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Abstract. The current trend in offshore wind energy is to design and install systems with
larger swept areas that yield unprecedented efficiency. Long and slender blades are needed to
achieve this objective. As a result of aerodynamic and structural tailoring, slender blades are
particularly susceptible to various dynamic instability phenomena during standard operations.
One of these phenomena is the bending-torsion flutter that may lead either to structural failure
or system breakdown. The research author has been examining blade flutter under the influence
of stochastic perturbations, which include both flow turbulence and aeroelastic load variability.

A reduced-order Markov model has been used to describe the effects of the various
random perturbations. Mean-square stability has been recently explored; results suggest that
perturbations may negatively impact the flutter angular speed and increase the risk of failure.

In this study the model is employed to investigate moment stability beyond mean squares,
observing that dynamic instability involves nonlinear propagation of the perturbations and
may exhibit amplitude dependency. Third-order instability is investigated and compared
against previous numerical results. The NREL 5MW reference wind turbine blade is used
as a benchmark example.

1. Introduction and study objectives
Offshore wind energy requires large swept areas to increase energy production. Future turbines
will have blades of length 100 m or more (e.g., [1]). A large blade radius increases the sensitivity
to flow-induced instability, which may be influenced by various random perturbations. Flow-
induced instability of wind turbine blades has been noted by various researchers [1, 2, 3, 4, 5, 6].
Among the various types of instability, classical flutter is possible at small angles of attack if
attached-flow conditions are present around the blade. Classical flutter predominantly entails
coupling between a torsional blade mode and a flapwise mode. Traditionally, issues have been
avoided in wind turbine blades either because the rotor’s operational angular speeds are low
or the blades are stiff (e.g., [2]). Nevertheless, modern blades are slender, more sensitive and
with a small ratio between torsional and flapwise frequencies of the two leading modes that
control flutter [7, 8]. Coupled-mode flutter is possible at a critical angular speed close to the
operational angular speeds of the wind turbine [9]. This problem can negatively affect the
structural reliability of the blade.

The main study motivation is related to the preeminence of estimation errors in the blade
structural properties and aeroelastic loads, as identified by the research community [10, 11].
Nevertheless, the blade flutter problem has been mainly studied by neglecting the effect of flow
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turbulence, even though this condition has been investigated in other structures, such as long-
span bridges [12, 13, 14, 15, 16, 17] and rotorcrafts [18, 19]. The probability of blade flutter
is examined through an implementation of stochastic differential equations [20]. The specific
study objectives are to:

(i) derive a flow field formulation that incorporates stationary turbulence;

(ii) use a rotationally sampled spectrum to describe inflow turbulence [21, 22];

(iii) account for relative mean inflow velocity, noting that the relative tangential velocity
component, due to blade rotation in the rotor plane, is large compared to the mean inflow
wind speed, orthogonal to the rotor plane;

(iv) explore moment stability [23, 24] beyond mean squares, already examined by the author [25,
26], by accounting for various perturbations.

The rotationally-sampled turbulence spectrum is converted to dimensionless time via auto-
regressive filter that operates on a standard Wiener noise. A reduced-order model is constructed
to simulate the blade dynamics, with state vector incorporating both the turbulence variable
and the “aeroelastic states”. The weak solution of the stochastic differential equations is
studied [27], i.e., through repeated sampling and numerical integration of each realization. The
National Renewable Energy Laboratory (NREL) 5-MW offshore wind turbine blade is used as
a benchmark example [9] since it has been demonstrated [4, 28] that this blade is susceptible to
flutter.

2. Theoretical background
2.1. Turbulence perturbations in the rotor plane
Figure 1 illustrates the rotor-plane, dimensional turbulence component u(x, φ; t) that combines
vertical turbulence w and across-wind, horizontal turbulence v components over time t.

Figure 1. Rotor-plane turbulence u defined by vector summation of vertical w and across-wind
v turbulence, with “frozen” azimuth angle ϕ.

The relevant turbulence component is w since the vertical and across-wind terms, along with
dependence on azimuth angle ϕ are less important. Spatial, lengthwise loss of correlation is
neglected. Consequently, rotor-plane tangential turbulence field is homogeneous with u(x, t) ≈
u(t) ≈ w(t), and conservatively behaves as a fully correlated gust on the blade. Future
developments may consider a more refined field in the lengthwise direction.

The blade has length R and rotates with angular speed Ω. The spectrum of the stationary,
zero-mean w is simulated by one-sided Lumley-Panofsky power spectral density (PSD) of w [29]
and transformed to two-sided dimensionless spectrum of wND = w/ (ΩR) for a fixed point at the
rotor center:

SwND = 0.5
33.6u2

∗[
1 + 10k

5/3
∗

(
ω0jH

2πŪH

)5/3
] (1)
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In Eq. (1) the dimensionless frequency is k∗ = ω/ω0j with ω0j being the angular frequency
of the reference flapwise mode j; ŪH is the mean wind speed at hub height H; u∗ is the friction
velocity of the boundary layer. The turbulent flow is seen by an observer standing on a generic
blade cross section at x from rotor center while blade rotates with angular speed Ω (Fig. 2). The
energy of fixed-point spectrum in Eq. 1 is perturbed by blade rotation (advancing or delaying the
free field gusts). The energy is re-distributed from low frequencies to higher frequencies. This
rotationally sampled spectrum gives rise to concentrations of PSD at multiples of the frequency
corresponding to the angular speed Ω. The first “spike” coincides with frequency 1P of the
blade, k∗ = χ = Ω/ω0j in dimensionless units. A method based on the principle of second-
order auto-regressive filters (AR-2) is employed to describe this phenomenon [25]. After Fourier
analysis, the AR-2 dimensionless turbulence is relabeled as uΩ and found as [25]

SuΩ =
SwND(k∗)

T1,NDk2
∗ + (T2,ND − T3,NDk2

∗)
(2)

In Eq. (2) the coefficients T1,ND, T2,ND, T3,ND can be aptly calibrated. The filtered, dimensionless
turbulence spectrum in Eq. (2) depends on the spectrum of Eq. (1). The energy of background
(bk), rotationally sampled turbulence can be related to total energy of the unfiltered spectrum

through mean squares as σ2
uΩ,bk

= Υbkσ
2
wND

, i.e., T2,ND = Υ
−1/2
bk ; the resonant peak occurs at

k∗ = χ = Ω/ω0j and leads to T3,ND ≈ Υ
−1/2
bk χ−2; the ratio between peak resonant spectrum and

background spectrum can be defined using an amplification factor Υamp that depends on the
radial position from the rotor center [22] and yields to T1,ND = Υ−1

ampχ
−2.

2.2. Dynamic model: foreword
Fig. 2 illustrates a wind turbine blade of radius R, rotating at an angular speed Ω (rad/s). The
mean flow conditions in the rotor plane are also displayed. A typical blade cross section is
located at a distance x from the rotor center. The in-plane, tangential inflow speed linearly
varies along the x axis. Furthermore, the chord length of the blade’s section varies along x, i.e.,
it is tapered. Standard flutter theory cannot be used. The model assumptions are:

• linear elastic beam model [30] rotating at angular speed Ω;

• response is described by modal superposition and coupling of one flapwise (j th) and one
torsional mode (kth) with angular frequencies ω0j and ω0k, respectively;

• edgewise blade motion and initial twist angle are not considered;

• small vibration amplitude is examined at incipient instability;

• mean in-plane flow speed at x from hub is U(x) ≈ Ωx [4];

• mean flow is perturbed by a homogeneous, rotor-plane (or in-plane) turbulence field
u(x, t) ≈ w(t), acting conservatively as a fully correlated gust along blade axis;

• unsteady theory of aeroelastic loads is employed.

The hypothesis U(x) ≈ Ωx [4] is adequate since the mean, relative velocity component in the
rotor plane is of the order of ΩR ≈ 70 m/s at blade free-end, compared to the mean wind speed,
orthogonal to the rotor plane, which is about 12 m/s [9].

Flutter involves coupling of two primary structural modes [7, 31]. The relevant modes are
one fundamental flap-wise (mode j) and one torsional (mode k). The dynamic equations
are therefore expressed using blade’s flapwise deflections h(τ, η) ≈ ξj(τ)c0hj(η) and torsional
rotations α(τ, η) =≈ ξk(τ)c0αk(η) with generalized coordinates ξj(τ) and ξk(τ), respectively; c0

is a reference (root) blade chord length, hj(η) and α(η) are dimensionless mode shape functions.
The time is dimensionless τ = tω0j and the spanwise sectional coordinate (Fig. 2) is η = x/R.
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After simplifications, the dimensionless, two-mode, generalized blade equations are, with prime
symbol designating derivative with respect to τ :

ξ′′j (τ) + 2ζjξ
′
j(τ) + ξj(τ) + εjχ

2ξj(τ) =
Qj(τ)

ω2
0jI0j

(3)

ξ′′k(τ) + 2ζk∆ωξ
′
k(τ) + (∆ω)2ξk(τ) + εkχ

2ξk(τ) =
Qk(τ)

ω2
0jI0k

(4)

In Eq. (3) the flap-wise mode j is the reference one. The flutter frequency ratio is χ = Ω/ω0j ;
the modal frequency ratio is ∆ω = ω0k/ω0j ; coefficients εj and εk account for the centrifugal
forces on the rotating blade; ζ0j and ζ0k are modal damping ratios. I0j and I0k are generalized
modal inertias [1]. In Eq. (3) and in Eq. (4) the generalized forces Qj and Qk are adapted
from unsteady aeroelastic theory of airfoils via indicial functions to describe non-circulatory
flow effects. As demonstrated in [25] the standard indicial Wagner function [7], traditionally
used for blade aeroelasticity [5, 32] cannot be used since the chord length and tangential velocity
U(x) vary along x in Fig. 2. Therefore, the Wagner function is expressed in terms of τ and by
Taylor series of order N [25].

2.3. Stochastic model accounting for turbulence perturbations
The formulation by Jones [33] with Φ0 = Φ(0) = 1 − (c1 + c2) is used to represent the
Wagner function; the standard equation reads Φ(s) = 1 −

∑2
r=1 cre

−drs with time s and
parameters cr, dr (r = {1, 2}). If rotor-plane tangential turbulence u(τ) = uΩΩR (Section 2.1)
is considered, the relative, instantaneous squared inflow velocity of the aerodynamic load model
is [−U(η) + u(η, τ)]2 ≈ U2(η) − 2U(η)u(τ) in dimensional units [m/s2]. The corresponding
generalized load term proportional to 2U (η)u(τ) is attributed to circulatory flow effects. The
wind gust, generating the load perturbation, is fully correlated along the blade length.

The generalized forces can be aptly derived, e.g., the generalized force Qj of mode j is:

Qj(τ)

ω2
0jI0j

= ΓC
jC
∗
Lχ

2

{
Φ0c0

2Rχ

[
G

(−1)
hjhj
− uΩG

(−1)
u,hjhj

]
ξ′j + Φ0

[
G

(0)
hjαk
− uΩG

(0)
u,hjαk

]
ξ′k

+
N∑
n=0

[
1

n!

(
2Rχ

c0

)n [
c1d

n+1
1 + c2d

n+1
2

] [
G

(n)
hjhj
− uΩG

(n)
u,hjhj

η̂
(n)
ae,j

]]

+
N∑
n=0

[
1

n!

(
2Rχ

c0

)n [
c1d

n+1
1 + c2d

n+1
2

] [
G

(n+1)
hjαk

− uΩG
(n+1)
u,hjαk

ν̂
(n)
ae,j

]]}
ΓNC
j

{
G

(−1)
hjhj

ξ′′j +Rχc−1
0 G

(−1)
hjαk

ξ′k −
a

2
G

(m)
hjαk

ξ′′k

}
(5)

In Eq. (5) C∗L is the derivative of the lift coefficient with respect to the static angle of attack,
evaluated at angle 0 [28]. Quantities ΓC

j and ΓNC
j are dimensionless modal inertias. The quantities

η̂
(n)
ae,j and ν̂

(n)
ae,j on the second and fourth line of Eq. (5) are partial aeroelastic states [25]. The

dimensionless parameter a (normalized with respect to c0/2) on the fifth line of Eq. (5) measures
the offset between the center of mass and the center of stiffness of the blade from a generalized

model perspective. The modal integrals G
(n)
hjαk

of the circulatory flow component (with index

n = {−1, 0, 1, . . . , N}), G(n)
u,hjαk

and G
(m)
hjαk

of the non-circulatory term (superscript with no

index) are described in [25, 26] and are not presented herein for the sake of brevity.
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Figure 2. Rotating wind turbine blade with mean, in-plane velocity U(x) and 0 ≤ x ≤ R.

Eqs. (3),(4),(5) are transformed to Itô-type stochastic differential equation [20], by expressing
the random turbulence wND in Eq. (1) as output to a 1st -order autoregressive filter (AR-1):

dwND = −G1,wNDdτ +G2,wNDdB(τ) (6)

In Eq. (6) B(τ) is a dimensionless, scalar Wiener process of unit-variance independent
Gaussian increments [20]. The parameters of this equation can be found by least squares fitting
of Eq. (1); Fourier analysis of Eq. (6) yields a two-sided spectrum SwND ≈ G2

2,wND
/(k2
∗ + G2

1,wND
).

Subsequently, the random variable of the state vector wND is filtered by the AR-2 filter with
spectrum in Eq. (2), which is rewritten as a second-order linear differential equation that includes
two new input variables, uΩ and duΩ/dτ , added to the state vector. The final, stochastic
differential equation is:

dZ(τ) = aNL,w(Z(τ))dτ +
√

2πdwdB(τ) (7)

In Eq. (7), Z is a multi-variable state vector, which includes modal coordinates (ξj , ξk),

their first derivatives (dξj/dτ, dξk/dτ), partial aeroelastic states (η̂
(n)
ae,j ,ν̂

(n)
ae,j) and turbulence

states (uΩ, duΩ/dτ, wND). The drift function aNL,w is nonlinear because of the parametric
turbulence perturbation in Eq. (5), i.e., quadratic cross-terms like uΩξk. The diffusion vector is

dw = [0, 0, . . . , 0, G2,wND ]
T . The “Wong-Zakai” [34] corrections terms are considered.

2.4. Stochastic model accounting for aeroelastic load perturbations
Propagation of aeroelastic load uncertainty examines wind tunnel errors and modeling
simplifications. In this study aeroelastic load perturbations are treated separately from
turbulence. Therefore, Eq. (5) is first simplified to eliminate dependency on turbulence
perturbations, i.e., by setting uΩ = 0. Instead, the term d2 on the third and fourth line of
Eq. (5) that represents the Wagner function is replaced by d2(τ) = d2,m+ δ2(τ), with d2,m being
the reference or mean value and δ2(τ) a zero-mean Gaussian time-dependent random error.
Equations (3),(4),(5) are again transformed to Itô-type stochastic differential vector equation.
A new unit-variance Wiener process B̃(τ) is used to simulate the error propagation. The state
vector Z̃ is different because it does not include variables related to turbulence but it still
includes (ξj , ξk), (dξj/dτ, dξk/dτ), (η̂

(n)
ae,j ,ν̂

(n)
ae,j) and, most importantly, the added effect of random

aeroelastic δ2(τ), introduced by state augmentation [20] directly into Z̃(τ). This new equation
reads:

dZ̃(τ) = aNL,ae(Z̃(τ))dτ +
√

2πdaedB̃(τ) (8)

In Eq. (8) with a forcing function exclusively aeroelastic and no turbulence, the drift function
aNL,ae is nonlinear because of δ2(τ) whereas the diffusion vector dae is zero and so is B̃(τ): state
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augmentation incorporates the variable δ2(τ) as a state of Z̃(τ). Solving Eq. (8) slightly differs
from Eq. (7) in Section 2.3 since drift only controls the deviation from a stable equilibrium.
Nevertheless, the procedure is the same and is described in the next sub-section.

2.5. Monte-Carlo estimation of Moment Lyapunov Exponents
The stochastic equations Eq. (7)-(8) are solved numerically multiple times with appropriate
initial conditions by Euler time-marching solver. Statistical moments are evaluated by Monte
Carlo sampling [35]. The pth order Moment Lyapunov Exponent (MLE) is used to examine the
stochastic stability, numerically evaluated:

ΛΞ(p) ≈ loge (E [‖Ξ(τl)‖p])/τl (9)

with Ξ(τl) = [ξj , ξk, dξj/dτ, dξk/dτ ]T evaluated at discrete time τl; time τl is sufficiently large,
i.e., Eq. (9) approximates the limit as τl tends to infinity; E[.] is the expectation operator applied
to the pth vector norm of Ξ. The MLE measures the propensity of the system’s slow dynamics
to asymptotically exhibit a diverging trend; it is commonly employed for stability of nonlinear
stochastic systems [23]. In this work, stability is studied using p = {2, 3} norms. The sample
population employed to numerically solve Eq. (9) is set to 400; the dimensionless time step used
for integration of Eq. (8) or Eq. (7) is set to ∆τ = 0.1.

3. The 5MW NREL benchmark blade problem
The previous remarks and model are applicable to the 5MW NREL wind turbine blade [4, 9].
The coupled-mode flutter of the rotating blade is studied. The blade radius is R = 61.5 m
and reference chord length is set to c0 = 3.8 m at the root section. The hub height is
H = 90 m. The reduced-order dynamic model utilizes the third flapwise mode j [with frequency
ω0j/(2π) = 4.34 Hz] and the first torsional mode k [with frequency ω0j/(2π) = 5.39 Hz]. Modal
damping ratios are set to 0.48% for both modes. The dimensionless offset between elastic center
and mass center is set to a = −1. The modulus of the static lift slope is C∗L = 2π constant along
the blade’s airfoil cross section, while the slope of the static moment coefficient is C∗L = π/2. The
aeroelastic load parameters are derived from the Wagner function, i.e., c1 = 0.165, d1 = 0.0455,
c2 = 0.335, d2 = 0.3. The centrifugal force effects along the blade axis are accounted for by
εj = εk = 0.2 [25].

Fig. 3 shows the rotationally sampled wind turbulence spectrum uΩ, designated as “base”
turbulence scenario, referenced to angular speed close to flutter (rated speed Ω = 12.1 rpm). The
graph is found from the Panofsky spectrum, approximated as SwND ≈ G2

2,wND
/(k2
∗ + G2

1,wND
).

The spectrum is normalized with respect to reduced frequency k∗ where the mean wind speed
orthogonal to the rotor plane at hub height is ÛH = 11.4 m/s that is found by setting the
logarithmic law of the boundary layer with roughness length z0 = 0.005 m for offshore exposure.
The PSD of the rotationally sampled turbulence model is found using the AR-2 model in Fig. (2).
The figure also compares the exact Panofsky PSD in Eq. (1) with the approximate spectrum
found using Eq. (6).

In the standard scenario, the following parameters are used: Υbk = 70%, derived from the
literature [21], Υamp = 4, appropriate for medium-sized blades of radius R > 30 m. The fitting
results yield G1,wND = 8.8 × 10−3 and G2,wND = 6.46 × 10−5 at rated angular speed. There is
a localized peak in the PSD at 1P frequency k∗ ≈ χ ≈ 0.05. Contrary to standard PSD, the
fitting must be repeated as either Ω or χ varies. The fitting operates as a filter that captures
the main features of the turbulence swept by a rotating blade. However, the fitting does not
consider higher-order effects at k∗ > 0.1 (2P, etc. [21]), i.e., in the inertial frequency sub-range of
the Panofsky spectrum that, for large blades such as the one examined herein, yields negligible
dynamic effects only.
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Figure 3. Two-sided, dimensionless power spectral density (PSD) of the rotationally sampled
flow turbulence surrounding the 5MW NREL wind turbine blade, shown for k∗ > 0 only.

Furthermore, a second, enhanced turbulence scenario is considered. In this second scenario
σuΩ is increased to study influence of intensity: Υbk = 140% is used, while Υamp, ÛH are the
same as before. A larger Υbk simulates an increase in the intensity of background flow turbulence
by a factor of

√
2. Spectral ordinates of the PSD function are doubled, compared to the values

shown in Fig. 3.

4. Stability results
4.1. Deterministic analysis
Deterministic flutter can be examined by computing the system’s complex eigenvalues as a
function of Ω or χ, and by locating a zero-damping “modal branch” that triggers instability.
Using the information and the reduced-order model, the critical flutter rotor speed is 17.2 rpm
from literature [25] vs. 20.7 rpm [4]. The flutter frequency is 4.5 Hz vs. 3.6 Hz. Differences can
be explained by noting that flutter of the NREL 5-MW wind turbine blade is partly influenced
by the 2nd flapwise mode, yielding a 10% increment of Ω. Although addition of a third mode can
readily be considered, the current prediction (17.2 rpm) is conservative and, therefore, suggests
adequacy of this result for the purposes of this study. Moreover, a constant lift slope C∗L is
used herein, while it should vary, as noted by previous investigators [4], because of various blade
airfoils being used.

4.2. Turbulence perturbations
Fig. 4 illustrates the second- and third-moment stochastic stability of the NREL 5-MW wind
turbine model, illustrated above, subject to turbulent flow perturbation with moderate intensity
(base scenario), the spectrum of which is presented in Fig. 3. The four panels show examples of
MLE analysis, ΛΞ(2) and ΛΞ(3) at angular rotor speeds Ω = 15.49 rpm (below the deterministic
flutter threshold) and Ω = 17.18 rpm. Random initial conditions at τ = 0 are also considered
by imposing an initial, random generalized displacement of the flapwise mode j (ξ0j) with zero
mean and variable variance. The variance E[ξ2

0j ] describes small, moderate and large (unrealistic)
variations.

Examination of Fig. 4 indicates that turbulence is detrimental since both second and third
MLEs rapidly diverge to an unstable value [e.g., ΛΞ(2) > 0 in Fig. 4a or ΛΞ(3) > 0 in Fig. 4c]
for τ > 10 (i.e., as τ → +∞ at Ω = 15.49 rpm. The two trends ΛΞ(2) and ΛΞ(3) are similar,
irrespective of initial conditions, and suggest that differentiating between second-moment and
third-moment stability appears rather irrelevant to this base turbulence scenario. This result



XII International Conference on Structural Dynamics
Journal of Physics: Conference Series 2647 (2024) 112001

IOP Publishing
doi:10.1088/1742-6596/2647/11/112001

8

0 5 10 15 20
Dimensionless time, =

-20

-10

0

10
2n

d 
M

LE
, $

%
(2

)
+=15.49 rpm

E[9j0
2 ]=1e-03

E[9j0
2 ]=1e-02

E[9j0
2 ]=1e-01(a)

0 5 10 15 20
Dimensionless time, =

-20

-10

0

10

2n
d 

M
LE

, $
%

(2
)

+=17.18 rpm

E[9j0
2 ]=1e-03

E[9j0
2 ]=1e-02

E[9j0
2 ]=1e-01(b)

0 5 10 15 20
Dimensionless time, =

-20

-10

0

10

3r
d 

M
LE

, $
%

(3
)

+=15.49 rpm

E[9j0
2 ]=1e-03

E[9j0
2 ]=1e-02

E[9j0
2 ]=1e-01(c)

0 5 10 15 20
Dimensionless time, =

-20

-10

0

10

3r
d 

M
LE

, $
%

(3
)

+=17.18 rpm

E[9j0
2 ]=1e-03

E[9j0
2 ]=1e-02

E[9j0
2 ]=1e-01(d)

Figure 4. Wind turbulence perturbations (base scenario) - NREL 5-MW wind turbine
blade stability at various rotor speeds Ω: (a) 2nd MLE at Ω = 15.49 rpm, (b) 2nd MLE at
Ω = 17.18 rpm, (c) 3rd MLE at Ω = 15.49 rpm, (d) 3rd MLE Ω = 17.18 rpm.
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Figure 5. Wind turbulence perturbations (enhanced scenario) - NREL 5-MW wind turbine
blade stability at Ω = 15.49 rpm rotor speed: (a) 2nd MLE, (b) 3rd MLE.

confirms the findings of a previous study [25]. Fig. 5 depicts the stability results at Ω = 15.49 rpm
with enhanced turbulence scenario. Difference are almost imperceptible, compared to Fig. 4.

4.3. Aeroelastic load perturbations
Fig. 6 illustrates an example of stability analysis associated with aeroelastic load perturbations.
In this case, turbulence effects are not included. Eq. (8) is used and solved numerically to find
the corresponding MLE values. The load perturbation δ2(τ) is Gaussian with zero mean and
standard deviation σδ2 = 0.022, which approximately corresponds to 7.5% coefficient of variation
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Figure 6. Aeroelastic load perturbations - NREL 5-MW wind turbine blade stability at
Ω = 15.73 rpm rotor speed: (a) E[ξ2

0j ] = 1e− 02, (b) E[ξ2
0j ] = 1e− 01.

The figure panels present both ΛΞ(2) and ΛΞ(3) at angular rotor speed Ω = 15.73 and for two
distinct ranges of initial conditions (E[ξ2

0j ]). This figure suggests that perturbations of the loads
tend to destabilize the system compared to Ω, derived for the deterministic case (Section 4.1).
Mean-square stability and third-moment stability appear to yield similar results.This result
is perhaps not unexpected since the stochastic dynamic equation has a zero diffusion term
(dae = 0) and the stability is mainly controlled by the nonlinear drift functional. Influence
of nonlinearity does not seem crucial since a variation in the initial random modal amplitude
(Fig. 6a vs. 6b panel) leads to a very similar trend in the MLE.

5. Conclusions
Numerical results suggests that both types of perturbations, if separately considered, can
influence the stability and lead to an early exit from the stability domain. Nevertheless, the
examined turbulence scenario is rather conservative and perhaps a little unrealistic. Therefore,
a loss in turbulence spatial correlation along the blade radius should be considered, i.e., the
generalized load could be represented using an equivalent correlation length (less than R). This
item will be considered in a future study.

Experimental verification of the findings is also needed. From a practical perspective, future
experimental studies may be beneficial as uncertainty in the aeroelastic loads will be quantified,
in turn promoting flutter avoidance.

In any case, the study demonstrates that it is possible to formulate the stability problem in
a rigorous manner through stochastic differential equations.
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[22] Burlibaşa A and Ceangȧ E 2013 Appl. Energy 111 624–635
[23] Xie W C 2006 Dynamic stability of structures (New York, NY, USA: Cambridge University Press)
[24] Xie W C and Huang Q 2009 J. Appl. Mech. 76 031001–10
[25] Caracoglia L 2022 Stochastic stability of offshore wind turbine blades influenced by rotationally sampled

turbulence perturbations Proc. 2022 Int. Offshore Wind Technical Conference-IOWTC 2022 (ASME)
ASME paper IOWTC2022-98201

[26] Caracoglia L 2021 Stochastic dynamics of rotating wind turbine blades influenced by turbulence and
aeroelastic uncertainties: recent developments Proc. 2021 Int. Mechanical Engineering Congress and
Exposition-IMECE 2021 (ASME) ASME paper IMECE2021-73362

[27] Øksendal B 2003 Stochastic differential equations: an introduction with applications (Berlin-Heidelberg,
Germany: Springer-Verlag)

[28] Li S and Caracoglia L 2019 J. Wind Eng. Ind. Aerodyn. 188 43–60
[29] Tennekes H and Lumley J 1972 A first course in turbulence (Cambridge, MA, USA: MIT Press)
[30] Hodges D H and Dowell E H 1974 Nonlinear equations of motion for the elastic bending and torsion of

twisted nuniniform rotor blades Report TN D-7818 NASA
[31] Scanlan R H and Rosenbaum R 1968 Introduction to the study of aircraft vibration and flutter (Dover

Publications, New York, New York, USA)
[32] Bergami L, Gaunaa M and Joachim H 2014 Wind Energy 16 681–693
[33] Jones R T 1939 The unsteady lift of a finite wing Report Technical Note 682 NACA
[34] Wong E and Zakai M 1965 Int. J. Eng. Science 3 213–229
[35] Caracoglia L 2013 Comput. Struct. 122 65–77


