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Abstract. This paper investigates the energy production of a “meso-scale”, wind-based energy
harvester that exploits the torsional aeroelastic instability of a rigid blade-airfoil, elastically
supported at equidistant supports. Torsional flutter is a single mode aeroelastic instability
phenomenon, in which a diverging dynamic angular rotation of a body occurs. The apparatus
relies on a simple mechanism that uses flow-induced pitch motion to extract and convert airflow
kinetic energy to electrical energy. The system is composed by a rigid blade-airfoil, connected to
a support structure through a non-linear restoring force (torsional spring-like) mechanism that
enables the rotation about a reference pivot axis. The proposed technology is designed to be
efficient in the range of low and medium wind speeds (10-13 m/s), in which horizontal-axis wind
turbines and other harvesters are not efficient. Deterministic pre-flutter, incipient flutter and
post-critical vibrations of the apparatus have been already explored in a previous study. This
work aims to further investigate the aeroelastic behavior of the “flapping foil” by examining the
effect of turbulence, random experimental error and modeling simplifications of the aeroelastic
forces. The analysis is conducted at incipient flutter in the frequency domain using classical
unsteady force models. Monte Carlo methods are employed to solve for the probability of
incipient flutter speed. Several configurations are considered to improve the efficiency of the
energy harvester.

1. Introduction
The recent increasing demand for electricity and renewable energy has encouraged the use of
innovative wind-based methods for power extraction. Both macro-scale systems (scale of several
hundred meters), i.e., large onshore and offshore wind turbines, and micro-scale energy harvesters
(scale of few centimeters for self-recharging sensors) have been investigated in the literature [1].
On the contrary, meso-scale devices at intermediate scales (few meters), are still a partially
uncharted research and technology solution. This type of devices has promising potential for
growth and innovation. To bridge this gap, a meso-scale system that exploits the torsional
flutter to extract wind energy, has been proposed [2]. Torsional flutter is a single mode aeroelastic
instability that often leads to catastrophic consequences in civil and aeronautical structures. The
idea is to favorably exploit this phenomenon to extract and convert airflow kinetic energy to
electrical energy. This concept originates from pioneering studies by Duncan [3] and McKinney
and De Laurier [4], who first proposed torsional-flutter-based wind power generators (“flutter-
mills”). This research field has received increasing attention in the last decades; a general
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overview of the available solutions is provided by Youn et al. [5]. FOr example, a simple Single-
Degree-Of-Freedom (SDOF) power generator was proposed by Ahmadi [6, 7], who investigated
the power production of an H-section with curved flanges undergoing flutter instability. He
concluded that the simple SDOF device works at medium wind velocity, while its efficiency
rapidly decreases with increasing wind speed because of a non-optimal choice of the cross
sectional shape. Plate like flutter-mills were investigated by Tang et al. [8] and Matsumoto et
al. [9, 10]. In particular, the former study examined the energy transfer between a cantilevered
flexible plate and an axial fluid flow. The energy transmission is analyzed at various location of
the plate and at different wind speeds. The study also demonstrated the efficiency of a compact
thin plate flutter-mill.

In general, the extraction of power from the flow through a flapping foil relies on a mechanism
that uses pitching and heaving motion. Several solutions have been proposed in the literature
with fully prescribed motion [11], semi-passive motion (i.e., where either pitching or heaving is
prescribed) [12, 13] or fully passive motion [14, 15]. Two-DOF flapping foils, elastically supported
in heaving motion with mechanically driven pitching mode, have been investigated [13, 12].
Based on the same concept, Matsumoto [9] proposed a flutter power generator system composed
by a 2DOF rectangular plate. He compared the efficiency of a forced heaving and a forced
torsional oscillation system and concluded that the latter is more convenient as it stably
generates wind energy at high wind speeds. The same concept was later expanded and examined
experimentally by Pigolotti et al. [16].

More recently, Hoke et al. [17] numerically investigated the power performance of a 2DOF
rectangular plate in a 2D constrained flow; a SDOF foil performing pitch oscillations has been
tested by D’Adamo et al. [18], who demonstrated that the maximum propulsion force is obtained
when the resonant wake frequency is tuned with the foil dynamics. New experimental tests
performed on a 2DOF flapping foil were presented by Duarte et al. [19].

The solution proposed in this paper, designated as “leading-edge-flutter wind power
generator” (LEFWPG), is similar to the system proposed by Ahmadi [6, 7] and consists in
a SDOF (torsion only) “streamlined blade” with fully constrained heaving and passive pitch
motion. The energy is produced exploiting an electro-magnetic induction conversion mechanism.
The proposed technology is more competitive than existing, similar harvesters and traditional
wind turbines since it works in the partially unexplored range of low and medium wind speeds
(10 to 13 m/s). The proposed mechanism is also simpler than other 2DOF solutions as it
relies on the pitch motion only (one DOF) and the streamlined cross section is less sensitive
to undesirable aerodynamic effects than bluff sections [6]. The LEFWPG is also less impactful
than large scale wind turbines and can be ideal for rooftop setting in small residential homes.

The technical feasibility of the proposed apparatus has been assessed in a previous study [2]
as well as the deterministic pre-flutter, incipient flutter and post critical vibrations have been
examined in [20]. This work investigates the effects of incoming flow turbulence and variability
in the modelling of the aeroelastic moment on the critical reduced frequency and flutter wind
speed.

In the second section of this paper, a general description of the apparatus and the pre-flutter
and incipient flutter governing equations will be reported. In the third section the dynamic
problem will be solved by introducing the random error in the aeroelastic force model, while the
last section will be devoted to the analysis of turbulence effects on the critical flutter reduced
frequency and velocity.

2. Model description
2.1. Conceptual design
The conceptual model of the apparatus is depicted in Fig. 1. Figure 1(a) presents a generic cross
section in the horizontal plane (x, y), while the three-dimensional (3D) view of the system is
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(a)

(b)

Figure 1: Conceptual model: (a) top view of a typical horizontal-plane cross-section, (b) 3D
rendering of the apparatus with vertical-axis orientation and rotation axis at the leading edge
(a = −1).

shown in 1(b). The model is composed of a rigid blade NACA0012 that rotates about a vertical
axis (z) at pivot “O”, at a distance ab from the mid-chord point (C). The variable a assumes
negative values as long as the rotation axis is located on the wind-ward side, and a = −1 when
the rotation axis is at the leading edge. The rigid blade has a chord length (width) 2b and
transverse (longitudinal) length ` in the z direction; the apparatus is vertically supported on a
mast through a “torsional-rotational mechanism” to avoid dependence on gravity loads. The
latter enables the rotation about the z axis (α angle) about “O”, by means of a non-linear
torsional spring that controls the amplitude of the vibrations when instability occurs.

The energy conversion principle was inspired by an electromagnetic power generator [21].
The flapping blade is connected to a shaft equipped with a permanent magnet that translates
through a coil, generating a magnetic field and electromotive forces. The coil is connected to an
external circuit that induces current I(t) (t time).

2.2. Pre-flutter and incipient flutter problem
The equation of motion of the blade airfoil, neglecting electro-mechanical coupling effects, is:

d2α

dτ2
+ 2ζα

dα

dτ
+ α =

Moz

ω2
αIoα

(1)

where ωα is the angular frequency of the apparatus and τ is a dimensionless time variable
τ = tωα. The structural damping is simulated through a linear term 2Ioαζα; Ioα is the total
polar mass moment of inertia. More information about electro-magnetic induced torque may be
found in [20]. In the absence of turbulence, the unsteady torsional aeroelastic moment Moz is
derived from classical aerodynamic theory [22]:

Moz(k) =πρη3Db
2U2`

∫ `

0

{
−α′′(0.125 + a2) + (2a+ 1)C(k, z)α+ (2)

+[(a− 0.5) + (0.5− 2a2)C(k, z)]α′
}

dz
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The mean aerodynamic forces are zero and the lift is negligible because of the cross-sectional
symmetry if α ≈ 0. The unsteady torsional moment Moz (2) is a function of reduced frequency
k = ωb/U (with ω angular motion frequency), and depends on the position along the vertical axis
z. The quantity kα = ωαb/U denotes the reduced frequency of the apparatus, U is the mean wind
speed parallel to the x axis, ρ is the air density, and C(k, z) = F (k, z) + îG(k, z) is the complex
Theodorsen function [23], with î being the imaginary unit. Contrary to standard aeroelastic loads
theory [22], the Theodorsen function depends on the coordinate z that simulates variability
along the z axis. The derivatives α′′ and α′ are computed with respect to the dimensionless
time s = tU/b = τ/kα; three-dimensional static load effect is accounted through the function
η3D ≈ AR/(AR+ 2), with AR being the aspect ratio of the blade airfoil (AR = `/b). In Eq. (2)
the variability of the mean wind speed along the vertical direction is not considered, since the
aspect ratio AR is assumed to be small.

If the damping ratio ζα is very small, it can be neglected compared to equivalent aeroelastic
effects. Substitution of a simple harmonic solution in Eq. (1) at incipient flutter leads to an
algebraic homogeneous equation that must be solved for the simultaneous vanishing of its real
and imaginary parts. After manipulation, the following algebraic equations are found (with
η = z/`):

γ2 = 1 + ε0`η3D

{∫ 1

0

[
(0.125 + a2) +

1

k2
(2a+ 1)F (k, η) +

1

k
(2a2 − 0.5)G(k, η)

]
dη

}
(3)

∫ 1

0

[
−G(k, η)(2a+ 1) + k(0.5− a) + kF (k, η)(2a2 − 0.5)

]
dη = 0 (4)

In Eq. (3), γ = ωα/ω is the frequency ratio between the angular frequency of the system (ωα)
and the frequency of the flutter harmonic motion (ω). The coefficient ε0 = ε/` = πρb4(Ioα)−1 is
a dimensionless inertia parameter per unit length and η = z/` is the dimensionless coordinate
in the vertical direction. The frequency at incipient flutter k = k∗ can be found by solving
numerically Eq. (4) first; then the frequency ratio at incipient flutter γ∗ is computed by solving
Eq. (3). Finally, the dimensional, critical flutter wind speed [m/s] can be found as:

U∗ =
ωαb

k∗γ∗
(5)

3. Random variation of aeroelastic loads: modeling & results
The main difficulty in solving flutter problems is the definition of suitable aeroelastic loads or
expressions. This issue may lead to modelling simplifications (for thin airfoils [23]) and random
errors. In previous work [20] the Theodorsen functions F (k) and G(k) were considered as ideal,
independent of z (or η) and deterministic quantities. If flutter derivatives of the blade cross-
sections are measured experimentally, non-negligible variations can be observed; variability can
be attributed to experimental laboratory errors. As resulted from wind tunnel tests performed
by Li et al. [24], important variability in the flutter derivatives can be noted, especially at
higher reduced velocities. Therefore, random variability in the Theodorsen function must be
considered when dealing with flutter of blade airfoils. Furthermore, the Theodorsen theory
and C(k) function are unable to fully capture the unsteady flow features of wind turbine blade
cross-sections [24].

Specifically, this section investigates the influence of stochastic perturbations in the aeroelastic
loads effects on the critical frequency and wind speed at flutter. Randomness is introduced in
F (k) and G(k). The most promising probability distribution model that describes this variability
is the Gaussian one [24]. Monte Carlo simulations are performed to examine this effect.



XII International Conference on Structural Dynamics
Journal of Physics: Conference Series 2647 (2024) 112009

IOP Publishing
doi:10.1088/1742-6596/2647/11/112009

5

Previous studies [20] have identified the leading-edge position (a = −1) of the rotation axis
as the optimal configuration for the system; this pivot position minimizes the critical flutter
wind speed and ensures wide-range operational conditions. Moreover, a small value of the
dimensionless inertia parameter ε = ε0` has been recommended [20] in the range 0 < ε < 1E−3.
Therefore, a leading-edge configuration with ε = 0.5E − 3 is considered in the subsequent
simulations. Eqs. (3)-(4) are iteratively solved by replacing both deterministic functions G(k)
and F (k) with two Gaussian variables with mean value equal to the theoretical function at each
frequency k and a specified coefficient of variation cov = 5%. The aerodynamic moment Moz

(2) is assumed to be uniform along the vertical axis of the blade, independent of z (or η) since `
is small. Therefore, F (k) and G(k) are functions of the reduced frequency k only. Four different
cases are considered: in the first case the Gaussian variables of G(k) and F (k) are perfectly
correlated with cov = 5% (i.e., they differ only in their mean values). In the second case the
variables are assumed independent with the same cov = 5%. In the last two cases the functions
F (k) and G(k) are in turn assumed deterministic. The four cases are described in Table 1,
noting that when the correlation coefficient ρ = 1 the distributions are fully correlated.

Table 1: Coefficient of variation (cov) and correlation coefficient (ρ) of F (k) and G(k) Gaussian
random variables.

Case cov(F ) cov(G) ρ
[%] [%] [-]

1 5 5 1
2 5 5 0
3 5 0 0
4 0 5 0

As an example, Fig. 2 illustrates the empirical histograms of F (k) and G(k), the output
distributions of reduced frequency at flutter k∗ and dimensionless critical wind speed [Ũ∗ =
(k∗γ∗)−1] for the simulation case 2. A sample population equal to 4000 is used to generate the
histograms.

The dashed vertical lines are the results when the F (k) and G(k) functions are deterministic
(k∗ = 0.040, Ũ∗ = 29.37). The distributions, obtained for other simulation cases, are not
reported for the sake of brevity but they exhibit similar patterns. The resulting output
histograms are no longer Gaussian and can be approximated by skewed histograms; therefore, the
reference estimates of the critical flutter output parameters are computed as the most probable
value of the empirical distributions (mode). The coefficient of variation of the reduced frequency
at flutter and the critical wind speed, along with the mode of the samples, are reported in Table 2
for the four cases. The percentages of the relative differences δ̂ between the mode estimates and
the values obtained with deterministic aeroelastic forces, are also indicated.

Table 2 clearly shows that the uncertainties in the aeroelastic coefficients are reflected and
amplified in the estimates of the critical flutter parameters. The variable that is most affected
by the random errors is the critical velocity, as it accounts for both the uncertainties in the
frequency ratio (γ∗) and critical reduced frequency (k∗). The distributions of the critical wind
speed are always more dispersed than the distribution of k∗ and, especially in cases 2 and 4,
the output coefficient of variation is one order of magnitude greater than the one introduced in
the aeroelastic input variables (cov = 5%). Small errors in the estimation of the functions F (k)
and G(k) may lead to large variability in the estimates of the critical flutter velocity. Flutter
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Figure 2: Example of Monte Carlo simulations for the case 2.

Table 2: Mode and coefficient of variation of k∗ and Ũ∗.

Case mode(k∗) δ̂k∗ cov (k∗) mode
(
Ũ∗
)

δ̂Ũ∗ cov
(
Ũ∗
)

[-] [%] [%] [-] [%] [%]

1 0.038 11.63 6.4 21.96 25.22 7.42
2 0.036 16.27 13.31 16.86 42.59 19.14
3 0.040 0 6.0 21.15 28.0 7.9
4 0.040 0 12.0 17.67 39.8 16.26

may not even occur if the uncertainties in F (k) and G(k) are simultaneously considered. In
case 2 for example, two sample populations with 4000 (equal to 0.05%) repeated simulations do
not provide a solution to the flutter condition as there is no root of Eq. (4). The occurrence of
no-flutter condition increases to 4.4% samples when cov = 10% is used to simulate the random
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distribution of F (k) and G(k). When comparing the four cases presented above, it is worth
noting that the aeroelastic coefficient that mostly affects the output uncertainties is G(k), as
the coefficients of variation of both k∗ and Ũ∗ are much larger in case 4 than in case 3. This
remark is consistent with the idea that torsional flutter is governed by equivalent aeroelastic
damping effects, and the G(k) function constitutes the imaginary part of the aeroelastic load,
i.e., in phase with the torsional angular velocity. The case with independent random errors of
G(k) and F (k) (case 2) is the “worst” scenario, as the predicted flutter speed and frequency are
less accurate (i.e., the standard deviation of the output distribution is larger) than in the case
of perfectly correlated errors (case 1).

4. Incoming turbulence effects: modeling & results
The effect of the incoming turbulence on the frequency at incipient flutter and the critical wind
speed is investigated in this section. This problem has been already addressed by Scanlan [25]
for long span bridges, who developed an analytical model of the aeroelastic deck load that
accounted for the incoming turbulence by considering a spanwise diminution of coherence in the
aeroelastic coefficients (flutter derivatives), similar to F (k, z) and G(k, z). Consequently, the
dynamic response of the considered apparatus under turbulent flow is studied by considering a
loss of coherence of the functions F (k, z) and G(k, z) along the vertical (or longitudinal) axis
of the apparatus (z or η = z/`). More specifically, a standard exponential reduction in the
coherence of the aeroelastic coefficients is postulated. This is, for F (k, z):

F (k, ξ)F (k, η) = F (k)2e−
k
2π
c l
b
|ξ−η| (6)

with 0 ≤ ξ ≤ 1 and 0 ≤ η ≤ 1 being two dimensionless coordinates, and c ≥ 0 a dimensionless
coherence parameter. If turbulence effects are neglected c → 0 and the solution without
turbulence is recovered. Experimental evaluations of c suggest that typical values of the
coherence parameter are between 5 and 15 [26].

The same format as in Eq. (6) is also used for the product of the G(k, η) function by itself
and the cross product between the functions G(k, η) and F (k, η). Multiplication of Eq. (4) and
Eq. (3) by themselves leads to the following equations:

ψ2 =
1

k4
(2a+ 1)2F (k)2Î +

1

k2
(2a2 − 0.5)G(k)2Î +

1

k3
(2a+ 1)(2a2 − 0.5)F (k)G(k)Î (7)

(2a+1)2G(k)2Î+k2(2a2−0.5)2F (k)2Î−2(2a+1)k(2a2−0.5)G(k)F (k)Î−k2(0.5−a)2 = 0 (8)

where ψ =
[
γ2−1
εη3D

− (0.125 + a2)
]

and Î is the integral of the co-coherence function, whose

closed-form expression is reported in Eq. (9) below, with k̂ = k
2π c

`
b .

Î(k, c, AR) =

∫ 1

0

∫ 1

0
e−

k
2π
c l
b
|ξ−η|dξdη =

2

k̂2
(−1 + e−k̂ + k̂) (9)

As the integral Î depends on `/b, the turbulence effects introduce the dependency of the
reduced frequency at flutter on the aspect ratio. On the contrary, the previous Eq. (4) does not

depend on the aspect ratio, inertia and other physical quantities. The integral Î is plotted in
Fig. 3 as a function of the reduced frequency k for two different values of the aspect ratio AR
and for c = 10. The proposed closed form solution [Eq. (9)] is valid as long as k̂ 6= 0. As k (and

k̂) reduces, the value of Î tends to 1.
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Figure 3: Integral Î as a function of the reduced frequency for c = 10 and AR = 4, 10.

The imaginary part of the governing homogeneous equation (i.e., the left hand side of Eq. (8))
is represented in Fig. 4 for different values of the coherence parameter c when AR = 10. As the
coherence of the dynamic coefficients increases, the function becomes flatter and the reduced
frequency at flutter increases.
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Figure 4: Imaginary part of the homogeneous governing equation (AR = 10).

Equation (8) can be first solved to get the critical value of k; then Equation (7) is used to
compute ψ∗ and the critical wind speed under turbulence effects from γ∗u:

γ2∗u = [∓ψ∗ + (0.125 + a2)]εη3D + 1 (10)

Equation (10) provides two distinct solutions for the critical wind speed depending on the
sign of the variable ψ∗. The critical wind speed at flutter k∗u and the two sets of critical wind
speed Ũ∗±u are reported in Tab. 3 for different values of the coherence parameter (c) and aspect
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ratio (AR). The solution without turbulence effect Ũ∗ is recovered when negative values of ψ∗

are used in Eq. (10). Fig. 5 illustrates the evolution of the reduced frequency at flutter and
critical wind speed Ũ∗−u as a function of the coherence parameter c. When the turbulence effect
increases the reduced frequency at flutter decreases and the critical wind speed increases. The
efficiency of the apparatus is therefore expected to reduce as the turbulence effect becomes more
important. When the ` dimension of the harvester in the vertical direction reduces and AR
decreases, the system is less sensitive to the incoming turbulence.

Table 3: Reduced frequency k∗ and critical wind speed Ũ∗u at varying coherence c.

c→ 0 c = 1 c = 5 c = 10

AR→∞ (Ũ∗ = 29.37)
k∗u 0.0403 0.0357 0.0261 0.0206

Ũ∗−u 29.22 34.17 54.97 94.47

Ũ∗+u 21.87 82.39 91.92 95.73

AR = 10 (Ũ∗ = 28.40)
k∗u 0.0403 0.0398 0.0378 0.0357

Ũ∗−u 28.40 28.87 30.71 32.97

Ũ∗+u 22.26 22.53 23.55 24.73

AR = 4 (Ũ∗ = 27.55)
k∗u 0.0403 0.0401 0.0393 0.0383

Ũ∗−u 27.57 27.73 28.42 29.27

Ũ∗+u 22.72 22.82 23.26 23.79

[Note: critical wind speed without turbulence effect Ũ∗ is shown within parentheses.]
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Figure 5: Turbulence effect as a function of the dimensionless coherence parameter c: (a) critical
wind speed, (b) reduced frequency at flutter.

5. Conclusions
In this paper, stochastic simulations are performed to describe the influence of turbulence and
random error in modelling the aeroelastic loads that describe the behavior of a wind energy
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harvester. Random variability is first introduced in the Theodorsen function; results show that
the critical wind speed is strongly affected by the introduced error. The aerodynamic coefficient
that mostly affect the uncertainty in the prediction of incipient flutter condition is G(k), as it
constitutes the (imaginary) part of the load in phase with the angular velocity. The incoming
turbulence effect is separately investigated in the last section of the paper, where the approach
proposed by Scanlan [25] for bridges is adapted to the case study. When the turbulence is taken
into account, the efficiency of the apparatus reduces as the critical wind speed increases. Finally,
the sensitivity to turbulence effects is enhanced as the aspect ratio AR = `/b increases.
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