05
TC 0:00 0:00 0:00 0:00 0:00 0:00 0:00
TT 35:54 6:12 35:28 56:50 57:22 70:57 75:48
#HF - - - - - - -

TF 0:00 0:00 0:00 0:00 0:00 0:00 0:00
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Open Chord #Agents = 2 #Rtry = N/A
Qrm = N/A
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TABLE A1l Open chord results for the 4-receives harness.

Open chord #Agents = 2 #Rtry = N/A
Qrm = N/A

#Inv. 2R +1W

Alg. EX SR DB DP TD IR LV

#S 18,396 100K 18,396 5,926 2,633 1,935 21

#IH 0 0 0 0 0 0 0

#UH 165 35 165 143 117 121 17
#NL 17 0 17 16 14 12 4
NL/UH 10.3% 0.0% 10.3% 11.19% 11.97% 9.92% 23.53%
UH/S 0.9% 0.03% 0.9% 2.41% 4.44% 6.25% 80.95%
NL/S 0.09% 0.0% 0.09% 0.27% 0.53% 0.62% 19.05%
TS 5:30 6:30 5:34 0:43 0:10 0:06 0:00
ST 18:25 3:40 17:56 2:04 0:34 0:24 0:00
TC 0:00 0:00 0:00 0:00 0:00 0:00 0:00
TT 5:30 6:30 5:34 0:43 0:10 0:06 0:00
#HF 15 - 15 12 10 12 0

TF 0:00 0:00 0:00 0:00 0:00 0:00 0:00
#Inv. 2R +2W
Alg. EX SR DB DP TD IR LV
#S 50K 100 K 50K 50K 50K 50K 71
#IH 0 0 0 0 0 0 0
#UH 325 329 3557 1073 1034 1498 49
#NL 15 1 357 181 163 295 1
NL/UH 4.62% 0.3% 10.04% 16.87% 15.76% 19.69% 2.04%
UH/S 0.65% 0.33% 7.11% 2.15% 2.07% 3.0% 69.01%
NL/S 0.03% 0.0% 0.71% 0.36% 0.33% 0.59% 1.41%
TS 73:29 7:40 34:01 50:48 60:03 100:43 0:00
ST 323:39 4:43 138:25 194:59 214:55 359:59 0:00
TC 0:00 0:00 0:00 0:00 0:00 0:00 0:00
TT 73:29 7:40 34:02 50:48 60:03 100:43 0:00
#HF 15 168 1 2 9 1 22
TF 0:00 0:00 0:00 0:00 0:00 0:00 0:00
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