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Improving Output Power of a
Torsional-Flutter Harvester in
Stochastic Thunderstorms by
Duffing—Van Der Pol Restoring
Torque’

Wind energy harvesters are usually designed to operate in the low wind speed range. They
rely on smaller swept areas, as a complement to larger horizontal-axis wind turbines. A
torsional-flutter-based apparatus is investigated herein to extract wind energy. A nonlinear
hybrid restoring toque mechanism, installed at equally spaced supports, is used to produce
energy through limit-cycle vibration. Energy conversion and storage from the wind flow are
enabled by eddy currents. The apparatus is used during thunderstorm outflows to explore its
efficiency in nonideal wind conditions. The thunderstorm flow model accounts for both
nonstationary turbulence and slowly varying mean wind speed, replicating thunderstorm’s
intensification and decay stages. This paper evolves from a recent study to examine
stochastic stability. More specifically, the output power is derived as a random process that
is found numerically. Various thunderstorm features and variable apparatus configurations
are evaluated. Numerical investigations confirm the detrimental effect of nonideal,
thunderstorms on harvester performance with, on average, an adverse increment of
operational speed (about +30%). Besides nonlinear damping, the “benign” flutter-prone
effect is controlled by the square value of the flapping angle. Since flapping amplitudes are
moderate at sustained flutter, activation of the apparatus is delayed and exacerbated by the
nonstationary outflow and aeroelastic load features. Finally, efficiency is carefully
investigated by quantification of output power and “quality factor.”
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plunge-pitch harvesters [8]. Most above-cited harvesters are,
however, conceived as micromechanical units, i.e., used for
recharging various types of miniature sensors.

By contrast, the field of “meso-scale” harvesting technologies has
been much less explored. For example, sustained vortex-induced
vibration of multi-unit circular cylinders in water flows [9] has been
exploited. Recently, a hybrid device, installed on highway bridges,
which can simultaneously scavenge electrical power from two
different energy sources (natural wind flow and traffic-induced
bridge vibrations), has been designed [10].

Along this line of research, a torsional-flutter-based apparatus has
been proposed by the author [11]; the operational mechanism was
inspired by seminal work by Ahmadi and coworkers [12,13]. The

1 Introduction

Wind energy technologies are important because of the need for
green energy sources. “Specialized” harvesters [1] have been
proposed to exploit wind energy in the low wind speed range and for
small-scale applications. These harvesters are triggered by aeroe-
lastic instability in the airflow [2,3]. Similar devices have been
considered, either triggered by water axial-flow instabilities [4], or
by flutter of an inverted and flexible flag [5], or by vortex-induced
vibration of cylinders inside ventilation ducts [6,7]. Recently, the
exploitation of parametric excitation originating from airflow
oscillation has been suggested to enhance the performance of
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apparatus is composed of a nondeformable ‘“‘blade-airfoil” that
rotates about a pivot axis and is partially restrained through a
nonlinear torsional spring mechanism, installed at equally spaced
supports. Various configurations can be considered with adjustable
position of the blade-airfoil pivot axis: from the leading edge
(windward point) to a point closer to the quarter-chord axis position.
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Dimensions of the harvester’s blade are half-chord length and
longitudinal (transverse) length. A nonlinear Duffing model and
torsional spring mechanism have been used to produce limit cycle,
postcritical vibration. Conversion to electrical power is warranted
by an eddy current power system with multiloop magnetic coil and a
translating permanent magnet [14]. Energy could be stored in a
battery.

Recent studies have examined the stochastic stability of the
harvester and its post-critical operational conditions in turbulent
wind flows, composed of horizontal mean speed and along-wind
turbulence. Nonsynoptic, nonstationary turbulence has also been
considered to simulate nonideal wind flows, i.e., a gust front
originating from a thunderstorm downburst [15-17], recently
recorded in urban settings, where the apparatus is planned to be
installed.

In this study, a recently proposed, new model is utilized to
examine the mean-square stability limits. The model replaces the
Duffing [18] restoring torque mechanism, used in the past [11,19],
with a hybrid Duffing—van-der-Pol torque mechanism. The
mechanical torque mechanism is based on standard approaches
that trigger limit-cycle vibration [18] under steady, nonturbulent
wind flow. The model couples the cubic-polynomial nonlinear
torsional (i.e., spring-type) mechanism that opposes the self-induced
torsional flapping vibration with a quadratic, amplitude-dependent
equivalent damping effect and device.

Duffing—van der Pol harvesting technology has been explored to
enhance micromechanical devices, triggered either by external
parametric (periodic) excitation [20,21] or by stochastic sources
[22]. Nevertheless, this technology has not been applied to the type
of harvesters envisioned by this study. Therefore, it represents a
novelty in the field of medium-size harvesters.

The main objectives of the paper are to:

(1) Reproduce the blade-airfoil aerodynamics by assuming a
fully coherent thunderstorm gust front [19];

(2) investigate mean-square, stochastic stability by moment
Lyapunov exponents (MLE) [23], computed numerically
[24]; and

(3) expand the preliminary results, presented in a recent study
[25], to analyze output power in a stochastic, non-stationary
load environment.

The nomenclature table is provided in the Nomenclature section.

2 Description of the Apparatus

The apparatus (Fig. 1) is composed of a rigid blade-airfoil of
dimensions b (half-chord width) and ¢ (span-wise, longitudinal
length), which rotates about pivot “O.” The « flapping of the rigid
blade-airfoil is enabled through appropriate connection, either at
equally spaced points or continuously along the span-wise direction
£, to a structural support (a mast in Fig. 1). The orientation of the
blade-airfoil is on XY horizontal plane (Fig. 1).

The aeroelastic torque about pivot O is modeled by standard
aeroelastic formulation for flat plates (i.e., a NACA0012 section of
small thickness) and small angles of attack o. The load is also
corrected for three-dimensional flow effects due to the finite airfoil
span, i.e., through aspect ratio AR = ¢/b. The thunderstorm outflow
combines a slowly varying, “mean” outflow wind speed U with
along-wind nonstationary turbulence u. Other turbulence compo-
nents are not included because they secondarily affect the blade-
airfoil aeroelasticity. These two flow features simulate various
development stages of the wind phenomenon, as described in Secs.
3.2 and 3.3. The aeroelastic load model plausibly replicates the main
features of a gust front [26,27], originating from a nonsynoptic
thunderstorm. Since the blade is longitudinally oriented on a vertical
plane (XZ in Fig. 1), gravity is not relevant to energy conversion.

In Fig. 1 (top), a “nonlinear rotational restoring/damping mech
[anism]” is indicated. This item is schematically described by a
circular hollow container that encloses the unit’s linear and
nonlinear restoring and damping torsional mechanisms. A nonlinear
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Fig. 1 Schematics of the torsional flutter harvester: (top) 2D
cross-sectional view on the XY horizontal plane; (bottom) 3D
rendering. Reproduced with permission from Ref. [19]. Copyright
© 2024 by Elsevier.

restoring torque may be designed, for example, by embedding small,
partially pretensioned loose cables inside the hollow gap; this
design, at a larger scale, has been used for translating motion in
nonlinear energy sinks [28] and could possibly be exploited for the
flapping rotation. In the case of van der Pol energy absorption
mechanism, the design concept may be borrowed from [29], who
considered a vibration damper applied to a rotor; this device could
possibly transform the rotor’s whirling motion into a periodic “one-
line” nonconservative motion [29]. Nevertheless, these design
concepts are only preliminary; they will require careful consid-
eration prior to any physical implementation. Finalized design will
possibly be considered in future studies.

3 Non-Stationary Flow Fields

3.1 State-of-the-Art Review. A thunderstorm downburst is a
meteorological wind phenomenon, observed during thunderstorms.
The downburst is a strong downdraft flow that induces an outburst of
high wind speed flows near the ground [30]. Aircraft accidents near
the ground, upon landing in thunderstorms, provided the initial
motivation for examining downbursts [31]. Downbursts were first
recorded during thunderstorms by Doppler radar stations during the
Northern Illinois Meteorological Research in Downbursts (NIM-
ROD, 1978) and the Joint Airport Weather Studies (JAWS, 1982)
projects in the USA [30,31]. Observations by meteorologists led to
the derivation of methods to classify downbursts and to understand
their generation mechanism [32-34]. Experimental evidence
continued over time until recently, where several observations of
downburst and thunderstorm outflows were reported [15,35-37] and
led to a critical review of the models for fluid-structure interaction
analysis in nonstationary wind flows [38,39].

Downbursts are convective, short-lived, ground-based, either dry
or wet and characterized by small-scale shear winds. They evolve
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and land to ground at a touchdown point, subsequently diverging and
decaying over a short period of time. These convective wind fields
are complex and consist of several flow velocity components: radial,
vertical, horizontal, and translation velocities [33,34]. The down-
burst field, forming during the thunderstorm, translates because of
the traveling thunderstorm path. There are two types of downburst
[33]: single downburst and downburst line. A single downburst is
isolated with diverging winds pointing outward in all directions
from the touchdown center. The latter is a downburst case where two
or three outflows form on one line, often the “straight” line of the
thunderstorm track.

The wind field varies rapidly in direction, magnitude, and
turbulence properties. It produces transient, nonsynoptic and short-
duration wind events, which can produce complex aerodynamic
loads. Transient/nonstationary downburst winds can lead to
dynamic vibration on vertically oriented, flexible structures. The
structural response cannot be analyzed by standard analytical
methods based on stationary, synoptic winds [17].

Figure 2 illustrates a typical time series of a downburst event. It
reproduces the instantaneous outflow velocity magnitude of the
AAFB (Andrews Air Force Base) thunderstorm outflow, measured
by an anemometer at 4.9 m elevation from the ground on Aug. 1,
1983 at 2 pm Eastern daylight time [30]. The downburst velocity
record traveled through a first primary peak (67 m/s wind gust) to a
secondary peak (43 m/s gust) after approximately 3 min. The
instantaneous direction flow varied as the primary and secondary
peaks traveled through the anemometer, from NW to SE quadrants,
respectively. From Fig. 2, the following features can be noted: (i)
slow time-varying mean (nonturbulent velocity), and (ii) rapidly
varying fluctuations (turbulence).

3.2 Slowly-Varying Wind Speed U. Aeroelastic torque is
proportional to the mean flow speed U. The thunderstorm “mean”
flow is time dependent as a result of thunderstorm’s evolution [34].
The time-dependent mean flow speed is rewritten as
U(t) = UnaxI1(7) > 0. The quantity U,y is the maximum outflow
wind speed of the thunderstorm; T = w,t is a dimensionless time,
with ¢ in [s] and normalized with respect to w, or angular frequency
of the spring-supported, linear apparatus.

Although U,y is recorded at a specific elevation from the ground
(20 < zmax < 80 m [35]) and the wind profile is not uniform, the
slowly-varying outflow field is considered approximately constant
with height z. Moreover, mean-wind directionality (Fig. 2 bottom) is
neglected. These assumptions are plausible because the apparatus’
reference diagonal dimension (\/Z—bi) is small compared to zyax;
furthermore, the unit is designed to be installed on a building roof-
top, close to a typical zp,x = 20 m [36].

Due to the small (v/2b¢) dimension, the main transitory feature of
the thunderstorm that influences the stability is the temporal
intensification, II(t). If the mean flow speed is substituted by

80
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Fig. 2 Horizontal flow velocity time series of the AAFB down-
burst; the plot is adapted from Ref. [30]
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U(t) = UmaxI1(7), intensification (intensity factor) is derived from
[40], as explained in Ref. [19]

T T

0< <1
Tmax Tmax
I(r) = M
P
Tlnax

If dimensional time ris used in Eq. (1), with# = t@,; tmax (OT Tmax)
is the time instant corresponding to maximum intensification
[34,40]. Since ty,y /T ~ 0.52, using T=1200s as the total thunder-
storm duration from initial touchdown to full decay [34,40] and
fmax =~ 630 s from [41], Eq. (1) is obtained. Furthermore, using
typical values of w, from [11], Ty« is found as about 400 < Ty <
1000 if the total duration is referred to the AAFB thunderstorm [41],
or 200 < Tax < 500 if 7max = 300 s is extrapolated from data
presented by Ref. [35].

3.3 Random Turbulence Field. The along-wind turbulence
component u influences the dynamic pressure and load. It is random,
nonstationary, and aptly normalized. The properties of the
corresponding stationary process are represented by reduced
turbulence spectrum [16]. If ii(t) = u(t)/Unax is the dimensionless
stationary turbulence, the spectrum of the stationary process is
Si(w) and, without any loss of generality, it is a Gaussian white noise
process with nonzero standard deviation. The standard deviation of
the stationary turbulence is a;.

The nonstationary thunderstorm-like turbulence features are
reproduced as #¢,, i.e., by multiplication with modulation ¢,
[15,16] so that the evolutionary turbulence spectrum is
SaEpsp(0,T) = Si(@)@he(c) [16].

The function 0 < ¢.¢(t) <1 is deterministic [16]. @¢(7) is
derived from the temporal modulation Az (¢) = aotPoe=* proposed
by Chen [42], with time  in (s) units, decay 2 in (s™') and
dimensionless shape parameters o, 3. The parameters of A (7) are
not independent; / ~ 1 s~! can be used [41,43]. If Tmax designates
the dimensionless time instant of maximum turbulence intensifica-
tion (same as Tyax in Eq. (1)), Ap(7) is transformed into ¢, [19]

Tmax T Tmax /Oy
i (1) = e(57) ( ‘ ) )

Tmax

with ) = ATmax/®,. Equation (2) is valid if tyax > 0. As indicated
in the previous section, Tyax = fmax @, depends on the total duration
of the thunderstorm (only). Furthermore, since the diagonal
dimension of the blade-airfoil (v/2bf) is small compared to the
integral turbulence length scales, the nonstationary gusty field is
basically coherent across the apparatus in Fig. 1.

Finally, it is noted that stationary turbulence u is approximated by
a Gaussian white noise. It would be possible to readily include a
more accurate u description, e.g., by exploiting autoregressive
turbulence model representation in the time domain [44,45]. For the
sake of stochastic model compactness, however, the “colored-
noise” representation [45] was not included in this preliminary
model.

3.4 Instantaneous Dynamic Pressure. The dynamic pressure,
needed to find the aeroelastic load, combines the effects of the
slowly varying mean U(t) = UnaxI1(7) and turbulence u(t). The
total, instantaneous dynamic pressure is equal 1/2p[U(t) + u(7)]%,
i.e., proportional to the air density p and the squared velocity (m/s)

V() +u@]* = U(x) +2U(0)u(z)
= Up oo I (0) + 207, T1(7) @y (1)i(7)

max max

3

In Eq. (3), the product iig:(t) produces the nonstationary
turbulence features. In dynamics and wind engineering, it is
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customary to approximate the dynamic pressure by truncating the
expansion to the first-order Taylor expansion (Eq. (3)). Neglecting
higher order terms is acceptable since the random #?(t) is
proportional to the squared value of the turbulence intensity,
yielding an approximation error smaller than 4% within the
turbulence variations in typical atmospheric winds.

4 Dynamic Equilibrium Equation

4.1 Duffing Model. The physical states are torsional rotation o
and derivative do/dt with respect to dimensionless time 7. The
dynamic equilibrium equation of the flapping rotation is [11,25]

d*u Mo + Mem)
2 70z T P (em)
dr d-2 + é/o( + o+ K wal()(x

(C))
Nonlinear restoring force effect is simulated by the term e’ with x
suitable positive constant; /o, is the total polar mass moment of
inertia about pivot O. Structural damping is simulated through a
linear term in Eq. (4) with damping ratio 0 < {, < 1.

The external torsional moment is about pivot O in Fig. 1. Noting
the distance ab from the midchord point, the pivot axis position can
vary between the leading edge (¢ = —1) and the one-quarter chord
position (@ = —0.75). The moment is composed of aeroelastic
torque M, and electromotive torque

M(e.m.) = _(1 - a)bq)(e.m.c.)[(r) (5)

with /() being the output current of the power system; O, ) is the
electromechanical coupling coefficient in units of newton/ampere
[11]. The moving coil introduces magnetic induction and interacts
with a moving shaft, translating inside the winding coil (shown in
Ref. [11]).

4.2 Hybrid Duffing-Van-der-Pol Model. The equilibrium
incorporates both Duffing and van-der-Pol models to possibly
improve energy conversion. The modified equation reads [25]

du dot
2 —g?) =

i@ +20,(1 = yo )dr

_ Mo, +M(e.m)

B 605101

—+ o+ Ko
(6)

In Eq. (6), besides parameter k, a nonlinear damping effect with
coefficient v is introduced. The parameter y models the self-limiting
feature of the negative damping mechanism proportionally to the
linear term 2(,,.

4.3 Aeroelastic Torque

4.3.1 Stationary, Time-Dependent Loads. Mean aerodynamic
forces are zero since static lift force is negligible at oo = 0 due to
blade symmetry. In the absence of turbulence and with uniform,
stationary flow, the aeroelastic torque depends on: static lift
coefficient slope at =0 or dCy /0o = 2n [46], time-independent
mean speed U [11] with mean direction (orientation of the blade-
airfoil) parallel to the x axis in Fig. 1. Aeroelastic torque in a
stationary airflow is modeled in the time domain by flow memory
theory, i.e., Wagner’s [47] indicial function formulation [46],
corrected for lift and torque reduction due to three-dimensional flow,
which depends on the aspect ratio AR = ¢/b. The Wagner’s indicial
function [47] of the load is [48]

D(1) = [1 - cre™ ™" — cpembh'] )
with reduced frequency k, = w,b/U and suitable load parameters:
c; = 0.165,d; = 0.0455,¢, = 0.335,d, = 0.3 [48] for an ideal-

ized, symmetric NACAOO12 section (Fig. 1). Three-dimensional
flow effects on the loads will be discussed in Sec. 5.1.

041204-4 / Vol. 10, DECEMBER 2024

4.3.2 Non-Stationary Aeroelastic Load Perturbation. As
described in Sec. 4.3.1 and in the presence of nonstationary winds,
®(7) is a short temporal load evolution that is approximately
independent of the gust front’s instantaneous features, i.e., Eq. (1).

In a nonstationary load setting with slowly-varying mean wind
speed, the reduced frequency approximately depends on Uy, 1.€.,
ky = wyb/U(7) = @,;b/Upax. Consequently, variability in the
unsteady load can plausibly be concentrated in the parameters of
®(7) and are secondarily attributed to temporal variations of U and
Eq. (3).

Perturbation is introduced by replacing the deterministic
parameter d, = 0.3 in Eq. (7) with a random, time dependent
dy = dypm + 02(7); dan = 0.3 and ,(7) is a zero-mean, Gaussian
perturbation; d, () also accounts for aeroelastic load measurement
error and any modeling simplifications.

The reason for exclusively considering randomness in the d2
parameter is because the second exponential term {cpe” dotk,! }
primarily controls the rapidly varying load variations
through Eq. (7); this term is mainly responsible for the flow memory
effects.

5 Stochastic Differential Equations

5.1 Fundamental Dynamic Model Equation. If the rotation
axis is at the leading edge (¢ =—1) the dynamic equation of the
flapping angle is [19]

1+ 9 ) L
8enyp ) dt aw

d
+ o + Hn (oc,—a> =¥
dt

€N3p 2 2(me do

+ 1'5(1/06,1 + VGE,Z) + Hae 1 + :uae,Z]

+ (1.5enspk, ' + 2@1)

(®)

where both ITand ¢, depend on time t; ®y = ®(0) = 0.5. Quantity
¥ = 4b2((I)(e_m_c_))2 /(w,do,Rc) is a dimensionless electromechan-
ical coupling coefficient of the eddy-current power circuit; R is the
resistance of the power circuit; Ve (7), fye1(T), Vaep(t) and
Mae2(T) are four time-dependent aeroelastic states; and e =

npb*0(Iy,)”" [11] is an inertia parameter. Parameter sy, =
AR/(AR + 2) [49] accounts for three-dimensional flow and load
effects.

On the left-hand side of Eq. (8) the nonlinear function
Hni (o, dor/dt) is used to differentiate between Duffing model
(Eq. (4)) [25]

Hy = ko )

and Hybrid Duffing—van-der-Pol one [Eq. (6)] [25]

do
Hu = ko — 2Cdyocza (10)

The eddy current equation of the power circuit with electro-
mechanical coupling is found by magnetic induction [11,14].
This equation reads dl/d‘L’ = Jpr(da/dt — 1), where (1) =

1(7) 260, P e c.) /Rc] is the dimensionless output current; gy, =
Rc/(w,Lc) is the generalized impedance (R. resistance, L¢
inductance). This equation is combined with Egs. (8) and (9) or
Egs. (8) and (10) to form a state-space model, composed of seven
nonlinear, coupled electromechanical equations. Detailed descrip-
tion of these equations is omitted for the sake of brevity but may be
found in Refs. [19,25].
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5.2 TIto-Type Differential Vector Equation. The turbulence
variable i1 is expressed by a Gaussian process; consequently
dependency is represented by Wiener processes in the context of
stochastic differential equations [50,51], Ito-type [52]. After
suitable manipulations, it is found

dWem = Qepnr (Wen)dt
+ V27[ta.i(Wem)dBi () (11
+ QL,AzwemdBAZ(T)}

Wem = [0, dot/dT, Ve 15 Vae2s Hae.1> Rae2> l]T in Eq. (11) is the state
vector; W, includes both physical, aeroelastic states, and
dimensionless output current 1.

In Eq. (11), the scalar, Wiener noise B;(t) of unit variance
increments separately addresses turbulence perturbation from the
noise Ba(t), used for load perturbation. Quantity q.,\p is a
nonlinear vector-function; tnr; is a nonlinear turbulence diffusion
vector-function. Qy ,, is a constant, diffusion matrix that controls
the load perturbation and depends on the standard deviation of
(52(‘5), aq2.

Both q,,, np and tyr; incorporate dependency on I(7), ¢@,¢(7)
and ¢;;. Derivation of g, v is omitted for the sake of brevity but is
described in Ref. [19]; tnr. s(Wem ) isa7 x 1 vector function with one
nonzero element only

. (Won)], — 2L Pmia(€130)°
N Tem 12 (978 ey k2
+ 1.5k1Wem,2) 4+ Wemss + Weme
+ 1.5(Wems + Wema)|

Dy (Wem,1
(12)

In the previous equation the symbol |.| designates absolute value
operator. The nonzero elements of the 7 x 7 Q ,, matrix that left-
multiplies W, are

[QL,Azh,z = [QL,AZ}ﬁ,l = ‘711’2]{;162 (13a)

[QL,Az}ﬁ,e = *Ude;I (13b)

The Wong and Zakai correction terms [53] are introduced in
Eqgs. (12) and (13).

Equation (11) must be solved with appropriate initial conditions,
imposed on the random state vector at T = 0. Initial conditions are
imposed by assuming nonzero random initial flapping, compatible
with the plausible triggering mechanism, expressed as a random,
Gaussian, scalar angle perturbation o into the first element of the
sate vector with given properties, while other states have identically
zero initial values, i.e., Wen (0) = [00,0, ..., O]T.

5.3 Mean-Square Stability. The standard asymptotic stability
analysis [54] relies on the various definitions of stochastic stability,
among which the use of MLE [24] is usually considered in the
context of wind-excited nonlinear systems [55-58] such as the one
in Eq. (11). The MLE measures the propensity of the system’s slow
dynamics to asymptotically exhibit a diverging oscillatory trend. It
can be interpreted as a generalized measure of damping ratio in a
linear system. The MLE cannot usually be found in closed form;
stability must be studied numerically. Asymptotic stability entails
that Eq. (11) is first solved in weak form, i.e., by numerical
integration that is repeated several times through Monte Carlo
sampling [24]. Second, the ensemble of the solutions is collected and
utilized to examine stability. The mean-square stability requires the
evaluation of the second MLE of the subvector Y = [o, doz/dz, 1]"

g, BV )

T

Ax(2) ~ (14)
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where F[.] is the expectation operator applied to the Euclidean
vector norm; Y'(1;) is evaluated at time 7; > 0; time 7, is sufficiently
large, i.e., Eq. (14) approximates the limit as 7, — 400 to study
stability [24]. The vector Y in Eq. (14) also includes the output
current 1 to evaluate the effect on operational conditions and energy
conversion.

Equation (14) is employed, at least approximately, to investigate
environments contaminated by nonstationary, thunderstorm gusty
winds, noting that the asymptotic value, defined in Eq. (14), is rather
elusive and should possibly be referred to a finite time 7, at least
greater than Ty, or possibly beyond the duration of the thunderstorm.

6 Stochastic, Postcritical Output Power Estimation

6.1 InputPower. The output power can be estimated as well as
the efficiency, absorbed by the secondary circuit, not shown in Fig. 1
but schematically described in previous studies [11].

First, the input power is evaluated, as described in Ref. [19], in
closed form by using the equivalent swept area orthogonal to the XZ
plane in Fig. 1, i.e., the flow that passes through the cross-sectional
area of the apparatus [2b(2apk)€]. If 204 is designated as the
maximum (“pk”=peak) flapping amplitude during post-critical
operations, the time-varying instantaneous wind speed cubed is
[UnmaxI1(%) 4 Unax @umg (2)ii(7)]?, where the random, zero-mean,
stationary along-wind turbulence # is modulated by ¢,(7)
(Eq. (2)) and the slowly-varying mean flow by I1(7) (Eq. (1)). The
input power is stochastic because of the random 7 and the flapping
angle oy [19]

Py (1) = 2bLp (et ) Uy, T (1)
} (15)

x {1 +3i(c) “"ﬁ“('g)

The random parent process of the peak process oy is «(t), which is
zero-mean, controlled by aeroelasticity, and is approximately
Gaussian because of Eq. (11).

As described by Ref. [19],itis found: o = 0,(7)g,,7(7); 04(7) =

[E[o?(7)] is the standard deviation (root-mean-square) of the zero-
mean flapping angle process. Equation (15) implies that the random
flapping angle has zero mean, E[o(7)] = 0.

Furthermore, g,7(t) in Eq. (15) is a random, peak effect factor
defined over the reference, total duration of the thunderstorm 7.
Quantity g, 7(t) is approximated by its stationary Gaussian process
and assumes weak coupling between g, 7(7) and (1) so that the
expected value of their product is zero [19]. Since E[i(z)] = 0, thus
Eq. (15) is approximated as

E[Pin (T)] = 2b€pE[apk U’ (T)}

16
~ 2blpUp T (1), (1) E g5 (7)] o

The expected value of the peak effect factor in Eq. (16) is found from
Davenport [59]. In fact, under the assumption of weak non-
stationarity, the expectation [E[g,7(7)] is approximately time-
independent. Figure 8 in Ref. [19] shows that E[g,r(7)] varies
between 2.85 and 3.52 within the practical range of 7,,,x and can be
evaluated by Davenport’s formula for random, stationary vibrations
[59]. The mean up-crossing rate of the stationary peak process o, is
needed by Davenport’s formula; this is conservatively estimated as
the rate of zero up-crossings or v, , plausible since E[o] = 0 and « is
anarrow-band process. Furthermore, it is found through the flapping
frequency of the harvester, i.e., 1y, ~ w,/(2n) Hz, which is suitable
for predominantly resonant response o. Reference [19] also notes
that vi,T = 0,T/(21) = (Tmax/tmax)T/(27) & 19274/ (270),
with 1, being the rate of o zero up-crossings. Therefore, the
expected value of g, 7(7) becomes
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_ 1.92
E[goc,T (T)} = 8aT ~ 2 loge (% Tmax)
0.577

2 log, (% Tmax)

a7

Equation (17) is also acceptable since it over-estimates the actual
peak effect that is largest for sustained buffeting vibration [26]. By
contrast, limit-cycle post-critical flapping is usually pseudo-
periodic and characterized by a v/2, i.e., usually acceptable for
sustained aeroelastic, vortex-induced transverse vibration [60].
Even though an extended formulation of this factor has been recently
found for nonstationary thunderstorm gust effects by closed-form
solution [61], a more refined estimation is unnecessary for this
study’s purposes but may be considered in future studies.

6.2 Output Power Coefficient. The stochastic postcritical,
output power is calculated as Poy (1) = Rel?(7) [19]. The expected
value of the output power is

(Zb(’)aq)(e.m.c.

2
E[Pou(7)] = 2 ) g [12(7)] (18)

Equation (18) implies nonstationarity and, if evaluated numeri-
cally, can also assess temporal variations of power due to the
transitory dynamics of Eq. (11). Moreover, the mean-square value of
the dimensionless current is used to imply that, because of
nonlinearity in Eq. (8), damping “a-symmetries” (o> term in Eq.
(10)) may possibly lead to nonzero output current. Consequently, the
t-dependent, expected value of the harvester efficiency is found
from Egs. (16)—(18) as [19]

l2 T
Cr(n)=E ﬁ:‘((f))} ~ 0p(7) w (19)

with the scalar, deterministic quantity 0p(t) [19]

2k2q)(2e.m,c.)
(Re)pb* o, T (1)g,
B K2y,

2pb4 T () gor

0p(1) =
(20)

The two expressions of Eq. (20), the right-hand side and the center
side, are equivalent [19].

In Eq. (19) the dimensionless parameter Op(t) depends on to
geometry, structural dynamic properties of the harvester and V.
Equation (19) can be numerically determined by Monte Carlo
methods, similarly to Secs. 5.3 and 6.1, i.e., by collecting a suitable
sample of numerical solutions of Eq. (11) and subsequently
evaluating the nonstationary mean square [i?(7)] and the nonsta-
tionary 7,(t).

By comparing Eqs. (18)—(20) the expression of the mean,
instantaneous output power is

E[Pou(1)] = 03Py, E[(7)] (1)

6.3 Quality (Q)-Factor. The Q-factor is often used to evaluate
the performance of miniature harvesters, especially for micro-
mechanical sensor design [62,63]. Since miniature, vibration-based
harvesters are usually low-performing in comparison with large-
scale, standard energy engineering apparatuses [e.g., Ref. 1], this
quantity is preferably employed.

This quantity is also preferable to describe the output power in the
case of resonant, linear harvesters with a fixed characteristic
frequency that is constant. In this case, a constant vibration

041204-6 / Vol. 10, DECEMBER 2024

frequency yields a narrow-band response, which is associated with
a high Q-factor and high peak power extraction [62].

The Q-factor is a dimensionless scalar, defined as [62,63]
0(r) = m, i.e., it is the inverse of the total damping ratio,

combining the “parasitic” [63] or intrinsic [64], structural damping
ratio {,, with the electric damping ratio {, ,, (). More generally, ;.
depends on the ability to convert and store the kinetic energy from
the flow to electric energy. Nevertheless, the definition of Q-factor
usually implies linear, frequency-domain analysis at resonance
under harmonic excitation [62] that enables simple, closed-form
estimation of this factor. In the case of steady-state, sustained
periodic flapping at a constant angular amplitude, (., is constant
and can be found from the dimensional equation below:

2n

1 (5 do\ 2
Pou = a7 21 atyem. o .
(Pou(®)) 2n/waL( e (”)(dr) )

= (265)10143,“14 wz

where <P0m(r)> is the constant average output power, found by
integration over one flapping period (2n/w,) and (20§) is the
flapping amplitude squared.

Contrary to the standard definition used in the literature [62,63],
{em. should be time-dependent since the Q-factor must assess the
performance during nonstationary thunderstorms. Furthermore, the
torsional harvester is nonlinear, stochastic and the excitation is a
random noise. Therefore, the standard results [62,63] are not
applicable. The Q-factor must be rewritten as

0() =37 l (23)

G+ (Lo (0)))]

where the operator (.\ designates temporal average, carried out over
a suitable temporal duration, e.g., one flapping period, equal to 27 in
dimensionless time units.

Equation (23) is a more suitable quantification of the Q-factor
since it relies on the evaluation of electric damping through temporal
averages, i.e., the energy due to fluid (aerodynamic) losses and
absorbed by the power system [64]. Equation (23) can also account
for other uncertainty sources (i.e., loading) and is compatible with
Eq. (21) for this harvester. Equation (23) is still approximate since it
requires ergodicity to compute the temporal average of the
aerodynamic damping over a suitable temporal duration, i.e., one
full vibration cycle by similarity with Eq. (22). Therefore, the time-
averaged electric damping in Eq. (23) is evaluated for nonstationary,
random flapping as

_ EPou(7)] \PE[lZ(‘C)]
(Cem (7)) = 202 ()03 20%(7)

(24)

where Eq. (21) is utilized along with the instantaneous expected
values, which evaluate the output power and the standard deviation
of the flapping angle at time .

It must be noted that nonlinear dissipation in structural dynamics
may alternatively be estimated through a “more classical” approach
[65], although the latter approach is not pursued herein.

Furthermore, alternative definitions of Q-factor are possible, for
example, considering the maximum electric damping ratio, attained
during nonstationary excitation. Nevertheless, Eqs. (23) and (24) are
still preferable for comparison purposes with other harvesters, based
on micromechanical systems [62,63].

7 Moment Lyapunov Exponent Results

7.1 Description of the Apparatuses. Simulations examine an
apparatus with rotation pivot axis at the apex of the blade-airfoil
(a=—1) and AR =4 (¢ = 4b). Three “Types” are selected from
Ref. [11], with the main properties described in Table 1, in which
quantities such as angular frequency and damping ratio must be
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interpreted as the properties of the linearized dynamic equation of
the harvester.

The nonlinear stiffness parameter in the Duffing model (Eq. (9)) is
constant and set to x = 100, irrespective of the type. Similarly, a
variable nonlinear damping parameter y > 0 is used in the Hybrid
Duffing—van-der-Pol model (Eq. (10)).

Coupling with the power circuit is achieved by setting ¥ = 0.01
and Agp, = 0.75 [11].

Finally, initial conditions are imposed by considering an initial
flapping angular motion at t =0, needed to trigger the instability
[11]. The initial amplitude of  is set to random with zero mean and
standard deviation equal to 2 deg, coincident with small, realisti-
cally plausible angular deviations from the static equilibrium.

Numerical solution of Eq. (11) is repeated 200 times by Monte
Carlo sampling and step-by-step integration to find the relevant
moments in weak form [23].

7.2 Duffing Model

7.2.1 Frozen Thunderstorm Downburst. This scenario corre-
sponds to the reference condition for a structurally linear harvester
(Eq. (9) with Hxp, = 0), found under the hypothesis of “frozen
thunderstorm state,” i.e., a stationary, turbulent flow field with time-
independent, constant mean speed U = Upax [II(7) =1 and
@me(7) = 1] and low turbulence. As discussed in a recent study
[19] and contrary to [25], it is useful to examine this case to
determine incipient flutter condition, signaled by a definitely
positive Ay(2) > 0 since unstable, diverging torsional flutter is
only possible. By contrast, the study of a case including either Eq. (9)
or Eq. (10) with Hxp # 0 may still lead to a stable, postcritical
flapping with a limit cycle that can still exhibit a negative or a
“nearly zero” MLE [19].

Following recent numerical results [19], initial harvester
simulations are executed in the range 0 < Upax < 20 m/s since
this range exhibits flutter. Furthermore, the harvester efficacy at
moderate wind speeds is the primary goal of the design. Although
less controllable buffeting vibrations are possible at the same wind
speeds because of flow turbulence, flapping may be blocked to avoid
damaging the apparatus.

Figure 3 illustrates an example of the reference scenario with
linear, structural harvester and Eq. (9) with Hxp ~ 0, found by
setting x = 1077 and numerically solving Eq. (15). Results are
shown for frozen thunderstorm state with constant U [T1(t) = 1 and
@me(t) = 1] and low turbulence of standard deviation a; = 2%.
Load perturbation is also accounted for.

The standard deviation of the random load in Fig. 3 is 64, = 0.07.
Type 2 apparatus is unstable at U = 14.4 m/s, noting that Ay(2) > 0
diverges for © > 100 in Fig. 3(b). Other apparatuses do not exhibit
any unstable behavior in the examined range of mean flow speeds.

7.2.2  Active Thunderstorm Downburst. Figure 4 depicts the
intensification and modulation functions, applied to the ‘“active
thunderstorm state.” This figure shows the two functions for a short
thunderstorm of total duration 7 = 600s [35], i.e., Tmax = 190,
typical of short-lived thunderstorms over complex terrain in urban
settings [36]. This example demonstrates the nonideal flow
conditions that are likely to further reduce the propensity of the
harvester to flapping [19].

In Fig. 4 the mean outflow intensity varies with IT(t) as U, I1(7)
while the zero-mean random turbulence 7 is modulated with (7).
The special normalization used in Eq. (2) leads to a ¢,,; function

Table 1 Harvester and thunderstorm properties

Type b (m) T, kgm2 el (Hz) a (%) AR Tmax
7 \m 2n

0 0.25 20 0.25 0.25 4 190

1 0.25 40 0.25 0.30 4 190

2 0.50 300 0.10 0.30 4 190

ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems,
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U=11.0 m/s
-0.2
100 200 300
T
(b) 0.2
—Type 0, AR=4
0.1 —Type 1, AR=4
—
<l
U=14.4 m/s
-0.2
100 200 300
.

Fig. 3 Frozen thunderstorm with turbulence of intensity ¢;,=2%
and aeroelastic load perturbation ¢4,=0.07: Ay(2) versus time
for a structurally-linear harvester at (a) U=11.0 m/s and (b)
U=14.4 m/s. Reproduced with permission from Ref. [19]. Copy-
right © 2024 by Elsevier.

with sharp turbulence intensity variations around Ty, (dashed-
dotted line in Fig. 4), while the mean outflow field is accompanied by
a smoother transition (continuous line in Fig. 4). Furthermore, the
effect of turbulence on instability onset in Fig. 4 vanishes at about
7 ~ 300, with ¢, ; ~ 0. Therefore, any unstable flapping observed
beyond 7 ~ 300 is triggered by a load in a predominantly smooth
flow.

Finally, ¢, does not depend on o; in Fig. 4. However, its
sharpness is influenced by w, in accordance with Eq. (2), i.e., it
reproduces the flow conditions primarily for a Type-2 apparatus
with w, = 0.628 rad/s. Nevertheless, the latter dependency is only
apparent, i.e., a consequence of the normalization used in Eq. (8).

It is also noted in Fig. 4 that the effective duration of the function
I1(7) is longer than the turbulent part (or the gust front), i.e., @ (7).

S =
o O

S
o

<
~

Intensity & Modulation
o
o

)

0 200 400 600 800

Fig. 4 Active thunderstorm’s temporal functions of the mean
outflow II(z), and turbulence ¢:(7) (tmax=190, ,=0.628 rad/s)
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Since the translation velocity of the thunderstorm is neglected in the
formulation (Eq. (3)), the mean flow velocity is modulated on I1(z)
that represents evolution of the storm over its duration 7. This
difference may be eliminated by parametrizing Eq. (1). Further
investigation is needed although it is beyond the scope of the study.

Similarly, if the definition of mean-square stability is considered
[23,50], the asymptotic condition (t — +00) in Eq. (15) is less
meaningful as I1(7) tends to zero with consequent vanishing of the
load. Rather, incipient instability should possibly be referred to the
fully-developed thunderstorm gusty wind. Consequently, the
empirical evaluation by Eq. (15) at about 7; =~ 300 is adequate; in
other words, Ay(2) > 0 can still be used to detect a transitory
unstable regime if a linear harvester model is used. This observation
is discussed below in Fig. 5.

Caracoglia [19] recently demonstrated that the temporal intensi-
fication of the thunderstorm, i.e., the time-varying, slowly-varying
mean wind speed U(t) with II(7) # 1 is detrimental to this
apparatus, mainly influences its stability and extends the flapping
onset beyond 20 m/s. Furthermore, high turbulence with a; = 10%
is desirable to trigger flutter. As an example, Fig. 5 analyzes the
mean-square stability of the harvester for an active turbulence state
with o; = 10%, i.e., the turbulence intensity is five times larger than
the one used in Fig. 3.

Figure 5 compares the MLE empirically found with linear
apparatus (a), and nonlinear Duffing model (b).

First, higher turbulence is necessary since no instability has been
found numerically in any foreseeable range of U,y if an active
thunderstorm is considered. Additional evidence may be found in a
recent study [19]. In Fig. 5 the combination of low turbulence and
decreasing mean aeroelastic load proportional to 1'[(1)2 at about
Tmax = 190 contribute to a harvesting performance loss.

Second, Type-2 apparatus becomes incipiently unstable (i.e.,
flutter onset) at Up,x = 27.0 m/s, depicted in Fig. 5(a), since
Ay(2) > 0 diverges at about t=200, with the numerically
evaluated Ay(2) fluctuating about the zero axis. A “marginally”

—Type 0, AR=4
—Type 1, AR=4
0.1 Type 2, AR=4

U = 27,0 myfs
100 200 300

Unax = 27.4m/s
100 200 300 400 500

T

Fig. 5 Active thunderstorm with high turbulence of intensity
6,=10% and aeroelastic load perturbation 642=0.07: Ay(2)
versus time t at Unax ~ 27 m/s and a harvester model: (a) linear
(x=107") and (b) nonlinear Duffing with ¥ = 100 in Eq. (9) [“Ty.” =
Type].
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unstable trend Ay(2) >0 is possibly noticeable for Type-0
apparatus in Fig. 5(a) at about the same .

Third, the nonlinear Duffing model with Hyp # 0 in Fig. 5(b)
exhibits a permanently stable MLE trend for all cases. This
observation is plausible with the occurrence of limit-cycle sustained
flapping [19], at least for Type-2 apparatus. Employing a linear
harvester model is, therefore, more suitable to detect (and compare)
incipient instability condition, while energy conversion and Sec. 6
must be considered to evaluate the performance of the harvester
beyond any unstable limit.

7.3 Duffing — Van-der-Pol Model

7.3.1 Foreword. The nonlinear damping parameter 7y is varied
to evaluate the sensitivity of the apparatus to this new hybrid model
feature (Eq. (10)). Several configurations are investigated with
y ={0.2,0.5,1,30,300}, some of which are unrealistic. At the
same time k=100 is utilized throughout Sec. 7.3 to allow
comparisons with Sec. 7.2 and, more specifically, Fig. 5.

An initial pilot test is also carried out by numerically studying a
simplified case of an absolutely stable nonlinear Duffing—van-der-
Pol model oscillator, in which the aeroelastic load is set to zero and a
random, stationary buffeting torque is introduced as external
buffeting only. The results of this test are not shown for the sake
of brevity. The general remark is that nonlinear oscillators with
y = {0.2,0.5, 1} and x = 100 are numerically solvable by step-by-
step integration [51]. On the contrary, not only are larger y values
more questionable from the physical point of view, 7 > 1 may also
yield a “stiff”” nonlinear differential equation that can successfully
be solved by a more specialized numerical method. Consequently,
the Euler-Monte Carlo solver [51], used in Eq. (11), may lead to
erroneous, numerically induced unstable solution that is noted in
Ref. [19] but not in Ref. [25].

7.3.2 Frozen Thunderstorm Downburst. From the remarks
noted in Sec. 7.2, simulations are limited to high turbulence, active
thunderstorm state (6; = 10%).

It is observed that, in general, the addition of the new damping
feature in the model does not induce relevant changes to the
stochastic instability and operational conditions of the apparatus,
compared to the Duffing model in Sec. 7.2, with somehow little
influence of the damping parameter y = 1 on the graphs of Ay (2).

As an example, Fig. 6 presents the results for the new hybrid
model subject to a high turbulence, stationary, or frozen thunder-
storm state with constant mean flow, Uy, = U. The figure
essentially replicates the same trends exhibited in Fig. 5(a) with
nonlinear Duffing model: stable apparatus at U=11.0 m/s and
unstable-operational apparatus at about U = 16.4 m/s in Fig. 6(b).
Both Type-2 and Type-0 apparatuses appears to be operational. In
fact, in Fig. 6(b) the MLE Ay (2) crosses the zero axis and becomes
positive at 7= 140 for Type-0 apparatus (thick solid line), while
Ax(2) > 0of Type-2 apparatus is already strongly positive at T = 50
(dotted line, visible on the left side of the graph).

Nevertheless, a sudden “jump” in the thick solid line, describing
the behavior of Type-0 apparatus in Fig. 6(b), is noticeable at about
T=145 with a clear, vertical asymptote [Ay(2) — +oo]. This
“explosion” of Ay(2) is plausibly unrealistic, by careful inspection
of the definition in Eq. (15), possibly contaminated by numerical
integration issues. A similar issue was observed in a recent study
[19], in which some additional discussion is provided that attributes
the problem to the Euler’s numerical solver [51].

7.3.3 Active Thunderstorm Downburst. The graphs Ay(2)
versus time are presented in Fig. 7 for an active, nonstationary
high turbulence thunderstorm. To extend the evaluation of the
damping feature, y = 0.5 is also considered; the proposed
decrement by a factor of two compared to Fig. 6 is acceptable
from a physical perspective. For instance, larger y values have been
hypothesized; a large value y =300 was preliminarily investigated
in Ref. [25] to scrutinize a wider range of options. Nevertheless, the
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Fig. 6 Nonlinear hybrid Duffing — van-der-Pol model with y=1.0
subject to frozen thunderstorm with turbulence of intensity
6,=10% and aeroelastic load perturbation with ¢4,=0.07. Ay(2)
versus time at (a) U= 11.0 m/s and (b) U= 16.4 m/s [“Ty.” = Type].

hybrid harvester case with 7 > 1 was not considered in this study as
it is possibly unrealistically large, less meaningful to design.

The graphs Ay (2) versus time, presented in Fig. 7, refer to slowly-
varying mean wind speed with U ~ 27 m/s. Contrary to Sec. 7.3.2,
the Ay (2) numerical analysis is extended to t; = 500. Figure 7 tends
to confirm the remarks in Sec. 7.2.2. Nevertheless, flutter instability
is temporarily engaged at about 7; = Typax = 190 for Type-2
apparatus in Fig. 7(a) with a lower y = 0.5 with Ay(2) >0,
whereas the transient unstable trend disappears in Fig. 7(b) with a
larger y = 1.0. Other apparatus’ types are not affected. The MLE
graphs are, however, similar to the behavior observed in Fig. 5(b),
corroborating the observation that output power analysis is
necessary to study postcritical flutter performance.

8 Stochastic Output Power Results

Output power analysis is based on the numerical evaluation of
output power coefficient in Eq. (20), mean output power in Eq. (22)
and Q-factor by Eqgs. (23) and (24). Primary consideration is given to
the nonideal, nonstationary thunderstorm flow conditions and the
hybrid Duffing—van-der-Pol model. Preliminary investigation on
stochastic output power during post-critical stages for the Duffing
model and apparatus are reported in a recent study [19] and are
briefly summarized only in this paper.

8.1 Duffing Model (Nonstationary Flows Only). In this
scenario, Type-2 apparatuses is engaged at about U, = 27.4 m/s
(Fig. 5) during post-critical flutter; Type-0 is also possibly
operational while Type-1 is not triggered. Figure 8 illustrates the
power results and examines Cp (1), E[Poy ()] and Q-factor. In
Figs. 8(a) and 8(b), energy conversion in only visible at time
190 < 1 < 300, compatible with the maximum intensification of the
nonstationary flow (Fig. 4). Although Type-O apparatus has a
noticeable efficiency compared to Type-2, the energy conversion is

ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems,
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still quite low in terms of E[Pyy(7)]. Furthermore, the efficiency
measured by Cp (1) is of the order of 10™* and it is meaningless in
comparison with the output power coefficient of large-scale wind
energy systems [66]. Energy conversion appear to be active
although the average output power is low (Fig. 8(a)).

In Fig. 8(c) the graphs compare the time-dependent Q-factor to the
corresponding inactive scenario, in which the Q-factor tends to its
upper limit Q(7) = Q = 1/(2¢,) since Eq. (25) is set to zero. The
latter case is portrayed in the figure by a dotted horizontal line, e.g.,
Q = 166.6 for Type-1 and Type-2 apparatuses (Table 1). Typically
in a miniature device, a good achievement can be associated with a
condition, in which the Q-factor is as large as possible [63] and
avoids prevailing parasitic effects. Since the proposed apparatus is
not a traditional miniature harvester, any remark should be carefully
considered. Therefore, in the case of Fig. 8(c), the “quality” can be
achieved if Q(t) is approximately constant over time. Unfortu-
nately, this is not noticeable, at least from the numerical results;
undesirable fluctuations are visible during both the primarily active
stage (190 < t < 300) and the subsequent decay of the thunder-
storm flow effects. In particular, the quality rapidly “switches”
between 0 and the upper limit, clear indicator of a nonideal, deficient
performance.

8.2 Hybrid Duffing—Van der Pol Model. Figure 9 presents the
output power analysis results of Duffing—van-der-Pol model
apparatus with y = 0.5, k=100 under active thunderstorm out-
flows. The results in Fig. 9 may be compared against those in Fig. 8.
In each figure panel the value of y parameter is indicated as a label to
differentiate the graphs from the Duffing model case (y = 0, Fig. 8).
While the vertical axis scales of Cpp () and Q-factor are the same, the
scale of E[Poy(7)] in Fig. 9(a) is larger to discern the differences.
Clearly, the nonlinear damping effect, introduced with Hyp in Eq.
(10), is beneficial. A moderate y = 0.5 nonlinearity produces a
remarkable relative increment in the average output power at time
200 < t < 300, especially for Type-2 apparatus. Type-2’s

—Ty.0
0.1 —Ty.1

" Upax =27.0m/s, v = 0.5

-0.2 H£
100 200 300 400 500
T
(®) 02
—Ty.0
0.1 Ty.].

[ Upax =27.4m/s, v =1.0

100 200 300 400 500
T

Fig. 7 Nonlinear hybrid Duffing — van-der-Pol Model with
variable y (a) y=0.5 and (b) y=1.0, subject to nonstationary active
thunderstorm with turbulence of intensity 6, =10% and aeroelas-
tic load perturbation with 64,=0.07. Ay(2) versus time at U ~ 27
m/s [“Ty.” = Typel.
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achievable power conversion seems more efficient, although the
absolute value of [£[Pyy (7)] is still low and despite the dimensions of
the blade-airfoil (Table 1).

Nevertheless, the favorable behavior of Type-2 harvester is much
less evident if one compares Cp(t) in Fig. 9(b). The reason is
believed to be related to the concurrent small values of the term
0p(1), accompanied by large o, (7) in Eq. (19). This remark confirms
previous evidence [19] and suggests that the definition of Cp (7) may
be inappropriate for the purposes of comparing performance.
Furthermore, the Q-factor is a similarly unsuitable indicator,
although some difference is noticeable by considering the expect-
ations, i.e., the temporal average of Q(t) in Fig. 9, which suggests a
slight preference of Type-0 versus Type-2 apparatus because of a
moderately larger average.

Finally, [E[Poy(7)] is analyzed in the case of frozen downburst
storm, i.e., stationary turbulent wind field with constant mean speed
U. The special case at U=14.0 m/s is illustrated. These results,
presented in Fig. 10 for a Duffing—van-der-Pol model harvester with
y = 1.0, can possibly be examined against Fig. 9(a) of the
nonstationary case at Upax = 27.0 m/s. The graphs are limited to
the time interval 25 < t < 250. The average output power,
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Fig. 8 Output power analysis of Duffing model harvester with
k = 100, subject to nonstationary active thunderstorm of intensity
6;=10% and Unax=27.4 m/s, and aeroelastic load perturbation
with 642=0.07: (a) £[Pout(t)] average output power, (b) C» (t) mean
output power coefficient, and (c) Q-factor [“Ty.” = Type]
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Fig. 9 Output power analysis of Duffing — van-der-Pol model
harvester with y=0.5, x =100, subject to nonstationary active
thunderstorm of intensity ¢;,=10% and Umnax=27.0 m/s, and
aeroelastic load perturbation with 64,=0.07: (a) E[Pout(1)] average
output power, (b) Cr (r) mean output power coefficient, and (c) Q-
factor [“Ty.” = Type]
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Fig. 10 Average output power {[[Poyt(7)]}. of a Duffing — van-
der-Pol model harvester with y=0.5, x =100, subject to a frozen
thunderstorm with turbulence of intensity 6, =10% and a constant
outflow speed U= 14.0 m/s [“Ty.” = Typel].
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achievable during a low-speed stationary boundary layer wind with
Type-2 apparatus (thick dotted line), exhibits a much larger value
compared to Fig. 9(a). Moreover, non-negligible output power is
also noted for Type-0 device. Less promising conversion powers
are, however, attainable during nonideal outflow conditions.
Additional investigations, beyond the scope of this study, are
advisable to simultaneously optimize the parameters y and x in
Eq. (10) of the hybrid model.

9 Conclusions

Numerical investigations confirm the detrimental effect of
nonideal flows with, on average, an adverse increment of operational
flutter speed above +30%. Nevertheless, the proposed implementa-
tion of a hybrid restoring torque mechanism coupled with nonlinear
damping effect (y = 0.5) is promising, since the achievable power
conversion may possibly be one order of magnitude larger; this
beneficial effect is observed at very large values of critical Upx.
Besides the parameter 7, flutter propensity is mainly controlled by o>
in the van-der-Pol equation. Since amplitudes of the flapping
angular motion are moderate at sustained and benign flutter,
activation of this effect is further exacerbated by the nonstationary
flow conditions and imperfect fluid—structure interaction. Conse-
quently, a successful exploitation of the proposed apparatus is still
dubious during nonstationary wind events.

Additional investigation is still needed to better characterize the
role of the hybrid Duffing—van-der-Pol model in the context of
practical design. Verification and validation by wind tunnel tests are
also advisable to confirm the observations. Furthermore, exploita-
tion of nonlinear aeroelastic loads ([67]) should be considered to
more realistically reproduce the loads at moderate flapping
amplitudes. Finally, even though flutter speed can be found in
closed form in the absence of turbulence and other random
perturbations, the same approach could be pursued to examine
mean-square stability through approximation of the nonlinear
equation solutions, e.g., by stochastic approximation.
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Nomenclature

a = dimensionless position of the pivot “O”
AR = aspect ratio of the blade-airfoil
b = half-chord width of the blade-airfoil
B (1) = scalar Wiener noise for turbulence perturbation
B (1) = scalar Wiener noise for load perturbation
¢; = amplitude parameters of the ® function (i =1, 2)
d; = exponent parameters of the @ function (i =1, 2)
d>m = mean value of random exponent parameter d,
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&y.1(7) = random peak factor of a
&x.7(7) = expected value of the random peak factor of «
Hni (o, dor/dt) = nonlinear restoring mechanism forcing function
(1) = output current of the power system (A)
Iy, = polar mass moment of inertia of the flapping foil
(kgm®)
ky, = reduced frequency of the 1DOF flapping foil
¢ = span-wise longitudinal length of the blade-airfoil
L = impedance of output power circuit (Henries)
M, = aeroelastic torque (Nm)

Mem) = electromotive torque (Nm)
Piy(7) = input power of the wind flow
Pou(t) = output power of the harvester
QO(t) = quality factor
Q, A, = diffusion matrix of the load perturbation
qemni (Wem) = nonlinear drift vector-function

R = resistance of output power circuit (Ohms)
Si: = spectrum of dimensionless, stationary turbulence
SiEpsp = evolutionary spectrum of non-stationary

turbulence
t = rime (s)
tmax = time (s), downburst’s maximum intensification
tnr; = nonlinear turbulence diffusion function

T = total effective duration of the thunderstorm (s)

u(t) = along-wind non-stationary turbulence (m/s)
U(7) = “mean” outflow wind speed (m/s)
Unax = maximum slowly-varying wind speed (m/s)

)
X
i(t) = normalized along-wind non-stationary turbulence
) = random state vector
Y = sub-vector of random vector We,,
z = vertical axis coordinate
Zmax = height, maximum downburst intensification
o = flapping angle of the blade-airfoil, about pivot
“«O”
opk = Peak flapping angle process from parent o
7 = nonlinear damping, Duffing-van der Pol model
0, = random perturbation to mean parameter d,
€ = normalized inertia parameter
{, = structural damping of the flapping foil
3p = parameter for three-dimensional load effects
0p(t) = scalar, deterministic parameter of output power
1 = dimensionless induced current of the power
circuit
Kk = dimensionless stiffness, nonlinear restoring
torque
Ay (2) = second moment Lyapunov exponent
ArL = generalized impedance of the power circuit
= aeroelastic state (i =1, 2)
vy, = rate of « zero up-crossings
= aeroelastic state (i =1, 2)
7) = temporal intensification function
p = air density
0, = standard deviation of o
o4, = standard deviation of J,(7)
0; = standard deviation of i
Tt = dimensionless time, T = tw,
7; = discrete time instant, used to estimate MLE
Tmax — dimensionless time, maximum intensification
® = unsteady aeroelastic forcing function
@y = unsteady aeroelastic forcing function at T =0
®(c.m.c.) = dimensional electro-mechanical coupling
¢m¢ (1) = modulation function for downburst’s S; gpsp
Y = dimensionless electro-mechanical coupling coeff
o = angular vibration frequency (rad/s); and
w, = pulsation of the one-DOF flapping foil (rad/s)

Abbreviations and Operators

DOF = degree-of-freedom
E[.] = expectation operator
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MLE = moment Lyapunov exponent
(-) = temporal average

[]" = transpose operator
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