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Wind energy harvesters are usually designed to operate in the low wind speed range. They
rely on smaller swept areas, as a complement to larger horizontal-axis wind turbines. A
torsional-flutter-based apparatus is investigated herein to extract wind energy. A nonlinear
hybrid restoring toque mechanism, installed at equally spaced supports, is used to produce
energy through limit-cycle vibration. Energy conversion and storage from the wind flow are
enabled by eddy currents. The apparatus is used during thunderstorm outflows to explore its
efficiency in nonideal wind conditions. The thunderstorm flow model accounts for both
nonstationary turbulence and slowly varying mean wind speed, replicating thunderstorm’s
intensification and decay stages. This paper evolves from a recent study to examine
stochastic stability. More specifically, the output power is derived as a random process that
is found numerically. Various thunderstorm features and variable apparatus configurations
are evaluated. Numerical investigations confirm the detrimental effect of nonideal,
thunderstorms on harvester performance with, on average, an adverse increment of
operational speed (about þ30%). Besides nonlinear damping, the “benign” flutter-prone
effect is controlled by the square value of the flapping angle. Since flapping amplitudes are
moderate at sustained flutter, activation of the apparatus is delayed and exacerbated by the
nonstationary outflow and aeroelastic load features. Finally, efficiency is carefully
investigated by quantification of output power and “quality factor.”
[DOI: 10.1115/1.4065532]
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1 Introduction

Wind energy technologies are important because of the need for
green energy sources. “Specialized” harvesters [1] have been
proposed to exploit wind energy in the lowwind speed range and for
small-scale applications. These harvesters are triggered by aeroe-
lastic instability in the airflow [2,3]. Similar devices have been
considered, either triggered by water axial-flow instabilities [4], or
by flutter of an inverted and flexible flag [5], or by vortex-induced
vibration of cylinders inside ventilation ducts [6,7]. Recently, the
exploitation of parametric excitation originating from airflow
oscillation has been suggested to enhance the performance of

plunge-pitch harvesters [8]. Most above-cited harvesters are,
however, conceived as micromechanical units, i.e., used for
recharging various types of miniature sensors.
By contrast, the field of “meso-scale” harvesting technologies has

been much less explored. For example, sustained vortex-induced
vibration of multi-unit circular cylinders in water flows [9] has been
exploited. Recently, a hybrid device, installed on highway bridges,
which can simultaneously scavenge electrical power from two
different energy sources (natural wind flow and traffic-induced
bridge vibrations), has been designed [10].
Along this line of research, a torsional-flutter-based apparatus has

been proposed by the author [11]; the operational mechanism was
inspired by seminal work by Ahmadi and coworkers [12,13]. The
apparatus is composed of a nondeformable “blade-airfoil” that
rotates about a pivot axis and is partially restrained through a
nonlinear torsional spring mechanism, installed at equally spaced
supports. Various configurations can be considered with adjustable
position of the blade-airfoil pivot axis: from the leading edge
(windward point) to a point closer to the quarter-chord axis position.
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Dimensions of the harvester’s blade are half-chord length and
longitudinal (transverse) length. A nonlinear Duffing model and
torsional spring mechanism have been used to produce limit cycle,
postcritical vibration. Conversion to electrical power is warranted
by an eddy current power systemwithmultiloopmagnetic coil and a
translating permanent magnet [14]. Energy could be stored in a
battery.
Recent studies have examined the stochastic stability of the

harvester and its post-critical operational conditions in turbulent
wind flows, composed of horizontal mean speed and along-wind
turbulence. Nonsynoptic, nonstationary turbulence has also been
considered to simulate nonideal wind flows, i.e., a gust front
originating from a thunderstorm downburst [15–17], recently
recorded in urban settings, where the apparatus is planned to be
installed.
In this study, a recently proposed, new model is utilized to

examine the mean-square stability limits. The model replaces the
Duffing [18] restoring torque mechanism, used in the past [11,19],
with a hybrid Duffing–van-der-Pol torque mechanism. The
mechanical torque mechanism is based on standard approaches
that trigger limit-cycle vibration [18] under steady, nonturbulent
wind flow. The model couples the cubic-polynomial nonlinear
torsional (i.e., spring-type)mechanism that opposes the self-induced
torsional flapping vibration with a quadratic, amplitude-dependent
equivalent damping effect and device.
Duffing–van der Pol harvesting technology has been explored to

enhance micromechanical devices, triggered either by external
parametric (periodic) excitation [20,21] or by stochastic sources
[22]. Nevertheless, this technology has not been applied to the type
of harvesters envisioned by this study. Therefore, it represents a
novelty in the field of medium-size harvesters.
The main objectives of the paper are to:

(1) Reproduce the blade-airfoil aerodynamics by assuming a
fully coherent thunderstorm gust front [19];

(2) investigate mean-square, stochastic stability by moment
Lyapunov exponents (MLE) [23], computed numerically
[24]; and

(3) expand the preliminary results, presented in a recent study
[25], to analyze output power in a stochastic, non-stationary
load environment.

The nomenclature table is provided in the Nomenclature section.

2 Description of the Apparatus

The apparatus (Fig. 1) is composed of a rigid blade-airfoil of
dimensions b (half-chord width) and ‘ (span-wise, longitudinal
length), which rotates about pivot “O.” The a flapping of the rigid
blade-airfoil is enabled through appropriate connection, either at
equally spaced points or continuously along the span-wise direction
‘, to a structural support (a mast in Fig. 1). The orientation of the
blade-airfoil is on XY horizontal plane (Fig. 1).

The aeroelastic torque about pivot O is modeled by standard
aeroelastic formulation for flat plates (i.e., a NACA0012 section of
small thickness) and small angles of attack a. The load is also
corrected for three-dimensional flow effects due to the finite airfoil
span, i.e., through aspect ratio AR ¼ ‘=b. The thunderstorm outflow
combines a slowly varying, “mean” outflow wind speed U with
along-wind nonstationary turbulence u. Other turbulence compo-
nents are not included because they secondarily affect the blade-
airfoil aeroelasticity. These two flow features simulate various
development stages of the wind phenomenon, as described in Secs.
3.2 and 3.3. The aeroelastic loadmodel plausibly replicates themain
features of a gust front [26,27], originating from a nonsynoptic
thunderstorm. Since the blade is longitudinally oriented on a vertical
plane (XZ in Fig. 1), gravity is not relevant to energy conversion.
In Fig. 1 (top), a “nonlinear rotational restoring/damping mech

[anism]” is indicated. This item is schematically described by a
circular hollow container that encloses the unit’s linear and
nonlinear restoring and damping torsional mechanisms. A nonlinear

restoring torquemay be designed, for example, by embedding small,
partially pretensioned loose cables inside the hollow gap; this
design, at a larger scale, has been used for translating motion in
nonlinear energy sinks [28] and could possibly be exploited for the
flapping rotation. In the case of van der Pol energy absorption
mechanism, the design concept may be borrowed from [29], who
considered a vibration damper applied to a rotor; this device could
possibly transform the rotor’s whirling motion into a periodic “one-
line” nonconservative motion [29]. Nevertheless, these design
concepts are only preliminary; they will require careful consid-
eration prior to any physical implementation. Finalized design will
possibly be considered in future studies.

3 Non-Stationary Flow Fields

3.1 State-of-the-Art Review. A thunderstorm downburst is a
meteorological wind phenomenon, observed during thunderstorms.
The downburst is a strong downdraft flow that induces an outburst of
high wind speed flows near the ground [30]. Aircraft accidents near
the ground, upon landing in thunderstorms, provided the initial
motivation for examining downbursts [31]. Downbursts were first
recorded during thunderstorms by Doppler radar stations during the
Northern Illinois Meteorological Research in Downbursts (NIM-
ROD, 1978) and the Joint Airport Weather Studies (JAWS, 1982)
projects in the USA [30,31]. Observations by meteorologists led to
the derivation of methods to classify downbursts and to understand
their generation mechanism [32–34]. Experimental evidence
continued over time until recently, where several observations of
downburst and thunderstorm outflowswere reported [15,35–37] and
led to a critical review of the models for fluid-structure interaction
analysis in nonstationary wind flows [38,39].

Downbursts are convective, short-lived, ground-based, either dry
or wet and characterized by small-scale shear winds. They evolve

Fig. 1 Schematics of the torsional flutter harvester: (top) 2D
cross-sectional view on the XY horizontal plane; (bottom) 3D
rendering. Reproducedwith permission fromRef. [19]. Copyright
# 2024 by Elsevier.

041204-2 / Vol. 10, DECEMBER 2024 Transactions of the ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/risk/article-pdf/10/4/041204/7356700/risk_010_04_041204.pdf by N

ortheastern U
niversity Libraries user on 01 August 2024



and land to ground at a touchdownpoint, subsequently diverging and
decaying over a short period of time. These convective wind fields
are complex and consist of several flow velocity components: radial,
vertical, horizontal, and translation velocities [33,34]. The down-
burst field, forming during the thunderstorm, translates because of
the traveling thunderstorm path. There are two types of downburst
[33]: single downburst and downburst line. A single downburst is
isolated with diverging winds pointing outward in all directions
from the touchdown center. The latter is a downburst casewhere two
or three outflows form on one line, often the “straight” line of the
thunderstorm track.
The wind field varies rapidly in direction, magnitude, and

turbulence properties. It produces transient, nonsynoptic and short-
duration wind events, which can produce complex aerodynamic
loads. Transient/nonstationary downburst winds can lead to
dynamic vibration on vertically oriented, flexible structures. The
structural response cannot be analyzed by standard analytical
methods based on stationary, synoptic winds [17].
Figure 2 illustrates a typical time series of a downburst event. It

reproduces the instantaneous outflow velocity magnitude of the
AAFB (Andrews Air Force Base) thunderstorm outflow, measured
by an anemometer at 4.9m elevation from the ground on Aug. 1,
1983 at 2 pm Eastern daylight time [30]. The downburst velocity
record traveled through a first primary peak (67 m/s wind gust) to a
secondary peak (43 m/s gust) after approximately 3min. The
instantaneous direction flow varied as the primary and secondary
peaks traveled through the anemometer, from NW to SE quadrants,
respectively. From Fig. 2, the following features can be noted: (i)
slow time-varying mean (nonturbulent velocity), and (ii) rapidly
varying fluctuations (turbulence).

3.2 Slowly-Varying Wind Speed U. Aeroelastic torque is
proportional to the mean flow speed U. The thunderstorm “mean”
flow is time dependent as a result of thunderstorm’s evolution [34].
The time-dependent mean flow speed is rewritten as
UðsÞ ¼ UmaxPðsÞ > 0. The quantity Umax is the maximum outflow
wind speed of the thunderstorm; s ¼ xat is a dimensionless time,
with t in ½s� and normalized with respect to xa or angular frequency
of the spring-supported, linear apparatus.
AlthoughUmax is recorded at a specific elevation from the ground

(20 � zmax � 80 m [35]) and the wind profile is not uniform, the
slowly-varying outflow field is considered approximately constant
with height z.Moreover, mean-wind directionality (Fig. 2 bottom) is
neglected. These assumptions are plausible because the apparatus’

reference diagonal dimension ð ffiffiffiffiffiffiffi
2b‘

p Þ is small compared to zmax;
furthermore, the unit is designed to be installed on a building roof-
top, close to a typical zmax ¼ 20 m [36].
Due to the small ð ffiffiffiffiffiffiffi

2b‘
p Þ dimension, themain transitory feature of

the thunderstorm that influences the stability is the temporal
intensification, PðsÞ. If the mean flow speed is substituted by

UðsÞ ¼ UmaxPðsÞ, intensification (intensity factor) is derived from
[40], as explained in Ref. [19]

P sð Þ ¼

s
smax

0 � s
smax

� 1

e
�0:52 s

smax
�1½ � s

smax

> 1

8>>><
>>>:

(1)

If dimensional time t is used in Eq. (1),with t ¼ sxa; tmax (or smax)
is the time instant corresponding to maximum intensification
[34,40]. Since tmax=T � 0:52, using T¼ 1200 s as the total thunder-
storm duration from initial touchdown to full decay [34,40] and
tmax � 630 s from [41], Eq. (1) is obtained. Furthermore, using
typical values ofxa from [11], smax is found as about 400 < smax <
1000 if the total duration is referred to the AAFB thunderstorm [41],
or 200 < smax < 500 if tmax � 300 s is extrapolated from data
presented by Ref. [35].

3.3 Random Turbulence Field. The along-wind turbulence
component u influences the dynamic pressure and load. It is random,
nonstationary, and aptly normalized. The properties of the
corresponding stationary process are represented by reduced
turbulence spectrum [16]. If ûðsÞ ¼ uðsÞ=Umax is the dimensionless
stationary turbulence, the spectrum of the stationary process is
SûðxÞ and,without any loss of generality, it is aGaussianwhite noise
process with nonzero standard deviation. The standard deviation of
the stationary turbulence is rû.
The nonstationary thunderstorm-like turbulence features are

reproduced as ûumf, i.e., by multiplication with modulation umf

[15,16] so that the evolutionary turbulence spectrum is
Sû,EPSDðx, sÞ ¼ SûðxÞu2

mfðsÞ [16].
The function 0 � umfðsÞ � 1 is deterministic [16]. umfðsÞ is

derived from the temporal modulation AFðtÞ ¼ a0tb0 e�kt proposed

by Chen [42], with time t in sð Þ units, decay k in s�1Þ�
and

dimensionless shape parameters a0, b0. The parameters of AFðtÞ are
not independent; k � 1 s�1 can be used [41,43]. If smax designates
the dimensionless time instant of maximum turbulence intensifica-
tion (same as smax in Eq. (1)), AFðtÞ is transformed into umf [19]

umf sð Þ ¼ e
smax�s

xað Þ s
smax

� �smax=xa

(2)

with b0 ¼ ksmax=xa. Equation (2) is valid if smax > 0. As indicated
in the previous section, smax ¼ tmaxxa depends on the total duration
of the thunderstorm (only). Furthermore, since the diagonal
dimension of the blade-airfoil ð ffiffiffiffiffiffiffi

2b‘
p Þ is small compared to the

integral turbulence length scales, the nonstationary gusty field is
basically coherent across the apparatus in Fig. 1.

Finally, it is noted that stationary turbulence u is approximated by
a Gaussian white noise. It would be possible to readily include a
more accurate u description, e.g., by exploiting autoregressive
turbulence model representation in the time domain [44,45]. For the
sake of stochastic model compactness, however, the “colored-
noise” representation [45] was not included in this preliminary
model.

3.4 Instantaneous Dynamic Pressure. The dynamic pressure,
needed to find the aeroelastic load, combines the effects of the
slowly varying mean UðsÞ ¼ UmaxPðsÞ and turbulence uðsÞ. The
total, instantaneous dynamic pressure is equal 1=2q½UðsÞ þ uðsÞ�2,
i.e., proportional to the air density q and the squared velocity (m/s)2

½UðsÞ þ uðsÞ�2 � U2ðsÞ þ 2UðsÞuðsÞ
¼ U2

maxP
2ðsÞ þ 2U2

maxPðsÞumfðsÞûðsÞ
(3)

In Eq. (3), the product ûumfðsÞ produces the nonstationary
turbulence features. In dynamics and wind engineering, it is

Fig. 2 Horizontal flow velocity time series of the AAFB down-
burst; the plot is adapted from Ref. [30]
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customary to approximate the dynamic pressure by truncating the
expansion to the first-order Taylor expansion (Eq. (3)). Neglecting
higher order terms is acceptable since the random û2ðsÞ is
proportional to the squared value of the turbulence intensity,
yielding an approximation error smaller than 4% within the
turbulence variations in typical atmospheric winds.

4 Dynamic Equilibrium Equation

4.1 DuffingModel. The physical states are torsional rotation a
and derivative da=ds with respect to dimensionless time s. The
dynamic equilibrium equation of the flapping rotation is [11,25]

d2a
ds2

þ 2fa
da
ds

þ aþ ja3 ¼ M0z þM e:m:ð Þ
x2

aI0a
(4)

Nonlinear restoring force effect is simulated by the term ja3 with j
suitable positive constant; I0a is the total polar mass moment of
inertia about pivot O. Structural damping is simulated through a
linear term in Eq. (4) with damping ratio 0 < fa < 1.
The external torsional moment is about pivot O in Fig. 1. Noting

the distance ab from the midchord point, the pivot axis position can
vary between the leading edge (a¼�1) and the one-quarter chord
position (a ¼ �0:75). The moment is composed of aeroelastic
torque M0z and electromotive torque

Mðe:m:Þ ¼ �ð1� aÞbUðe:m:c:ÞIðsÞ (5)

with IðsÞ being the output current of the power system;Uðe:m:c:Þ is the
electromechanical coupling coefficient in units of newton/ampère
[11]. The moving coil introduces magnetic induction and interacts
with a moving shaft, translating inside the winding coil (shown in
Ref. [11]).

4.2 Hybrid Duffing–Van-der-Pol Model. The equilibrium
incorporates both Duffing and van-der-Pol models to possibly
improve energy conversion. The modified equation reads [25]

d2a
ds2

þ 2fa 1� ca2
� � da

ds
þ aþ ja3

¼ M0z þM e:m:ð Þ
x2

aI0a

(6)

In Eq. (6), besides parameter j, a nonlinear damping effect with
coefficient c is introduced. The parameter cmodels the self-limiting
feature of the negative damping mechanism proportionally to the
linear term 2fa.

4.3 Aeroelastic Torque

4.3.1 Stationary, Time-Dependent Loads. Mean aerodynamic
forces are zero since static lift force is negligible at a � 0 due to
blade symmetry. In the absence of turbulence and with uniform,
stationary flow, the aeroelastic torque depends on: static lift
coefficient slope at a¼ 0 or @CL=@a ¼ 2p [46], time-independent
mean speed U [11] with mean direction (orientation of the blade-
airfoil) parallel to the x axis in Fig. 1. Aeroelastic torque in a
stationary airflow is modeled in the time domain by flow memory
theory, i.e., Wagner’s [47] indicial function formulation [46],
corrected for lift and torque reduction due to three-dimensional flow,
which depends on the aspect ratio AR ¼ ‘=b. TheWagner’s indicial
function [47] of the load is [48]

UðsÞ ¼ ½1� c1e
�d1sk�1

a � c2e
�d2sk�1

a � (7)

with reduced frequency ka ¼ xab=U and suitable load parameters:
c1 ¼ 0:165, d1 ¼ 0:0455, c2 ¼ 0:335, d2 ¼ 0:3 [48] for an ideal-
ized, symmetric NACA0012 section (Fig. 1). Three-dimensional
flow effects on the loads will be discussed in Sec. 5.1.

4.3.2 Non-Stationary Aeroelastic Load Perturbation. As
described in Sec. 4.3.1 and in the presence of nonstationary winds,
UðsÞ is a short temporal load evolution that is approximately
independent of the gust front’s instantaneous features, i.e., Eq. (1).
In a nonstationary load setting with slowly-varying mean wind

speed, the reduced frequency approximately depends on Umax, i.e.,
ka ¼ xab=UðsÞ � xab=Umax. Consequently, variability in the
unsteady load can plausibly be concentrated in the parameters of
UðsÞ and are secondarily attributed to temporal variations of U and
Eq. (3).
Perturbation is introduced by replacing the deterministic

parameter d2 ¼ 0:3 in Eq. (7) with a random, time dependent
d2 ¼ d2,m þ d2ðsÞ; d2,m ¼ 0:3 and d2ðsÞ is a zero-mean, Gaussian
perturbation; d2ðsÞ also accounts for aeroelastic load measurement
error and any modeling simplifications.
The reason for exclusively considering randomness in the d2

parameter is because the second exponential term fc2e�d2sk�1
a g

primarily controls the rapidly varying load variations
through Eq. (7); this term is mainly responsible for the flowmemory
effects.

5 Stochastic Differential Equations

5.1 Fundamental Dynamic Model Equation. If the rotation
axis is at the leading edge (a¼�1) the dynamic equation of the
flapping angle is [19]

1þ 9

8�g3D

� �
d2a
ds2

þ 1:5�g3Dk
�1
a þ 2fa

� � da
ds

þ aþ HNL a,
da
ds

� �
¼ �Wi

� �g3D
k2a

P2 1þ 2umf

P
û

� �
U0 aþ 1:5ka

da
ds

� ��

þ 1:5 �ae,1 þ �ae,2ð Þ þ lae,1 þ lae,2�

(8)

where bothP andumf depend on time s;U0 ¼ Uð0Þ ¼ 0:5.Quantity

W ¼ 4b2ðUðe:m:c:ÞÞ2=ðxaI0aRCÞ is a dimensionless electromechan-

ical coupling coefficient of the eddy-current power circuit; RC is the
resistance of the power circuit; �ae,1ðsÞ, lae,1ðsÞ, �ae,2ðsÞ and

lae,2ðsÞ are four time-dependent aeroelastic states; and � ¼
pqb4‘ðI0aÞ�1

[11] is an inertia parameter. Parameter g3D ¼
AR=ðARþ 2Þ [49] accounts for three-dimensional flow and load
effects.
On the left-hand side of Eq. (8) the nonlinear function

HNLða, da=dsÞ is used to differentiate between Duffing model
(Eq. (4)) [25]

HNL ¼ ja3 (9)

and Hybrid Duffing–van-der-Pol one [Eq. (6)] [25]

HNL ¼ ja3 � 2faca
2 da
ds

(10)

The eddy current equation of the power circuit with electro-
mechanical coupling is found by magnetic induction [11,14].
This equation reads di=ds ¼ kRLðda=ds� iÞ, where iðsÞ ¼
IðsÞ½2bxaUðe:m:c:Þ=RC��1

is the dimensionless output current; kRL ¼
RC=ðxaLCÞ is the generalized impedance (RC resistance, LC
inductance). This equation is combined with Eqs. (8) and (9) or
Eqs. (8) and (10) to form a state-space model, composed of seven
nonlinear, coupled electromechanical equations. Detailed descrip-
tion of these equations is omitted for the sake of brevity but may be
found in Refs. [19,25].

041204-4 / Vol. 10, DECEMBER 2024 Transactions of the ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/risk/article-pdf/10/4/041204/7356700/risk_010_04_041204.pdf by N

ortheastern U
niversity Libraries user on 01 August 2024



5.2 Itô-Type Differential Vector Equation. The turbulence
variable û is expressed by a Gaussian process; consequently û
dependency is represented by Wiener processes in the context of
stochastic differential equations [50,51], Itô-type [52]. After
suitable manipulations, it is found

dWem ¼ qem,NLðWemÞds
þ

ffiffiffiffiffiffi
2p

p
½tNL,ûðWemÞdBûðsÞ

þQL,D2WemdBD2ðsÞ�
(11)

Wem ¼ ½a, da=ds, �ae,1, �ae,2, lae,1, lae,2, i�T in Eq. (11) is the state
vector; Wem includes both physical, aeroelastic states, and
dimensionless output current i.
In Eq. (11), the scalar, Wiener noise BûðsÞ of unit variance

increments separately addresses turbulence perturbation from the
noise BD2ðsÞ, used for load perturbation. Quantity qem,NL is a

nonlinear vector-function; tNL,û is a nonlinear turbulence diffusion
vector-function. QL,D2 is a constant, diffusion matrix that controls

the load perturbation and depends on the standard deviation of
d2ðsÞ, rd2.
Both qem,NL and tNL,û incorporate dependency on PðsÞ, umfðsÞ

and rû. Derivation of qem,NL is omitted for the sake of brevity but is

described inRef. [19]; tNL,ûðWemÞ is a 7� 1 vector functionwith one
nonzero element only

tNL,û Wemð Þ� 	
2
¼ 2Pumfrû �g3Dð Þ2

9=8þ �g3Dð Þk2a





U0 Wem,1ð

þ 1:5kaWem,2Þ þWem,5 þWem,6

þ 1:5 Wem,3 þWem,4ð Þj

(12)

In the previous equation the symbol j:j designates absolute value
operator. The nonzero elements of the 7� 7 QL,D2 matrix that left-
multiplies Wem, are

½QL,D2�4,2 ¼ ½QL,D2�6,1 ¼ rd2k
�1
a c2 (13a)

½QL,D2�6,6 ¼ �rd2k
�1
a (13b)

The Wong and Zakai correction terms [53] are introduced in
Eqs. (12) and (13).
Equation (11) must be solved with appropriate initial conditions,

imposed on the random state vector at s¼ 0. Initial conditions are
imposed by assuming nonzero random initial flapping, compatible
with the plausible triggering mechanism, expressed as a random,
Gaussian, scalar angle perturbation a0 into the first element of the
sate vector with given properties, while other states have identically
zero initial values, i.e., Wemð0Þ ¼ ½a0, 0,…, 0�T .

5.3 Mean-Square Stability. The standard asymptotic stability
analysis [54] relies on the various definitions of stochastic stability,
among which the use of MLE [24] is usually considered in the
context of wind-excited nonlinear systems [55–58] such as the one
in Eq. (11). The MLE measures the propensity of the system’s slow
dynamics to asymptotically exhibit a diverging oscillatory trend. It
can be interpreted as a generalized measure of damping ratio in a
linear system. The MLE cannot usually be found in closed form;
stability must be studied numerically. Asymptotic stability entails
that Eq. (11) is first solved in weak form, i.e., by numerical
integration that is repeated several times through Monte Carlo
sampling [24]. Second, the ensemble of the solutions is collected and
utilized to examine stability. The mean-square stability requires the
evaluation of the second MLE of the subvector ! ¼ ½a, da=ds, i�T

K! 2ð Þ �
loge

�
Ekð!ðslÞk2�

�
sl

(14)

where E½:� is the expectation operator applied to the Euclidean
vector norm;!ðslÞ is evaluated at time sl > 0; time sl is sufficiently
large, i.e., Eq. (14) approximates the limit as sl ! þ1 to study
stability [24]. The vector ! in Eq. (14) also includes the output
current i to evaluate the effect on operational conditions and energy
conversion.
Equation (14) is employed, at least approximately, to investigate

environments contaminated by nonstationary, thunderstorm gusty
winds, noting that the asymptotic value, defined in Eq. (14), is rather
elusive and should possibly be referred to a finite time sl, at least
greater than smax or possibly beyond the durationof the thunderstorm.

6 Stochastic, Postcritical Output Power Estimation

6.1 Input Power. The output power can be estimated as well as
the efficiency, absorbed by the secondary circuit, not shown in Fig. 1
but schematically described in previous studies [11].
First, the input power is evaluated, as described in Ref. [19], in

closed form by using the equivalent swept area orthogonal to the XZ
plane in Fig. 1, i.e., the flow that passes through the cross-sectional
area of the apparatus [2bð2apkÞ‘]. If 2apk is designated as the
maximum (“pk”¼ peak) flapping amplitude during post-critical
operations, the time-varying instantaneous wind speed cubed is

½UmaxPðsÞ þ UmaxumfðsÞûðsÞ�3, where the random, zero-mean,
stationary along-wind turbulence û is modulated by umfðsÞ
(Eq. (2)) and the slowly-varying mean flow by PðsÞ (Eq. (1)). The
input power is stochastic because of the random û and the flapping
angle apk [19]

Pin sð Þ ¼ 2b‘q apkð ÞU3
maxP

3 sð Þ

� 1þ 3û sð Þumf sð Þ
P sð Þ

� �
(15)

The random parent process of the peak process apk is aðsÞ, which is
zero-mean, controlled by aeroelasticity, and is approximately
Gaussian because of Eq. (11).
As described byRef. [19], it is found: apk ¼ raðsÞga,TðsÞ;raðsÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E½a2ðsÞ�p

is the standard deviation (root-mean-square) of the zero-
mean flapping angle process. Equation (15) implies that the random
flapping angle has zero mean, E½aðsÞ� ¼ 0.

Furthermore, ga,TðsÞ in Eq. (15) is a random, peak effect factor
defined over the reference, total duration of the thunderstorm T.
Quantity ga,TðsÞ is approximated by its stationary Gaussian process
and assumes weak coupling between ga,TðsÞ and ûðsÞ so that the
expected value of their product is zero [19]. SinceE½ûðsÞ� ¼ 0, thus
Eq. (15) is approximated as

E½PinðsÞ� ¼ 2b‘qE½apkU3ðsÞ�
� 2b‘qU3

maxP
3ðsÞraðsÞE½ga,TðsÞ�

(16)

The expected value of the peak effect factor in Eq. (16) is found from
Davenport [59]. In fact, under the assumption of weak non-
stationarity, the expectation E½ga,TðsÞ� is approximately time-
independent. Figure 8 in Ref. [19] shows that E½ga,TðsÞ� varies
between 2.85 and 3.52 within the practical range of smax and can be
evaluated by Davenport’s formula for random, stationary vibrations
[59]. The mean up-crossing rate of the stationary peak process a, is
needed by Davenport’s formula; this is conservatively estimated as
the rate of zero up-crossings or �þ0a, plausible sinceE½a� ¼ 0 and a is
a narrow-band process. Furthermore, it is found through the flapping
frequency of the harvester, i.e., �þ0a � xa=ð2pÞHz, which is suitable
for predominantly resonant response a. Reference [19] also notes
t h a t �þ0aT � xaT=ð2pÞ ¼ ðsmax=tmaxÞT=ð2pÞ � 1:92smax=ð2pÞ,
with �þ0a being the rate of a zero up-crossings. Therefore, the
expected value of ga,TðsÞ becomes
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E ga,T sð Þ½ � ¼ �ga,T �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 loge

1:92

2p
smax

� �s

þ 0:577ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 loge

1:92
2p smax

� �q (17)

Equation (17) is also acceptable since it over-estimates the actual
peak effect that is largest for sustained buffeting vibration [26]. By
contrast, limit-cycle post-critical flapping is usually pseudo-
periodic and characterized by a

ffiffiffi
2

p
, i.e., usually acceptable for

sustained aeroelastic, vortex-induced transverse vibration [60].
Even though an extended formulation of this factor has been recently
found for nonstationary thunderstorm gust effects by closed-form
solution [61], a more refined estimation is unnecessary for this
study’s purposes but may be considered in future studies.

6.2 Output Power Coefficient. The stochastic postcritical,
output power is calculated as PoutðsÞ ¼ RCI

2ðsÞ [19]. The expected
value of the output power is

E Pout sð Þ½ � ¼ 2bxaU e:m:c:ð Þ
� �2

RC
E i2 sð Þ
� 	

(18)

Equation (18) implies nonstationarity and, if evaluated numeri-
cally, can also assess temporal variations of power due to the
transitory dynamics of Eq. (11).Moreover, themean-square value of
the dimensionless current is used to imply that, because of
nonlinearity in Eq. (8), damping “a-symmetries” (a2 term in Eq.
(10))maypossibly lead to nonzero output current. Consequently, the
s-dependent, expected value of the harvester efficiency is found
from Eqs. (16)–(18) as [19]

CP sð Þ ¼ E
Pout sð Þ
Pin sð Þ

� �
� hP sð ÞE i2 sð Þ

� 	
ra sð Þ (19)

with the scalar, deterministic quantity hPðsÞ [19]

hP sð Þ ¼
2k3aU

2
e:m:c:ð Þ

RCð Þqb2‘xaP
3 sð Þ�ga,T

¼ k3aW
2I0a

2qb4‘P3 sð Þ�ga,T

(20)

The two expressions of Eq. (20), the right-hand side and the center
side, are equivalent [19].
In Eq. (19) the dimensionless parameter hPðsÞ depends on to

geometry, structural dynamic properties of the harvester and W.
Equation (19) can be numerically determined by Monte Carlo
methods, similarly to Secs. 5.3 and 6.1, i.e., by collecting a suitable
sample of numerical solutions of Eq. (11) and subsequently
evaluating the nonstationary mean square E½i2ðsÞ� and the nonsta-
tionary raðsÞ.
By comparing Eqs. (18)–(20) the expression of the mean,

instantaneous output power is

E½PoutðsÞ� ¼ x3
aWI0aE½i2ðsÞ� (21)

6.3 Quality (Q)-Factor. The Q-factor is often used to evaluate
the performance of miniature harvesters, especially for micro-
mechanical sensor design [62,63]. Since miniature, vibration-based
harvesters are usually low-performing in comparison with large-
scale, standard energy engineering apparatuses [e.g., Ref. 1], this
quantity is preferably employed.
This quantity is also preferable to describe the output power in the

case of resonant, linear harvesters with a fixed characteristic
frequency that is constant. In this case, a constant vibration

frequency yields a narrow-band response, which is associated with
a high Q-factor and high peak power extraction [62].
The Q-factor is a dimensionless scalar, defined as [62,63]

QðsÞ ¼ 1
2½faþfe:m:�, i.e., it is the inverse of the total damping ratio,

combining the “parasitic” [63] or intrinsic [64], structural damping
ratio fa with the electric damping ratio fe:m:ðsÞ.More generally, fe:m:

depends on the ability to convert and store the kinetic energy from
the flow to electric energy. Nevertheless, the definition of Q-factor
usually implies linear, frequency-domain analysis at resonance
under harmonic excitation [62] that enables simple, closed-form
estimation of this factor. In the case of steady-state, sustained
periodic flapping at a constant angular amplitude, fe:m: is constant
and can be found from the dimensional equation below:

Pout sð Þ� 
 ¼ 1

2p=xa

ð 2p
xa

0

2I0afe:m:xað Þ da
dt

� �2

dt

¼ 2r2a
� �

I0afe:m:x
3
a

(22)

where PoutðsÞ
� 


is the constant average output power, found by
integration over one flapping period (2p=xa) and (2r2a) is the
flapping amplitude squared.
Contrary to the standard definition used in the literature [62,63],

fe:m: should be time-dependent since the Q-factor must assess the
performance during nonstationary thunderstorms. Furthermore, the
torsional harvester is nonlinear, stochastic and the excitation is a
random noise. Therefore, the standard results [62,63] are not
applicable. The Q-factor must be rewritten as

Q sð Þ ¼ 1

2 fa þ fe:m: sð Þ� 
� 	 (23)

where the operator :h i designates temporal average, carried out over
a suitable temporal duration, e.g., one flapping period, equal to 2p in
dimensionless time units.
Equation (23) is a more suitable quantification of the Q-factor

since it relies on the evaluation of electric damping through temporal
averages, i.e., the energy due to fluid (aerodynamic) losses and
absorbed by the power system [64]. Equation (23) can also account
for other uncertainty sources (i.e., loading) and is compatible with
Eq. (21) for this harvester. Equation (23) is still approximate since it
requires ergodicity to compute the temporal average of the
aerodynamic damping over a suitable temporal duration, i.e., one
full vibration cycle by similarity with Eq. (22). Therefore, the time-
averaged electric damping in Eq. (23) is evaluated for nonstationary,
random flapping as

fe:m: sð Þ� 
 ¼ E Pout sð Þ½ �
2r2a sð ÞI0ax3

a
¼ WE i2 sð Þ

� 	
2r2a sð Þ (24)

where Eq. (21) is utilized along with the instantaneous expected
values, which evaluate the output power and the standard deviation
of the flapping angle at time s.
It must be noted that nonlinear dissipation in structural dynamics

may alternatively be estimated through a “more classical” approach
[65], although the latter approach is not pursued herein.
Furthermore, alternative definitions of Q-factor are possible, for

example, considering the maximum electric damping ratio, attained
during nonstationary excitation. Nevertheless, Eqs. (23) and (24) are
still preferable for comparison purposes with other harvesters, based
on micromechanical systems [62,63].

7 Moment Lyapunov Exponent Results

7.1 Description of the Apparatuses. Simulations examine an
apparatus with rotation pivot axis at the apex of the blade-airfoil
(a¼�1) and AR ¼ 4 (‘ ¼ 4b). Three “Types” are selected from
Ref. [11], with the main properties described in Table 1, in which
quantities such as angular frequency and damping ratio must be
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interpreted as the properties of the linearized dynamic equation of
the harvester.
The nonlinear stiffness parameter in theDuffingmodel (Eq. (9)) is

constant and set to j¼ 100, irrespective of the type. Similarly, a
variable nonlinear damping parameter c > 0 is used in the Hybrid
Duffing–van-der-Pol model (Eq. (10)).
Coupling with the power circuit is achieved by settingW ¼ 0:01

and kRL ¼ 0:75 [11].
Finally, initial conditions are imposed by considering an initial

flapping angular motion at s¼ 0, needed to trigger the instability
[11]. The initial amplitude of a is set to random with zero mean and
standard deviation equal to 2 deg, coincident with small, realisti-
cally plausible angular deviations from the static equilibrium.
Numerical solution of Eq. (11) is repeated 200 times by Monte

Carlo sampling and step-by-step integration to find the relevant
moments in weak form [23].

7.2 Duffing Model

7.2.1 Frozen Thunderstorm Downburst. This scenario corre-
sponds to the reference condition for a structurally linear harvester
(Eq. (9) with HNL ¼ 0), found under the hypothesis of “frozen
thunderstorm state,” i.e., a stationary, turbulent flow field with time-
independent, constant mean speed U ¼ Umax [PðsÞ ¼ 1 and
umfðsÞ ¼ 1] and low turbulence. As discussed in a recent study
[19] and contrary to [25], it is useful to examine this case to
determine incipient flutter condition, signaled by a definitely
positive K!ð2Þ > 0 since unstable, diverging torsional flutter is
only possible. By contrast, the study of a case including either Eq. (9)
or Eq. (10) with HNL 6¼ 0 may still lead to a stable, postcritical
flapping with a limit cycle that can still exhibit a negative or a
“nearly zero” MLE [19].
Following recent numerical results [19], initial harvester

simulations are executed in the range 0 < Umax � 20 m/s since
this range exhibits flutter. Furthermore, the harvester efficacy at
moderate wind speeds is the primary goal of the design. Although
less controllable buffeting vibrations are possible at the same wind
speeds because of flow turbulence, flappingmay be blocked to avoid
damaging the apparatus.
Figure 3 illustrates an example of the reference scenario with

linear, structural harvester and Eq. (9) with HNL � 0, found by
setting j ¼ 10�7 and numerically solving Eq. (15). Results are
shown for frozen thunderstorm state with constantU [PðsÞ ¼ 1 and
umfðsÞ ¼ 1] and low turbulence of standard deviation rû ¼ 2%.
Load perturbation is also accounted for.
The standard deviation of the random load in Fig. 3 is rd2 ¼ 0:07.

Type 2 apparatus is unstable atU¼ 14.4 m/s, noting thatK!ð2Þ > 0
diverges for s > 100 in Fig. 3(b). Other apparatuses do not exhibit
any unstable behavior in the examined range of mean flow speeds.

7.2.2 Active Thunderstorm Downburst. Figure 4 depicts the
intensification and modulation functions, applied to the “active
thunderstorm state.” This figure shows the two functions for a short
thunderstorm of total duration T � 600 s [35], i.e., smax ¼ 190,
typical of short-lived thunderstorms over complex terrain in urban
settings [36]. This example demonstrates the nonideal flow
conditions that are likely to further reduce the propensity of the
harvester to flapping [19].
In Fig. 4 themean outflow intensity varies withPðsÞ asUmaxPðsÞ

while the zero-mean random turbulence û is modulated withumfðsÞ.
The special normalization used in Eq. (2) leads to a umf function

with sharp turbulence intensity variations around smax (dashed-
dotted line in Fig. 4), while themean outflowfield is accompanied by
a smoother transition (continuous line in Fig. 4). Furthermore, the
effect of turbulence on instability onset in Fig. 4 vanishes at about
s � 300, with umf � 0. Therefore, any unstable flapping observed
beyond s � 300 is triggered by a load in a predominantly smooth
flow.
Finally, umf does not depend on rû in Fig. 4. However, its

sharpness is influenced by xa in accordance with Eq. (2), i.e., it
reproduces the flow conditions primarily for a Type-2 apparatus
with xa ¼ 0:628 rad/s. Nevertheless, the latter dependency is only
apparent, i.e., a consequence of the normalization used in Eq. (8).

It is also noted in Fig. 4 that the effective duration of the function
PðsÞ is longer than the turbulent part (or the gust front), i.e.,umfðsÞ.

Table 1 Harvester and thunderstorm properties

Type b (m) I0a
‘

kgm2

m

� � xa

2p
(Hz) fa (%) AR smax

0 0.25 20 0.25 0.25 4 190
1 0.25 40 0.25 0.30 4 190
2 0.50 300 0.10 0.30 4 190

Fig. 3 Frozen thunderstorm with turbulence of intensity rû52%
and aeroelastic load perturbation rd250:07: K!ð2Þ versus time s
for a structurally-linear harvester at (a) U511.0 m/s and (b)
U514.4 m/s. Reproduced with permission from Ref. [19]. Copy-
right# 2024 by Elsevier.

Fig. 4 Active thunderstorm’s temporal functions of the mean
outflow PðsÞ, and turbulence umfðsÞ (smax5190, xa50:628 rad/s)
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Since the translation velocity of the thunderstorm is neglected in the
formulation (Eq. (3)), the mean flow velocity is modulated onPðsÞ
that represents evolution of the storm over its duration T. This
difference may be eliminated by parametrizing Eq. (1). Further
investigation is needed although it is beyond the scope of the study.
Similarly, if the definition of mean-square stability is considered

[23,50], the asymptotic condition (s ! þ1) in Eq. (15) is less
meaningful as PðsÞ tends to zero with consequent vanishing of the
load. Rather, incipient instability should possibly be referred to the
fully-developed thunderstorm gusty wind. Consequently, the
empirical evaluation by Eq. (15) at about sl � 300 is adequate; in
other words, K!ð2Þ > 0 can still be used to detect a transitory
unstable regime if a linear harvester model is used. This observation
is discussed below in Fig. 5.

Caracoglia [19] recently demonstrated that the temporal intensi-
fication of the thunderstorm, i.e., the time-varying, slowly-varying
mean wind speed UðsÞ with PðsÞ 6¼ 1 is detrimental to this
apparatus, mainly influences its stability and extends the flapping
onset beyond 20m/s. Furthermore, high turbulence with rû ¼ 10%
is desirable to trigger flutter. As an example, Fig. 5 analyzes the
mean-square stability of the harvester for an active turbulence state
with rû ¼ 10%, i.e., the turbulence intensity is five times larger than
the one used in Fig. 3.

Figure 5 compares the MLE empirically found with linear
apparatus (a), and nonlinear Duffing model (b).
First, higher turbulence is necessary since no instability has been

found numerically in any foreseeable range of Umax if an active
thunderstorm is considered. Additional evidence may be found in a
recent study [19]. In Fig. 5 the combination of low turbulence and
decreasing mean aeroelastic load proportional to PðsÞ2 at about
smax ¼ 190 contribute to a harvesting performance loss.
Second, Type-2 apparatus becomes incipiently unstable (i.e.,

flutter onset) at Umax ¼ 27:0 m/s, depicted in Fig. 5(a), since
K!ð2Þ > 0 diverges at about s¼ 200, with the numerically
evaluated K!ð2Þ fluctuating about the zero axis. A “marginally”

unstable trend K!ð2Þ > 0 is possibly noticeable for Type-0
apparatus in Fig. 5(a) at about the same s.
Third, the nonlinear Duffing model with HNL 6¼ 0 in Fig. 5(b)

exhibits a permanently stable MLE trend for all cases. This
observation is plausible with the occurrence of limit-cycle sustained
flapping [19], at least for Type-2 apparatus. Employing a linear
harvester model is, therefore, more suitable to detect (and compare)
incipient instability condition, while energy conversion and Sec. 6
must be considered to evaluate the performance of the harvester
beyond any unstable limit.

7.3 Duffing – Van-der-Pol Model

7.3.1 Foreword. The nonlinear damping parameter c is varied
to evaluate the sensitivity of the apparatus to this new hybrid model
feature (Eq. (10)). Several configurations are investigated with
c ¼ 0:2, 0:5, 1, 30, 300f g, some of which are unrealistic. At the
same time j¼ 100 is utilized throughout Sec. 7.3 to allow
comparisons with Sec. 7.2 and, more specifically, Fig. 5.
An initial pilot test is also carried out by numerically studying a

simplified case of an absolutely stable nonlinear Duffing–van-der-
Pol model oscillator, in which the aeroelastic load is set to zero and a
random, stationary buffeting torque is introduced as external
buffeting only. The results of this test are not shown for the sake
of brevity. The general remark is that nonlinear oscillators with
c ¼ 0:2, 0:5, 1f g and j¼ 100 are numerically solvable by step-by-
step integration [51]. On the contrary, not only are larger c values
more questionable from the physical point of view, c > 1 may also
yield a “stiff” nonlinear differential equation that can successfully
be solved by a more specialized numerical method. Consequently,
the Euler-Monte Carlo solver [51], used in Eq. (11), may lead to
erroneous, numerically induced unstable solution that is noted in
Ref. [19] but not in Ref. [25].

7.3.2 Frozen Thunderstorm Downburst. From the remarks
noted in Sec. 7.2, simulations are limited to high turbulence, active
thunderstorm state (rû ¼ 10%).
It is observed that, in general, the addition of the new damping

feature in the model does not induce relevant changes to the
stochastic instability and operational conditions of the apparatus,
compared to the Duffing model in Sec. 7.2, with somehow little
influence of the damping parameter c¼ 1 on the graphs of K!ð2Þ.
As an example, Fig. 6 presents the results for the new hybrid

model subject to a high turbulence, stationary, or frozen thunder-
storm state with constant mean flow, Umax ¼ U. The figure
essentially replicates the same trends exhibited in Fig. 5(a) with
nonlinear Duffing model: stable apparatus at U¼ 11.0 m/s and
unstable-operational apparatus at about U¼ 16.4 m/s in Fig. 6(b).
Both Type-2 and Type-0 apparatuses appears to be operational. In
fact, in Fig. 6(b) the MLE K!ð2Þ crosses the zero axis and becomes
positive at s¼ 140 for Type-0 apparatus (thick solid line), while
K!ð2Þ > 0 of Type-2 apparatus is already strongly positive at s¼ 50
(dotted line, visible on the left side of the graph).
Nevertheless, a sudden “jump” in the thick solid line, describing

the behavior of Type-0 apparatus in Fig. 6(b), is noticeable at about
s¼ 145 with a clear, vertical asymptote [K!ð2Þ ! þ1]. This
“explosion” of K!ð2Þ is plausibly unrealistic, by careful inspection
of the definition in Eq. (15), possibly contaminated by numerical
integration issues. A similar issue was observed in a recent study
[19], in which some additional discussion is provided that attributes
the problem to the Euler’s numerical solver [51].

7.3.3 Active Thunderstorm Downburst. The graphs K!ð2Þ
versus time are presented in Fig. 7 for an active, nonstationary
high turbulence thunderstorm. To extend the evaluation of the
damping feature, c ¼ 0:5 is also considered; the proposed
decrement by a factor of two compared to Fig. 6 is acceptable
from a physical perspective. For instance, larger c values have been
hypothesized; a large value c¼ 300 was preliminarily investigated
in Ref. [25] to scrutinize a wider range of options. Nevertheless, the

Fig. 5 Active thunderstorm with high turbulence of intensity
rû510% and aeroelastic load perturbation rd250:07: K!ð2Þ
versus time s at Umax � 27 m/s and a harvester model: (a) linear
(j51027) and (b) nonlinear Duffingwith j5 100 in Eq. (9) [“Ty.”5
Type].
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hybrid harvester case with c > 1 was not considered in this study as
it is possibly unrealistically large, less meaningful to design.
The graphsK!ð2Þ versus time, presented in Fig. 7, refer to slowly-

varying mean wind speed with U � 27 m/s. Contrary to Sec. 7.3.2,
theK!ð2Þ numerical analysis is extended to sl ¼ 500. Figure 7 tends
to confirm the remarks in Sec. 7.2.2. Nevertheless, flutter instability
is temporarily engaged at about sl � smax ¼ 190 for Type-2
apparatus in Fig. 7(a) with a lower c ¼ 0:5 with K!ð2Þ > 0,
whereas the transient unstable trend disappears in Fig. 7(b) with a
larger c ¼ 1:0. Other apparatus’ types are not affected. The MLE
graphs are, however, similar to the behavior observed in Fig. 5(b),
corroborating the observation that output power analysis is
necessary to study postcritical flutter performance.

8 Stochastic Output Power Results

Output power analysis is based on the numerical evaluation of
output power coefficient in Eq. (20), mean output power in Eq. (22)
andQ-factor by Eqs. (23) and (24). Primary consideration is given to
the nonideal, nonstationary thunderstorm flow conditions and the
hybrid Duffing–van-der-Pol model. Preliminary investigation on
stochastic output power during post-critical stages for the Duffing
model and apparatus are reported in a recent study [19] and are
briefly summarized only in this paper.

8.1 Duffing Model (Nonstationary Flows Only). In this
scenario, Type-2 apparatuses is engaged at about Umax ¼ 27:4 m/s
(Fig. 5) during post-critical flutter; Type-0 is also possibly
operational while Type-1 is not triggered. Figure 8 illustrates the

power results and examines CPðsÞ, E½PoutðsÞ� and Q-factor. In
Figs. 8(a) and 8(b), energy conversion in only visible at time
190 < s < 300, compatible with themaximum intensification of the
nonstationary flow (Fig. 4). Although Type-0 apparatus has a
noticeable efficiency compared to Type-2, the energy conversion is

still quite low in terms of E½PoutðsÞ�. Furthermore, the efficiency

measured by CPðsÞ is of the order of 10�4 and it is meaningless in
comparison with the output power coefficient of large-scale wind
energy systems [66]. Energy conversion appear to be active
although the average output power is low (Fig. 8(a)).

In Fig. 8(c) the graphs compare the time-dependentQ-factor to the
corresponding inactive scenario, in which the Q-factor tends to its
upper limit QðsÞ ¼ Q ¼ 1=ð2faÞ since Eq. (25) is set to zero. The
latter case is portrayed in the figure by a dotted horizontal line, e.g.,
Q ¼ 166:�6 for Type-1 and Type-2 apparatuses (Table 1). Typically
in a miniature device, a good achievement can be associated with a
condition, in which the Q-factor is as large as possible [63] and
avoids prevailing parasitic effects. Since the proposed apparatus is
not a traditional miniature harvester, any remark should be carefully
considered. Therefore, in the case of Fig. 8(c), the “quality” can be
achieved if QðsÞ is approximately constant over time. Unfortu-
nately, this is not noticeable, at least from the numerical results;
undesirable fluctuations are visible during both the primarily active
stage (190 < s < 300) and the subsequent decay of the thunder-
storm flow effects. In particular, the quality rapidly “switches”
between 0 and the upper limit, clear indicator of a nonideal, deficient
performance.

8.2 HybridDuffing–VanderPolModel. Figure 9 presents the
output power analysis results of Duffing–van-der-Pol model
apparatus with c ¼ 0:5, j¼ 100 under active thunderstorm out-
flows. The results in Fig. 9 may be compared against those in Fig. 8.
In each figure panel the value of c parameter is indicated as a label to
differentiate the graphs from the Duffing model case (c¼ 0, Fig. 8).
While the vertical axis scales of CPðsÞ andQ-factor are the same, the
scale of E½PoutðsÞ� in Fig. 9(a) is larger to discern the differences.
Clearly, the nonlinear damping effect, introduced with HNL in Eq.
(10), is beneficial. A moderate c ¼ 0:5 nonlinearity produces a
remarkable relative increment in the average output power at time
200 < s < 300, especially for Type-2 apparatus. Type-2’s

Fig. 6 Nonlinear hybrid Duffing – van-der-Pol model with c51:0
subject to frozen thunderstorm with turbulence of intensity
rû510% and aeroelastic load perturbation with rd250:07. K!ð2Þ
versus time at (a)U5 11.0m/s and (b)U516.4m/s [“Ty.”5Type].

Fig. 7 Nonlinear hybrid Duffing – van-der-Pol Model with
variable c (a) c50:5 and (b) c51:0, subject to nonstationary active
thunderstorm with turbulence of intensity rû510% and aeroelas-
tic load perturbation with rd250:07. K!ð2Þ versus time at U � 27
m/s [“Ty.”5Type].
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achievable power conversion seems more efficient, although the
absolute value ofE½PoutðsÞ� is still low and despite the dimensions of
the blade-airfoil (Table 1).

Nevertheless, the favorable behavior of Type-2 harvester is much
less evident if one compares CPðsÞ in Fig. 9(b). The reason is
believed to be related to the concurrent small values of the term
hPðsÞ, accompanied by largeraðsÞ in Eq. (19). This remark confirms
previous evidence [19] and suggests that the definition of CPðsÞmay
be inappropriate for the purposes of comparing performance.
Furthermore, the Q-factor is a similarly unsuitable indicator,
although some difference is noticeable by considering the expect-
ations, i.e., the temporal average of QðsÞ in Fig. 9, which suggests a
slight preference of Type-0 versus Type-2 apparatus because of a
moderately larger average.
Finally, E½PoutðsÞ� is analyzed in the case of frozen downburst

storm, i.e., stationary turbulent wind field with constant mean speed
U. The special case at U¼ 14.0 m/s is illustrated. These results,
presented in Fig. 10 for a Duffing–van-der-Pol model harvester with
c ¼ 1:0, can possibly be examined against Fig. 9(a) of the
nonstationary case at Umax ¼ 27:0 m/s. The graphs are limited to
the time interval 25 < s < 250. The average output power,

Fig. 8 Output power analysis of Duffing model harvester with
j5100, subject tononstationaryactive thunderstormof intensity
rû510% and Umax527:4 m/s, and aeroelastic load perturbation
with rd250:07: (a)E½PoutðsÞ� average output power, (b) CPðsÞmean
output power coefficient, and (c) Q-factor [“Ty.”5Type]

Fig. 9 Output power analysis of Duffing – van-der-Pol model
harvester with c50:5, j5100, subject to nonstationary active
thunderstorm of intensity rû510% and Umax527:0 m/s, and
aeroelastic loadperturbationwithrd250:07: (a)E½PoutðsÞ�average
output power, (b) CPðsÞmean output power coefficient, and (c) Q-
factor [“Ty.”5Type]

Fig. 10 Average output power fE½PoutðsÞ�g. of a Duffing – van-
der-Pol model harvester with c50:5, j5100, subject to a frozen
thunderstormwith turbulenceof intensityrû510%andaconstant
outflow speed U514.0 m/s [“Ty.”5Type].
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achievable during a low-speed stationary boundary layer wind with
Type-2 apparatus (thick dotted line), exhibits a much larger value
compared to Fig. 9(a). Moreover, non-negligible output power is
also noted for Type-0 device. Less promising conversion powers
are, however, attainable during nonideal outflow conditions.
Additional investigations, beyond the scope of this study, are
advisable to simultaneously optimize the parameters c and j in
Eq. (10) of the hybrid model.

9 Conclusions

Numerical investigations confirm the detrimental effect of
nonideal flowswith, on average, an adverse increment of operational
flutter speed aboveþ30%. Nevertheless, the proposed implementa-
tion of a hybrid restoring torque mechanism coupled with nonlinear
damping effect (c ¼ 0:5) is promising, since the achievable power
conversion may possibly be one order of magnitude larger; this
beneficial effect is observed at very large values of critical Umax.
Besides the parameter c, flutter propensity ismainly controlled by a2

in the van-der-Pol equation. Since amplitudes of the flapping
angular motion are moderate at sustained and benign flutter,
activation of this effect is further exacerbated by the nonstationary
flow conditions and imperfect fluid–structure interaction. Conse-
quently, a successful exploitation of the proposed apparatus is still
dubious during nonstationary wind events.
Additional investigation is still needed to better characterize the

role of the hybrid Duffing–van-der-Pol model in the context of
practical design. Verification and validation by wind tunnel tests are
also advisable to confirm the observations. Furthermore, exploita-
tion of nonlinear aeroelastic loads ([67]) should be considered to
more realistically reproduce the loads at moderate flapping
amplitudes. Finally, even though flutter speed can be found in
closed form in the absence of turbulence and other random
perturbations, the same approach could be pursued to examine
mean-square stability through approximation of the nonlinear
equation solutions, e.g., by stochastic approximation.
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Nomenclature

a ¼ dimensionless position of the pivot “O”
AR ¼ aspect ratio of the blade-airfoil
b ¼ half-chord width of the blade-airfoil

BûðsÞ ¼ scalar Wiener noise for turbulence perturbation
BD2ðsÞ ¼ scalar Wiener noise for load perturbation

ci ¼ amplitude parameters of the U function (i¼ 1, 2)
di ¼ exponent parameters of the U function (i¼ 1, 2)

d2,m ¼ mean value of random exponent parameter d2

ga,TðsÞ ¼ random peak factor of a
�ga,TðsÞ ¼ expected value of the random peak factor of a

HNLða, da=dsÞ ¼ nonlinear restoring mechanism forcing function
IðsÞ ¼ output current of the power system (A)
I0z ¼ polar mass moment of inertia of the flapping foil

(kgm2)
ka ¼ reduced frequency of the 1DOF flapping foil
‘ ¼ span-wise longitudinal length of the blade-airfoil

LC ¼ impedance of output power circuit (Henries)
M0z ¼ aeroelastic torque (Nm)

Mðe:m:Þ ¼ electromotive torque (Nm)
PinðsÞ ¼ input power of the wind flow
PoutðsÞ ¼ output power of the harvester
QðsÞ ¼ quality factor
QL,D2 ¼ diffusion matrix of the load perturbation

qem,NLðWemÞ ¼ nonlinear drift vector-function
RC ¼ resistance of output power circuit (Ohms)
Sû ¼ spectrum of dimensionless, stationary turbulence

Sû,EPSD ¼ evolutionary spectrum of non-stationary
turbulence

t ¼ rime (s)
tmax ¼ time (s), downburst’s maximum intensification
tNL,û ¼ nonlinear turbulence diffusion function

T ¼ total effective duration of the thunderstorm (s)
uðsÞ ¼ along-wind non-stationary turbulence (m/s)
UðsÞ ¼ “mean” outflow wind speed (m/s)
Umax ¼ maximum slowly-varying wind speed (m/s)
ûðsÞ ¼ normalized along-wind non-stationary turbulence

WemðsÞ ¼ random state vector
! ¼ sub-vector of random vector Wem

z ¼ vertical axis coordinate
zmax ¼ height, maximum downburst intensification

a ¼ flapping angle of the blade-airfoil, about pivot
“O”

apk ¼ Peak flapping angle process from parent a
c ¼ nonlinear damping, Duffing-van der Pol model
d2 ¼ random perturbation to mean parameter d2,m
� ¼ normalized inertia parameter
fa ¼ structural damping of the flapping foil

g3D ¼ parameter for three-dimensional load effects
hPðsÞ ¼ scalar, deterministic parameter of output power

i ¼ dimensionless induced current of the power
circuit

j ¼ dimensionless stiffness, nonlinear restoring
torque

K!ð2Þ ¼ second moment Lyapunov exponent
kRL ¼ generalized impedance of the power circuit

lae,iðsÞ ¼ aeroelastic state (i¼ 1, 2)
�þ0a ¼ rate of a zero up-crossings

�ae,iðsÞ ¼ aeroelastic state (i¼ 1, 2)
PðsÞ ¼ temporal intensification function

q ¼ air density
ra ¼ standard deviation of a
rd2 ¼ standard deviation of d2ðsÞ
rû ¼ standard deviation of û
s ¼ dimensionless time, s ¼ txa
sl ¼ discrete time instant, used to estimate MLE

smax ¼ dimensionless time, maximum intensification
U ¼ unsteady aeroelastic forcing function
U0 ¼ unsteady aeroelastic forcing function at s¼ 0

Uðe:m:c:Þ ¼ dimensional electro-mechanical coupling
umfðsÞ ¼ modulation function for downburst’s Sû,EPSD

W ¼ dimensionless electro-mechanical coupling coeff
x ¼ angular vibration frequency (rad/s); and
xa ¼ pulsation of the one-DOF flapping foil (rad/s)

Abbreviations and Operators

DOF ¼ degree-of-freedom
E½:� ¼ expectation operator
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MLE ¼ moment Lyapunov exponent
:h i ¼ temporal average

½:�T ¼ transpose operator
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