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with different viscosities. By approximating the velocity with the enriched P, element and the
pressure with the P, element, and stabilizing the Galerkin variational formulation with suitable
ghost penalty terms, we propose the new ECFEM and prove that it is well-posed and has the
optimal a priori error estimate in the energy norm. All derived results are independent of the
interface position. Moreover, compared with other conforming finite element methods with the
optimal rate in convergence, the proposed scheme here not only has the minimum degrees of
freedom, but also avoids using the derivative of the pressure in the penalty term. The presented
numerical examples validate the theoretical predictions.

1. Introduction

In this paper, we consider the Stokes interface equations as follows:

—V - (ve(u) — pI) = f, in Q,UQ,, (1a)
V-u=0, inQuQ, (1b)

[ul =0, onT, (1o

[(ve(u) — pIny]y = okny, on T, (1d)
u=0, on 0Q. (1e)

Here, Q2 is an open bounded domain in R? with a polyhedral boundary 92, 2, C 2 (i = 1,2) satisfying 2 = Q, U, and 2,2, =0,
I = 092, n 3£, is a smooth interface separating the domain 2, u = u(x) = (4, (x1, x,), u(x;, x,))7 is the velocity, p = p(x) = p(x;, x,)
is the pressure, e(u) = (Vu + (Vu)")/2 is the strain rate tensor, v = 2v; on 2; (i = 1,2) is a piecewise constant, I is the identity
tensor, [-]; denotes the jump on the interface I" which will be defined in the following, ¢ is the surface tension coefficient, « is the
curvature of the interface and n is the outward unit normal on the interface pointing from Q, to £,. The equations are usually
used to model the two-phase incompressible flows when the viscosities are large.
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(a) (b) ()

Fig. 1. Illustration of triangulations: (a). T[ (non-shaded triangles), w}l (red triangles), wfl (yellow triangles); (b) .Q}l (colored triangles); (c) .Qﬁ (colored triangles).
Here 2 is a unit square, I is a circle, €, is the subdomain inside the circle, and 2, = 2\@2,. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

Due to the discontinuities of the stress tensor across the interface in the equations, the standard finite element method cannot
capture the solution of the problem (1) very well with an interface-unfitted mesh [25]. However, generating the interface-fitted
meshes is usually a nontrivial task for the complicated interface problem (see interfaces in Section 5), especially for the problems
with moving interfaces (see [11,26,31]). To deal with this difficulty, many attentions have been attracted in the past decades.
One of the popular ways is to use the extended finite element method (XFEM) [3,12], in which the computational accuracy at the
interface can be improved by adding extra basis functions for elements intersected by the interface based on interface-unfitted
meshes. However, the linear system generated by this method may be generally sensitive to the interface position. Another widely
investigated approach is the Nitsche’s method. In this method, by enforcing the jump conditions via a variant of Nitsche’s method
and adapting the parameter in the numerical fluxes on each element, the discontinuity could be successfully captured [2,15]. But, as
that in the XFEM, the corresponding linear system might be still ill-conditioned. Later, many combined methods with respect to the
Nitsche’s method and the XFEM were studied. By using overlapping fictitious domains and the ghost penalty stabilized technique,
and applying the P,-iso-P,/P, finite element pair for the velocity and pressure in the Eqgs. (1) respectively, a cut finite element
method (also called Nitsche-XFEM) was considered in [16]. The well-posedness and error estimates for the proposed method were
also deduced in the paper. Then, other frequently used finite element methods for the Stokes interface equations were investigated
under this frame, such as the P,/P; elements in [22], P;5(MINI)/P; elements in [6,30] and P, /P, (k > 1) in [24]. At the same,
this idea were extended to the equal order finite element pair P, /P, [27,29] which does not satisfy the inf-sup condition (Babuska-
Brezzi condition [13]) in the classical sense, the hybrid higher-order method in [5], the nonconforming finite element in [18,28]
and general cases in [14]. Moreover, the Navier-Stokes equations with interfaces was also simulated in [8,11].

In this paper, we consider the lowest order P, /P, finite element method for the Stokes interface equations. Generally, this finite
element pair does not satisfy the inf-sup condition. To make this approximation method to be well-posed, some stabilized terms are
required in this scheme. Many works have been done in this topic, such as [17,19,20] by using the macroelement penalty terms in
the variational formulation and [7,21,32] by using the enriched technique in the basis function. Here, we utilize the latter, i.e., the
enriched P; element for the velocity and the P, element for the pressure. Different from the P, b element, the enriched P; element
consisting of the linear piecewise polynomial enriched by a discontinuous, piecewise linear and mean-zero vector function on each
element, and only one degree of freedom per element is increased [7,21,32]. Therefore, compared with other conforming finite
element pairs considered for the Egs. (1) in the references, this one has the minimum degree of freedom among the schemes with
the optimal rate in convergence. Here, the optimal rate in convergence means the error can be bounded by the best possible error. For
example, if the degree kth polynomial has been employed in the simulation, if the solution is smooth, the expected optimal L?-error
in convergence is at the order O(h**!) with h being the spatial mesh. For example, the Stokes stable MINI-element employs the
continuous P; element for pressure approximation. However, the numerical analysis for MINI element shows that [|p — p, ||, = O(h),
which is not the optimal rate in convergence. In contrast, our proposed enriched Galerkin scheme P, /P, shows the velocity error
measured in H'-norm converges at the rate 9(h) and the pressure error measured in L>-norm converges at the rate ((h), which
are the optimal rates. By adding some suitable penalty terms in the variational formulation to deal with the discontinuity at the
interface, we propose a new enriched cut finite element method (ECFEM) for solving the Stokes interface equations, which is not
only applicable to interface problems with an interface-unfitted mesh, but also avoids using the derivative of the pressure in the
ghost penalty term. Furthermore, the well-posedness and the optimal rate of errors measured in the energy norm are deduced, too.

The paper is organized as follows. After introducing the ECFEM in Section 2, we deduce the well-posedness and the error estimate
in Sections 3 and 4, respectively. Then, in Section 5, we present some numerical examples to validate the theoretical predictions.
Finally, conclusions are made in Section 6.
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(a) (b) (c) (d)

Fig. 2. Illustration of edges: (a) Fh (thick lines); (b) [ (thick lines); (c) 7}, (thick lines); (d) (%3 (thick lines).

2. Enriched cut finite element method

In this section, after introducing some notations for the partition mesh, we will propose the ECFEM based on the lowest order
P, /P, enriched Galerkin finite elements.

2.1. Variational formulation

Defining
X ={ue[H(2)] : u=0o0n iR},
0=(peL’(@: (v 'p =0}
the variational formulation of the Egs. (1) is: find (u, p) € X X Q such that for any (v,q) € XX Q,
(ve(u), e(v))glug2 - (V- v,p)glug2 = (f, v)_QIUQ2 + (oK, v-np)r, (2a)
(V-u,9)g,00, =0, (2b)

where (-, "), o, denotes the inner product in 2, U2, and (-,-) denotes the dual product on I.
2.2. Mesh

Let 7, be a triangulation partition of £, which is generated independently of the location of the interface I'. Denote
T :={T €T, : 10T n Q| > 0}, Q= Ureri T,
o, =Urerireg Tri=1.2,
TF ={T €T, |ITnll>0}.

It is easy to check that w;! cQ c QL, and Thr is the set of elements cutting the interface I" (see Fig. 1).
On the other hand, we define the following sets of edges for i = 1,2 (see Fig. 2):

Fp; :={F : FN &, F is an edge of the element Twith T € Q;I},
Gp, ={F : FCOT.TeT, Fn& +0)}.

Moreover, letting 2 = maxy hy be the global parameter of the triangulation where A is the diameter of the simplex T € 7;,, we
also make the following assumptions for the computational mesh as that in [16]:

» Assumption 1: Assume that there exist two positive constants ¢ and ¢ such that
Eh<hyp<eh, NTET,

» Assumption 2: Assume that I' either intersects the boundary oT (T € Thr ) exactly twice with each edge at most once, or that
I' N T coincides with an edge of the element.
* Assumption 3: Assume that I'r = I'nT is a function of the length on I, (where I’r ), is the straight line segment connecting
the points of intersection between I' and 9dT), i.e., there hold in local coordinates
Irp={En) 1 0<E<|Ipyl, n=0},
and

Iy ={(&.n) 1 0 <& < |yl n =005}
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» Assumption 4: Assume that for each T € Thr , there are elements T’ C 2;,i = 1,2 such that T n Ti # .
» Assumption 5: Assume that the mesh coincides with the outer boundary 9.

2.3. Numerical method

Before presenting the numerical method, we introduce some notations. First, we define the average and jump operators which
will be frequently used in the following. For any v, € H*(7,) with s > 1/2, assuming that v (x) = lim,_,+ v,,(x ¥ m) with n being a
fixed unit normal to the edge F, the average and jump of v, along F, denoted by {{-}} and [-], are defined by, respectively

{onl} =%(UZ +0,), lopl = vf —v;  on F € F,,\oQ,
{{on )} =vps [v,1 = v, on F € 0Q.

And the average and jump operators across the interface I" are defined as
1
{ap}r = 3 (a1 + q2n) » lanlr = a1n — 921>

where g;, = g;l,(i = 1,2). These definitions can be naturally extended to vector- or tensor-valued functions, which will be used
latter without distinguishing.
Then, based on a triangulation partition of € shown in the above subsection, setting

Cyi ={uy, € [HY Q)P | w,ly € [Py(T), VT € T;},
D, ={u, € [LX@)P | w,lp =¢(x—x7), VT €T},

where x; is the centroid of the element T € 7, and ¢ are unknown constants to be determined by the numerical scheme, the enriched
Galerkin finite element space considered here for the velocity is defined by [7,21,32]

X = Cpi ® Dy,

Therefore, for any v, € X, ;, one has the unique decomposition v, = v¢ + v? with v{' € C,; and vP € D,, .
Letting

Xy ={u, =y, uy) fuy €X,,,i=1,2},
Oy, ={py = P1p>P2n) * Pip € Opyni = 1,2},

where Q) ; is the space of piecewise constant polynomials defined on 7,/ with v lpp, Dg,uq, =0, the new enriched cut finite element
method investigated here is: find (u,, p,) € X, X Q;, such that for any (v,,q;) € X, X O,

Ay, V) = By (Vi pp) + € du . Vi) =(E. V1) 0,00, + ok v, -0rp)r 3)
By, (. qp) + €,J,(Pp> q1,) =0, @

where

Ap(uy, vy) = (ve(uy), (V) ua,
2
= X (Cltvepn}). il + ((vemnl). Do Dy, = 2= (U TuT: Vi), )
P T

i=1

i
= ({vewny}r, vyl ) r = ({ve(vnp ), w1 p) p + h_r<{"}1"[“h]1"= Valr)rs
T

2
By(uy, q,) = (V- “thh)!zlu.oz - Z({{qih}}v [[w;/, 'n]]>rhj ={an}r [y, -nplp)p,

i=1
2

JuQy,vy) = D hp (v [Vu,nl, Vv,

i=1

2
ToPnsan) = Y, hp (V7 1o D),

i=1

and e, €,, p and A are positive parameters which will be determined in the following.

Remark 2.1. Here we compare the degrees of freedom for condensed enriched Galerkin finite element method (CEG) [21], MINI
element (MINI) [1] and stabilized P,/P, element (SP, P;) [4]. Both of the later two finite element methods employ the continuous
P, element with stabilization techniques: MINI element adds piecewise element bubble functions (a local polynomial vanishing
on the element boundary: [span{4;4,45}]? for 2D; [span{1,,434,}]° for 3D); SP, P, with Brezzi-Pitkaranta stabilization [4] on
all the domain. The later two finite elements have been used in [6,30] for Stokes interface problems. In order to distinguish our
proposed algorithm and these two inf-sup stable methods, we list the DoFs and convergence orders in Table 1 for the standard
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Table 1
Comparison in DoFs with respect to the optimal order in convergence.
DoFs DEG(uy,) DEG(p,) Optimal order Theoretical order
CEG (d#V) + #T P, P, O(h)/O(h) O(h)/O(h)
MINI (d#V + d#T) + #V 2D: Py P, On*)/O(h*) O(h)/O(h)
3D: P, P, O(h*)/O(h?) O(h)/O(h)
SP,P, (A#V) + #V P, P, O(h)/Oh?) O(h)/O(h)

Stokes equations without an interface. Denote the dimensionality by d, number of elements and vertices by #T and #V. The highest
degrees of polynomial for approximating the velocity and pressure are denoted as DEG(u,) and DEG(p,). Besides, we also list the
optimal order (H '-error for the velocity/L?-error for the pressure) in convergence, which is computed by the corresponding degree.
For example, if the degree kth polynomial has been employed in the simulation, if the solution is smooth, the desired optimal
L2-error in convergence is at the order O(h**!); the desired optimal H'-error in convergence is at the order O(h¥). The theoretical
order is the theoretical order obtained in the Refs. [4,21]. There are super-convergence results proved on the structured grids for
MINI element (for example, the order for pressure is at @(h3/2) on structured grids [10]), but the super-convergence results are out
of scope for this paper. We shall only consider the rigorous theoretical conclusions on the general grids for Stokes equations. Similar
results can be obtained by considering the number of interface elements.

Remark 2.2. We can see that u, € X,,, p, € Q,, are double valued on elements in 7,”. The discontinuity is possible at the interface
I in this approximation.

Remark 2.3. In this method, it should be noted that all volume integrals in A,(-,-) and B,(-,-) are computed over physical domains
Q; rather than ;.

Remark 2.4. The ghost penalty term J,(uy,v,) is added to ensure the coercivity of the bilinear term A,(-,-). The ghost penalty
term J,(py,, q;) is added to ensure the inf-sup condition for the bilinear term B, (-, ). Different from the ghost penalty terms for the
pressure in other conforming finite element methods (see [6,16,22,24,30]), which need to penalize the derivatives of the pressure
on the edges, the new method here avoids such complicate computations and provides a simpler scheme.

Remark 2.5. In this work, we only consider the case when the curvature x is considered to be a known quantity. In practice
(e.g., for moving interfaces) it has to be computed from the level set function or other interface representations [23]. A suitable
discretization of the curvature term may be needed to guarantee an optimal order in convergence.

Remark 2.6. In this work, we only consider a simple average strategy (i.e., half strategy) for simplicity. However, in the cases with
anisotropic viscosity values, the weighted average may provide a better performance.

3. Well-posedness

In this section, we will analyze the well-posedness of the ECFEM proposed in the above. Before proceeding the deduction, we
introduce some mesh dependent norms as follows:

2
Hull? =y eI g 0, + X (Arll(vPe@pmWR , + A 1N 1w 012 5, )
i=1 N 2
ewnp} )2+ A v Pl

2. 2
w7, =Muyll® + JyCay, ),

+ hyll{v'/?

2
I I =l + v 12 g g + X A o3 5, + Al v 2P} 1

i=1

-1/2_ 112
/ pllOvQIUQZ + Jp(pha qh)

lCws, )G =l 17 + llv
3.1. Relation between norms
We first recall the trace inequality as follows.

Lemma 3.1 ([15,16]). For any w € H'(T) (or [H'(T)]?) with T € T,, there hold

~ -1/2 172

lwllogr <¢ (g laellor + Ay 1Velor ) ®)
~ -1/2 172

el e <€ (Al + 21Vl ) ©
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<
Az

Fig. 3. Illustration of transmission edges passing from 7' to the adjacent element 7 .

hereafter, ¢, ¢ and c; with i being an integer are general positive constants which are independent of the viscosity and the mesh, but may
take different values at different occurrences.

Furthermore, for the discrete space defined above, there holds the following lemmas with respect to the inverse inequality and
the partition domain.

Lemma 3.2 ([16]). For any w,, € X,, (or Q) and T € T,, there hold

2 52 2
IV, l2  <ehz2llw, )2, @

2 ~7,—1 2
lwnl <7 oy 12, ®

2 -1 2
g2 e <ERT 0y ©

Lemma 3.3. For any u;, = (u;,u,,) € X, there hold

2 2
S ey <e | Y Y I Pe@pld + Ju@yup |, (10)
i=1 TeTh" i=1 Tewil
2
1/2
Y hrl Pepndpl? s s Y X I el an
rer,” =l rer)

Proof. We prove the results following the process in, e.g., [16,28]. For any element T € Thr , let &1, be the set of transmission
edges passing from 7 to the adjacent element 7}, € coil for i = 1,2 and N, denotes the number of transmission edges (see Fig. 3). The
assumptions on the mesh guarantee that such elements 7}, exist. Since v/

i
c(up)ly = e(p)ly, + D, Sle(uy)nlpn,
Feéry,

2 . . . P .
Vu,;, is a piecewise constant valued tensor, it is obvious

where 6 = +1 with the sign depending on the orientation of n so that the equality holds. Since the triangulation is quasi-uniform,
the number N, is bounded. Noting Vu,;, is a constant valued tensor in each T}, and using Cauchy-Schwarz inequality and the
geometric-arithmetic inequality, we can derive from the above equality that

172 IT| | 172 |T| 172
v, Zepll3 - <c T |||v,./ cwplyy, +Ne Y, munv/ eCumllI?
ki ! Feéry,

1/2 2 1/2 2
<c[Iv ey + X hrliy e@nll} ;|-
' Feérp,
Ty,

Summing over all elements in Th' (i =1,2) gives

2 2
SN PewplRy <e Y| D v Pe@plZ + Y arllyleqnlli2

i=1 TGTh’ i=1 TE(A);I FeGy
2
1/2
< |2 v Pe@pl?, + Jy@y.u,) |- (12)
i=1 Tewil

On the other hand, using the definition of the average operator on the interface I" and (9), we get

1/2 2 1/2 2 1/2 2
hell (v, Peamp bl o <chr (I el g + el )
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1/2 2 1/2 2
<3 (I el + v, eyl )
Taking a summation over Thr in the above inequality, we complete the proof. []

Similar to the above lemma for the velocity, we can derive the following lemma for the pressure.

Lemma 3.4. Let p, = (p1;, Pop) € Oy, the following inequalities hold

2 2
—-1/2
3 Ponldy < | X X P oinld g + e pa) |-

i=1 Te‘l',f i=1 Tew),
2
2 hel e IR o _c42 el
TeThr i= lTeTr

3.2. Property of the bilinear form A,(-,-)
For the bilinear form A,(-,-) defined in Section 2, there hold the corresponding continuity and coercivity.

Lemma 3.5. Letu e X+ X, then there holds

Ay, vp) < cslluflfivgll. Vv, €X,.

Proof. By applying Cauchy-Schwarz inequality and noting that {{ve(w)n}} = {{v!/2e(wn}}{{v}}'/2, we arrive at

Ap(u,vy) =(ve(m), €(vVy)) o, u0,
2
-y <<{{ve(u,->n}}, Vi), + (vetvnl) Do), = 2= (v} w1, [[v,-,,11>rh,,>
i=1 T

A
= ({ve@np}p, [vylp)r — ({vevpnptp, [ulp)p + h—r<{V}r[u]r’ Valrdr,
T

2
<IV'2e@llo 0,0, IV *ello.auua, + 2 IV e@pn o, IHVH2Tvilllor,,

i=1

+ Z I e Wllo.p,, VY2 Tuilllo 7,

2

Z (N 20wl p,, IOV 213Dl 7,

||{V1/2€(u)nr}r||0r||{V}r Valrllor + v

||{v}”2

ety pllor Il vy Tul fllo

[ll]r”(),r”{‘/}r [Vh]r||0,l"

<||v‘/2e<u>||og,ug2+Zh”2||{ v 2epn Bl +Zh‘”2|| N 1w dllo 5,

1 i=1

,/ ~ ) 1wl +h 21 2en ) pllo

_ A
+hT‘/2||{ }]/Z[U]rHor+\/h_r||{v}lr/2[u]r||0,r>
T

2 2
x (nv”ze(vh)no,glugz + P 2l r,, + D A I e Bl 7,

i=1 i=1

+Z‘/ ml W2l r,, + A7 IV 2 Al pllo

1/2 4 1/2
P10 e pllo.r + 4/ ZEN Al r
T

<csllallililv, .
with ¢ = ¢ max{+/p, /41 }.
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Lemma 3.6. Assume that p and A are sufficiently large positive constants, there holds

colluglly, < Ayp(uy,wy) + 6,0, (uy ), Yy, € X, 16)
Proof. By noting the definition of A,(-,-), we have

2
A up) =V 2@l oo, = D, <2<{{ve(u,-h>n}},[[u,-h]nrh,, - hiu{{ W2 0,00 7, )
i=1 T

1/2

A
= (vepnr) . [wylr)r+ 2510Vl - a7)
T

By using Cauchy-Schwarz inequality, we obtain

[S]

2 12 1/2
- 2 2itvewym). g, < 372 (Arlv 2eupmpi ) (A N0 1wl 5, )

i=1 i=1

<ethTu (Ve G ., +Z ||{v}}1/2[[u,h11||m

i=1

and

1/2
—2<{ve<uh)n}r,[uh]r>rsz(th{v‘/ze(uh)nr}r||3,r) ( 20012 )

£
<erhr (v e} pI2 - + ;—Tu{ VI w2

with ¢;(i = 1,2) being positive constants. Substituting the above inequalities into (17), we get

2

p—E€,
Apuyuy) 2V 2e@pIG 5 o, flth”{ V2e(um G g, +Z—||{{v}}‘/2[[u,h11||0,3
=1 i=1

Ar—€
— ehp (v eqpnp 12+ —2||{v}”2[uh1ruor

1/2

=V Pepnlly o o, + €1 Z hy I e 15 5,

2 -1

p—¢€ Ar
+; th 2D 111G 5, |+ exhr v Peqpnr )} oI - + ||{ "

1/2

2
[ lr Iy r

2
- 2e; ) Iyl W Pepn i 5, = 2e2hrllv!Zewpnr ) plG - (18)
i=1 ’

Due to Lemmas 3.2 and 3.3, there holds that

2 2
— 1/2
26y ) bV Pepn IR 5, <2618 ) D hrlly el
i=1 ’ i=1 TeT)
2
_ 1/2
egae [ YD I Pe@pd  + Juuyuy)
i=1 Teaw),

<2¢,¢¢, <||v /26(“h)”09 v, t Ju(uh,uh)),

and

265 |1V Peupn Y I3 <260 ) bl eyl oz
Ter!
h

1/2 2
236 Z I,/ el r
Ter

2
ere, 3N Y, Peup IR,

i=1 TEThi
2
1/2 2
<2g5¢5¢4 Z Z ||V,-/ €(uih)||0YT+‘lu(uhsuh)
i=1 Temil

2 2
<L2eye¢g (llv]/ c@pllg 0,00, + Ju(uh,uh)) .
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Putting the above equalities into (18), we arrive at

Ap(uy,wp) + e Jy (g, up) 2(1 - 2¢2c) — 25252‘31)(||V1/2€(“h)||gg U_Q2 + ey u(uy, uy)

2

[
+ &1 ) hrll (v Pepmhg 5, + Z—u{{v}}'“[[u,;.]]nop

i=1

—1
ﬁ”{ }1/2

Iy [llh]r”

+ s2h7"||{‘/l/2€(llh)nr}r||g’1- +

Taking small enough ¢,(i = 1,2) such that 1 —2¢,éc; —2e5¢y¢; > ¢y > 0 and large enough p and A, such that min{p — e;l, Ap —5;1} >
co > 0, we get the result (16) with ¢ = min{1 — 2¢,¢c; — 2e5¢5¢1, €1, p — el_l,lr - 651,62,6“}. |

3.3. Property of the bilinear form B,(-,-)

Let the piecewise constant function be defined as

Q™ inQ,
ﬁz{"ﬂ 1l 1 (19)

-7, inQ,

and

M, = span{p} C Q.
Then, there holds the decomposition (see [16,22,25])

ph=p)+ D B € My, ()t € My,
with

Q,=My® My and My :={(p)*" : (P Do, =0}
Next, we shall prove the bilinear form B,(-,-) satisfies the inf-sup condition through three lemmas. We first consider pg € M,

(Lemma 3.7), then (p(,)l)l S MOl (Lemma 3.8), finally combine these results to obtain the desired result for p, € Q) (Lemma 3.9).

Lemma 3.7. Assume that the mesh size h is sufficient small, then, for sz € M, there exists v, € X, such that the following inequalities
hold,

By ) 21V 200G .0, (20)
By(Vp. 1)
-1/2.0
sup ————— >cgllv 1/ P lloo uo, - 21)
viex, Vsl IO

Proof. It suffices to consider
pg =p, (22)

which is defined in (19). We will prove the result by 4 steps.
Step 1: We shall construct a function g, in which the standard inf-sup condition can be applied. Setting ﬁg € Q)1 X0y, as

Q,7", in @,
R o=vlp= 121 L 1 (23)
—[€,7", in 2y,
and 1(59) as
~0 i r
1) = {ph, ) Te Th'r\Th , o)
o fT dx, TeT],

which takes the same value as ﬁ% in T, é \Thr and takes a different single value in the interface elements in Thr , then, the desired
function g;, can be defined by

ap =) — @,
where « is the average of I(p;) satisfying

_ 10
- 12, U2, (H(ph)’ 1).(2]u!)2 :
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It is easy to check that (g;,. 1), e, =0, thus ¢, € L(z)(.Q). By the standard inf-sup stability of the enriched Galerkin method [21],
there exists v, € X, with v,|;o =0 and [v,]; = 0 such that

vl = 182 o0y Ba(vasan) = cllanllo.oyue, 1800.0,00,- (25)

Step 2: We shall rewrite the bilinear form B, (v, p2) into two terms. Noting that p(;l = p € M, and (23), with a simple calculation,
we can derive that

V=250, 0,00, = €V DIPG 0,0, (26)
with
vi 217!+ vy |2, Q™! _
v, Q) = % > max(v;, v,) min % =é. (27)
12,17 + [£2,] L2107+ 192

where ¢ is a general positive constant independent of the viscosity and the mesh. Noting the definition of the bilinear form B,,(-,-)
and the fact [v,] =0, and using (19), (22), (24) and the integration by parts, we have

2
Bh(Vh’P(;l):Z z /T . PV - Vipdx = (P, 1. [vig, - 0y,
n&Z;

=l \TeT}]

Il
.M“

((V Vi vl g, = (w121 v 'n]]>rh_,.)

I
.MN

v (Vv B, = (@ I 1, )

[N

~0 =0 =0
Vi Z (Bip> [Vin 'n]]>FCdT,Fn.Q,» + (B> [Vin - D) pr — By [Vin '“ﬂ)Fthy,
i=1 TeT!
h

=<[Vﬁ2]r, {Vvi-nplr)r (28)
Similarly, there holds
By (Ve B0) = (0] ps {Vy -y} ) e (29)
Due to (27), combining (28) with (29) yields
By, (vVy, p) = E(v, 2By, (vy, BY) = E(v, 2) (By(vy, B, — 1) + By(vy 41)) - (30)

Step 3: We shall estimate B, (v, pg) through estimating B, (v, g,) and B, (v, 13(;)1 — gq,), respectively.
(D). First, noting the construction of the operator I in Step 1, we can derive that

1Y) = Pyllo.o,u0, < ch'/?.

Thus, the average a is bounded, by noting the fact (132, Da,ue, =0, as
1 ~ 1 S0y _ =0
la] =———— / I(p,)dx| = ———— / ({(p;,) — py)dx
|91U~Qz|) oue, " ) |91U92|‘ oua, mTh

12
<[ uah-sirax) <o
2,00,

Combining the above two equalities with the triangular inequality gives

llan = Bllo.0,u0, < I = Bollo.o,ue, + llallo.o,ue, < ch'. €39)

On the other hand, it is valid that

2
By By —a) =D | D / B, = aim)V - Vindx = (B, = ain ) [vip - 0D,
i=1 TeT) TN,

=1+ I,. (32)
For I, by Schwarz inequality and (31), we have
2
AN (B, = aim)V - Vipdx|
i=1 771 /Ty

172

~0 1/2
<elIVV4llo.0,02 175 — anllo.,ua, < A2 194 llo 0,00, < ch 11V, (33)
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For I,, by Schwarz inequality, Lemma 3.2, and Poincare inequality, we get

2
1ol =1 Y (UBY, = i} Vi - g, |

i=1

2 /2 , 5 172
<c <2 hr V20, - q,-,,)}}ngﬂ[) (Z L 11 zﬁvfnllllé,rh,)
i=1 : i=1 :
) 1/2
<[ DD 0, —anlZ, ] Wvall. (34)
i=l re7]

Moreover, since g, and ﬁ‘h) are piecewise constants, it implies

170 = ainllogr = X 180 = awallor = X 183, = dullor+ X 17, — awllor
TeT) Tew) TeQ)\w,

1\ 1
< <1 + m{;}—f”') 7% = dinlloo; < Pty = dinllo)
and

||ﬁ(2)h - q2h”()__(22 < C||I3(2)h - %h”qwi,
which suggest that

1%, = aunllo ot + 173, = anllo.gz < (152, = danllo) + 155, = danlo,z )

<l - anllo.o,u0, < ch'?. (35)

Putting (33)—(35) into (32) and applying the first equality in (25), we arrive at

BV By — ) > —(II1 | + |13 ]) > —ch' 2wyl = =ch (15 110 0,00, - (36)

(II). Second, by using the standard inf-sup condition (25), the triangular inequality and (31), we have
B, (Vi qp) Zcllgpll (A > c (Bl — 113, — axll 1151
W\Vus dp) ZCldpllo,0,ue, IPpllo.Q,ue, = ¢\ IPyllo.Q,ue, Pp = dnllo,Q,u2, | 1Py ll0,0Q,u02,
ZC“ﬁ%”o,Qlugz (”ﬁ(})l”()’glugz - ch1/2>

ellBylI5 0,00, (37)

by assuming that the mesh size 4 is sufficient small.
(IID). Finally, substituting (36) and (37) into (30), and using the fact that || ﬁ?lnowglugz is a constant (from (23)), we obtain, by
assuming that the mesh size 4 is sufficient small, that

By, (vy, P =E(v, Q) (B (v, By — ) + By (vVpo qp))

220, @) (=ch 1 lo.2,ue, + 12 6,00, )

1/2

- —1/2.02 ___ch

2Ev, DIV 115 0,00, (c T )
Ppllo.0ue,

2e7 v 2R 1G 0,00, ¢
which suggests (20).
Step 4: Utilizing the first equality in (25) and (26), we get

1/2 1/2

vyl <e max(vy, vp) 21V, Il = € max(vy, vo) 215 llo,,ue,
<elv'*phllo.a,u0,- (38)
Combining (20) with (38) completes the proof. []

Let X, be an analogue space just replacing Q; with co'h in X, defined in Section 2. Then there holds the following lemma.
Lemma 3.8. Assume that the mesh size h is sufficiently small, for any (p))* = ((p?h)l, (pgh)J-) € My, there exists V), = (Vi, V) € X,
such that

< 0\l —1/2¢0\L)2 0yL ¢ 0\L
B () ) 20V 2R I g1 o = Tp ()" (). (39

9,0 <erollv=72 ) o 00, (40)
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L
A

stability of the enriched Galerkin method on /| C @; [21], there exists ¥;, € X,,; with supp(¥;,) C @', satisfying

Proof. On the one hand, defining «; = @) 1)’”;. and g;, = (%, )" —@; (i = 1,2), there holds that (g;,, 1)‘”2 = 0. From the inf-sup

- -1/2 - -1/2

W9l = 107 ainllo s and By gn) 2 v, anl? - 41

"h
Following the proof in Lemma 3.8, we have
-1/2 -1/2
[ qihlléyg,h <c (IIV,- ! q,-hllgww;? + I, i q,-h)>
<c (Bh(i;iha q[h) + Jp(q[h’ qih)) . (42)
On the other hand, (p))* € Mol, it is valid that

Jo(apan) = I, (B)D). (43)
Furthermore, since ¥,, € X,,; satisfies ¥, = 0 on dw!l, and (p?h)l — g;;, = @; is a constant, it is valid that

By (Vins 4in) = Bp(Vip, (P?;,)L)» (44)
and

1 1
log] =—— ()" Dyt | = —= 1@ D, = (@) Dig oo |

| |} |
i 1/2
i 12\, |
= [(@)" Dpot | € ———1) log,
wh| a)hl
<ch' 21w g, < e PN oo - (45)

where we used ((p?h)l, 1)p, = 0 and Schwarz inequality in the above proof, which follows that

—-1/2 —1/2:, 0L =1/2, 0L
;2 amllo.q =1 165" = alllo.gr = 1 @) g = el

—1/2 —1/2
2, @) o (1= ch') 2 el () o 0 -

by assuming that the mesh size A is sufficiently small.
Therefore, putting the above inequality into (42) and using (43) -(44), we get
By (0005 + T, (00 000 =BG qi) + (s din)

-1/2 2 -1/2
2elv; Pl = eollvy

012
0.0 = )l
%h

0.2
Moreover, it is easy to check that

~ -1/2 -1/2
W9l =1, ainlor, = 177 (G5)* = @) Nl
-1/2 -1/2
<12 oo, (1 + ch'7?) < ellvy 200 o, -

Taking a summation with respect to i from 1 to 2 in the above two inequalities completes the proof. []

Lemma 3.9. Assume that the mesh size h is sufficiently small, for any p, € O, there exists v, € X,, such that
By, (V. pp) 2 ¢ ||V_1/2ph”§w_(zlugz = c12J,(Pp> Pp)s (46)
Vil < eislv=""*pallo.,u0,- (47)

Proof. As we define above, for any p;, € ), we have the unique decomposition p, = p’ + (p))*, where p% € M, and (p))* € Md—.
Estimates (20) and (39) suggest that there exist ¥, € X,,, ¥, € X,, satisfying

B,y 1) 2e7 1V 2D G 0,00, (48a)
By 0)) 260l 2O e = T (@) ). (48b)
ThTh

Noting that ¥, € X,, and pg is a constant on @', using the integration by parts, we have

2
By ) = 3 (V9 sy = A 194 -0, ) = 0.

i=1
For y > 0, setting v;, := v, + vV, € X, and using the above equality and (48), we have

By(V4, ) =By(¥y, B)) + By, (V3 (0))0) + 7 By (¥, ()
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—1/2 .02 < 0L
27 v )15 0,00, + BrGn P31

+7 <c9||v-‘/2<p‘,1)ﬂ|§qwi - J,,((p?f,(p‘,i%)) : (49)
Considering the fact [v,], = 0, and using the definition of B, (-, ), the trace inequality and (38), we can derive that
2
By (1) =(V - 930, 030N, 00, = D (U@ W [ - g,

i=1
2
— - 1/2 —-1/2 -
> = ell¥allv 2B g a2 = 2 b NG Wllo,, i 1Ll
i=1

= —1/2,.0\L1 —-1/2 0 —1/2,.0\L1
2 =l @0 o gt g2 2 —ei0llv= 2y llo.,u0, V203 llg a1 ugz- (50)
Thus,

—1/2 012 —-1/2 .0 —1/2,,0\L
By o) 2671V 2315 0,00, = €10l 2 pyllo.0yu0, V20 o a1 ug2

+y (cgllv“/z(p?,)Lllég,ng - Jp((p‘}l)i,(pg)ﬂ>
““h h

€10€3 -
> (e = 292 IV R0 0, = I D))

_ %o —1/2¢,0yL)12
+ <7Cg 26, ) v="""(py,) ”(),Q}'u.ofl’
with &5 being a positive constant. Taking ;5 to be small enough such that ¢; — ¢;¢£3/2 > ¢, > 0 and y to be large enough such that
yeg — % > ¢, > 0, and noting (43) and ||V_1/2(p(;l)l||o’g}11uni > V200 lo.0,u0,, We get (46).

Finally, (38) and (40) yield

- < ~1/2
VAl < M9RI0+ 71940 < eqzlv=Y/ prllo,2,ua,:

which completes the proof. []
3.4. Existence and uniqueness

Theorem 3.10. LetueX+X,,v, €X,,pe0+0, and g, € Q,, then there holds

Ap(a,vy) = By(vy, p) + By (u, q) < cpalllCa, pNIVA gp)l- (51)

Proof. Noting the definition of B,(-,-) and [u] = 0, it is valid

= By, (vy, p) + By(u, q5)
2

==V VpDoue, + Z<{{Pi Wi - 0l)g, + ke Ve -nplp) e
i=1
2

+ (V-u,95)0,u0, - 2({{4;;1}}, T} - nlhr, — {aptru-nplr)y

i=1
2

eV ello.a,ua, IV*pllogue, + 2, V20 oz, V2TV - nlllo 7,
i=1

+ 10720} pllor VY 21y - 01 Pl
2

+ eV 2ellg 0,00, 1V anllo.,u0, + 2, 10V 2a Mo p, VY2 Tw; - 0l 7,

i=1

which combining with Lemma 3.5 yields (51). [

Theorem 3.11. Let (u,,p;) € X, X Q), and assume that the mesh size h is sufficiently small and the parameters p, Ar and ¢, are
sufficiently large such that Lemma 3.6 holds, then there holds

Ap(ay,vy) = By (v, pp) + By(uy, qp) + €4 Jy (U, Vi) + €,J,(Pp, 41)

sup > ¢15 1y o)l (52)

(V) EX X0 Vs @)l

Proof. Taking (v;.g;) = (u,,0) and using Lemma 3.6, we have
Ap(up, vy) = By (v, pp) + By, qp) + egJ (W, V) + €,J, (D ap)
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=A,(u,,uy) + e, J,(uy,uy)
>clluyll3. (53)

Setting (v,,,q,) = (u, — a¥v,,p,) with « > 0 being a parameter and v, satisfying the assumptions in Lemma 3.9, using (53), the
inequality J,(V,,¥,) < [[¥,]1?> and Lemmas 3.5 and 3.9, then we have

Ap(ay, vy) = By(Vy, pp) + By(ay. qp) + € J, (U, V) + €,J,(Pps ap)
=A,(uy,u, —av,) — By(u, —av,,p,) + B,(uy, pp) + e Jy(uy, 0y, — avy) + epJp(ph,ph)
=4y, up) + e Jy(uy,uy) — a(Ay(ay, V) + 0y (g, V) + aB(Vy,, py) + €,J,(pp, pp)
¢ lluy Il — amax{es, e} [luy | + Ty ) U4+ TuFas 74021

+ alen IV2pull5 g, 00, = €127, Phs P + €40 (P1s P1)

2

2 2 -1/2
>(cs — amax{cs, e, }/e)lluylly, + ale;; — 2ci; max{cs, e, }eg)llv / Ph”o!_QIUQQ

+ (e, —acy)J (b, Pi)s (54)
with being a positive constant. Moreover, (47) and the triangle inequality follow by
iy, — avp, pp)ll, < (1 + g, pp)ll5-

For a given ¢,, if ¢, is small enough such that a(c;; — 2cf3 max{cs,€,}€4) = ¢y > 0, a being small enough such that ¢ —

amax{cs,e,}/e4 = ¢y > 0 and ¢, being large enough such that ¢, — ac;; > ¢y > 0, combining the above inequality with (54)

finishes the proof with ¢;5 = min{cs — @ max{cs, €, } /€4, a(c;; — 2c123 max{cs, e, }€4), €, — acp}/(e(l + ). O
Remark 3.12. Theorems 3.10 and 3.11 indicate the existence and uniqueness of the numerical method (3)-(4).
4. Error analysis

In this section, we will derive the error estimate for the proposed ECFEM. In order to construct an interpolation operator, we
recall the extension operators [9,16] E; : [H*(2)]> = [H*(2)]* and E;_ T HS(Q,) » H*(2) i =1,2,s >0 such that

E;,“i|.o, =u;, and ||E.ii“i||x,g <clwllyg, VYu € [H* ()1, (55)
E;’,Pi|Q, =D and ”E;‘_Pi”s‘g < C”pi”s,gi, VP,' € HS(Q,')- (56)
Here we shall introduce other finite element spaces. Let

Cp ={w, € [HyT)I | w,ly € [Py(T)P, VT €T, }.
D, ={u, € [LX(T) | wyly = X — X7, VT € T},
where x; is the centroid of the element T' € 7, the auxiliary finite element space is defined by
X,=C, @D,
It can be seen that if ¥, € X,,, by rewriting v, = (Ghlrhl , ?hlrhg), we have v, € X,,. Recall the interpolation operator IT,, : [H!(2)]> —

)/(\h defined in [21,33], and the local L?-projection operator P, : H'(2) = Q,. There holds the following lemma.

Lemma 4.1 ([16,21]). For the interpolation operator II,, : [H P2 > 5(\,,, there hold

(V-(u=1Tu), 1)y =0, VT €T, Vue[H Q)] (57)
lu— Il o <ch™Vlul,o. 0<j<m<2Vue[HXQ), (58)
ITyull; o <cllull; o, 0<j<2,Vue[H Q)P (59)
Il = Pupllog < chlipll o VpE€ H'(Q). (60)
We define
1w, = (HhElzl,“i) |!2§,’ Vu; € [HA (@), (61)
Miu= (150, IT;u,),  VYu=(u,uy) with u € [H* Q)P (62)
and
Pin= (PaEbp ) la. Vo€ H'@), 63)
Pip=(P,p1. Ps,pa), Vo =(py,py) with p; € H'(Q). (64)
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Lemma 4.2. Let (u,p) € ([Hj(2; U2)P N[H*(2; U2,)]%) X L3(2; U Q,), then there holds that

2 2 2012 -1/2 112
liw =1y p = Prp)ll* < k(v 2l g oo, +1V20I1T o g,

Proof. From the definition of the norm || - ||, we have

liw = I, p - P p)lI?
=V e~ WG o o,

2
+ % (Rl e, = Trupm) 3 5, + A 1) lw, = TiwdI2 )
i=1 : ’
+ hrll{(v! e = i} pI2 o+ )P o= T2+ V20 - P
2
+ 2 b VT = Ppd WG 1, + Bl 20 = Prp UG -
i=1 '

Noting the definitions of {{ - }}, [ - I and IT}, using Lemmas 3.1, 4.1 and (55), we obtain

1

hell (v} e(u, - T un))

157,

=%hr||v}/ le((w)* = I (u) I+ e((uy)™ = I w) Ol

s% > hrllv e = @) n + e(u)™ = @) Onll2

TeT,f

s% > (||v,.” 2le((u)* = Ip)*™) + e((w)™ = M @)OlIR,
+h2 v PV e(u)* = I} (u)") + e(u)™ = 1T} (u»*)]llgj)

PE B

1/2

i

<ch?||v

2

<eh? 13,

ull
and

R VD2 = w5,
=hz IV 210 = T )") = (@)™ = T @) 5,
<c Y A VI = 1)) = ()™ = T )OI
TeTh’
< ) (h;zll{{v}}‘/z[((u,-fr - I (u)™) = ()™ = M) ;-
TeT)
HIHVI V)T - D)) = ()™ - H,’;(uir)]ugj)
<ch v ES w3 g

201,120 12
<ch?|lv; w13 -

Similarly, it is valid that

— —-1/2
Bl 20 = PO WIR 5, < el P all

The above three inequalities imply that

X (Arlv e, = mpupmpz, + N 21w, = Tz, )

i=1

2

-1/2 - 2 201,1/240112

+ 2 hr O Py = Ppd B 5, < R IVPull g g -

i=1 ’
For the term with respect to the interface, we can deduce

—1 172 2 -1 1/2 1/2 ¢ 2
R = Tl p12 =kt )Py = 1) = v, = 15,0112

2
—1y.1/2 2
<e Y h7 v P - muIR
i=1
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M

_ 1/2
< npt v P, - el

) 0,rnT
i=1 TETh'

2
—2,.1/2 2 1/2 * 2
<e X X (h2 P = mul p+v PV, - mhu)le ;)
i=1 TeT,f

2
<ch? Y v/ E?

i=1
Schzllvl/z

2
[“i”z’_@

2
ull; 0,00,

The similar process as above follows that

1/2 2 211,1/24112
hell(v! e = Tywnp ) pI - <ch*1V2ul g g, -

hel (v 2o =Prp B rllg o <P IVl 5, o, -
Putting above inequalities into (66), and using (58) and (60), we get the result. []

Lemma 4.3. Let (u,p) € ([H) (2, U2,)I N [HA(2, U2,)1*) x LA(2, U2,) and (uy, py) € X, X Q,, be solutions of the problem (2) and
(3)—(4), respectively, then there hold

Ap(u =y, vy) = By(vpy, p = pp) =€y Jy(uy, vy), Vv, € X, (67)

B,(u—uy,qp) =€,J,(py. qp), Vg, € Q- (68)
Proof. The proof is very similar to Lemma 3.1 in [16], which is omitted here. []

Theorem 4.4. Let (u, p) € (LH} (2, U2, N[H(2; U)X LA(2, UL,) and (uy, p,) € X, X Q,, be solutions of the problems (2) and
(3)-(4), respectively. Under the assumptions of Theorem 3.11, there holds

Nl = wp, p = Pl < €16Vl 0,00, + 1V7?pll0,u0,)- (69)
Proof. Let
e, i=u—u, =@-IMu+{l[u—-u,) ==& +06,.

Using the triangle equality and the definitions of the norms and the operators /I, and 7}, we have
liw =y, p = pll < NCEh, p = Pl + NOs. Prp = Pl - (70)
For the second term on the right hand side in the above inequality, Theorem 3.11 and Lemma 4.3 imply that

C15|||(9h,7)217 = plln
ApOn, Vi) = By(Vyp, Prp = pp) + By (0, ) + €uJu (O, Vi) + €,0,(Prp = pps ap)

< sup

(Viqn)EXp X0 ”l(vh’ qh)”lh
Ap(p.vp) = By (v, Prp — p) + By, ) + ey, vy) + €,0,(Pyp, ap)
< sup . (71)
(Visap)EXp X0 "l(vha ‘Ih)”lh
Using Cauchy-Schwarz inequality, we get
* * sxN1/2 1/2 * #0172
JuTw, vy <J T w, w2 0y (v, v) 2 < 3 dTe, w2 (v, gl
J,(Pip.ap) <, (Prp. Prp) 2 0. a)'* < T, Prp. Prp) 2NV i)l
Putting above estimates into (71) and using Lemma 3.5, we arrive at
eisll@n. Pip = pi)llln < (e5 +2) (1. p = Prp)ll + euJuUTju, w2 + €,0,(Prp, P p)'/?) . (72)

On the other hand, for u; € [H}(2)F* n[H*(2)]* and E? = (Eﬁlul,Eﬁzuz), using Lemma 3.2, (58) and (55), we have

JoUT}u, ITw) =J (E2u — [TFu, E2 — I17u)
2

<e ) X hrlvPUVCEL w — ITupnB i
i=1 FEGy,

2
1/2
<Y Y I UVER - w2,
i=1 TeTh"
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Fig. 4. Plot of the numerical velocity and pressure for Circular-type interface problem (Case I).
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2 1/2 2 2
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2
2 /2.2 201,1/24 112
<en? Y v g <chIvV7ull g 0 - (73)
i=1

Similarly, there holds

Lo Pip.Prp) = ch IV pIIT g g - (74)

Substituting (73) and (74) into (72) and using Lemma 4.2, we finish the proof with ¢;q = c(c5 + ¢, + €, +2)/c;s. O

5. Numerical examples

In this section, we present some numerical experiments by using the proposed method (3)—(4) to verify the theoretical prediction.
It should be noted that the interface is in general not available exactly. Here, the interface is represented by linear segments on
7, which results in an O(h?) approximation of the interface I', and numerical integrations are conducted on the approximated
sub-domains. Since we consider the enriched P,/P, elements here, according to the error estimate stated in the above section, we
know that this geometric approximating limitation for the interface will not effect the convergence order. The sub-domain inside I is
denoted as £, and the sub-domain outside of I" is denoted as £2,. And the errors, which we report in the numerical examples below,
are all computed on the domains 2, and £, that are separated by the discrete interface I',. Moreover, in all tests, the stabilized
parameters are taken as p = 50, ¢, = 1E — 3, €, =1 and A, = 50, and the non-aligned mesh is used. In all the numerical tests, for
simplicity, we discretize continuous curve interface by piecewise line segments and the associated errors for the interface elements
are computed in the sub-triangles and sub-quadrilateral in the interface elements.

5.1. Circular-type interface

In this subsection, we consider a problem on the domain 2 = (-1,1) x (=1, 1) with a circular-type interface I". The viscosity is
settov=1.

Case I. Let the radius R = 0.3, 2, and £, be the sub-domains inside and outside the circular interface, and the exact solution
be u = 0,plg, =0,plg, = 1/R. This corresponds to a circular fluid drop in the equilibrium with the surrounding
fluid. It can be checked that the problem has an interface condition [u], = 0 and a nonhomogeneous jump condition
[vWu-ny—pn;]r-n=[-pn;]r-np = —1/R. With the mesh size 4 = 1/81 and the stabilized parameters described above, we
plot the simulation results in Fig. 4. We can find that the maximum values of u,;, and u,, are 9.7715E — 15 and 9.8029E — 15

(Fig. 4(a)-(b)), which are matching u = 0 within the machine accuracy. Besides, the discontinuity of the pressure inside
and outside the circular drop can be well captured in this test.

Case II. Then, let the radius R = 0.4 and the exact solution be

< sin(zrx,) sin(wx,) ) in 2
1

cos(zxy) cos(mx,)

= p = 60x2x, —20x3.
40, — D2(xy + D2xy(xp — D(xy + 1) o 172 2
—4x,(x; = D(xp + D(xy — D2(x, + 1) z
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Table 2

Errors and convergence orders for Circular-type interface problem (Case II).
#N IV —w,)l Order [lu—u,]l Order Ilp = ppll Order
11 6.17E-01 - 1.36E-01 - 4.37E+00 -
21 3.05E-01 1.09E+00 3.45E-02 2.12E+00 2.20E+00 1.06E+00
41 1.63E-01 9.39E-01 9.48E-03 1.93E+00 1.11E+00 1.02E+00
81 8.51E-02 9.54E-01 2.14E-03 2.19E+00 5.59E-01 1.01E+00
161 4.44E-02 9.46E-01 5.27E-04 2.04E+00 2.81E-01 9.99E-01
321 2.25E-02 9.87E-01 1.30E-04 2.03E+00 1.42E-01 9.93E-01

1 1.5
1
0.5
0.5
-0.5
-0.5
-1
1 . . H-5
-1 -05 0 0.5 1 -1 -05 0 0.5 1

(a) urp (b) uan

Fig. 5. Plot of the numerical velocity u,, = (u,,u,,)" for Circular-type interface (Case II).

It is easy to check that [u]; # 0 and [(ve(uw))n; ] # 0, which means that this is a problem with nonhomogeneous interface
conditions. Let = = [u] be the discontinuity of u crossing I', then the right-hand term in (3) should be changed to

Ay, vy) — By(vy, pp) + egJy (W, vy)
A
=, vp)o,ua, + (ox,Vy -np)p — ({ve(vynplp, Z)p + h—r<{V}r5’ Valp)r-
T

The errors and the convergence results, which are reported in Table 2, indicate that the optimal rates in convergence are
obtained for the velocity in H'-seminorm and L?-norm and the pressure in L?>-norm. These further confirm the theoretical
conclusions. Furthermore, the numerical velocity is plotted in Fig. 5 with the mesh size ~ = 1/161, in which the discontinuity
of the velocity is simulated very well, too.

5.2. Ellipse-type interface

2 2
In this test, we consider a problem with a ellipse-type interface as % + 0% = 1. Setting the exact solution for u to be the same

0
as that in Case II in Section 5.1 and the pressure to be

10 in 2,
p= .
60x7x, —20x3 in £,,
and the viscosity v; = 0.1 and v, = 1, we first collect the errors and convergence results in Table 3. Again, the optimal rates

in convergence can be observed for all tested cases. Then, we plot the magnitude of the magnitude, the velocity field, and the
streamline in Fig. 6, which are all in well agreement with the exact solutions.

5.3. Bean-type interface

In this example, we consider a problem on the domain Q = (-1, 1) X (—1.5, 1.5) with the interface I" being —r — cos(20) =0 (r, 0
are variables in the polar coordinate). With the same exact solutions as that in the Case II in Section 5.2 and v = 1, we show the
errors and convergence results in Table 4 and the numerical velocity in Fig. 7. The desired approximation has been achieved in this
test, too.
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Table 3
Errors and convergence orders for Ellipse-type interface problem.
#N IV —w,)l Order [lu—u,]l Order Ilp = ppll Order
11 5.97E-01 - 3.15E-01 - 9.62E+00 -
21 3.20E-01 9.62E-01 7.19E-02 2.28E+00 6.56E+00 5.91E-01
41 1.62E-01 1.02E+00 1.71E-02 2.15E+00 2.37E+00 1.52E+00
81 8.72E-02 9.11E-01 3.99E-03 2.14E+00 1.17E+00 1.04E+00
161 4.50E—02 9.61E-01 1.01E-03 2.00E+00 5.47E-01 1.11E+00
321 2.25E-02 1.00E+00 2.46E-04 2.04E+00 2.74E-01 1.00E+00

(a)Magnitude

\ :
\ rr; X
! \\‘\E\ Nligedt ) ] /ff’ ‘f "
NS
N
*\\3'?‘3?_’ »;,fr:"/g,: g
s S e . .

(b)Velocity field (c)Streamline

Fig. 6. Plot of the magnitude, field and streamline of the numerical velocity for Ellipse-type interface problem.

Table 4

Errors and convergence orders for Bean-type interface problem.
#N [IV(u—wy)ll Order [lu—u,| Order Ilp = pull Order
11 4.36E+00 - 7.49E-01 - 1.31E+01 -
21 2.21E+00 1.05E+00 1.48E-01 2.50E+00 5.53E+00 1.33E+00
41 9.21E-01 1.31E+00 3.85E-02 2.02E+00 5.15E+00 1.06E-01
81 3.98E-01 1.23E+00 9.68E-03 2.03E+00 2.57E+00 1.02E+00
161 1.95E-01 1.04E+00 2.52E-03 1.96E+00 1.27E+00 1.02E+00
321 9.09E-02 1.10E+00 6.34E-04 2.00E+00 6.40E-01 9.99E-01

(a)Magnitude
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Fig. 7. Plot of the magnitude, field and streamline of the numerical velocity for Bean-type interface problem.
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5.4. Some other interfaces
Moreover, setting the domain to be 2 = (-1.5,1.5)

()
|

T/ 4 = D20y + D2 = D + 1)
—4x1(x; — DGy + Dy — 1D2(x, + 1)2

sin(zx) sin(zx,)

cos(mwx) cos(zwx,)

Fig. 8. Different interfaces.

X (=1.5,1.5) and choose the exact solutions to be chosen as

in Q,

p= 60x%x2 - ZOxg.
Q,,

We investigate problems with four other interfaces, respectively. Defining the interface as (see Fig. 8)

b1 Gxp.x) =1 =[x}

$y(x1,%,) =(x§ + x% -1 —x
¢53(r,0) =r + cos(56),
¢4(r,0) =r — cos(86),

2/3
|- 12,
2.3
1%22

we present the numerical streamlines in Fig. 9. From this figure, we can observe the well agreement of the numerical solutions and
exact solutions, which validate the correctness and reliability of the proposed method again.

6. Conclusions

In this work, we proposed an enriched finite element method for solving Stokes interface problems. By adding some penalty
terms in the enriched P, /PP, finite element pair, the proposed method is able to solve the interface problem on the non-aligned grids
with the optimal rate in convergence. Rigorous analysis has been established to show the well-posedness and the error estimate.
Furthermore, several numerical experiments have been tested to validate the theoretical conclusions. As the future work, we may
consider the related fast solver and develop the efficient pre-conditioner to further reduce the computational cost for the practical

three dimensional applications.
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"5 a4 05 0 05 1 15

(a) Interface ¢1(xy, z2) (b) Interface ¢o(x1,x2)
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(¢) Interface ¢3(z1,x2) (d) Interface ¢y4(z1,x2)

Fig. 9. Plot of streamlines of the numerical velocity with different interfaces.
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