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ABSTRACT
Model predictive control is a popular choice for systems that must satisfy prescribed constraints on states
and control inputs. Althoughmuch progress has beenmade in distributedmodel predictive control, exist-
ing algorithms tend to be computationally expensive. This limits their use in systemswith fast dynamics. In
this paper, we propose a new distributed model predictive control algorithm that we term as instant dis-
tributedmodelpredictive control (iDMPC). Theproposedalgorithmemploys a realisationof theprimal-dual
algorithm in the controller dynamics for fast computation. We show that the closed-loop system trajecto-
ries with the proposed iDMPC algorithm converge asymptotically to a desired reference. To ensure the
satisfaction of the state constraints during the transient, we also include an explicit reference governor in
the feedback loop.
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1. Introduction

Model predictive control (MPC) is a powerful and elegant
control design method especially for nonlinear processes with
constraints on states and inputs. Although the method has
been applied to a variety of practical applications, it is well-
acknowledged that its application to processes with fast dynam-
ics continues to lag. This is primarily due to the fact that solving
an optimisation problem at every time step as proposed in
MPCmay require considerable computational time, which may
render the implementation ofMPC in systems with fast dynam-
ics unstable (Wang & Boyd, 2009). Consequently, a popular
research direction has been to design ways to accelerate the
solution of the optimisation problems in MPC. In this direc-
tion, we can point to explicit MPC for linear systems (Rubagotti
et al., 2014; Tøndel et al., 2003), which relies on an offline
computation of quadratic programme (QP) and application
of the control input via lookup tables; warm-starting (Richter
et al., 2009; Yildirim &Wright, 2002), which takes advantage of
the control input computed for a previous time step to initialise
the computation for the current time step; and early termina-
tion of the optimisation process with a suboptimal control input
(Wang & Boyd, 2009).

A recent approach along these lines has been suboptimal
MPC, which applies time distributed optimisation to com-
pute control trajectories (Liao-McPherson et al., 2020; Skibik
& Nicotra, 2022). Suboptimal MPC adopts the optimisation
dynamics fromMPC, but it implements the control input while
the optimal control problem is being solved. A general subop-
timal MPC controller is depicted in Figure 1. The updates per-
formed by suboptimal MPC are fast enough that the dynamic
controller can be approximated as a continuous-time dynamical
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system. This allows suboptimal MPC to be implemented in sys-
tems with fast dynamics provided that the data sampling rate is
fast as well. The optimisation dynamics in suboptimalMPC can
be selected with a considerable degree of freedom (Hauswirth
et al., 2020). In particular, primal-dual gradient flow algorithms
have been employed inYoshida et al. (2019),Nicotra et al. (2018)
and Adegbege (2022). An input-to-state stability approach to
stabilise trajectories around a reference point is introduced in
Nicotra et al. (2018). The control methods proposed in Yoshida
et al. (2019) and Adegbege (2022) are based on dissipativity
analyses. The former approach involves offline tuning of param-
eters to ensure asymptotic stability of a reference while the latter
is augmented by anti-windup feedback control in theMPCcom-
putation. In this work, we look to apply some of these ideas to
establish a suboptimal MPC method for distributed systems.

For control of distributed systems, various formulations of
distributed model predictive control (DMPC) have been pro-
posed (Camponogara et al., 2002; Keviczky et al., 2006; Negen-
born & Maestre, 2014; Richards & How, 2007). Such a DMPC
formulation is a natural fit for a variety of problems such
as building energy management (Patel et al., 2016), chemical
processes (Pourkargar et al., 2017), power generation (Venkat
et al., 2008), water supply management (Leirens et al., 2010),
or formation control (Liu et al., 2018). Note that the issue of
the computational cost of the optimisation algorithm imposing
a limit on how fast the dynamics of the process to be con-
trolled can be is even more salient in DMPC. For example, a
DMPC scheme was proposed to stabilise a multi-vehicle for-
mation in Dunbar and Murray (2006). In that algorithm, each
agent receives the optimal predicted input and state trajectories
from its neighbours at every sampling instant, based on which it
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Figure 1. Suboptimal MPC in a feedback loop with a dynamical system.

computes its own predicted trajectories over a receding horizon.
To ensure stability, the algorithm requires that the difference
between the optimal predicted state trajectories computed at
two consecutive sampling times must remain sufficiently small.
One can mitigate the gap by increasing the sampling frequency
which in turn may turn too small for the DMPC controller
to solve the entire optimisation problem. In this paper, we
merge the ideas of suboptimal MPC and DMPC to alleviate this
problem.

A drawback of the suboptimal MPC schemes (even in the
centralised case) is that they only guarantee feasible solutions
in a steady state (Jokic & Lazar, 2009). The evolution of state
and input trajectories in transient may lead to constraint viola-
tion because the applied suboptimal input is not a minimiser
of the constrained optimisation problem. In fact, the applied
input may not even be feasible (Hauswirth et al., 2020). One
way to ensure that the input and state trajectories remain feasible
in transient as well is to implement a reference governor (RG)
in the feedback loop. For a detailed overview of the RGs and
their applications, we refer the reader to the surveys (Garone
et al., 2017; Kolmanovsky et al., 2014) and references therein.
The RG is a dynamical system that was proposed for track-
ing problems as an alternative to MPC both in the centralised
(Bemporad, 1998; Gilbert et al., 1995) and distributed setting
(Casavola et al., 2014; Tedesco et al., 2012). Whereas MPC gen-
erates a control input to steer system states to a terminal set by
solving an expensive constrained optimisation problem (Limón
et al., 2008), the state feedback-RG scheme steers the modi-
fied reference trajectory to the desired reference and stabilises
the system around the modified reference while satisfying con-
straints, all being done under significantly lower computational
requirements. The computational footprint of the RGs can be
reduced further by shifting away from optimisation-based RG
schemes to the explicit RG (ERG) (Garone & Nicotra, 2015).
The ERG takes advantage of invariant sets, which are strategi-
cally aligned with the constraint boundaries, to appropriately
adjust the speed of convergence to the desired reference which
ensures that the constraints are not violated in the case of con-
vex feasible sets (Garone et al., 2018). We mention that most
of the ERG developments have been made for centralised con-
trol. The implementation of the ERG in the distributed setting
is more challenging as we need to account for communication
constraints. Finally, we note that distributed control using the
ERG was presented in Nicotra et al. (2015) and that suboptimal
MPC with the ERG in the centralised setting was presented in
Nicotra et al. (2018).

In this work, we introduce instant distributedMPC (iDMPC)
with ERG. To the best of our knowledge, iDMPC is the first
suboptimal DMPC method designed to regulate constrained
distributed systems. Furthermore, the inclusion of the ERG in

the control synthesis ensures that constraints are satisfied at
all times. Our technical results include a proof that under the
assumption of no communication delays, iDMPC computes
state and input trajectories equivalent to centralised instant
MPC as studied in Yoshida et al. (2019), a proof of asymptotic
stability using a dissipativity-based analysis, and a guarantee
that the constraints are satisfied during the transient phase as
well. We demonstrate via simulations that iDMPC has a sig-
nificantly lower computational burden than the standard dis-
tributed MPC and thus can be applied to systems with faster
dynamics. Some results in this paper were presented in a pre-
liminary form in the conference paper (Figura et al., 2020).
The main novelty over that version is the consideration of state
constraints in the dynamics which requires the use of an ERG
to ensure feasibility during the transient domain. The proofs
have also been expanded and clarified and a more complex
simulation example has been considered.

The paper is organised as follows. The problem statement
for general distributed MPC is presented in Section 2. The
iDMPC algorithm, stability analysis, and ERG are introduced in
Section 3. In Section 4, we present simulation results of systems
with coupled cost and coupling constraints. The conclusion is
provided in Section 5.

Notation

Vectors are expressed in a bold font. The kth element of a vector
or the kth row of a matrix is denoted as [·]k. The element of a
matrix associated with ith row and jth column is given as [·]ij.
The interior of a set is denoted as Int(·), 1 is the vector of ones,
and ° is the Hadamard product.

2. Problem statement

2.1 Plant dynamics

We consider linear time-invariant systems with coupled cost
and constraints. The continuous-time (CT) dynamics of sub-
system i, i = 1, . . . ,M, are given as

ẋi = Acixi + Bciui, (1)

where xi ∈ R
mi and ui ∈ R

ni are the state and control input,
respectively. The dynamics of the interconnected system can be
written in a compact form as

ẋ = Acx+ Bcu, (2)

where u = [u�1 . . .u�M]� ∈ R
n, x = [x�1 . . . x�M]� ∈ R

m, Ac =
diag(Ac1, . . . ,AcM) ∈ R

m×m,Bc = diag(Bc1, . . . ,BcM) ∈ R
m×n,

m =∑M
i=1mi, and n =∑M

i=1 ni.

Assumption 2.1: The pair (Ac,Bc) is controllable.

The assumption of controllability enables the system regula-
tion from any state configuration, which is especially important
when constraints are imposed on the state trajectories. Since
MPC relies on periodically solving an optimisation problem
to calculate the control input, it is natural to also consider a
discrete-time (DT) formulation of the system dynamics in (1).
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We let τ denote the sampling time. The DT dynamics of subsys-
tem i are given as

xτ
i = Aixi + Biui, (3)

where xτ
i = xi(t + τ),Ai = eAciτ , Bi =

∫ τ

0 eAciξdξBci. Then, the
dynamics of the interconnected system are given by

xτ = Ax + Bu, (4)

where A = diag(A1, . . . ,AM) and B = diag(B1, . . . ,BM).

2.2 Objective

The objective of our work is to asymptotically stabilise an inter-
connected system with dynamics defined in (2) at a reference
point (the origin) under the least expensive control strategy that
ensures that state constraints imposed on individual systems are
satisfied. In the following lines, we formulate this objective for-
mally. The formulation is provided in discrete time as it is a
conventional approach in solving MPC problems, where non-
zero computational time to solve an optimisation problemmust
be considered (Wang & Boyd, 2009).

We succinctly write the state and input trajectories of subsys-
tem i over an N-step horizon as

zi = [(u0i )
� · · · (u(N−1)τ

i )� (xτ
i )
� · · · (xNτ

i )�]�. (5)

Furthermore, we write z = [z�1 . . . z�M]� ∈ R
N(n+m) to denote

the vector with state and input trajectories over an N-step hori-
zon of all M subsystems. Even though the trajectory z is time-
dependent, we do not include time in the notation for simplicity.
Moreover, we let the subscript−i denote all subsystems that are
coupled with subsystem i through cost or constraints.

A key component of any optimisation-based controller is a
cost functional that evaluates the cost incurred by applying a
sequence of control inputs over a horizon of chosen length. In
our distributed setting, we consider a local stage cost

ci(xi, x−i,ui) = cx,i(xi, x−i)+ cu,i(ui), (6)

where the term cx,i(·, ·) corresponds to a coupled stage cost and
the term cu,i(·) denotes the stage cost incurred by applying a
local control input. To evaluate the cost of subsystem i over an
N-step horizon, we define the functional

fi(zi, z−i, xi, x−i) =
N−1∑
j=0

ci
(
xjτi , x

jτ
−i,u

jτ
i

)
. (7)

Finally, the cost incurred by the interconnected system over an
N-step horizon is

f (z, x) =
M∑
i=1

fi(zi, z−i, xi, x−i). (8)

For notational simplicity, we do not consider a terminal cost
in the cost functional, even though it is a common practice in
MPC (Stewart et al., 2010). An extension of the cost functional
that includes the terminal cost is straightforward. Eitherway, the
cost functional f (z, x) has to satisfy the following assumption.

Assumption 2.2: The cost functional f (z, x) is strongly convex
and continuously differentiable, and ∇f (0, 0) = 0.

In addition to the coupling between local states through
cost, each subsystem is subject to inequality constraints. We
characterise two types of inequality constraints:

(1) the states and control inputs of subsystem i must remain
safe on the predicted trajectory, i.e. xi ∈ Xi and ui ∈ Ui on
the interval [t, t + Nτ ], where Xi and Ui are safe sets of
states and control inputs, respectively;

(2) the states of individual subsystems must satisfy coupled
constraints on the trajectory (e.g. collision constraints).

In our problem formulation, we assume that the subsys-
tems are coupled only through state constraints and that
the state and input constraints are decoupled. Hence, we
interpret the constraints through vector functions qx,i(xi, x−i)
and qu,i(ui) that are evaluated as positive whenever the
constraints are violated. We succinctly write qi(xi, x−i,ui) =
[qx,i(xi, x−i)� qu,i(ui)�]� to denote the stage constraint func-
tion of subsystem i. To capture all constraint functions of sub-
system i on the N-step trajectory, including the terminal state
constraint qx,i(xNτ

i , xNτ
−i ), we define a vector function

gi(zi, z−i, xi, x−i) =

⎡
⎢⎢⎢⎣

qi(x0i , x
0
−i,u

0
i )

...
qi(x

(N−1)τ
i , x(N−1)τ

−i ,u(N−1)τ
i )

qx,i(xNτ
i , xNτ

−i )

⎤
⎥⎥⎥⎦ . (9)

For compactness, we also write the constraints imposed on the
entire network as

g(z, x) =

⎡
⎢⎣

g1(z1, z−1, x1, x−1)
...

gM(zM , z−M , xM , x−M)

⎤
⎥⎦ . (10)

The constraint function g(z, x) must satisfy the following
assumption.

Assumption 2.3: The constraint function g(z, x) is convex and
continuously differentiable in the first argument.

Next, we define an equality constraint function that includes
dynamics of the interconnected system. We introduce matri-
ces Hi and Vi which include linear dynamics of the individual
subsystems as follows

Hi =

⎡
⎢⎢⎢⎢⎣
Bi 0 . . . 0 −I 0 . . . 0

0 Bi
. . .

... Ai −I . . .
...

...
. . . . . . 0 0

. . . . . . 0
0 . . . 0 Bi 0 0 Ai −I

⎤
⎥⎥⎥⎥⎦ ,

Vi =
[
A�i 0 . . . 0

]� .
The equality constraint for subsystem i is given as

hi(zi, xi) = Hizi + Vixi, (11)

which corresponds to the DT dynamics in (3) on the N-step
horizon. The equality constraint for the interconnected system,
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induced by its dynamics in (4), is given as

h(z, x) = Hz+ Vx, (12)

where H = diag(H1, . . . ,HM) and V = diag(V1, . . . ,VM). We
make the following assumption about the feasibility and reach-
ability of the origin.

Assumption 2.4: The origin is a strictly feasible reference point,
i.e.g(0, 0) < 0, and h(0, 0) = 0. For every xi ∈ Xi, i = 1, . . . ,M,
there exists ui ∈ Ui which asymptotically stabilises subsystem i at
the origin.

We have established that a subsystem with dynamics in (1)
is coupled with its neighbours through the cost in (7) and con-
straints in (9). From the definitionswe havemade so far, it is easy
to see that each subsystem must have access to the current state
and predicted trajectories of all neighbouring subsystems, x−i
and z−i, to evaluate the local cost functional fi(zi, z−i, xi, x−i)
and the local coupling constraint gi(zi, z−i, xi, x−i). Therefore,
we need to define a communication graph on which the sub-
systems share these trajectories. We let G = (V , E) denote the
communication graph, where V = {1, . . . ,M} denotes a set of
subsystems and E denotes a set of edges that represent commu-
nication links between the subsystems. We assume that agent
j transmits its state xj and predicted trajectories zj to agent i,
i.e. (j, i) ∈ E , if and only if the cost functional fi(zi, z−i, xi, x−i)
or the constraint gi(zi, z−i, xi, x−i) depend on the states of sub-
system j. We also let Vi denote a set of subsystems that are
coupled with subsystem i. We recall that the neighbours’ signals
collectively adopt subscript−i in the notation, e.g.x−i.

In the remainder of this section, we introduce two opti-
misation problems that we aim to solve. First, we consider
the interconnected system as a whole and define a centralised
optimisation problem. We note that a centralised controller
has access to the state x and predicted trajectories z. We have
defined the cost function in (8), inequality constraints in (10),
and equality constraints in (12). The centralised optimisation
problem is given as follows:

min
z

f (z, x) s.t. g(z, x) ≤ 0, h(z, x) = 0. (13)

Due to the controllability, (strong) convexity stated in Assump-
tions 2.1–2.4 and linearity of the system dynamics in (4), the
optimisation problem in (13) is convex. Thus, it has a unique
optimal point z∗ which satisfies the KKT conditions as follows:

∇f (z∗, x)+ [∇g(z∗, x)]μ∗ + [∇h(z∗, x)]λ∗ = 0

μ∗ ≥ 0, g(z∗, x) ≤ 0, μ∗ ◦ g(z∗, x) = 0, h(z∗, x) = 0.
(14)

Here,μ andλ are Lagrange dual variable vectors associatedwith
inequality and equality constraints, respectively. The predicted
state and input trajectory z∗ is a unique optimal trajectory for a
given state x. In case x = 0, the corresponding optimal trajec-
tory is z∗ = 0. We note that our ultimate goal is to break down
the centralised optimisation problem in (13) and have each
agent optimise its own predicted state and input trajectories

zi. Therefore, we define the following distributed optimisation
problem:

min
zi

fi(zi, z−i, xi, x−i) s.t. gi(zi, z−i, xi, x−i) ≤ 0 hi(zi, xi) = 0.

(15)

In the next subsection, we propose iDMPC to solve the dis-
tributed optimisation problem in (15). In fact, we take advantage
of the structure of the cost functional f (z, x) and the con-
straints g(z, x) to show that an iDMPC controller solves both the
distributed and the centralised optimisation problem. The pro-
posed iDMPC controlmethod is a fast alternative toDMPC that
solves (15) as well. We note that traditional DMPC controllers
such as Camponogara et al. (2002) solve the optimisation prob-
lem within a time step τ . Then, the controller applies the first
input of a computed trajectory, ui, to the dynamical system. In
contrast, iDMPC instantly applies the control input ui while
solving the optimisation problem. It is an optimisation-based
feedback control strategy designed to drive system state and
input trajectories to the reference (origin) such that the KKT
conditions in (14) are satisfied in a steady state.

3. Instant distributedmodel predictive control

Instant MPC is a suboptimal MPC method that features the
primal-dual algorithm in the controller dynamics. The control
input applied by an iMPC controller corresponds to the inter-
mediate solution of the gradient-based optimisation of (13).
Since the applied control inputs are suboptimal, we are partic-
ularly keen to design iDMPC to ensure asymptotic stability of
the closed-loop system as well as the convergence of the pre-
dicted trajectories. We begin with a definition of the iDMPC
algorithm and then proceed with its analysis. In the first part of
the analysis, we focus on the computation of the predicted state
and input trajectories. We prove that the trajectories generated
by iDMPCand iMPCare equivalent under a few assumptions on
communication between subsystems. Furthermore, we estab-
lish a sufficient condition for the asymptotic stability of the
reference point (origin) when a dynamical system is controlled
by iDMPC. The iDMPC and iMPC controllers are depicted in
Figure 2.

3.1 Instant distributedMPC

In this subsection, we introduce the iDMPC algorithm that
solves the distributed optimal control problem in (15). Fur-
thermore, we show that the optimisation performed by iDMPC
amounts to solving the centralised optimal control problem (13)
under a few assumptions on computation and communication
between the subsystems.

To maintain consistency with the definition of the inequality
and equality constraints in (10) and (12), we let the associated
Lagrange dual variables, μ and λ, be given as

μ = [
μ�1 . . . μ�M

]� , λ = [
λ�1 . . . λ�M

]� . (16)

In addition to the local Lagrange dual variables, we define three
design parameters for iDMPC, namely α > 0, β ≥ 0, and κ =
1+ 2αβ . We recall that optimisation-based controllers apply



666 M. FIGURA ET AL.

Figure 2. Interconnected systems controlled by iDMPC (left) and iMPC. Physical and communication paths are depicted by solid and dashed lines, respectively.

the first control input of the computed control input sequence
to the plant, and hence we let ui = Eizi := [I 0 . . . 0]zi.
The inequality constraint function is evaluated (element-wise)
as follows

[gi]+μi
=

{
gi if μi > 0
max{gi, 0} if μi = 0.

(17)

Finally, the iDMPC algorithm is givenAlgorithm 1. For simplic-
ity in the notation, we use shorthand f−i =

∑
j∈V i fj.

Algorithm 1 iDMPC algorithm
Initial data zi(0),μi(0)← 0, λi(0)← 0
Until convergence
Measure or receive xi(t−), x−i(t−), z−i(t−)

Compute
żi(t) = −∇zi(fi + f−i)− [∇zigi]μi − κ[∇zihi](λi + βλ̇i)
μ̇i(t) = [gi]

+
μi

λ̇i(t) = −α(1+ αβ)−1λi + (1+ αβ)−1hi
Measure xi(t)
Send xi(t) and zi(t) to the neighbours
Apply ui(t)

The agents that employ Algorithm 1 utilise only local infor-
mation from their neighbours, x−i and z−i, in order to com-
pute their own state and input trajectories zi. This is a major
advantage over centralised iMPC (Yoshida et al., 2019) that col-
lects data from all subsystems and computes input and state
trajectories for the entire interconnected system.

Remark 3.1: Algorithm 1 does not handle constraints in a
transient state. In Section 3.3, we address this problem by intro-
ducing the ERG.

We make the following assumption on the communication
between subsystems and some algorithm parameters to make
the analysis of the iDMPC algorithm more amenable.

Assumption 3.1: There is no time delay in the communication,
and the time constant τ and the time horizon N are the same for
all subsystems.

In the remainder of this section, we show that iDMPC is
equivalent to centralised iMPC (Yoshida et al., 2019) if we
assume instant communication on the graph G. However, there
is a nuance between the centralised and distributed control

problem.We note that the coupled constraints occur in the vec-
tor g(z, x) multiple times because they are enforced at different
subsystems (e.g. two subsystems try to avoid a collision). By
eliminating the duplicate entries in g(z, x), we define a new con-
straint g′(z, x). Moreover, we define a Lagrange dual variable
vector μ′ that is associated with g′(z, x). Similarly to Yoshida
et al. (2019), the iMPC dynamics are given as follows

ż = −∇f (z, x)− [∇g′(z, x)]μ′ − κ[∇h(z, x)](λ+ βλ̇)

(18a)

μ̇′ = [g′(z, x)]+
μ′ (18b)

λ̇ = −α(1+ αβ)−1λ+ (1+ αβ)−1h(z, x), (18c)

where [g′(z, x)]+
μ′ is defined element-wise as follows

[g′(z, x)]+
μ′ =

{
g′(z, x) if μ′ > 0
max{g′(z, x), 0} if μ′ = 0.

(19)

Theorem 3.1: Under Assumption 3.1, the state and input trajec-
tories z computed by iDMPC (Algorithm 1) are the same as the
state and input trajectories z computed by iMPC in (18).

Proof: We analyse the dynamics of iMPC and show that they
are embedded in iDMPC. First, we consider all terms in (18a).
By differentiating f (z, x) with respect to z, we obtain

∇f (z, x) =

⎡
⎢⎣

∇z1 f (z, x)
...

∇zM f (z, x)

⎤
⎥⎦ =

⎡
⎢⎣

∇z1(f1 + f−1)
...

∇zM (fM + f−M)

⎤
⎥⎦ .

The second term is distributed as follows

[∇g′(z, x)]μ′ =

⎡
⎢⎣

∇z1g′(z, x)
...

∇zMg′(z, x)

⎤
⎥⎦μ′ =

⎡
⎢⎣

[∇z1g1]μ1
...

[∇zMgM]μM

⎤
⎥⎦ .

Next, we recall from (12) that H and V are block diagonal
matrices. Therefore,

∇h(z, x) = diag
(∇z1h1(z1, x1), . . . ,∇zMhM(zM , xM)

)
,

where hi(zi, xi) is defined in (11). We define λ′ = λ+ βλ̇. Ana-
lyzing the terms in (18a), we obtain

ż = −∇f (z, x)− [∇g′(z, x)]μ′ − κ[∇h(z, x)]λ′

= −

⎡
⎢⎣

∇z1(f1 + f−1)+ [∇z1g1]μ1 + κ[∇z1h1]λ
′
1

...
∇zM (fM + f−M)+ [∇zMgM]μM + κ[∇zMhM]λ′M)

⎤
⎥⎦
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= [
ż�1 . . . ż�M

]� .
Second, we analyse (18b). Since g(z, x) contains duplicate
entries of g′(z, x), the dynamics ofμ andμ′ are the same, except
for the dimension. Third, we analyse (18c) to obtain

λ̇ = −α(1+ αβ)−1λ+ (1+ αβ)−1h(z, x)

=

⎡
⎢⎣
−α(1+ αβ)−1λ1 + (1+ αβ)−1h1

...
−α(1+ αβ)−1λM + (1+ αβ)−1hM

⎤
⎥⎦

=
[
λ̇
�
1 . . . λ̇

�
M

]�
.

Therefore, the state and input trajectories computed by iDMPC
are equivalent to those computed by iMPC provided that
Assumption 3.1 holds. �

In the next subsection, we exploit the structure of the dynam-
ics of centralised iMPC to directly prove asymptotic conver-
gence of the state x and predicted trajectories z of iDMPC.

3.2 Stability analysis

In this subsection, we present the stability analysis of iDMPC.
First and foremost, we want to ensure that the state x of the
closed-loop interconnected system (asymptotically) converges
to the origin. In addition to the stability of the closed-loop
system, we also focus on the behaviour of the predicted trajec-
tories z computed by iDMPC. Such trajectories must remain
uniformly bounded to prevent the controller from malfunc-
tioning. We use the similarity between iDMPC and iMPC that
was highlighted in the previous subsection to make conclusions
about the stability of iDMPC. The convergence proof is based on
analysing QSR dissipativity of the plant. Therefore, we present
the following definition.

Definition 3.2 (QSRdissipativity): LetQ ∈ R
m×m, S ∈ R

m×n,
and R ∈ R

n×n be constant matrices. Let

w(x,u) :=
[
x
u

]� [
Q S
S� R

] [
x
u

]

denote the QSR supply rate. The interconnected system (2) is
QSR dissipative if and only if for some storage function Sx ≥ 0,
it holds that Ṡx ≤ w(x,u).

Remark 3.2: Definition 3.2 is equivalent to the classical
definition of QSR dissipativity (Antsaklis et al., 2013) for the
system output y = x. When the state x is observable, it is a
straightforward choice for the output y.

We define E = diag(E1, . . . ,EM) and note that Assump-
tion 2.2 ensures that there exists a positive constant ν such
that ∇f (z, x)�z ≥ νz�z. We are ready to present an impor-
tant theorem that provides a sufficient condition for asymptotic
stability of a dynamical system controlled by iDMPC.

Theorem 3.3: Under Assumption 2.1–3.1, the states (x, z,λ,μ)

of the closed-loop system and the iDMPC controller depicted

in Figure 1 asymptotically converge to the origin if there exist
matrices Q, S, R, and P = PT > 0 such that[

PAc + A�c P − Q PBc − S
B�c P − S� −R

]
≤ 0 (20a)

[−νI − βH�H + E�RE −βHTV + E�S�
−βV�H + SE 1

4α(1+αβ)
A�A+ Q

]
< 0. (20b)

Proof: By Theorem 1, the state and input trajectories of iDMPC
are equivalent to those of iMPC.Therefore, we can prove asymp-
totic stability in the centralised setting. We refer to the orig-
inal proof of stability via dissipativity analysis from Yoshida
et al. (2019) and note that Assumption 2.3 ensures that μ

asymptotically converges to zero. �

Theorem 2 provides a sufficient condition on the asymp-
totic stability of an interconnected system controlled by iDMPC.
However, verifying the sufficient condition given in terms of the
LMIs in (20) is not trivial due to the computational complex-
ity. The number of mathematical operations required to check
whether a single LMI holds is roughly O((m+ n)3), and thus
such computation naturally becomes prohibitive for large m
and n. Therefore, we would like to find an alternative method
that allows us to verify asymptotic convergence of the states
x and predicted trajectories z in a distributed fashion. In the
following corollary, we present a sufficient condition for asymp-
totic stability of iDMPC, whose verification has a computational
complexity of O(

∑M
i=1(mi + ni)3).

Corollary 3.4: Under Assumption 2.1–3.1, the states (x, z,λ,μ)

of the closed-loop system and the iDMPC controller asymptoti-
cally converge to the origin if there exist matrices Pi = PTi > 0,
Qi, Si, and Ri such that for every i = 1, . . . ,M,[

PiAci + A�ci Pi − Qi PiBci − Si
B�ci Pi − S�i −Ri

]
≤ 0

(21a)[−νIi − βH�i Hi + E�i RiEi −βH�i Vi + E�i S�i
−βV�i Hi + SiEi 1

4α(1+αβ)
A�i Ai + Qi

]
< 0.

(21b)

Proof: Since the network dynamics are decoupled, thematrices
P,Q, S, R,H,V,A, B, and E are block-diagonal. Therefore, (21a)
and (21b) together present a sufficient condition for the asymp-
totic convergence of the local states (xi, zi,λi). Since the LMIs
are satisfied for all subsystems, thenμi asymptotically converges
to zero for i = 1, . . . ,M by Assumption 2.3. �

By Corollary 1, we can individually tune the iDMPC
algorithm for each subsystem, test whether its states converge
to the equilibrium, and finallymake a conclusion about the con-
vergence of all states of the interconnected system. The design
steps include the characterisation of the QSR dissipativity of the
dynamical system, search for a quadratic storage function, and
identification of tuning parameters α and β .

Remark 3.3: It is possible to tune local parameters αi and βi
instead of global parameters α and β . However, we omit this
generalisation in our analysis.
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The distributed optimal control strategy established in this
section is sufficient for the control of systems with constraints
that need to be satisfied merely in a steady state. However,
iDMPC does not guarantee that the state x and predicted tra-
jectories z remain in the feasible set in a transient state. Since
iDMPC is computationally efficient, it is in our best interest to
prevent any constraint violation in the transient state using a
complementary control method that is easy to evaluate. In the
next subsection, we introduce an ERG that corrects the converg-
ing state and input trajectories generated by iDMPC such that
constraints are satisfied in real-time.

3.3 Explicit reference governor

In the previous subsection, we discussed that the control input
ui applied by iDMPC is optimal and feasible in a steady state, i.e.
when xi = 0. However, the state xi can be far away from the ori-
gin when a sudden change in the reference is triggered. When-
ever such an event occurs, iDMPC can temporarily drive the
dynamical system to infeasible states since it does not instantly
solve the full optimisation problem in (15). Naturally, we want
to ensure feasibility of our optimisation-based controller in a
transient state as well.

In this subsection, we introduce a complementary ERG-
based control method that ensures the feasibility of the state
xi in transient whenever iDMPC alone cannot. The ERG is an
auxiliary dynamical system that slowly modifies the reference
point at which the dynamical system is supposed to operate.
The ERG does not solve any optimisation problem, and thus its
computational footprint is relatively small compared to iDMPC.
This makes the ERG a great candidate for the design of an inex-
pensive controller that features iDMPC (or similar controller
with optimisation-based dynamics) and satisfies constraints in
a transient state. The dynamical system controlled by iDMPC
and the ERG-based controller is depicted in Figure 3.

The ERG-based control works on the following principle.
There is a stabilising controller that ensures feasibility by sta-
bilising the state xi around the reference signal modified by the
ERG. At the same time, driving the state xi to the modified ref-
erence allows the ERG to push the modified reference towards
the desired reference point at the origin. This facilitates feasibil-
ity in transient and, eventually, regulation of the state xi and the
control input ui around the origin. In the remainder of this sub-
section, we define the ERG-based control system and integrate

it with iDMPC. We analyse the convergence of the modified
reference under the joint iDMPC and ERG-based controller.

We let x∗i and u∗i denote a modified state and input reference
of subsystem i. We note that x∗i and u∗i are not located at the
origin in general but it is imperative to drive them to the origin
to solve the original regulation problem in (13). In addition to
the potentially unsafe iDMPC control input ui, we introduce a
stabilising ERG-based control law

ūi = u∗i + Ki(xi − x∗i ), (22)

where Ki is a constant gain matrix, and the input reference u∗i
satisfies Acix∗i + Bciu∗i = 0. We define a Lyapunov function

Wi(xi, x∗i ) = (xi − x∗i )
TP̄i(xi − x∗i ), (23)

where P̄i > 0. By the standard synthesis of stabilising con-
trollers for linear systems, the gain matrix Ki is chosen such
that for some P̄i, it holds thatQi = (Aci + BciKi)

TP̄i + P̄i(Aci +
BciKi) < 0. In the design of the ERG dynamics, we take advan-
tage of the set invariance property induced by the stabilising
control input ūi.

To ensure that no state constraint violation occurs in tran-
sient state, we must define a relationship between the set invari-
ance property and the state constraints. We letN k

i denote a set
of subsystems that are coupled through the kth constraint of
subsystem i. We recall from (10) that the constraint function
g(z, x) is formulated over an N-step horizon, and hence it plays
role in the selection of the current control input ui as well as
the predicted control inputs by iDMPC. In constrast, the ERG
facilitates an application of the safe control input ūi, which has
to satisfy the constraint qx,i(xi, x−i) ≤ 0 at the current state. We
assume that qx,i(xi, x−i), which is convex by Assumption 2.3, is
given by a polyhedron

qx,i(xi, x−i) = Li
[
xi
x−i

]
+ γ i, (24)

where the matrix Li and the vector γ i contain constant coeffi-
cients. Associated with each element of qx,i(xi, x−i) is a vector of
Lyapunov functions of subsystem i whose kth element is given
by

[Wi(xi, x∗i , x−i, x
∗
−i)]k =

∑
j∈N k

i

Wj(xj, x∗j ). (25)

Assuming that the modified state reference x∗i is feasible for all
subsystems, there exists a margin between safety and constraint

Figure 3. Block diagram of the augmented closed-loop system: iDMPC in the upper loop computes a (sub)optimal input and the stabilising controller with ERG in the
lower loop provide a safe stabilising input. The communicated signals are depicted by dashed lines.
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violation for xi. We express the safety margin in terms of Lya-
punov level sets, where we use the matrices P̄i that certified
asymptotic stability of xi under the control input ūi. The level set
associated with the kth constraint of subsystem i defined in (24)
is given as follows Nicotra and Garone (2015)

[�i(x∗i , x
∗
−i)]k =

‖[qx,i(x∗i , x∗−i)]k‖2
[Li]kP̄−1Ni

[Li]�k
, (26)

where P̄Ni = blkdiag(P̄i, P̄−i). We succinctly write �(x∗) =
[��1 . . . ��M]� and W(x, x∗) = [W�1 . . . W�M]�.
Finally, we define a set S such that

S = {
x ∈ R

m, W(x, x∗) ≤ �(x∗)
}
. (27)

The set S is depicted in Figure 4, which illustrates the basic
principle of the ERG. The modified reference x∗ is meant to be
driven to the originwhile the state x remains sufficiently close so
that it does not violate the safety margin �(x∗). In the following
proposition, we show that the set S is safe under the stabilising
control ū = [ū�1 . . . ū�M]�.

Proposition 3.5: For every feasible reference x∗, the state x ∈ S
is feasible and the set S is invariant under the stabilising control
input ū.

Proof: Since themodified reference x∗ is feasible, then�(x∗) ≥
0. Furthermore, under the asymptotically stabilising control
input ū, we have for each subsystem

Ẇi(xi, x∗i ) = (xi − x∗i )
�Qi(xi − x∗i ) ≤ −ci‖xi − x∗i ‖2,

where ci is the largest eigenvalue of Qi. Therefore, Ẇ ≤ 0 and
the set S is invariant. �

Proposition 3.5 stipulates that the constraints cannot be vio-
lated when the state x is sufficiently close to a fixed modified
reference x∗ and the system is controlled by the stabilising input
ū. However, the modified reference x∗ must not remain fixed
unless it is located at the origin.

In the following lines, we design the ERG dynamics to drive
the modified reference x∗ to the origin and to ensure safety
of the state x in the process. We define a gain margin for
subsystem i as follows

	i(xi, x∗i , x−i, x
∗
−i) = min

k
[�i −Wi]k. (28)

Furthermore, we let ρi(x∗i ) = sign(x∗i ) denote a vector field,
where sign(·) is a sign function. Additionally, we introduce a

Figure 4. Spatial representation of the invariant set S (orange) whose interior
contains feasible states x.

vector function ξ i(x∗i , x∗−i) whose kth element is given by

[ξ i]k =
⎧⎨
⎩min

{
1,
[
i]k − ε

ε

}
if ∇x∗i [�i]k · [ρi(x∗i )]k < 0

1 if ∇x∗i [�i]k · [ρi(x∗i )]k ≥ 0

for some small ε > 0. Finally, the ERG dynamics are given as

ẋ∗i = −σ · ξ̂i(x∗i , x∗−i) ·	i(xi, x∗i , x−i, x
∗
−i) · ρi(x

∗
i ), (29)

where σ > 0 and ξ̂i(x∗i , x∗−i) = mink[ξ i(x∗i , x∗−i)]k. Each term in
the ERG dynamics has a specific purpose. We clarify that in the
following lines.

(1) The constant σ controls the convergence rate.
(2) The term ξ̂i(x∗i , x∗−i) ensures that the modified reference x∗i

does not get too close to the boundary of the feasible set.
This prevents slow convergence of x∗i and convergence to a
point on the boundary of the feasible set.

(3) The gain margin 	i(xi, x∗i , x−i, x∗−i) controls the conver-
gence rate; it decreases with an increasing distance between
x and x∗.

(4) The vector field ρi(x∗i ) provides a direction to the origin.

Furthermore, the gain margin 	i(xi, x∗i , x−i, x∗−i) is useful
in the control synthesis because it provides a metric, based on
which the subsystems can transition from the performance-
based iDMPC control input ui to the safe control input ūi. We
propose a smooth control law as follows

utoti = θiui + (1− θi)ūi, (30)

where θi = min{ϕi	i, 1} and ϕi > 0 is a parameter that controls
the smoothness of the transition between the safe and subopti-
mal control inputs . We make the following assumption on the
control input utoti .

Assumption 3.2: The control input utoti is always feasible, i.e.
utoti ∈ Ui.

Assumption 3.2 is important for us to be able to stabilise
each subsystem around themodified reference x∗i , and therefore
ensure its feasibility. We define a set S ′ = {x ∈ R

m, W(x, x∗) ≤
�′(x∗)} for some �′(x∗) < �(x∗), and introduce an important
lemma that certifies convergence and safety under the control
input utoti .

Lemma3.6: For every fixed strictly feasible reference x∗, the state
x ∈ S is feasible and the set S is invariant under control input
utoti , i = 1, . . . ,M.Furthermore, x asymptotically converges to the
limit set S ′.

Proof: The proof is analogous to the proof of Proposition 1.
subsystem i dissipates energy as follows

Ẇi(xi, x∗i ) ≤ −ci‖xi − x∗i ‖2 + 2θi(xi − x∗i )
�P̄iBci(ui − ūi).

We recall that the control input computed by the iDMPC con-
troller is asymptotically stable, and hence ‖ui‖2 <∞. Fur-
thermore, the stabilising controller satisfies ‖ūi‖2 <∞ for any
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strictly feasible reference x∗i and bounded state xi. Hence, for
c′i = supui,ūi ‖P̄iBci(ui − ūi)‖2 <∞, we obtain

Ẇi(xi, x∗i ) ≤ −ci‖xi − x∗i ‖2 + 2θic′i‖xi − x∗i ‖2.

We recognise that the state xi asymptotically converges for θi =
min{1,ϕi	i} = min{1,ϕimink[�i −Wi]k) < ci

2c′i
. This condi-

tion is satisfied if mink[�i −Wi]k ∈ [0, ci
2ϕic′i

). We note that
�i(x∗i , x∗−i) > 0 since the modified reference x∗ is strictly fea-
sible. Letting [�′i(x∗i , x∗−i)]k = max{0, [�i(x∗i , x∗−i)]k − ci

2ϕic′i
}, it

holds that�′i(x∗i , x∗−i) < �i(x∗i , x∗−i) andwe obtain Ẇi(xi, x∗i ) ≤
0 when mink[�′i −Wi]k = 0. Therefore, the state of the inter-
connected system x asymptotically converges to the limit
set S ′. �

Lemma 3.6 presents an intermediate result in our analysis
that suggests that the state x asymptotically converges to the
interior of the largest safe Lyapunov set when the subsystems
apply the control law utoti and themodified reference x∗i remains
fixed. It is important to note that the potentially unsafe iDMPC
control input ui does not compromise the safety of our con-
troller. In fact, the safety is not compromised even for a moving
modified reference x∗i as the gain margin 	i(xi, x∗i , x−i, x∗−i)
controls its convergence rate. Since we design a controller that
does not have the computational power to run full optimisation
and enough memory to store precomputed control sequences,
it is reasonable to assume that feasibility can be achieved by sta-
bilising the subsystem around the feasiblemodified reference x∗i
(Garone&Nicotra, 2015). As a final step in our analysis, we need
to show that themodified reference x∗i asymptotically converges
to the origin for i = 1, . . . ,M.

Theorem 3.7: Suppose that the initial reference x∗ is strictly
feasible and the initial state satisfies x ∈ S . Under Assump-
tion 2.1–3.2, the modified reference x∗ asymptotically converges
to the origin under the ERG dynamics in (29) and the control law
in (30).

Proof: We let V(x∗) =∑M
i

1
2‖x∗i ‖2 denote the Lyapunov func-

tion for the ERG. Its time derivative is given as

V̇(x∗) = −σ

M∑
i

ξ̂i(x∗i , x
∗
−i) ·	i(xi, x∗i , x−i, x

∗
−i) · x∗�i ρi(x

∗
i )

= −σ

M∑
i

ξ̂i(x∗i , x
∗
−i) ·	i(xi, x∗i , x−i, x

∗
−i) · ‖x∗i ‖1.

Since the initial state x and modified reference x∗ are fea-
sible, the ERG dynamics ensure that 	i(xi, x∗i , x−i, x∗−i) ≥
0 and ξ̂i(x∗i , x∗−i) ≥ 0 for i = 1, . . . ,M, assuming that ε is
sufficiently small. We apply the LaSalle’s invariance princi-
ple to prove asymptotic stability of the origin. If the term
	i(xi, x∗i , x−i, x∗−i) = 0 at t = T1, then the state xi converges
to the modified reference x∗i since [�i(x∗i , x∗−i)]k ≥ ε. Hence,
there exists T2 > T1 such that 	i(xi, x∗i , x−i, x∗−i) > 0 at t =
T2. Moreover, the term ξ̂i(x∗i , x∗−i) = 0 at t = T1 only when
[�i(x∗i , x∗−i)]k = ε and ∇x∗i [�i(x∗i , x∗−i)]k · [ρi(x∗i )]k < 0 for

some k. Since the constraints are convex by Assumption 2.3,
then there existsT2 > T1 such that [�i(x∗i , x∗−i)]k > ε, and con-
sequently ξ̂i(x∗i , x∗−i) > 0, for t = T2. Therefore, the modified
reference x∗ converges to the desired reference at the origin. �

Having proved that the control input utoti ensures safety and
the modified reference x∗i converges to the origin, we essen-
tially established that our proposed control design solves the
original regulation problem. However, it is obvious that the pro-
posed control utoti is very conservative because it prioritises
safety before performance. The trade-off between performance
and safety is inevitable while operating on a constrained budget.
The empirical results in the next section are consistent with our
claim. In the simulations, we compare iDMPC and ERG when
applied alone, as well as the joint iDMPC-ERG control and
benchmark DMPC. We focus on the performance, feasibility,
and computational footprint of these control methods.

4. Simulation results

In this section, we present simulation results of our proposed
safe iDMPC controller. We consider three subsystems modeled
as double integrators. The subsystems are driven to the state ref-
erence rx1 = [0 0]�, rx2 = [5 0]� and rx3 = [10 0]�. The
subsystems must satisfy the following constraints: ‖[xi]2‖ ≤
10, [x1]1 − [x2]1 ≤ 0, and [x2]1 − [x3]1 ≤ 0. Furthermore,
each subsystem minimises a cost function fi(zi, z−i, xi, x−i) =∑N

k=0 ci(x
k	t
i , xk	t

−i ,u
k	t
i ), where ci(xi, x−i,ui) = ‖ui − rui‖2 +

3‖xi − rxi‖2 +
∑

(i,j)∈E (xi − rxi)�(xj − rxj). The reference rui
satisfies Acirxi + Bcirui = 0. We compute the predicted tra-
jectories with 	t = 0.2s, and N = 5. In the simulations, we
consider:

(1) DMPC - the results are obtained using theMatlab function
quadprog;

(2) iDMPC - each subsystem is pre-stabilised around the state
reference by applying a linear state feedback uprei = rui +
Ki(xi − rxi), where K1 = [−2 − 3], K2 = [−4 − 4],
and K3 = [−5 − 3], respectively. The iDMPC param-
eters that ensure the asymptotic stability are α1 = α2 =
β2 = β3 = 10, β1 = 5, and α3 = 1000;

(3) ERG - each subsystem is stabilised around themodified ref-
erence x∗i with the safe control ūi, where the feedback gains
areK1,K2, andK3; furthermore, the ERG hyperparameters
are σ = 1 and ε = 10−3;

(4) iDMPC/ERG - the results are obtained with the iDMPC
and ERG parameters, and the smoothing parameters are
ϕ1 = ϕ2 = ϕ3 = 0.1.

The algorithms are implemented in Intel Core i7-6700HQ
CPU@2.6 GHz. We use the ODE45 solver to emulate the analog
computation of iDMPC, ERG, and iDMPC/ERG in Simulink.
In Figure 5, we compare the positions [xi]1 of the systems con-
trolled by DMPC, iDMPC, ERG, and iDMPC/ERG.We assume
that DMPC computes the entire optimisation problem instantly
at every time step. As we expected, DMPC is superior when we
compare the performance and safety of the above-mentioned
algorithms. Although iDMPC control shows similar perfor-
mance (Figure 6), the trajectories violate safety constraints in
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Figure 5. The first plot shows the position of subsystems controlled by iDMPC (solid line) and DMPC (dashed line). The second plot depicts the position of subsystems
controlled by iDMPC/ERG (solid) and ERG (dashed).

Figure 6. The cost incurred with iDMPC, iDMPC/ERG, ERG, and DMPC controllers.

transient (Figure 5, left). In contrast, the ERG and iDMPC/ERG
schemes provide safety guarantees at a higher overall cost. The
total computational times are 0.2594 s for DMPC, 0.130s for
iDMPC, and 0.192 s for iDMPC/ERG. The iDMPC controller
is also faster than its centralised counterpart iMPC, whose
computational time is 0.167 s.

5. Conclusion and future work

Instant distributedMPC (iDMPC) is a computationally efficient
optimal control method that quickly updates predicted input
and state trajectories. We showed that iDMPC essentially per-
forms the same input updates as its centralised counterpart,
iMPC, in the absence of time delays in the communication. Even
though iDMPC alone does not guarantee the feasibility of the
state and input trajectories in transient, we showed that it can
be augmented by an ERG to do exactly that. We combined the
strengths of iDMPC and ERG, namely performance and safety,
to establish a new computationally efficient control method.We
note that the scheme with iDMPC and the ERG-based control
generalises to other classes of optimisation dynamics beyond
the primal-dual algorithm (Yamashita et al., 2020). There are
a few challenges that need to be addressed in future work.
One, the desired reference is usually a lower-dimensional signal.
Therefore, further research efforts should focus on the exten-
sion to output reference tracking and underlying dissipativity-
based stability guarantees. Two, it should be investigated if the
iDMPC scheme can be tuned to ensure convergence and fea-
sibility with tighter communication constraints. The current

assumption that subsystems exchange data with no delays is
rather strong. Dissipativity could play an important role in the
stability analysis under time delays.
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