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Resilient Multi-agent Reinforcement Learning with
Function Approximation
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Abstract—Adversarial attacks during training can strongly
influence the performance of multi-agent reinforcement learning
algorithms. It is, thus, highly desirable to augment existing
algorithms such that the impact of adversarial attacks on
cooperative networks is at least bounded. We consider a fully
decentralized network, where each agent receives a local re-
ward and observes the global state and action. We propose a
resilient consensus-based actor-critic algorithm, whereby each
agent estimates the team-average reward and value function, and
communicates the associated parameter vectors to its immediate
neighbors. We show that in the presence of Byzantine agents,
whose estimation and communication strategies are completely
arbitrary, the estimates of the cooperative agents converge to
a bounded consensus value with probability one, provided that
there are at most H Byzantine agents in the network that is
(2H + 1)-robust. Furthermore, we prove that the policy of the
cooperative agents converges with probability one to a bounded
neighborhood around a stationary point of their team-average
objective function under the assumption that the policies of the
adversarial agents asymptotically become stationary.

Index Terms—Cooperative multi-agent reinforcement learning,
Byzantine-resilient learning, adversarial attacks, consensus

I. INTRODUCTION

In multi-agent reinforcement learning (MARL), agents in-
teract with each other and a common environment to learn
policies that maximize their objective functions. Cooperative
MARL, in which agents wish to maximize a team objective
function, has emerged as an exciting method to solve dynamic
programming approximately for teams of agents with aligned
objectives in numerous potential applications [1]-[5].

In cooperative MARL, there is a long line of literature
that assumes that the agents first participate in centralized
training and then execute their decentralized policy at test
time [6]-[8]. These methods assume that the agents share
their local rewards, which they may wish to keep private in
certain applications. Recently, this assumption was removed by
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establishing methods in which the agents receive only local
rewards and communicate local information about the team
performance to their neighbors according to a graph [9]-[13].

In this paper, we focus on decentralized learning using
consensus-based actor-critic (AC) MARL methods [9], [14]
that have been shown to scale well with the size of the
multi-agent Markov decision processes (MMDP) and to ensure
sufficient exploration through the implementation of stochastic
policies. These algorithms are based on parameter sharing, i.e.,
the agents locally update parameters of the team-average value
function surrogate using their local reward signal and commu-
nicate the updated parameters to their immediate neighbors.
This idea, which originated in decentralized Q-learning [15],
was adopted in two consensus-based AC MARL algorithms
with linear function approximation proposed in [9] and the
consensus-based AC MARL algorithm with nonlinear function
approximation proposed in [14].

An important aspect of multi-agent systems is its resilience,
i.e., the ability to preserve performance when a subset of
agents are compromised by potential adversarial attacks [16].
While there is much to be admired about the state-of-the-
art consensus-based AC MARL algorithms, there are some
question marks about their resilience. In [17], it was shown
that the consensus-based AC MARL algorithm in [9] is
susceptible to a simple adversarial attack. Specifically, a single
self-interested agent can mislead all the other (cooperative)
agents to learn policies that maximize the objective function
of the self-interested agent, even though these policies may
be arbitrarily poor for the team objective. This has motivated
work on designing a consensus-based AC MARL algorithm
that is provably resilient to adversarial attacks. Formally, the
cooperative agents aim to learn optimal policies to a team-
average objective function among them by communicating
with their neighbors in an environment influenced by the
adversarial (i.e., Byzantine) agents. Throughout this paper,
we assume that a Byzantine agent can communicate arbitrary
and distinct information to each neighboring agent in the
environment and enact an arbitrary policy. Importantly, the
Byzantine agents impact the other agents both due to the
information they communicate to them as well as through
implementation of adversarial policies that affect the evolution
of the state of the environment; further, we do not assume that
the agents are aware of the policies of one another.

Unfortunately, resilient multi-agent learning algorithms that
eliminate the effects of Byzantine attacks entirely quickly run
into the curse of dimensionality. For instance, even in the
simple context of agents trying to learn the mean of a static
vector value that they hold when some agents are Byzantine —
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the so-called Byzantine consensus vector problem, the number
of reliable machines must be proportional to the product of
the number of Byzantine machines and the dimension of the
shared vectors [18]. One field that has studied the presence
of Byzantine adversarial agents in the context of learning
is distributed machine learning with master-worker networks.
In this setting, each worker agent applies stochastic gradient
descent (SGD) to update shared function parameters and a
central machine aggregates parameters received from multiple
worker agents. If some agents can be adversarial, we can
point to algorithms based on the concept of the geometric
median [19], [20]. To reduce the computational complexity,
the method of median of means was proposed in [21] and the
method of entry-wise median was introduced in [22]. Another
recently proposed approach, the Krum method, is based on
medoids [23]. It is important to note that all these methods
merely bound the deviation of the aggregated parameter vector
from the desired one. A resilient MARL algorithm based on
centralized training and decentralized execution was proposed
in [24], where a team of protagonist agents compete against
a team of antagonist agents. Their aim is for the protagonist
agents to perform well even if some of the agents fail or behave
erroneously during the evaluation phase.

In consensus-based MARL, a popular method to attenuate
the effect of adversarial data injected by Byzantine agents is
to apply the element-wise trimmed-mean [25]-[27], where the
agents discard H largest and H smallest parameter values re-
ceived from the neighbors. The hyperparameter H denotes the
maximum number of Byzantine agents allowed in the network.
[25] proposed this method in decentralized -learning and
shows that the policies of the cooperative agents converge to
a neighborhood around the team-optimal policy. Matters be-
come significantly more complicated in large MMDPs, where
agents employ function approximation and execute consensus
updates in the parameter space. A resilient consensus-based
AC MARL algorithm with linear function approximation was
proposed in [26]; however, this method involves a centralized
coordinator that receives parameter vectors from all agents
and provides them with an element-wise trimmed mean of
each parameter. The approach was later extended to fully
decentralized MARL in [27], where the element-wise trimmed
mean is computed on a local level. While the element-wise
truncation methods guarantee boundedness of the estimated
parameters, the Byzantine agents can still design attacks that
manipulate individual parameters within bounded intervals. If
properly designed, these attacks lead to the overestimation of
selected features, which may compound large errors in the
approximated functions.

In this work, we introduce a novel resilient projection-based
consensus algorithm for decentralized AC MARL, where
parametric models must be used to approximate the AC
networks. The algorithm (Algorithm 2) includes two important
steps. In the first step, the received parameters are projected
into the feature vectors that happen to be the same for all
agents if the agents utilize linear function approximation. The
projection maps the received parameter vectors into scalar
values that approximately yield the estimation errors applied
by the neighbors in the SGD updates. In the second step,

the cooperative agents perform resilient aggregation of the
estimation errors and apply the aggregated value in another
SGD update, which ensures diffusion of local data across the
network. The closest work to ours is [27], which proposes a
similar rule for resilient aggregation; however, as opposed to
aggregating parameter vectors that are of the same dimension
as the feature vectors as in [27], our projection-based method
is performed over scalars. We show numerically that this
leads to better estimates of the team advantage functions
and better performance of the MARL algorithm. With linear
function approximation, we prove that the joint policy of
the cooperative agents converges to the neighborhood of a
policy that forms a stationary point of the team utility function
under reasonable assumptions on the policies of the Byzantine
agents. We also show via simulations that Algorithm 2 can be
applied even with nonlinear approximation in a cooperative
navigation task. We show through our simulations that low-
dimensional aggregation makes it significantly more difficult
for Byzantine agents to stage a successful attack. As a side
contribution regarding non-resilient consensus AC algorithms,
we introduce and analyze the convergence of the projection-
based consensus AC algorithm (Algorithm 1) which is a
special case of Algorithm 2 with no trimming applied in
the consensus updates. Finally, while our analyses and those
in [9] focus on the asymptotic convergence of the proposed
decentralized AC MARL algorithms, the more recent work
[28] analyzes the finite-time performance of a decentralized
AC MARL algorithm (with partial policy sharing among the
agents and without adversarial agents). We leave adapting the
finite-time analyses in [28] to the resilient decentralized AC
MARL algorithms proposed in this paper for future work.

The paper is organized as follows. In Section II, we
present some background and formulate the problem. The
two consensus-based AC MARL algorithms are presented in
Section III. We provide a convergence analysis for Algorithm 1
and Algorithm 2 with linear approximation in Section IV
and demonstrate the efficacy of Algorithm 2 with nonlinear
approximation in Section V. For ease of reading, all the proofs
are collected in the appendix.

II. BACKGROUND AND PROBLEM FORMULATION

Notations: Let R denote the set of real numbers. The
spectral radius of a matrix is denoted as p(-). For a vector y, let
llyll, lly]l1 and dim(y) be its I3 norm, 1 norm and dimension,
respectively. Let I be the identity matrix and 1 be an all-one
vector with proper dimensions that can be inferred from the
context. We write P = 0 if P is a positive semidefinite matrix;
and P < @ if Q) — P is positive semidefinite. For a set S, let
|S| be the cardinality.

Multi-agent Markov Decision Process: Consider an
MMDP given as a tuple (S, {A*}iens P, {R }ien, G), where
N ={1,...,N} is the set of all agents, S is a set of (global)
states, P is a set of transitional probabilities, v € [0,1) is a
discount factor, G represents a set of communication graphs,
and A’ and R’ are a set of actions and rewards of agent
1, respectively. The communication graph active at time ¢
is denoted by G;. With a small abuse of notation, we let
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G = (W, &) so that the set of vertices is also denoted by
N, with each vertex 7 being associated with agent 4, and a set
of undirected edges & C N x N. Furthermore, we define
sets J\/'fn’t and Ng’ut,t that include all agents that transmit
data to and receive data from agent ¢ at time ¢, respectively.
The global state is denoted by s € S. The global action is
obtained by stacking the actions of all the agents in a vector
denoted by a. We will use s’ to denote the global state at
the future step. All variables with the superscript ¢ pertain to
agent i. We let r’(s,a) : S x A — R* C R denote the local
reward of subsystem i, p(s’s,a) : SxSx A — P CR
the joint transitional probability, and 7%(a‘|s) : S x A" —
(0,1) the policy of subsystem 7. The global policy is given
as m(als) = [],cp 7' (a']s). If needed, we emphasize the
dependence of a signal on time by using subscript ¢, i.e.,
71,1 (s, ar). If the dependence is clear from the context, we
drop the subscript to reduce notational clutter. The rewards
remain private and each agent generally receives a different
reward, ie., v° # 77 for i,j5 € N,i # j. We assume
that every agent observes the global state s and action a at
each step in training. We define the average individual reward
under global policy 7(als) as ri(s) = >, m(a|s)ri(s,a), the
average individual reward under global policy (als) at all
states s € S as R = [ri(s),s € S]T € RISl and the
average individual reward at all state-action pairs (s,a) as
R' = [r'(s,a),s € S,a € AT € RISI'Al The distributions of
states and state-action pairs visited by the agents under a fixed
policy 7(a|s) are denoted as d(s) and d. (s, a), respectively.

Objective Functions: We divide the agents into a set of
cooperative agents and a set of Byzantine agents, which we
denote by N and N/, respectively, with N TUN~ = N and
NT NN~ =0. A Byzantine agent is one that communicates
arbitrary and generally distinct information to each of its
neighbors in the set Njut’t and enacts an arbitrary policy
7¢(a’|s). We note that the membership or cardinality of the
sets N7 and A/~ is not known. In other words, we do not
know a priori whether an agent is cooperative or Byzantine.
We let t(at|s) = [[;cn+ 7 (a’|s) denote the aggregated
policy of the cooperative agents, where a™ is the aggregated
action of the cooperative agents. Similarly, we define the
aggregated policy of the Byzantine agents as 7~ (a™|s) =
[Ticn- ™ (a’|s), where a~ represents the aggregated action
of the Byzantine agents. Each cooperative agent i, i € N' T, is
associated with an objective function:

[ee]
Jl(ﬂ-) = ']l(ﬂ'+’ 7T7) = Eﬂ',dﬂ-[zf}/trzﬁ-l(stv a‘t)]v
t=0

for a discount factor v € (0,1). The cooperative agents solve
the following well-defined optimization problem:

;7). 6]

7 =argmax J (7"
T+

where

5 5]

_ 1
J+(7‘(‘+7’]T )é]Eﬂ',d,r |:]\[+
ieN+ t=0

and NT = |[NT|. It is important to note that the cooperative
agents search for a policy that is optimal when the MMDP

evolution is affected by the Byzantine agents rather than a pol-
icy that is optimal when the Byzantine agents are absent. The
Byzantine agents seek to maximize an arbitrary and potentially
unknown objective function, denoted as J~ (7, 1), that may
not be aligned with J¥ (7, 77) in general. The policy 7~ is
unknown to the cooperative agents. We also assume that the
Byzantine agents cannot be identified in the training process.

Multi-agent Policy Gradient: Since AC algorithms are
gradient-based optimization methods, we first establish a
general framework to evaluate the gradient of the objective
function, V .+ J T (7", 7). We recall the well-known policy
gradient theorem [29], according to which the gradient of the
objective function J*(7+,77) is given as follows

Va (1", 77) = En g, [Qr+(5,a)Vr log m(als)]

1 4
Qr+(s,a) = Eﬂ[m Z Z'ytrzﬂ(st,atﬂso = s,a9 = al.

ieEN+ t=0

Thus, the policy gradient can be expressed as a sum of gradi-
ents with respect to the local policies, i.e., V .+ J T (7, 77) =
Yien+ VaiJT(nt,m7), where

Vi J* (7T+a 77_) = IE‘n',al7r [Qﬂ'+ (57 a)v'rri log s (CLZ|S)]

To reduce the variance of the gradient, define a critic
Vit (8) = Ex[Qx+(s,a)], so that the baseline policy gradient
Vaid T (r,77) equals

Era, [(Qn+(s,a) = Vs (5)) Vi log 7' (a's)].

We consider the simple temporal difference TD(0) method,
where the advantage function Q,+(s,a) — V,+(s) is sampled
as the team-average TD error

1 .
T D (5:0) F Ve () = Vi (s). 2)
1ENT

Consensus-based AC MARL: The distributed AC policy gra-
dient consists of two components: the team-average advantage
function Q.+ (s,a) — Vy+(s) and the term V. log 7t (at|s;).
Whereas the latter can be evaluated locally by each agent, the
former cannot be sampled directly in decentralized networks
because the agents neither observe the team-average rewards
~F Dien+ T (s, a) nor have access to the centralized critic
V.+(s). However, as shown by [9], there exists a solution
method that uses function approximation of the critic and
team-average reward function and communication between
agents, which enables the agents to approximately sample
the team-average advantage function Q.+(s,a) — Vi+(s).
Let 7(s,a; \*) and V (s;v") denote the approximation of the
team-average reward function and the critic at agent ¢, where
Ai and v® are the associated parameters. The goal of the
cooperative network in the policy evaluation of the consensus-
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based AC MARL algorithm is to solve constrained distributed
optimization problems:

1 .
Up = arg min Eq, {]Efr,p (N_Jr Z r'(s,a)
vt iEN+
' N2
+V(s's0") — V(s;v1)> } st. vl =7, (3)

Ar = argminEy
1ENT

2
—F(s,a;)\i)> } st A=\, ())

where the equality constraint applies to i,5 € N7T. The
distributed optimization problems in (3) and (4) are mean
squared error estimation problems with consensus constraints.
[9], proposed complementing the local updates of the critic
parameters v’ and team-average reward function parameters
A? with consensus updates to ensure that the local estimates
are averaged over the network, leading to the notion of team-
average estimation. Denoting the local estimation errors by
8, = ri(se,ar) + ’yV(sHl,vt) — V(s v5) and 5>\t =
rtﬂ(st,at) Tea1(8¢, a3 A1), the updates of the critic and
team-average reward function are given as:

Ol =0l - 5 -V, V(s;07) o)

”;+1 = Z vt (i, ) Ut ©)
JEN

)\i = )\i +ang - 6§7t : V)\'Ft+l(8t7 at; )‘Zt) (7

= 3 eanli i), ®)
JEN

where ¢, +(i,7) and cy+(i,7) are the consensus weights ap-
plied by agent ¢ to values received from agent j, and «, ; and
avy,¢ denote the step sizes in the SGD updates. The parameters
v® and \* are updated locally based on the most recent local
reward 7%(s,a) and observation of the global state s and
action a before being transmitted to neighbors for aggregation.
Combining the local updates with consensus updates ensures
the MMSE estimation defined in (3) and (4).

Resilient Consensus-based AC MARL: The success of the
consensus-based method for distributed estimation in (6) and
(8) hinges on the assumption that all agents are reliable, i.e.,
N~ = (. Even if a single agent deviates from the proposed
updates, the distributed stochastic approximation can yield
arbitrarily poor results, e.g., a single adversary can drive the
cooperative network to maximize only the objective function
J=(m~,7") [17]. To provide resilience against adversarial
attacks in consensus-based MARL, the method of trimmed
means was proposed in [27]. In this method, assuming that
there are at most H Byzantine agents in the network, the coop-
erative agents rank the values received from their neighbors for
each parameter and trim the H largest and H smallest values
in the consensus update. Our intention is to design a resilient
consensus method that is suitable for function approximation
in MARL algorithms.

III. PROPOSED ALGORITHMS

In this section, we design novel resilient consensus-based
AC MARL algorithm (Algorithm 2). In Section III-A, we in-
troduce the projection-based consensus AC MARL algorithm
with linear approximation (Algorithm 1) that allows agents to
conservatively perform consensus updates. In Section III-B,
we present the resilient projection-based consensus AC MARL
algorithm with linear approximation (Algorithm 2) that further
includes trimming that provides resilience in the team-average
estimation. The presented algorithms are based on parameter-
sharing, and thus the communication complexity scales with
the number of parameters used in the function approximation.
In Section V, we discuss the implementation of Algorithm 2
with nonlinear approximation.

A. Projection-based Algorithm with Linear Approximation

We begin by considering linear function approximation to
allow rigorous convergence analysis. Thus, we let 7#(s, a; \!) =
f(s,a)TAt and V(s;v') = ¢(s)Tvi, where f(s,a) and ¢(s)
denote the basis functions. Throughout the paper, we use
shorthand f; and ¢, to denote the feature vectors f(s:,a;)
and ¢(s;) evaluated at time ¢, respectively. The assumption of
linear function approximation allows us to rewrite the updates
from (6) and (8) as follows:

Ty 9)
(10)

6; = Uii + av,t(TZJrl + 7¢?+1U§ -
Y i i e
Ay = AN ane(ri — fi A fe

It is easy to see that a single update is performed in the
subspace spanned by the feature vectors and its magnitude and
direction in this subspace are governed by the step size and
estimation error. The agents can exploit the knowledge of the
common feature vectors ¢; and f; to estimate the estimation
error of their neighbors using scalar projection as
¢ (] — v})
ay el del
fE =)

1

d)t Ut ~ (11

Tt+1 + '7¢t+1vt

i — fIN ~ (12)

Lemma 1 shows that the approximation in (12) becomes exact
once the agents reach consensus on the parameter values.

Lemma 1. Suppose that agent i reaches consensus on the
critic and team-avemge reward function parameters with its
neighbors, i.e., ©; = x} for v € {v,\} and all j € N}, ,.
Then, the agent can exactly evaluate the estimation errors
fEX and &) =Tt YoLavl — ¢f vl

t V-
Proof. If zi = x for € {v,\}, manipulating the neighbor
updates in (10) and applying scalar projection into their respec-

5,\,t =71l -

tive feature vectors ¢, and f; yields 7} 41 +yot v] — (thvg =
¢y (D —v T [, A :
W and rF = N = Wfﬂ) Therefore, agent 4
evaluates the estimation errors exactly. O

In contrast to the vector aggregation via consensus updates
in (6) and (8), the aggregation in the projection-based consen-
sus method is done over the estimated neighbors’ estimation
errors that take scalar values. The method is incorporated in
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the parameter updates of a projection-based consensus AC
algorithm with the pseudo-code in Algorithm 1.

Algorithm 1: Projection-based consensus AC with
linear approximation

Initialize so, {cy ¢ }1>0,, {art }t>0, {6, >0,
0,00, Nb, Ny, vi, 0, Vi € N

Repeat until convergence

for i € N do

Take action a’ ~ 7i(at|s;; 01);

Observe state sy, action ay, and reward ri 11

Update actor

Op <= 7(st, a3 Ap) + YV (se13v) — V(sesvp)

0t+1 — 0 +agy -1 Vi logmi(al|st; 07)

Update critic and team reward function

Uf = vf +aw - (ripg FAV (se41300) = Vst vp)) -
Vi V(se;08)

Np = Nitan e (i =7 (s, ai ML) Vi (se, ag; Ap)

Send )}, %} to j € N, ,

end

for i € N do

Receive X/, 7/ from j € N} ,

PrOJectlon based consensus step
o SO e W
it — Zje/\/’l Cot(i,J) - €

GAt — Z]GN’“ X t(Z J)- EA t
”t+1 S S 1 Vi V(s 0l)
N < A +O¢)\f 6)\t Vi (8¢, a3 AL)

for j € N7,

end
Update iteration counter ¢ <— ¢ + 1

The agents perform a stochastic update using their local
reward 7, and exchange the updated parameters ; and A;
over the communication graph. Then, they estimate the average
estimation errors Ei,t and ef\ﬂf through the projection-based
consensus update, and apply the average estimation errors in
the parameter updates that yield new values vj,; and A}, ;.
Figure 1 provides a comparison between the consensus-based
AC updates that are given in (6) and (8), and the projection-
based consensus AC updates. We note that the projection-
based consensus AC algorithm performs more conservative
updates than the consensus-based AC MARL algorithm. Con-
sider any time step ¢ > 0 in Algorithm 1. First, each agent
i € N needs to compute local updates for d7, 0} €, e, ER
forall j € /\/'m . and X!, v!, where the d1mens1on of /\L (resp .
vé) is equal to that of the feature vector f; (resp., ¢;) used
in the function approximation for the reward (resp., value
function). The computation complexity of agent ¢ in time
step t is then given by O((dim(f;)+dim(¢;))| D).
Next, each agent 7 € N needs to send the updated vectors 5\2
and o} to all the neighbors in N, ;. In summary, the time
complexity and communication latency of Algorithm 1 are
governed by the number of features used in the linear function
approximation and the size of the action space A°.

[vel,

1 _ .2 _ .3
Vi+1 = Vi1 = Vit

(b) Projection-based consensus

Fig. 1: Critic updates of the consensus-based AC and the projection-
based consensus AC algorithm in a 2-D parameter space.
Local updates are depicted by solid lines and consensus
updates by dashed lines. Updated parameters are in green.

B. Resilient Projection-based Consensus Actor-critic with Lin-
ear Approximation

To design a defense mechanism against Byzantine agents,
we adopt the basic idea of resilient consensus from W-MSR
(Weighted Mean-Subsequence-Reduced) algorithms in which
each agent reduces scalar values received from its neighbors
and, subsequently, computes a weighted mean of the remaining
values. By eliminating the most extreme values at every step,
the final agreed value among agents is guaranteed to lie within
a convex hull of non-faulty agents if the network is sufficiently
robust [16]. We apply the W-MSR consensus method over the
estimated neighbors’ estimation errors. Assuming that there
are no more than H Byzantine agents, each agent forms lists
of sorted values {e”/ t}JeNL and {¥;};enr . and removes
H largest values and H smallest values from each set, except
for values that are smaller and larger than the value of the
agent, respectively. We note that the resilient projection-based
consensus method does not suffer from overestimation of the
approximated functions because the Byzantine agents can no
longer directly manipulate individual parameters in v; and
AJ. Since the resilient aggregation in our algorithm assumes
removal of 2H values, there are fundamental limitations on
the number of Byzantine agents in the network for which the
cooperative network remains resilient captured as follows [16].
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Definition 1. ({-connectivity) A connected graph G is said
to be (-connected if it has more than ( vertices and remains
connected whenever fewer than ( vertices are removed.

Definition 2. ((-reachable sets and (-robustness) Given a
graph G; and a nonempty subset of nodes Z C N, we say
that Z is an (-reachable set if there exists i € Z such that
N, :\Z|> (, where ¢ € Z>q. Further, a graph G; on |N|
nodes (IN'|> 2) is C-robust, with ¢ € Z>, if for every pair of
nonempty, disjoint subsets of N, at least one of the subsets is
(-reachable.

Lemma 2. (Network robustness after edge removal [I6,
Lemma 6]) Given a (-robust graph G, any directed graph
G, produced by removing up to k incoming edges to any node
is (¢ — k)-robust.

Lemma 3. (Connectivity of robust graphs [16, Theorem 6])
Suppose G is a (-robust undirected graph, with 0 < ( <
|N'|/2. Then, G, is at least (-connected.

From Lemma 2 and Lemma 3, a (2H + 1)-robust network
of agents remains connected despite each agent removing 2H
edges in the resilient aggregatlon Additionally, the trimming
approach ensures that €;, , and €}, ;, are bounded by the mini-
mum and maximum values in the set of cooperative neighbors
of agent ¢. The pseudo-code for the resilient projection-based
consensus AC algorithm with linear function approximation
is given in Algorithm 2. The convergence analysis of the
algorithm is provided in Section IV-B Similarly to our discus-
sions for Algorithm 1, the time complexity and communication
latency are governed by the number of features used in the
function approximation and |.A°|.

Remark 1. In the discussion above, we assume linear ap-
proximation of the critic V (s;v') and team-average reward
function 7(s,a; \') for analytical tractability since linear ap-
proximation allows us to identify unique optimal parameters v’
and \! in the policy evaluation. It is important to note that by
evaluating linear combinations of the parameters of nonlinear
models such as neural networks, we do not generally obtain
linear combinations of their outputs. However, since the output
layer of a neural network is linear, we can extend Algorithm 2
in the nonlinear setting as well. Here, the additional challenge
is to train the hidden layer parameters that evaluate the basis
functions f(s,a) and ¢(s). In Section V, we present numerical
simulations where we train the hidden layers by aggregating
each hidden parameter value.

IV. CONVERGENCE RESULTS

In this section, we provide a convergence analysis for
Algorithm 1 and Algorithm 2 by showing that the cooperative
agents are indeed cooperative in the sense that they maximize
the objective function J* (7", 7). The proof uses a two
timescale argument [9], [30], [31]. First, we analyze the
critic and team-average reward function updates on the faster
timescale, and then we establish the actor convergence on
the slower timescale. Note that Algorithm 1 is significantly
different from the AC MARL algorithm proposed in [9], due

Algorithm 2: Resilient projection-based consensus AC
with linear approximation

Initialize s, {Oévﬂg}tzo, {()4>\7t}t20{059,t}t20, t

0,00, N, Ny, vi, 08, H, Vi € N+t

Repeat until convergence

for i € Nt do
Take action a} ~ 7¢(at|s;; 0%);
Observe state s;1, action a;, and reward rz 11
Update actor
5 <_r(staata)‘ ) +’YV(St+1vvt) V(stvvt)
9t+1 — 0 +agy-0i - Veilogmi(al|st; 0%)
Update critic and team reward function
B vt Qe (rhyy AV (5041 0]) — Vseiv))
VoVisiol)
Np = At (ry —7 (s, an A
Send X, 7} to j € N, ;

)) v)x’ (Stﬂat’A )

end

for i € N do

Receive \/, 4 from j € in.t

Resilient prOJectlon based consensus step

ij M M
€t oo for € Ni s SRS ax [ Fel?
for Jj e /\fmf

st < remove H smallest values that are smaller
than and H largest values that are larger than €,
from the set {¢;;} ;¢ N, ,» return the remaining
indices

1 < remove H smallest values that are smaller
than and H largest values that are larger than €%,
from the set {€y,};c N, ,» Teturn the remaining
indices ]

vt<_zje,/\/1 CUI‘(Z J) vt’

‘5>\ t Zje,/\/'l Cx t(Z 7)€y
Ut+1 ev,+avt 1 Vi V(s 0h) _
/\t+1 ALt oo e)\ + - VaiT(8t, at; AY)

end
Update iteration counter ¢ <— ¢ + 1

to the projection in the consensus step. Nonetheless, we will
show that Algorithm 1 converges under similar assumptions
made in [9]. To analyze the convergence of Algorithm 2, we
need to rely on a set of assumptions introduced for resilient
learning with Byzantine agents [16]. In the sequel, we first
present common assumptions used in both Algorithms 1-2,
and then, in Section IV-A and IV-B, we introduce further
assumptions that are pertinent to the respective algorithms.

Assumption 1. The feature vectors f(s,a) =
[fi(s,a),..., fu(s,a)] € RM and  ¢(s) =
[1(5),...,0L(s)] € RE are uniformly bounded for

any s € S, a € A. Furthermore, if we define the feature
matrix F € RISHAXM spigh (£ (s.a),s € S,a € AT
its m-th column for any m € [M], and the feature matrix
® € RISXL with [¢y(s),s € S|T as its I-th column for any
[ € [L], then both ® and F have full column rank.

Assumption 2. The policy ©'(a’|s;0%) is stochastic, i.e.,
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7i(atls;0") > Oforanyi e Nt, 00 € ©, s € S, a* € A, and
continuously differentiable in 6. The Markov chain {s}+>0
is irreducible and aperiodic under any w(a|s;0).

Assumption 3. The reward r(s, a) is uniformly bounded for
any i € NT.

Assumption 4. The step sizes oy 4, © € {v, A, 8}, are positive

and satisfy Y,z = 00, Y, a2, < 00, gy = oot +
: ~1

axt), and limy oo oz g1 - 0y = L.

Assumption 5. The update of the actor parameters ', i €
N, includes a projection operator ¥g: : R™ — @ C R™
that ensures that ' € ©' where the set ©' is compact and
hyperrectangular.

These assumptions are standard in the RL literature [9].
We make the assumption about uniformly bounded rewards
and feature vectors to prevent unbounded gradients in the
policy evaluation. On a similar note, we assume that the
policy is differentiable and strictly positive to avoid unbounded
gradients in the actor updates. The assumption of the full-rank
features matrices ¢ and F' allows us to characterize a unique
asymptotically stable equilibrium in the estimation of the critic
V (s;v') and the team-average reward function 7(s, a; \?). By
Assumption 4, we can analyze strong convergence on separate
timescales as the step sizes tend to zero and the updates
of the actor are slower than the updates of V(s;v?) and
7(s,a; \%). This is a reasonable assumption as we typically
perform multiple updates of V'(s;v%) and 7(s,a; \?) (policy
evaluation) before an actor update (policy improvement) in
practice. The inclusion of the projection operator in the actor
updates, as presented in Assumption 5, is considered in the
convergence analysis of RL algorithms [30] but is typically
omitted in the implementation. For simplicity, we consider ©°
to be hyperrectangular. In practice, we would select a large
interval for each element in the parameter vector §° which
would constitute a hyperrectangular set ©F.

Before we proceed to prove the convergence under
Algorithm 1 and 2, we introduce definitions that are
frequently used in both proofs. First, we let v, =
[T o @] and A = [ADT . ()]
Second, we let D = diag([d:(s),s € S]) € R‘SM‘S'
and D2 = diag([d.(s,a),s € 8S,a € A) €
RUSIHAD*(SIIAD denote matrices with a stationary distribu-
tion of states and state-action pairs, respectively. Third, we
define pr(s'[s) = >, cap(s'[s,a)n(als;0) and let P, =
[pr(s']s),s' € S,s € 8] € RISXIS| denote the state transi-
tion matrix of the Markov chain {s;},;>¢ induced by policy
m(a|s; ). We also define the consensus matrices C,; =
[co,t(i,7))ij and Cx ¢ = [ex (3, 5)]ij-

Definition 3 (Team-average). The averaging operator (-) :
RNK — RK is defined such that (z) = (17 @ Iz =
N Ele ~ I, where @ denotes the Kronecker product

Definition 4 (Projection into consensus subspace). The oper-
ator J = (%11T) ® I is defined such that Jx =1 ® (x).

Definition 5 (Projection into disagreement subspace). The
operator J, = I — J is defined such that x, = J, x =

z—1® ().

Definition 6 (Projection into gradlent subspace) The pr0]ec-

fefE
o0 and Tay = (.

tion matrices are glven as Fv,t

Definition 7 (Projection into orthogonal subspace). The or-
thogonal projection matrices are given as I'y s = I —1'y + and
F)\,t == I - F)\,t.

A. Convergence of Algorithm 1

In the analysis of Algorithm 1, we prove convergence
to unique asymptotically stable equilibria of the critic and
team-average reward parameters under fixed policy evalua-
tion and convergence of the actor to the stationary point
of the approximated team- average objective function. We let
Ay = 0e(Yber — )" by = deriyy, ANy = —fifl
by, = firi4,. Furthermore, we define A”’t =I® A, and
bey = [(b1 )T (bi\ft)T}T for z € {v,\}. The critic
and team-average reward function updates under Algorithm 1
are compactly written as

Vi1 =0 + (Cop @ Ty ) (v + iy 1 (Ap 10 + by 1))

— (I ® Fv,t)vt (13)
A1 =2+ (Cae @ Tx ) (A + an it (Ax iAe +bay))
—(I&Ty)h. (14)

We make the following assumption about the communication
graph G; and the consensus matrices C,, + and C) +.

Assumption 6. The sequence of time-varying communi-

cation graphs {G.}1>0 and associated consensus matrices

{Coiti>0 € RVN*N for x € {v, A}, satisfy:

(1) Gy is independent of all random variables and connected
in the mean.

(2) Cyy respects Gy. That is, ¢y 1(i,7) =0 if (4,5) ¢ Gt and
Cut(i,3) > v if (4,5) € G, for some v > 0.

(3) Given G, C, . is conditionally independent of all other
random variables.

(4) Cy is row stochastic and E|C,, ;] is column stochastic.
That is, Cp 41 =1 and 1TE[C, ;] = 17.

Assumption 6 states that the communication graph G; is
connected in the mean and the consensus matrix C; has a
well-defined mean value that ensures balanced updates in any
visited state-action pair. Along with the application of nonzero
consensus weights, these assumptions guarantee contraction
of the estimated function parameters to a consensus value
in our analysis. We note that our assumptions are slightly
different than in [9] but they essentially describe the same
conditions needed to ensure balanced distributed estimation
of the critic and team-average reward function. We are now
ready to establish convergence in the policy evaluation.

Lemma 4. Suppose there are no adversarial agents in the
network. Under Assumption 1-4 and 6, the critic param-
eters satisfy sup,|lvi||< oo with probability one. Further-
more, they asymptotically converge with probability one, i.e.,
limy o0 v} = v, for i € N. The limit v, is a unique solution
10 ®T D3 (% Y ,en Ri + 7 Pr®ur — ) = 0.
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Lemma 5. Suppose there are no adversarial agents in the net-
work. Under Assumption 1-4 and 6, the team-average reward
function parameters satisfy sup,||A||< oo with probability
one. Furthermore, they converge with probability one, i.e.,
lim; o0 /\i = A, for i € N. The limit )\ is a unique solution
to FTD?“(% DN R —F)\;) =

We note that the convergence point A, corresponds to the
minimum mean squared error (MMSE) estimate of the true
team-average reward weighted over the distribution of state-
action pairs (s,a), d..(s,a), and the convergence point v,
corresponds to the minimum mean squared projected Bellman
error estimate of the true team-average critic weighted over the
state distribution d(s). Lemma 4 and Lemma 5 indicate that
the cooperative agents estimate the critic and the team-average
reward function in the MMSE sense and hence the agents can
approximately evaluate the team-average advantage function
established in (2). We now establish the actor convergence by
showing that the agents’ policies converge to a stationary point
of the objective function J* (7 ") defined in (1). Due to the
absence of adversarial agents, the policy 7~ is omitted in the
analysis.

Theorem 6. Suppose there are no adversarial agents in the
network. Under Assumption 1-6, the policy parameter 0%, i €
N, converges with probability one to a point in the set of
locally asymptotically stable equilibria of the ODE

97 _ \I/@z [Eﬂ',dw,p{(’F(S’ a; )\ﬂ.) —+ ’}/V(S/, Uﬂ—) - V(S, Uﬂ'))
Vi log ' (a'|s; 6%)}],

where the parameters A, and v, are the globally asymptoti-
cally stable equilibria under policy 7 (als;0).

B. Convergence of Algorithm 2

Analysis of Algorithm 2 is complicated by the fact that As-
sumption 6 is no longer valid because the consensus matrices
Cy,e and Cy take values based on the estimated estimation
errors ¢/, and €y, and thus they are not conditionally inde-
pendent of other si ignals in the algorithm updates. We introduce
a new set of assumptions about the network robustness and the
behavior of the Byzantine agents following, e.g., [16]. Define
a new communication graph G; that is generated by removing
2H incoming edges at each node in G;.

Assumption 7. The sequence of time-varying communi-

cation graphs {G.}i>0 and associated consensus matrices

{Cri}is0 € RNV for x € {v, \}, satisfy:

(1) G includes up to H Byzantine agents.

(2) Gy is (2H + 1)-robust.

(3) Cy, respects G;. That is, c; +(1,7) = 0if (¢,7) ¢ G,. and
cet(t,3) > v if (4,5) € G; for some v > 0.

(4) Cy ¢ is row stochastic. That is, Cy;1 = 1.

A wide range of graphs have been proven to be robust
[16], [32]. For example, for an Erd6s-Rényi random graph
Gn,p, if the probability p is above (resp., below) a threshold
w, then G, , is (-robust with probability one
(resp., zero) as n — oo [32]. In fact, the (-connectivity of

Gn,p is characterized by the same threshold M

on p [33]. Thus, robustness is not a stronger assumption than
connectivity on the Erd6s-Rényi random graphs.

Assumption 8. The policy of every Byzantine agent converges
to a stationary pollcy, ie, limy oo mi — w fori € N™.
Furthermore, —7i|= O(ap,t)-

The assumption that the policy of Byzantine agents con-
verges to a fixed policy ensures that the uncontrollable parts of
the environment, e.g., the Byzantine agents, eventually induce
a stationary MMDP, where the objective function J* (7, 77)
can be maximized over 7. We note that we do not assume a
stationary behavior of the adversarial agents in the numerical
simulations presented in Section V.

To distinguish between the parameters of cooperative and
Byzantine agents, we make slight changes in the notation.
Without loss of generality, we assume that the agents’ indices
are ordered such that N* = {1,...,N*} and N~ =
{N—N~+1,...,N}. We use superscripts + and — to denote
signals of all cooperative and Byzantine agents, respectively.
For example, the cooperative agents’ rewards are given as
ri = )" (rt]\ﬂ) ]T. We have the following result
on the consensus updates.

Proposition 7. [34, Prop. 5.1] Under Assumption 7,
the resilient consensus update for each i € N1 with
weights ¢y ((1,7) is mathemattcally equivalent to € , =

x,t
ZjeN

in,t

weights that satisfy ZJEN,;’n N+ ¢t (i, j) = 1. Moreover, it

holds that c+ ((i,9) > v and c} (i, §) > v/2 for some v > 0
and j € NNT.

e Ca (i, 4)el . where ¢l (i, §) are consensus

MLt

Proposition 7 ensures that the consensus updates of the co-
operative agents can be expressed purely in terms of the
cooperative agents’ values. We let C;f, = [c ;"t(i,j)]ij, x €
{v, A}, denote the equivalent consensus matrix and define
At =(I®AL,)and b}, = [(b2 )T ... bY,)T]T. Applyi

x,t x,t an x,t x,t sVt - Applying
Proposition 7, we write the cooperative agents’ updates in
Algorithm 2 as follows

Ut-:-l :Ut+ + (C;r,t ® Fv,t)(vgIr + av,t(/ﬁt“t + b ))

— (I @ Ty )y (15)
)‘;-1 :>\t+ + (C)J\r,t ® FA,t)()‘t+ + ax,t(AL)\f + b;\r,t))

— (T @Tx)\ (16)

While these updates are similar to those in Algorithm 1, the
consensus matrices C+t and CL are influenced by the Byzan-
tine agents and are not unique in general. For z € {z, A}, we
let &, = (rt,st,at,C’; +—1) denote a collection of random
variables and W, all possible realizations of the Markov chain
{&z,}+>0. The main convergence results regarding the policy

evaluation are now given.

Lemma 8. Under Assumption 1-4, 7, and 8, the critic pa-
rameters vl, i € N*, are uniformly bounded and converge to
a consensus value <vt+ > with probability one. The consensus

value <v;" > converges with probability one to a bounded
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neighborhood around a fixed point v} that satisfies

1 .
" D: (N+ > R4 P 0uf - qm;t) =0.
iENT
The limiting sequence of the team-average critic parameter,
(vh), satisfies ||®T DS (yPr—1)®((vT)—v)||< || Ay ||, where

t+m—1

. 1

s tm s |55 e (@reht oo
t k=t

1To+ ¢k¢£ -1, +
+ ( v,k ® |\¢k||2 )av,kUJ_,k

— % > ®"D:iR:
iENT

(17)
Lemma 9. Under Assumption 1-4, 7, and 8, the team-average
reward function parameters \. are uniformly bounded and
converge to a consensus value <)\j> with probability one. The
consensus value <)\?' > converges with probability one to a
bounded neighborhood around a fixed point N} that satisfies

1 )
FTDe <N+ > R - FA;) =0.
iENT

The limiting sequence of the team-average update, (\T),
satisfies |FT D2 F (A1) — AD)|I< ||Ax]|, where

1 t+m—1 1
Ayll= lim sup H < Tor rf  ® fr
I3l Jim s [0S (@G @ 00
+@a%cf, ® f’“f’z;)agi/\j k) - > F'DyRY|.
S/ N*

ieENT
(18)
Remark 2. The critic and team-average reward function
parameters converge to a bounded neighborhood around the
optimal MMSE parameters. The size of the neighborhood
depends primarily on the behavior of the Byzantine agents. We
note that the equivalent consensus matrices C;f . and CY, are
not column stochastic in general since they are inﬂuencéd by
the parameter values communicated by the Byzantine agents.
Thus, the parameters estimated by the cooperative agents
generally cannot converge to the optimal MMSE parameters
of the critic and team-average reward function, v, and ;.
A special case that permits this to happen includes when all
cooperative agents receive the same reward, i.e., v* = ri for
i,jENTand t > 0.

Theorem 10. Under Assumption 1-5, 7, and 8, the policy
parameter 0%, i € N'*, converges with probability one to a
neighborhood of a locally asymptotically stable equilibrium
of the ODE

0" = \Iléa[ETr,dmp{(F(San D) +V (s 0f) = Visof))
Vlog7(a|s; 0%)}].

Due to the ever-present disturbance in the approximation of
the critic and team-average reward function, the cooperative
policy converges to a compact set of policies that are at
best close to a policy that forms a stationary point of the
cooperative team’s objective function J*(7+, 7). The size
of the limit set is determined by the size of the deviation from

e o

_

1
/
©

©)

O

O

Fig. 2: Cooperative navigation task in the grid world environment.

the optimal MMSE parameters in the distributed estimation,
that is 7(s, a; (AT) — AF) and V(s/; (vT) — v}1). In the worst
case scenario, the limit set is equal to the constraint set o',
However, if the deviation from the optimal MMSE parameters
is small, then the size of the limit set is small as well.

V. SIMULATION RESULTS

For a numerical illustration, we consider a multi-agent
grid world environment of size 10 x 10 (Figure 2), where
five agents learn to solve the cooperative navigation task by
communicating in an all-to-all fashion. The cooperative goal
of the agents is to follow a path to their respective targets that
yields the highest team-average returns. We let s° denote the
2D positional coordinates of agent i and d’ the 2D positional
coordinates of its desired position. Each agent chooses from
a set of five actions that correspond to the cardinal direction
of its next state transition and staying put in the same state.
A transition to an adjacent cell occurs only if the cell is not
occupied by another agent. The dynamics are deterministic
and the agents are rewarded by —||s"* —d’||;, and an additional
—1 if they attempt to move into an occupied cell or leave the
boundaries of the grid world. Each agent approximates the
actor, critic, and team-average reward with neural networks
that have two dense hidden layers with 30 units and leaky
ReLU activation function with o = 0.1. The actor includes an
output layer with a softmax activation.

We define an episode as a single run of the simulation
from start to finish, consisting of a sequence of time steps in
the agents’ dynamics described above, where the initial and
target positions of each agent are chosen randomly from the
10 x 10 grid. We train the neural networks for 10000 episodes
with each episode lasting 20 steps. Within an episode, agents
interact with the environment to collect experiences, which are
tuples of (state, action, reward, next state). The team-average
reward function 7(s, a; \*) and the critic V (s; v?) are evaluated
under a fixed policy 7(a|s; ) every 100 episodes. The agents
perform local updates and resilient projection-based consensus
updates in Algorithm 2 every 20 episodes based on the most
recent 1000 experiences obtained under the current policy as
well as further 2000 experiences from a replay buffer. The
hidden layer parameters are aggregated using the method of
trimmed means. The actor is updated based on the 1000 most
recent experiences. We select the discount factor v = 0.9 and
the learning rates ag ¢ = 0.0005 and o, ; = )y = 0.05. Each
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episode takes around 7.9 seconds to complete. !

- H=0 (Estimated)

+ H=0 (True)
| H=1 (Estimated)
| + +© H=1 (True)

@
E -4+
2
g |
=
2
—g4
0 2000 4000 6000 8000 10000
Episodes
(a) All-cooperative, H =0, 1
-1 H=0 (Estimated)
+ H=0 (True)
=2 | H=1 (Estimated)
+ H=1 (True)
=31 e
s
v g4
£ 4
2
& 54
: S
==6i P g i
o ol oy, ¥
e SN e o X
AT
e A ,__._“._.,_..,,_'_"_;VJ._‘_“‘__‘__._.\?..._‘.A
~gA
T T T T T T
0 2000 4000 6000 8000 10000
Episodes
(b) Greedy, H = 0,1
Projection based, H=1 (Estimated)
-1 4 - - - Projection based, H=1 (True)
Trimmed-mean based, H=1 (Estimated)
=24 - Trimmed-mean based, H=1 (True)
34
@
E
g -4
&

-5 1 A T N

T T T T T
0 2000 4000 6000 8000 10000

Episodes
(c) Strategic, H = 1, Projection based and Trimmed-mean based

Fig. 3: True and estimated team-averaged rewards among the coop-
erative agents.

We consider three scenarios. The results presented in Fig-
ure 3 correspond to a rolling average of Returns over 200
episodes, where the Return value is the (true or estimated)
cumulative team-averaged reward (among the cooperative
agents) in a single episode. In the first scenario, we assume that
all five agents are cooperative. From Fig. 3a, we see that with
the trimming parameter in the projection step in Algorithm 2 at
either H = 0 or H = 1, the true and estimated team-averaged

'All the experiments are performed on a computer cluster
with 1 NVIDIA A30 GPU and 192GB RAM. Code available
at https://github.com/mainakpal08/Resilient
—consensus-based-MARL.

rewards are close to each other. In the second scenario, we
assume that one agent is greedy and sends its parameter values
to the other agents but does not utilize any values from them.
From Fig. 3b, we see that when I = 0, the cooperative agents
overestimate the team-averaged reward and end up maximizing
the greedy agent’s objective. In contrast, when H = 1, the
cooperative agents are resilient to the greedy agent, and better
estimate and maximize the team-average objective function
among the cooperative agents. In the last scenario, we assume
that one strategic agent attempts to minimize the cooperative
agents’ objective and maximize its own objective. Here, we
compare between the performances of Algorithm 2 and the
algorithm proposed in [27]. As we described in Section II,
the algorithm proposed in [27] is based on trimmed means.
To obtain the results in Fig. 3c, we set H = 1 in both the
trimmed-mean based algorithm in [27] and our projection-
based algorithm. From Fig. 3c, we see that the trimmed-mean
based algorithm tends to overestimate the team-average reward
so that the cooperative agents cannot learn an optimal policy to
maximize the team-averaged reward. In contrast, Algorithm 2
is resilient to this strategic agent, and again better estimates
and maximizes the team-averaged reward.

VI. CONCLUSION

We introduced novel resilient projection-based consensus
actor-critic MARL algorithms that ensure Byzantine-resilient
learning of cooperative agents in environments influenced by
Byzantine agents. We provided a convergence analysis of the
algorithm that uses linear approximation. In simulations, we
implemented the resilient algorithm that employs nonlinear
approximation and demonstrated its functionality.

APPENDIX A
STOCHASTIC APPROXIMATION

For completeness, we state here standard results on stochas-
tic approximation.

1) Unconstrained Stochastic Approximation with Corre-
lated Noise: We let 6,,, Y,, and &,, denote the estimated param-
eter, observation, and state of a Markov chain, respectively.
We define the filtration F,, = o(6p,Y;—1,&,i < n). The
unconstrained stochastic updates are given as follows

where €, > 0 and dM,, = Y, — E(Y,|F,) is a martingale
difference.

19)
(20)

Assumption 9. Consider the following assumptions:

(1) The function g, (0,,&,) is Lipschitz continuous in the first
argument.

(2) The step size sequence {€, },>¢ satisfies ., €, = 0o and
>, €2 < oo, forn > 0.

(3) The martingale difference sequence {dM,},>0 satisfies
E(|6Mp12|1Fn) < K - (1 + ||0,]1?) for all n > 0 and
some K > 0.

(4) The random sequence {f,}n>0 is bounded and satisfies
By, — 0 with probability one.
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(5) {&n}n>0 is an irreducible Markov chain with stationary
distribution 1.

(6) The Markov chain {&,}n>0 is uniformly bounded and has
a set of occupation measures D(0) for any 0.

Theorem 11. [31, Chapter 6] Under Assumption 9.(1)-(5),
the asymptotic behavior of the algorithm (20) is described by
the ODE

6 = g(0) := Eieylg(6,4)]. @1
Theorem 12. [31, Chapter 6] Under Assumption 9.(1)-(5),
suppose that lim._,oc §(ct) - ¢! = goo(0) exists uniformly on
compact sets for some go, € C(R™). If the ODE 0 = goo(0)
has the origin as the unique globally asymptotically stable
equilibrium, then sup,,||0,||< oo with probability one.

Theorem 13. [31, Chapter 6] If the ODE (21) has a unique
globally asymptotically stable equilibrium 6* and sup,, ||0,| <
oo with probability one, then 0, — 0% as n — oo with
probability one.

Theorem 14. [30, Chapter 6] Under Assumption 9.(1)-(4)
and (6), the asymptotic behavior of the algorithm (20) is
described by the differential inclusion

n+m—1

n,m—oo M

0eG):= { 2

Theorem 15. [35, Theorem 2] Under Assumption 9.(1)-(4)
and (6), suppose that lim._,., G(c0) - ¢! = goo(0) exists
uniformly on compact sets for all 1 € D and some go, €
C(R™). If the ODE 6 = g..(0,4) has the origin as the unique
globally asymptotically stable equilibrium, then sup,,||0,| <
oo with probability one.

Theorem 16. [30, Chapter 6] If sup,||0,||< oo, then
the trajectories converge to the limit set of the differential
inclusion 0 € G(0).

2) Constrained Stochastic Approximation with Martingale
Difference Noise: We let 6, and Y,, denote the estimated pa-
rameter and observation, respectively. We define the filtration
Fn = 0(00,Yi—1,i < n). The constrained stochastic updates
are given as follows

where Wg(+) is a projection operator that maps the stochas-
tic updates into a compact admissible set ©, and oM, =

Y, — E(Y,|F,) is a martingale difference. We introduce
assumptions for the algorithm updates.

(23)
(24)

Assumption 10. Consider the following assumptions:
(1) sup, E(|[Yn [[|F7) < oo.

(2) The step size sequence e, satisfies ), €
€Ent1 — 1.

2

5 < oo and

limy, 00 p
(3) The random sequence {fBn}tn>0 satisfies B, — 0 with
probability one.
(4) The admissible set © is a hyperrectangle, i.e., there exist
a and b such that a < b and © = {0,, : a < 0,, < b}.

(5) The function g,(-) is continuous uniformly in n. Further-
more, there exists a function g(0) such that for all m > 0,
we have lim,, o || 75" €i[g:(6) — g(0)]]| = 0.

(6) The function g, (+) is continuous uniformly in n. Moreover,
there exists an upper semicontinuous set-valued function
G(0) such that 1im,, 00 = S0 :(0) € G(6).

Theorem 17. [36, Chapter 5] Under Assumption 10.(1)-(5),

the asymptotic behavior of the algorithm (24) is described by

the ODE 0 = g [g(0)].

Theorem 18 is a direct consequence of Theorem 17.

Theorem 18. Under Assumption 10.(1)-(6), if there exists a

. . . . _ _d
continuously differentiable function w(0) such that g(0) = G5
and w(0) is constant on disjoint compact sets L; i =
1,..., M, then the parameters 6,, converge with probability
one to L; for some i € {1,..., M} as n — oo.

Theorem 19. [36, Chapter 5] Under Assumption 10.(1)-(4)
and (6), the limit points are contained in an invariant set of
the differential inclusion 6 € ¥g[G(0)].

APPENDIX B
PROOFS OF THEORETICAL RESULTS IN SECTION IV

We repeatedly use shorthand 7; = 7(als; 6;) to describe the
dependence of the policy on the time-varying parameters 6,.

1) Algorithm 1: To complete the proofs, we need to estab-
lish several technical lemmas. First, we analyze the spectral
radius of the mean consensus update in the disagreement
subspace. We let ¥ = o(xg,Y:—1,&,7 < t) denote a
filtration of a random variable « € {v, A}, where Y; are the
incremental changes in parameters v and A due to the updates
in (13) or (14), and &, = (rr, 8+, ar, Cy r—1) is a collection of
random variables. The filtration captures the evolution of the
random variable x based on its initial value zy and updates
Y; that occur along the trajectory of the Markov chain &..

Lemma 20. Under Assumption 6, the spectral radius
p(E[CT (I — 117 /N)Cy 4| FF]) < 1, where x € {v,\}.

Proof. We begin by showing some properties of the matrix
I — 117 /N. First, since I — 117/N is diagonal domi-
nant and symmetric, we know that [ — 117 /N = 0 [37,
Chapter 7]. Considering any y € RY, we have 37 (I —
117/N)y < y'y, which implies that I — 117/N =<
I. Using the above properties of I — 117 /N, we obtain
yTCth(I— 11T/N)Cac,ty S yTCg,tCm,ty = HCac,ty||2' Since
Cy+ is row stochastic and G, is connected in the mean
by Assumption 6, we know that p(E[C,+|F}]) = 1 and
IE(Co e FEIyI2< p(EICa, | FE)2y]1? for all y € BY and
the inequality holds when y = 1 [37, Chapter 8]. Note also
that 17°CT (I — 117 /N)C, ;1 = 0. Combining the above
arguments, we have y"E[CT,(I — 117 /N)C, 1| F¥ly < |ly|?
for all y € RN. Finally, since C7 (I — 117 /N)C,y =
0, we know that p(E[CE,(I — 117/N)Co4|Fy]) =
max,epn |y|=1 ¥ EICL (I — 117 /N)Cyoy| Fly < 1 [37,
Chapter 4]. [
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Lemma 21. Suppose there are no adversarial agents in the
network. Under Assumption 1-4 and 6, the agents reach
consensus on the critic parameters with probability one,
ie, limy vy = 0. Furthermore, the term E(||(I
I‘v,t)a;%m_,tﬂzufg’) is uniformly bounded.

Lemma 22. Suppose there are no adversarial agents in the
network. Under Assumption 1-4 and 6, the agents reach
consensus on the team-average reward function parameters
with probability one, i.e., lim¢_,oc A + = 0. Furthermore, the
term E(||(I ® Iy ¢)ay A Lel[2|FD) is uniformly bounded.

Proof. Since the proofs of Lemma 21 and 22 are analogous,
We only present the proof for the critic parameters v;. The
updates of v ; can be compactly written as follows

V1 t+1

=T [+ (Cpt @Ty 1) (v + ap i (Apvr + byt))

— (I QT ¢)ve
=J.[(I® Fv U+ (Couy QT 1) (v + i (Ap v + by t))]
=T [(Cor @Tp1) (it + apt(Aptvi g+ byy))]
+(I® T, AUt (25)

where we used the fact that (Cy,; @ T, 1)(1 ® (z)) = 1®
(Py,¢ (z)) and T, [1®(T'y ¢ (z))] = 0. The updates of v, ; can
be viewed in two mutually orthogonal subspaces as follows
Vipp1 = [T @Dy )vy sy1 + (I @y )vL 141, Where
=(I @l v, (26)
:[(I - 11T/N)Cv,t ® I](I ® Fv,t)

. (UJ_’t + av’t(Av,tvt + bv,t))

(I® f‘v,t)vl,t+1
(I QT )vi 41
27)

Consider the expected values E(||(I @ T',.1)v +11]|?|F) and
E(|[( ® Ty )vd, t1l? |]-'”) By (26), the first term satisfies
E([(I ® Do )ort|2IF2,) = E(I(I @ Ty )vL |2 77) and

the disagreement vector v L,t remains stable in the orthogonal

subspace. To analyze stability of the term in (27), we write

E(|(I ®To)vies1l*|1F)
=E(||[(f - 117 /N)Cy; @ I|(I @ T, ;)
(] + e Au )L + o ibi )P FY)

<pot BT @ T ) (I + ap 1Ay i)v1 s + g iboe)) 1Y)
(28)

where p,; = p(E(C, (I — 117 /N)C, ;| F?)). We note that
the inequality holds by the conditional independence of C, +
stated in Assumption 6. Regarding the terms that involve v ,,
we have I + a, 1A, = I @ (I + a,4Aj ), and hence we
obtain (I X FU t)(I + Qy, tAU t) =1I® (Fv t+ tAq; t) The
eigenspace of matrix I'y ; + «, tAv t is spanned by vector

', +¢:. Hence, for v, that satisfies v, < (1+ v, ;K1)?, where
K1 = sup,||(v¢ee1 — 1) de]|< oo by Assumption 1, we
have || (I ® Fv7t) (I + av,tAv,t)vJ_,t ||2S Vg - || (I (39 F1,7t)UJ_7t ||2
We apply this inequality in the following lines, where we first
premultiply both sides of (28) by f 1 and apply the triangle

inequality. Letting n;11 = E(||(/ ® Fv,t)a;%+1vj_,t+1||2|ff),
we obtain the following inequality

2

< av,t
M4+1 SPoyt "Vt —5
QY t4+1

v E([bo|?1F))-

1 1
(e +2v, 20 - E([[bo,o[||F7)

2
Under Assumption 4, lim;_, o, % =1landlim; ooy =1,
v,t4+1
and so there exists finite t;me to and constant § > 0 such that
vt < 1— 46 for all t > ty. Since

bv ¢ s unlforrnly bounded by Assumption 1 and 3, we have
71 E(||by ||| FY) < Ko for some Ko < oco. Therefore, for
t > to we can write

vy > 0 and p,; - az

Ner1r < (L=08)(me + 2y - VK2 + K3)

0 ) 2
=(1- 5)% - 5(\/777* 5(1 —0)v K2)2
2
+50- 62Ky + (1 — 6Ky < (1—6/2)m + K,
where K3 = 2(1 — 0)?K, + (1 — §)K>. By induction,
<(1- f)t tonto + 255 Therefore, we have sup, E([|( ®
Fv,t) oL tl?IFY) < K4 for some K, > 0. Since

the states are visited according to the stationary distribu-
tion d,(s), the uniform bound holds for all T, ; visited in
the infinite sequence. Therefore we consider ), E(||(1

Dy e)vi P FP) < Ky >, 02, and obtain lim ,oo(l ®
T'y)vi: = 0 with probability one by Assumption 4. This
implies that lim;_,., v, + = 0 with probability one. L]

From Lemma 21 and 22, under a sufficiently small step size,
the disagreement vector scaled by the step size is contractive
and subject to a bounded “input” disturbance that is due to the
heterogeneous rewards observed by individual agents. There-
fore, if the trajectories of Q, %v 1, and a;})\ 1,¢ happen to
escape a compact set for ¢t > 1, the trajectories exponentially
converge back to the set, which implies the boundedness in
the disagreement space.

Proof. (Lemma 4) We write the iteration of (v;) as follows

(Vt41)
= <(I Y IA‘U,t)vt> + <(Cv,t & Fv,t)(l ® <'Ut> + V1t
(1@ A} (1@ (u) +v10) + o)) )
=Ty (ve) + fu ¢ (vg)
+ay ((Cor @Ty )T ® A, ) (1@ (vr)))
+ Q¢ < vt @ Fv,t)(a;ilsvj_,t +(I® A;,t)vj_,t + bv,t)>
= (vy) + Ay 4 (vr)
+ <(Cv,t ® ]-—"u,t)(a;%vj_,t + Ay g+ bv,t)>
= (v) + v e[ge((ve) , &) 4+ OMy + By],
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where the functions g¢(-,-), My, and (3; are given as

9:((ve) , &) = E(A;, 4 (ve) + ((Cot @ T 1)by 1) | F7)
oM, = A;,t (V) + ((Co,t @ I)byg)
+ ((Cot @ Ty )y vie + Apsvie))

- E<A;,t (ve) + ((Cot @ Ty )by 1)
+ <(Cv,t Y Fv,t)(a;%UL,t + Av,tvl,t)> |ff)
B = E( <(Cv,t ® Fu,t)(a;%m,t + Au,ﬂu,t» | F2).

We now verify the conditions in Appendix A-1.

(1) We have [lgo( (2),&) — g:( (1), &)= IIE(Aui((x) —
W) F)II< K - |[{z) — (y) ||* for some K; > 0 since
A, ; is uniformly bounded by Assumption 1. Therefore,
g+({v4), &) is Lipschitz continuous in (v;).

(2) The step size sequence {cv,+}¢>0 satisfies D, a,; = 00
and ), o ; < oo, for t > 0.

(3) The martingale difference sequence JM; satisfies
E(|SM; 21 F7) < Kz - (1+ [[{vr) [2). since Ay, by,
and «, v 1,+ are uniformly bounded by Assumption 1
and 3, and Lemma 21.

(4) By Assumption 6, we can write [ =
E(((Ct @ Ty p)(aytvrie + Avvi ) [F) = 17 ®
DE(C, & IIF)E((I 8Ty 4)(cy oo e+ Avivs o) | FY) =
%(171 ® NE((I ® rv,t)(a;.%vl,t + Apvi )| FY).
The last term is uniformly bounded by Lemma 21
and Assumption 1. This and the fact that
(17 @ I)(I ® Tyy)(og vis + Avgvry) = 0 imply
that ,Bt =0.

(5) The Markov chain {{;};>¢ is irreducible and has a sta-
tionary distribution 7).

Applying Theorem 11, it follows that the asymptotic behav-
ior is described by the ODE

(0) = g({(v)) = Ea,[g:({vr) , &)]
1 ,
_ &T Ns T s pi
= TD;(vPr — D® () + Z dT DR
iEN

Let lim, oo g(cx) - ¢ = goo(z) = ®TDE(yPr — I)Pa.
Since @ is full column rank by Assumption 1, let { and Py
denote an arbitrary eigenvalue-eigenvector pair of the matrix
product D, (yPy, —I). Since D (vP, —I)®y = (Py, we can
write y* O (yPr —I) Dy (yPr — 1)@y = Cy" @7 (yPr — 1)y,
which implies that with probability one

Yt T (vPr — )T Dr(vPr — )Py

— 0
¢ yT®T (yPr — I)®y =0

since the numerator is positive definite and the denominator is
negative definite with probability one. Therefore, the system
% = goo() has a unique globally asymptotically stable (GAS)
equilibrium. Theorem 12 yields desired boundedness of the
iterates, i.e., sup,||v¢|]|< oo with probability one. Finally, we
apply Theorem 13 to establish convergence with probability
one to the GAS of the ODE (0) = g( (v)) = ®T Ds (yP, —
D® (W) + & > icn PTDERL. O

Proof. (Lemma 5) Analogous to the proof of Lemma 4. [J

Proof. (Theorem 6) We define a filtration Ff =
(00, Y;—1,7 < t), where Y; are the actor updates. The
recursion of agent 4, 1 € N, is given as

01 = Wo(0; + g 0; - ) (29)

= Vo (0 + e [9:(0}) + M+ Bi]),  (30)

where 5 = TN+ wofoel — oful 0 -

Vi log ' (a}|si; 0;), and the functions g:(-), dM;, fs
are given as

92(9}5) = ]Em,dwt,p((st,m ’ 7/’“]:5) (3D
SMy = 6 — Enmya,, p(04 - 1| FY) (32)
Bt = Enydy, p (6] = Oe.m,) - 11 FY). (33)

The signal d; ,, is the approximated team-average TD error

upon convergence of the parameters v, and A; under the

current network policy w(als;6;), ie., dtr, = fIAx, +

Yty 1Vr, — ¢F vr,. To complete the convergence proof, we

verify the conditions given in Appendix A-2.

(1) The function §! is bounded by Assumption 1, and
Lemma 4 and 5. The function ¢ is bounded by Assump-
tion 5. Therefore, we obtain sup, E(||5 - ¥} || F?) < oo.

(2) The step size sequence «vg; satisfies >, O‘g,t < oo and

(3) The bias term satisfies 3; — 0 with probability one since
v — vr, and Ay — A, on the faster time scale by
Assumption 4.

(4) The admissible set O is a hyperrectangle by Assumption 5.

(5) The function gi(-) is continuous in @ uniformly in t¢.
Furthermore, gi(-) := g*(-) since it is independent of .

From Theorem 17, the asymptotic behavior of the actor

updates is given by the ODE #° = g, [g'(0%)]. Now note

that §'(0%) = Vg:J(0), where J(0) = By 4 ,[F(s,a; \r) +

YV (8';vx) — V(8;vx)]. The rate of change of J(0) is given

as J(0) = VoJ(0)T(VeJ(0) + 2), where z is the reflec-

tion term that projects the actor parameters back into the
admissible set O, ie., 2 = —VyJ () whenever a constraint
is active and z = 0 otherwise (elementwise). Therefore,

J() > 0 if VoJ(#) + z # 0 and j(&)': 0 otherwise.

By Theorem 18, the solution of the OI%E 0 = Tglg(d)] =

[werla"(6")"
of stationary points Vg.J(¢) + 2 = 0 that correspond to the
stationary points of J (). O

2) Algorithm 2:

\I]@N[.(]N(GN)]T} converges to a set

Lemma 23. Under Assumption 7, the spectral radius
p;t(C’;?(I - 11T/N+)C’;:t) <1, for x € {v, A\}.

Proof. The proof is analogous to the proof of Lemma 20. The
difference here is that the communication graph after edge
removal, G/, remains connected for ¢ > 0. Furthermore, the
communication subgraph of the cooperative agents is rooted
under Assumption 7 [38]. Therefore, we conclude that C;',
has only one eigenvalue equal to one by Proposition 7. Using
the same reasoning about the eigenvalues as in the proof of
Lemma 20, we obtain ||(I — 117 /NT)C} z||>< pf, ||=||? for
all = and some p:t <1 O
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Lemma 24. Under Assumption 1-4 and 7, the agents
reach consensus on the critic parameters with probability
one, i.e., limy_,oovl, = 0. Furthermore, the term ||(I
I‘v,t)a;%vItH? is uniformly bounded.

Lemma 25. Under Assumption 1-4 and 7, the agents reach
consensus on the team-average reward function parameters
with probability one, i.e., lim;_, )\ir = = 0. Furthermore, the
term ||(1 @ D' )y AT AP s umformly bounded.

Proof. As the proofs of Lemma 24 and 25 are analogous
we only present the proof for the critic parameters v,". The
updates of vT . are given as follows

”I t+1 =J.(Cy, 1Ly t)(”J_ ¢ty t(A;tUit + bL))]
+(I® Fv,t)vj_7t'
Splitting the updates into two orthogonal subspaces yields
(Il vl =&, ol
(IoTy vl =[(I-11T/N)CF, @ II(I ®T\,)
: (Ui,t + av,t(AqT,tUI,t + bj,t))
The first term equation implies ||(/ ® f‘v’t)virﬁt+1|\2: (I ®
fv,t)vitHQ and for the second equation we write
(I ® Fv,t)vit+1ll2
=[[(1 =117 /NF)CF, @ I[(I @ Loy)
: (Ui,t + O‘v,t(AthUJ_ T by, ))”2
SPer,t NI @ Ty ) (I + a, tAv vt 4T O, b ))||2a

where pj) . < 1 by Lemma 23. Following the steps in the proof
of Lemma 21, we obtain sup,||(I ® T, ;) tvl tH2< oo and
lim v}, = 0 with probability one. O
t—oo ’

Lemma 24 and 25 ensure that the updates in the disagreement
subspace become contractive with a decreasing step size and

are subject only to a bounded disturbance that originates in
the homogeneous rewards. Therefore, the trajectories of vjt

and )\I , Temain in a compact set for ¢ > 0.

Proof. (Lemma 8) We let 7Y = o(vf,Y,_1,&,7 < t)
denote a filtration, where Y, is a critic update and &, =
(rf,s-,ar, C’I +_1) is a collection of random variables. We
write the iteration of <vt+ > as follows

(Vi)
= (T & Tu v +(CF @ Tu )0+ (ALf +550)))
< >+O‘vtAut< >
+am<( va)(og vl + AT T, + b )>
> &) + OMy + B,
(-,-), 0M, and B; are given as

((CTe®@Tu )by y)

:< >+avt9t <

where the functions g (-,
ge( <’UZF> &) :E(A;J,t <Ut+> |F) +

+{(CF, @ Tu)ayvi ) (34)
SMy =A, , (v ) —E(A,, (v ) |FY) (35)
ﬂt:<( LeTu)AT T ). (36)

14

We now need to verify the conditions in Appendix A-1.

(1) We have [|g:((z),&) — g:((y),&)ll= IE(Ape({z) —
WHIFHI< K- i) — (y) > for some Ki > 0

since A, , is uniformly bounded by Assumption 1. Thus,
g ({v; > &) is Lipschitz continuous in (v;" ).

(2) The step size sequence {cv,+}+>0 satisfies D, a,; = 00
and ), a7 , < oo, for t > 0.

(3) The martingale difference sequence M, satisfies
E(ISM2F) < Ko - (L+ (v ) [2). since A7, is
uniformly bounded by Assumption 1.

(4) By Lemma 24 and Assumption 1, the bias term f; is
uniformly bounded and ; — 0 with probability one.

(5) We let W((v)) denote a set of all occupation measures
of the Markov chain {&; };>¢ for a fixed (v). The Markov
chain {£;},>0 is uniformly bounded since r;, s;, a;, and
C;“, . are uniformly bounded.

By Theorem 15, the asymptotic behavior is described by
the differential inclusion (%) € ®TDS(yP, — I)® (vT) +
o+ Sien+ ®TDERL + A, where

t+m 1
1A, ]I< hm sup H

ITOIkTI—:—H ® i)

N Z ®T D RL
iENT

¢k ¢k

+a'cf, ®
AT

71
L

Since the terms b, , and tvT,, and consequently A, are
uniformly bounded by Assumpt{on 1 and 3 and Lemma 24,
we can apply Theorem 12 to establish boundedness of the
critic updates. Finally, we apply Theorem 16 to establish that
the team-average critic value (v™) converges with probabil-
ity one to a bounded neighborhood around the cooperative-
team-average true minimizer v, that satisfies ®7 D2 (yP, —
NovE + 5 3o+ ®TDIRL = 0. 0

Proof. (Lemma 9) The proof is nearly identical to the proof of
Lemma 8. We let 7' = o(\o, &, 7 < t) denote a filtration,
where &, = (rT,sT,aT,C;\F’Pl) is a collection of random
variables. We write the updates in the form

<(I R Ta)N

+ (O, @ TADO + arn(AL AT +01,)))
= (M) +anelge (), &) + My + B4,

(N

where the functions g (-,

gt((N) - &

-), 8My, and f3; are given as

) =E(45, (A7) + {(CF, @ Tabs,)

+ <(C/J\r,t ® Fk,t)a;\i)ﬂ_,t> 37)
SMy =A%, (NF) —E(AY, (A IFD) (38)
B = {(CF, ®Ta) AT AL, ). (39)

The conditions can be verified as in the proof of Lemma 8§,
which leads to the convergence of <)\zr> to a limit set
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of the differential inclusion <A+> € —FTDS*F (\*) +
5 Dien+ FTDERY + Ay, where

t+m—1

. 1 1
A= t,}r}Eoo su%/)v Hm § : N+ <( TC;,krlJcrH ® fr)
&€ k=t
T
T ~+ fkfk —1y+ 1 }: T 1ys,a i
+(1 O)\JC ® ||fk|2)a>‘7t)\J‘7k) — F F Dﬂ, R .

ieEN+

Hence, the team-average value of the team-average reward

function parameter, (A1), converges with probability one to a

bounded neighborhood around the desired minimizer A} that
: T ys,a(_L ‘ -

satisfies FT D3 (55 > ;cp+ B — FAF) =0. O

Proof. (Theorem 10) We define a filtration 7 = o(0%, 7 <
t). The actor updates of agent 4, i € N7, are given as

(40)
(41)

Oi 1 = Vei (0] +ag - 6, - ¥})
= Wei (0 + ag,e - [9:(0;) + 0M]),
where o6 = fEXNE + ol — ofvi, Wi =
Vi log ' (a}|st; 07), and the function g:(-) and martingale
difference dM; are given as

9¢(05) =B, ., p(Ot.m, - V1| FY)

+ Em,d«typ((éz - 5t777t) : Ql)ﬂff)
oM, :(Si Yy — Em,dnt,p((sé : lef)

(42)
(43)

The signal §; ., is the approximated network TD error under
the current network policy (als; 6;) evaluated at v}, and X ,
ie., 0 x, = fENE +ydivf —of v}t . To complete the proof,
we verify the conditions in Appendix A-2.

(1) The function §; is bounded by Assumption 1 and Lemma 8
and 9. The function ¢} is bounded by Assumption 5.
Therefore, we obtain sup, E(||0} - ¥i ||| Ff) < oo.

(2) The step size sequence «yg; satisfies >, af,,t < oo and

(3) The bias term satisfies B¢ = 0 with probability one.

(4) The admissible set O is a hyperrectangle by Assumption 5.

(5) The function gi(#") is continuous in 6
uniformly in ¢; thus, a set-valued function
GO) = {limymose % Z?:tfn*l gi(0")} is upper
semicontinuous.

Applying Theorem 19, the asymptotic behavior of the actor

updates is given by the differential inclusion 7€ Wg: [G7(67)].

We let J& (01, 77) = Ep g, p[7(s,a; \5) 4+ 4V (sp01507) —

V(st;vt)] denote the approximated team-average objec-

tive function. Since v;” and A are continuously differen-

tiable in @' and Assumption 2 ensures differentiability of

Vi logmi(al|sy; 0%), JH(0F,77) is continuously differen-

tiable in #% with the associated local AC policy gradient

Vo JT (0, 77) =Era. p[(F(s,a; \0) + 4V (s 0)
— V(s;01)) - Vo log ' (a']s;0)].

We note that G(%) = VgJH(0t,n7) + ¢, where !
is a set-valued error due to the discrepancy E. 4. ,((6; —

Ot,me) - ¥i|FP). Using Assumption 8, the rate of change of
JT (0T, 77) is given in terms of the cooperative agents

j+(9+77r_): Z VQij+(9+,7T_)T
ieENT
X (Vg JH(OFT,77) + &b + 21).

Here, z} is the reflection term that projects the actor
parameters back into the admissible set ©°, ie., z; =
—ViJ (6,77 ) — e} whenever a constraint is active and z; =
0 otherwise (elementwise). Suppose that >, (|2} + el]|?<
> ien+ Vo J(0F,77)||? on a compact subset. By Cauchy-

Schwartz inequality, J*(#) > 0 and the policies converge to
a neighborhood of a stationary point of the cooperative team-
average objective function provided that ¢’ are small. O
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