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Resilient Multi-agent Reinforcement Learning with

Function Approximation
Lintao Ye, Martin Figura, Yixuan Lin, Mainak Pal, Pranoy Das, Ji Liu, and Vijay Gupta

AbstractÐAdversarial attacks during training can strongly
influence the performance of multi-agent reinforcement learning
algorithms. It is, thus, highly desirable to augment existing
algorithms such that the impact of adversarial attacks on
cooperative networks is at least bounded. We consider a fully
decentralized network, where each agent receives a local re-
ward and observes the global state and action. We propose a
resilient consensus-based actor-critic algorithm, whereby each
agent estimates the team-average reward and value function, and
communicates the associated parameter vectors to its immediate
neighbors. We show that in the presence of Byzantine agents,
whose estimation and communication strategies are completely
arbitrary, the estimates of the cooperative agents converge to
a bounded consensus value with probability one, provided that
there are at most H Byzantine agents in the network that is
(2H + 1)-robust. Furthermore, we prove that the policy of the
cooperative agents converges with probability one to a bounded
neighborhood around a stationary point of their team-average
objective function under the assumption that the policies of the
adversarial agents asymptotically become stationary.

Index TermsÐCooperative multi-agent reinforcement learning,
Byzantine-resilient learning, adversarial attacks, consensus

I. INTRODUCTION

In multi-agent reinforcement learning (MARL), agents in-

teract with each other and a common environment to learn

policies that maximize their objective functions. Cooperative

MARL, in which agents wish to maximize a team objective

function, has emerged as an exciting method to solve dynamic

programming approximately for teams of agents with aligned

objectives in numerous potential applications [1]±[5].

In cooperative MARL, there is a long line of literature

that assumes that the agents first participate in centralized

training and then execute their decentralized policy at test

time [6]±[8]. These methods assume that the agents share

their local rewards, which they may wish to keep private in

certain applications. Recently, this assumption was removed by
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establishing methods in which the agents receive only local

rewards and communicate local information about the team

performance to their neighbors according to a graph [9]±[13].

In this paper, we focus on decentralized learning using

consensus-based actor-critic (AC) MARL methods [9], [14]

that have been shown to scale well with the size of the

multi-agent Markov decision processes (MMDP) and to ensure

sufficient exploration through the implementation of stochastic

policies. These algorithms are based on parameter sharing, i.e.,

the agents locally update parameters of the team-average value

function surrogate using their local reward signal and commu-

nicate the updated parameters to their immediate neighbors.

This idea, which originated in decentralized Q-learning [15],

was adopted in two consensus-based AC MARL algorithms

with linear function approximation proposed in [9] and the

consensus-based AC MARL algorithm with nonlinear function

approximation proposed in [14].

An important aspect of multi-agent systems is its resilience,

i.e., the ability to preserve performance when a subset of

agents are compromised by potential adversarial attacks [16].

While there is much to be admired about the state-of-the-

art consensus-based AC MARL algorithms, there are some

question marks about their resilience. In [17], it was shown

that the consensus-based AC MARL algorithm in [9] is

susceptible to a simple adversarial attack. Specifically, a single

self-interested agent can mislead all the other (cooperative)

agents to learn policies that maximize the objective function

of the self-interested agent, even though these policies may

be arbitrarily poor for the team objective. This has motivated

work on designing a consensus-based AC MARL algorithm

that is provably resilient to adversarial attacks. Formally, the

cooperative agents aim to learn optimal policies to a team-

average objective function among them by communicating

with their neighbors in an environment influenced by the

adversarial (i.e., Byzantine) agents. Throughout this paper,

we assume that a Byzantine agent can communicate arbitrary

and distinct information to each neighboring agent in the

environment and enact an arbitrary policy. Importantly, the

Byzantine agents impact the other agents both due to the

information they communicate to them as well as through

implementation of adversarial policies that affect the evolution

of the state of the environment; further, we do not assume that

the agents are aware of the policies of one another.

Unfortunately, resilient multi-agent learning algorithms that

eliminate the effects of Byzantine attacks entirely quickly run

into the curse of dimensionality. For instance, even in the

simple context of agents trying to learn the mean of a static

vector value that they hold when some agents are Byzantine ±
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the so-called Byzantine consensus vector problem, the number

of reliable machines must be proportional to the product of

the number of Byzantine machines and the dimension of the

shared vectors [18]. One field that has studied the presence

of Byzantine adversarial agents in the context of learning

is distributed machine learning with master-worker networks.

In this setting, each worker agent applies stochastic gradient

descent (SGD) to update shared function parameters and a

central machine aggregates parameters received from multiple

worker agents. If some agents can be adversarial, we can

point to algorithms based on the concept of the geometric

median [19], [20]. To reduce the computational complexity,

the method of median of means was proposed in [21] and the

method of entry-wise median was introduced in [22]. Another

recently proposed approach, the Krum method, is based on

medoids [23]. It is important to note that all these methods

merely bound the deviation of the aggregated parameter vector

from the desired one. A resilient MARL algorithm based on

centralized training and decentralized execution was proposed

in [24], where a team of protagonist agents compete against

a team of antagonist agents. Their aim is for the protagonist

agents to perform well even if some of the agents fail or behave

erroneously during the evaluation phase.

In consensus-based MARL, a popular method to attenuate

the effect of adversarial data injected by Byzantine agents is

to apply the element-wise trimmed-mean [25]±[27], where the

agents discard H largest and H smallest parameter values re-

ceived from the neighbors. The hyperparameter H denotes the

maximum number of Byzantine agents allowed in the network.

[25] proposed this method in decentralized Q-learning and

shows that the policies of the cooperative agents converge to

a neighborhood around the team-optimal policy. Matters be-

come significantly more complicated in large MMDPs, where

agents employ function approximation and execute consensus

updates in the parameter space. A resilient consensus-based

AC MARL algorithm with linear function approximation was

proposed in [26]; however, this method involves a centralized

coordinator that receives parameter vectors from all agents

and provides them with an element-wise trimmed mean of

each parameter. The approach was later extended to fully

decentralized MARL in [27], where the element-wise trimmed

mean is computed on a local level. While the element-wise

truncation methods guarantee boundedness of the estimated

parameters, the Byzantine agents can still design attacks that

manipulate individual parameters within bounded intervals. If

properly designed, these attacks lead to the overestimation of

selected features, which may compound large errors in the

approximated functions.

In this work, we introduce a novel resilient projection-based

consensus algorithm for decentralized AC MARL, where

parametric models must be used to approximate the AC

networks. The algorithm (Algorithm 2) includes two important

steps. In the first step, the received parameters are projected

into the feature vectors that happen to be the same for all

agents if the agents utilize linear function approximation. The

projection maps the received parameter vectors into scalar

values that approximately yield the estimation errors applied

by the neighbors in the SGD updates. In the second step,

the cooperative agents perform resilient aggregation of the

estimation errors and apply the aggregated value in another

SGD update, which ensures diffusion of local data across the

network. The closest work to ours is [27], which proposes a

similar rule for resilient aggregation; however, as opposed to

aggregating parameter vectors that are of the same dimension

as the feature vectors as in [27], our projection-based method

is performed over scalars. We show numerically that this

leads to better estimates of the team advantage functions

and better performance of the MARL algorithm. With linear

function approximation, we prove that the joint policy of

the cooperative agents converges to the neighborhood of a

policy that forms a stationary point of the team utility function

under reasonable assumptions on the policies of the Byzantine

agents. We also show via simulations that Algorithm 2 can be

applied even with nonlinear approximation in a cooperative

navigation task. We show through our simulations that low-

dimensional aggregation makes it significantly more difficult

for Byzantine agents to stage a successful attack. As a side

contribution regarding non-resilient consensus AC algorithms,

we introduce and analyze the convergence of the projection-

based consensus AC algorithm (Algorithm 1) which is a

special case of Algorithm 2 with no trimming applied in

the consensus updates. Finally, while our analyses and those

in [9] focus on the asymptotic convergence of the proposed

decentralized AC MARL algorithms, the more recent work

[28] analyzes the finite-time performance of a decentralized

AC MARL algorithm (with partial policy sharing among the

agents and without adversarial agents). We leave adapting the

finite-time analyses in [28] to the resilient decentralized AC

MARL algorithms proposed in this paper for future work.

The paper is organized as follows. In Section II, we

present some background and formulate the problem. The

two consensus-based AC MARL algorithms are presented in

Section III. We provide a convergence analysis for Algorithm 1

and Algorithm 2 with linear approximation in Section IV

and demonstrate the efficacy of Algorithm 2 with nonlinear

approximation in Section V. For ease of reading, all the proofs

are collected in the appendix.

II. BACKGROUND AND PROBLEM FORMULATION

Notations: Let R denote the set of real numbers. The

spectral radius of a matrix is denoted as ρ(·). For a vector y, let

∥y∥, ∥y∥1 and dim(y) be its l2 norm, l1 norm and dimension,

respectively. Let I be the identity matrix and 1 be an all-one

vector with proper dimensions that can be inferred from the

context. We write P ⪰ 0 if P is a positive semidefinite matrix;

and P ⪯ Q if Q− P is positive semidefinite. For a set S , let

|S| be the cardinality.

Multi-agent Markov Decision Process: Consider an

MMDP given as a tuple (S, {Ai}i∈N ,P, {Ri}i∈N ,G), where

N = {1, . . . , N} is the set of all agents, S is a set of (global)

states, P is a set of transitional probabilities, γ ∈ [0, 1) is a

discount factor, G represents a set of communication graphs,

and Ai and Ri are a set of actions and rewards of agent

i, respectively. The communication graph active at time t
is denoted by Gt. With a small abuse of notation, we let
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Gt = (N , Et) so that the set of vertices is also denoted by

N , with each vertex i being associated with agent i, and a set

of undirected edges Et ⊆ N × N . Furthermore, we define

sets N i
in,t and N i

out,t that include all agents that transmit

data to and receive data from agent i at time t, respectively.

The global state is denoted by s ∈ S . The global action is

obtained by stacking the actions of all the agents in a vector

denoted by a. We will use s′ to denote the global state at

the future step. All variables with the superscript i pertain to

agent i. We let ri(s, a) : S × A → Ri ⊂ R denote the local

reward of subsystem i, p(s′|s, a) : S × S × A → P ⊂ R

the joint transitional probability, and πi(ai|s) : S × Ai →
(0, 1) the policy of subsystem i. The global policy is given

as π(a|s) =
∏

i∈N πi(ai|s). If needed, we emphasize the

dependence of a signal on time by using subscript t, i.e.,

rit+1(st, at). If the dependence is clear from the context, we

drop the subscript to reduce notational clutter. The rewards

remain private and each agent generally receives a different

reward, i.e., ri ̸= rj for i, j ∈ N , i ̸= j. We assume

that every agent observes the global state s and action a at

each step in training. We define the average individual reward

under global policy π(a|s) as riπ(s) =
∑

a π(a|s)ri(s, a), the

average individual reward under global policy π(a|s) at all

states s ∈ S as Ri
π = [riπ(s), s ∈ S]T ∈ R

|S|, and the

average individual reward at all state-action pairs (s, a) as

Ri = [ri(s, a), s ∈ S, a ∈ A]T ∈ R
|S|·|A|. The distributions of

states and state-action pairs visited by the agents under a fixed

policy π(a|s) are denoted as dπ(s) and d′π(s, a), respectively.

Objective Functions: We divide the agents into a set of

cooperative agents and a set of Byzantine agents, which we

denote by N+ and N−, respectively, with N+∪N− = N and

N+ ∩N− = ∅. A Byzantine agent is one that communicates

arbitrary and generally distinct information to each of its

neighbors in the set N i
out,t and enacts an arbitrary policy

πi(ai|s). We note that the membership or cardinality of the

sets N+ and N− is not known. In other words, we do not

know a priori whether an agent is cooperative or Byzantine.

We let π+(a+|s) =
∏

i∈N+ πi(ai|s) denote the aggregated

policy of the cooperative agents, where a+ is the aggregated

action of the cooperative agents. Similarly, we define the

aggregated policy of the Byzantine agents as π−(a−|s) =
∏

i∈N−
πi(ai|s), where a− represents the aggregated action

of the Byzantine agents. Each cooperative agent i, i ∈ N+, is

associated with an objective function:

J i(π) = J i(π+, π−) = Eπ,dπ
[

∞
∑

t=0

γtrit+1(st, at)],

for a discount factor γ ∈ (0, 1). The cooperative agents solve

the following well-defined optimization problem:

π+
∗ = argmax

π+

J+(π+, π−). (1)

where

J+(π+, π−) ≜ Eπ,dπ

[

1

N+

∑

i∈N+

∞
∑

t=0

γtrit+1(st, at)

]

,

and N+ = |N+|. It is important to note that the cooperative

agents search for a policy that is optimal when the MMDP

evolution is affected by the Byzantine agents rather than a pol-

icy that is optimal when the Byzantine agents are absent. The

Byzantine agents seek to maximize an arbitrary and potentially

unknown objective function, denoted as J−(π−, π+), that may

not be aligned with J+(π+, π−) in general. The policy π− is

unknown to the cooperative agents. We also assume that the

Byzantine agents cannot be identified in the training process.

Multi-agent Policy Gradient: Since AC algorithms are

gradient-based optimization methods, we first establish a

general framework to evaluate the gradient of the objective

function, ∇π+J+(π+, π−). We recall the well-known policy

gradient theorem [29], according to which the gradient of the

objective function J+(π+, π−) is given as follows

∇πJ
+(π+, π−) = Eπ,dπ

[Qπ+(s, a)∇π log π(a|s)]

Qπ+(s, a) = Eπ[
1

N+

∑

i∈N+

∞
∑

t=0

γtrit+1(st, at)|s0 = s, a0 = a].

Thus, the policy gradient can be expressed as a sum of gradi-

ents with respect to the local policies, i.e., ∇π+J+(π+, π−) =
∑

i∈N+ ∇πiJ+(π+, π−), where

∇πiJ+(π+, π−) = Eπ,dπ
[Qπ+(s, a)∇πi log πi(ai|s)].

To reduce the variance of the gradient, define a critic

Vπ+(s) = Eπ[Qπ+(s, a)], so that the baseline policy gradient

∇πiJ+(π+, π−) equals

Eπ,dπ
[(Qπ+(s, a)− Vπ+(s))∇πi log πi(ai|s)].

We consider the simple temporal difference TD(0) method,

where the advantage function Qπ+(s, a)− Vπ+(s) is sampled

as the team-average TD error

1

N+

∑

i∈N+

ri(s, a) + γVπ+(s′)− Vπ+(s). (2)

Consensus-based AC MARL: The distributed AC policy gra-

dient consists of two components: the team-average advantage

function Qπ+(s, a)− Vπ+(s) and the term ∇πi log πi(ait|st).
Whereas the latter can be evaluated locally by each agent, the

former cannot be sampled directly in decentralized networks

because the agents neither observe the team-average rewards
1

N+

∑

i∈N+ ri(s, a) nor have access to the centralized critic

Vπ+(s). However, as shown by [9], there exists a solution

method that uses function approximation of the critic and

team-average reward function and communication between

agents, which enables the agents to approximately sample

the team-average advantage function Qπ+(s, a) − Vπ+(s).
Let r̄(s, a;λi) and V (s; vi) denote the approximation of the

team-average reward function and the critic at agent i, where

λi and vi are the associated parameters. The goal of the

cooperative network in the policy evaluation of the consensus-

This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TAC.2024.3409676

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Purdue University. Downloaded on August 10,2024 at 15:54:21 UTC from IEEE Xplore.  Restrictions apply. 



4

based AC MARL algorithm is to solve constrained distributed

optimization problems:

vπ = argmin
vi

Edπ

{

Eπ,p

(

1

N+

∑

i∈N+

ri(s, a)

+ γV (s′; vi)− V (s; vi)

)2}

s.t. vi = vj , (3)

λπ = argmin
λi

Edπ

{

Eπ

(

1

N+

∑

i∈N+

ri(s, a)

− r̄(s, a;λi)
)2}

s.t. λi = λj , (4)

where the equality constraint applies to i, j ∈ N+. The

distributed optimization problems in (3) and (4) are mean

squared error estimation problems with consensus constraints.

[9], proposed complementing the local updates of the critic

parameters vi and team-average reward function parameters

λi with consensus updates to ensure that the local estimates

are averaged over the network, leading to the notion of team-

average estimation. Denoting the local estimation errors by

δiv,t = rit+1(st, at) + γV (st+1; v
i
t) − V (st; v

i
t) and δiλ,t =

rit+1(st, at) − r̄t+1(st, at;λ
i
t), the updates of the critic and

team-average reward function are given as:

ṽit = vit + αv,t · δiv,t · ∇vV (st; v
i
t) (5)

vit+1 =
∑

j∈N

cv,t(i, j)ṽ
j
t (6)

λ̃it = λit + αλ,t · δiλ,t · ∇λr̄t+1(st, at;λ
i
t) (7)

λit+1 =
∑

j∈N

cλ,t(i, j)λ̃
j
t , (8)

where cv,t(i, j) and cλ,t(i, j) are the consensus weights ap-

plied by agent i to values received from agent j, and αv,t and

αλ,t denote the step sizes in the SGD updates. The parameters

vi and λi are updated locally based on the most recent local

reward ri(s, a) and observation of the global state s and

action a before being transmitted to neighbors for aggregation.

Combining the local updates with consensus updates ensures

the MMSE estimation defined in (3) and (4).

Resilient Consensus-based AC MARL: The success of the

consensus-based method for distributed estimation in (6) and

(8) hinges on the assumption that all agents are reliable, i.e.,

N− = ∅. Even if a single agent deviates from the proposed

updates, the distributed stochastic approximation can yield

arbitrarily poor results, e.g., a single adversary can drive the

cooperative network to maximize only the objective function

J−(π−, π+) [17]. To provide resilience against adversarial

attacks in consensus-based MARL, the method of trimmed

means was proposed in [27]. In this method, assuming that

there are at most H Byzantine agents in the network, the coop-

erative agents rank the values received from their neighbors for

each parameter and trim the H largest and H smallest values

in the consensus update. Our intention is to design a resilient

consensus method that is suitable for function approximation

in MARL algorithms.

III. PROPOSED ALGORITHMS

In this section, we design novel resilient consensus-based

AC MARL algorithm (Algorithm 2). In Section III-A, we in-

troduce the projection-based consensus AC MARL algorithm

with linear approximation (Algorithm 1) that allows agents to

conservatively perform consensus updates. In Section III-B,

we present the resilient projection-based consensus AC MARL

algorithm with linear approximation (Algorithm 2) that further

includes trimming that provides resilience in the team-average

estimation. The presented algorithms are based on parameter-

sharing, and thus the communication complexity scales with

the number of parameters used in the function approximation.

In Section V, we discuss the implementation of Algorithm 2

with nonlinear approximation.

A. Projection-based Algorithm with Linear Approximation

We begin by considering linear function approximation to

allow rigorous convergence analysis. Thus, we let r̄(s, a;λi) =
f(s, a)Tλi and V (s; vi) = ϕ(s)T vi, where f(s, a) and ϕ(s)
denote the basis functions. Throughout the paper, we use

shorthand ft and ϕt to denote the feature vectors f(st, at)
and ϕ(st) evaluated at time t, respectively. The assumption of

linear function approximation allows us to rewrite the updates

from (6) and (8) as follows:

ṽit = vit + αv,t(r
i
t+1 + γϕTt+1v

i
t − ϕTt vit)ϕt (9)

λ̃it = λit + αλ,t(r
i
t+1 − fTt λit)ft. (10)

It is easy to see that a single update is performed in the

subspace spanned by the feature vectors and its magnitude and

direction in this subspace are governed by the step size and

estimation error. The agents can exploit the knowledge of the

common feature vectors ϕt and ft to estimate the estimation

error of their neighbors using scalar projection as

rjt+1 + γϕTt+1v
j
t − ϕTt vjt ≈

ϕTt (ṽ
j
t − vit)

αv,t∥ϕt∥2
, (11)

rjt+1 − fTt λjt ≈
fTt (λ̃jt − λit)
αλ,t∥ft∥2

. (12)

Lemma 1 shows that the approximation in (12) becomes exact

once the agents reach consensus on the parameter values.

Lemma 1. Suppose that agent i reaches consensus on the

critic and team-average reward function parameters with its

neighbors, i.e., xit = xjt for x ∈ {v, λ} and all j ∈ N i
in,t.

Then, the agent can exactly evaluate the estimation errors

δjλ,t = rjt+1 − fTt λjt and δjv,t = rjt+1 + γϕTt+1v
j
t − ϕTt vjt .

Proof. If xit = xjt for x ∈ {v, λ}, manipulating the neighbor

updates in (10) and applying scalar projection into their respec-

tive feature vectors ϕt and ft yields rjt+1+γϕ
T
t+1v

j
t −ϕTt vjt =

ϕT
t (ṽj

t−vi
t)

αv,t∥ϕt∥2 and rjt+1 − fTt λjt =
fT
t (λ̃j

t−λi
t)

αλ,t∥ft∥2 . Therefore, agent i
evaluates the estimation errors exactly.

In contrast to the vector aggregation via consensus updates

in (6) and (8), the aggregation in the projection-based consen-

sus method is done over the estimated neighbors’ estimation

errors that take scalar values. The method is incorporated in
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the parameter updates of a projection-based consensus AC

algorithm with the pseudo-code in Algorithm 1.

Algorithm 1: Projection-based consensus AC with

linear approximation

Initialize s0, {αv,t}t≥0, , {αλ,t}t≥0, {αθ,t}t≥0, t←
0, θi0, λ

i
0, λ̃

i
0, v

i
0, ṽ

i
0, ∀i ∈ N

Repeat until convergence

for i ∈ N do

Take action ait ∼ πi(ait|st; θit);
Observe state st+1, action at, and reward rit+1

Update actor

δit ← r̄(st, at;λ
i
t) + γV (st+1; v

i
t)− V (st; v

i
t)

θit+1 ← θit + αθ,t · δit · ∇θi log πi(ait|sit; θit)
Update critic and team reward function

ṽit ← vit + αv,t · (rit+1 + γV (st+1; v
i
t)− V (st; v

i
t)) ·

∇viV (st; v
i
t)

λ̃it ← λit+αλ,t·(rit+1−r̄(st, at;λit))·∇λi r̄(st, at;λ
i
t)

Send λ̃it, ṽ
i
t to j ∈ N i

out,t

end

for i ∈ N do

Receive λ̃jt , ṽ
j
t from j ∈ N i

in,t

Projection-based consensus step

ϵijv,t ← ϕT
t (ṽj

t−vi
t)

αv,t∥ϕt∥2 , ϵijλ,t ←
fT
t (λ̃j

t−λi
t)

αλ,t∥ft∥2 for j ∈ N i
in,t

ϵiv,t ←
∑

j∈N i
in,t

cv,t(i, j) · ϵijv,t,
ϵiλ,t ←

∑

j∈N i
in,t

cλ,t(i, j) · ϵijλ,t
vit+1 ← vit + αv,t · ϵiv,t · ∇viV (st; v

i
t)

λit+1 ← λit + αλ,t · ϵiλ,t · ∇λi r̄(st, at;λ
i
t)

end

Update iteration counter t← t+ 1

The agents perform a stochastic update using their local

reward rit+1 and exchange the updated parameters ṽit and λ̃it
over the communication graph. Then, they estimate the average

estimation errors ϵiv,t and ϵiλ,t through the projection-based

consensus update, and apply the average estimation errors in

the parameter updates that yield new values vit+1 and λit+1.

Figure 1 provides a comparison between the consensus-based

AC updates that are given in (6) and (8), and the projection-

based consensus AC updates. We note that the projection-

based consensus AC algorithm performs more conservative

updates than the consensus-based AC MARL algorithm. Con-

sider any time step t ≥ 0 in Algorithm 1. First, each agent

i ∈ N needs to compute local updates for δit, θ
i
t, ϵ

ij
v,t, ϵ

i
v,t ∈ R

for all j ∈ N i
in,t and λit, v

i
t, where the dimension of λit (resp.,

vit) is equal to that of the feature vector ft (resp., ϕt) used

in the function approximation for the reward (resp., value

function). The computation complexity of agent i in time

step t is then given by O((dim(ft)+dim(ϕt))|N i
in,t|+|Ai|).

Next, each agent i ∈ N needs to send the updated vectors λ̃it
and ṽit to all the neighbors in N i

out,t. In summary, the time

complexity and communication latency of Algorithm 1 are

governed by the number of features used in the linear function

approximation and the size of the action space Ai.

(a) Consensus

(b) Projection-based consensus

Fig. 1: Critic updates of the consensus-based AC and the projection-
based consensus AC algorithm in a 2-D parameter space.
Local updates are depicted by solid lines and consensus
updates by dashed lines. Updated parameters are in green.

B. Resilient Projection-based Consensus Actor-critic with Lin-

ear Approximation

To design a defense mechanism against Byzantine agents,

we adopt the basic idea of resilient consensus from W-MSR

(Weighted Mean-Subsequence-Reduced) algorithms in which

each agent reduces scalar values received from its neighbors

and, subsequently, computes a weighted mean of the remaining

values. By eliminating the most extreme values at every step,

the final agreed value among agents is guaranteed to lie within

a convex hull of non-faulty agents if the network is sufficiently

robust [16]. We apply the W-MSR consensus method over the

estimated neighbors’ estimation errors. Assuming that there

are no more than H Byzantine agents, each agent forms lists

of sorted values {ϵijv,t}j∈N i
in,t

and {ϵijλ,t}j∈N i
in,t

, and removes

H largest values and H smallest values from each set, except

for values that are smaller and larger than the value of the

agent, respectively. We note that the resilient projection-based

consensus method does not suffer from overestimation of the

approximated functions because the Byzantine agents can no

longer directly manipulate individual parameters in vjt and

λjt . Since the resilient aggregation in our algorithm assumes

removal of 2H values, there are fundamental limitations on

the number of Byzantine agents in the network for which the

cooperative network remains resilient captured as follows [16].
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Definition 1. (ζ-connectivity) A connected graph G is said

to be ζ-connected if it has more than ζ vertices and remains

connected whenever fewer than ζ vertices are removed.

Definition 2. (ζ-reachable sets and ζ-robustness) Given a

graph Gt and a nonempty subset of nodes Z ⊂ N , we say

that Z is an ζ-reachable set if there exists i ∈ Z such that

|N i
in,t\Z|≥ ζ, where ζ ∈ Z≥0. Further, a graph Gt on |N |

nodes (|N |≥ 2) is ζ-robust, with ζ ∈ Z≥0, if for every pair of

nonempty, disjoint subsets of N , at least one of the subsets is

ζ-reachable.

Lemma 2. (Network robustness after edge removal [16,

Lemma 6]) Given a ζ-robust graph Gt, any directed graph

G′t produced by removing up to k incoming edges to any node

is (ζ − k)-robust.

Lemma 3. (Connectivity of robust graphs [16, Theorem 6])

Suppose Gt is a ζ-robust undirected graph, with 0 ≤ ζ ≤
|N |/2. Then, Gt is at least ζ-connected.

From Lemma 2 and Lemma 3, a (2H + 1)-robust network

of agents remains connected despite each agent removing 2H
edges in the resilient aggregation. Additionally, the trimming

approach ensures that ϵiv,t and ϵiλ,t are bounded by the mini-

mum and maximum values in the set of cooperative neighbors

of agent i. The pseudo-code for the resilient projection-based

consensus AC algorithm with linear function approximation

is given in Algorithm 2. The convergence analysis of the

algorithm is provided in Section IV-B Similarly to our discus-

sions for Algorithm 1, the time complexity and communication

latency are governed by the number of features used in the

function approximation and |Ai|.
Remark 1. In the discussion above, we assume linear ap-

proximation of the critic V (s; vi) and team-average reward

function r̄(s, a;λi) for analytical tractability since linear ap-

proximation allows us to identify unique optimal parameters vi

and λi in the policy evaluation. It is important to note that by

evaluating linear combinations of the parameters of nonlinear

models such as neural networks, we do not generally obtain

linear combinations of their outputs. However, since the output

layer of a neural network is linear, we can extend Algorithm 2

in the nonlinear setting as well. Here, the additional challenge

is to train the hidden layer parameters that evaluate the basis

functions f(s, a) and ϕ(s). In Section V, we present numerical

simulations where we train the hidden layers by aggregating

each hidden parameter value.

IV. CONVERGENCE RESULTS

In this section, we provide a convergence analysis for

Algorithm 1 and Algorithm 2 by showing that the cooperative

agents are indeed cooperative in the sense that they maximize

the objective function J+(π+, π−). The proof uses a two

timescale argument [9], [30], [31]. First, we analyze the

critic and team-average reward function updates on the faster

timescale, and then we establish the actor convergence on

the slower timescale. Note that Algorithm 1 is significantly

different from the AC MARL algorithm proposed in [9], due

Algorithm 2: Resilient projection-based consensus AC

with linear approximation

Initialize s0, {αv,t}t≥0, {αλ,t}t≥0{αθ,t}t≥0, t←
0, θi0, λ

i
0, λ̃

i
0, v

i
0, ṽ

i
0, H , ∀i ∈ N+

Repeat until convergence

for i ∈ N+ do

Take action ait ∼ πi(ait|st; θit);
Observe state st+1, action at, and reward rit+1

Update actor

δit ← r̄(st, at;λ
i
t) + γV (st+1; v

i
t)− V (st; v

i
t)

θit+1 ← θit + αθ,t · δit · ∇θi log πi(ait|sit; θit)
Update critic and team reward function

ṽit ← vit + αv,t · (rit+1 + γV (st+1; v
i
t)− V (st; v

i
t)) ·

∇viV (st; v
i
t)

λ̃it ← λit+αλ,t·(rit+1−r̄(st, at;λit))·∇λi r̄(st, at;λ
i
t)

Send λ̃it, ṽ
i
t to j ∈ N i

out,t

end

for i ∈ N+ do

Receive λ̃jt , ṽ
j
t from j ∈ N i

in,t

Resilient projection-based consensus step

ϵijv,t ← ϕT
t (ṽj

t−vi
t)

αv,t∥ϕt∥2 for j ∈ N i
in,t, ϵ

ij
λ,t ←

fT
t (λ̃j

t−λi
t)

αλ,t∥ft∥2

for j ∈ N i
in,t

N i
v,t ← remove H smallest values that are smaller

than and H largest values that are larger than ϵiiv,t
from the set {ϵijv,t}j∈N i

in,t
, return the remaining

indices

N i
λ,t ← remove H smallest values that are smaller

than and H largest values that are larger than ϵiiλ,t
from the set {ϵijλ,t}j∈N i

in,t
, return the remaining

indices

ϵiv,t ←
∑

j∈N i
v,t
cv,t(i, j) · ϵijv,t,

ϵiλ,t ←
∑

j∈N i
λ,t
cλ,t(i, j) · ϵijλ,t

vit+1 ← vit + αv,t · ϵiv,t · ∇viV (st; v
i
t)

λit+1 ← λit + αλ,t · ϵiλ,t · ∇λi r̄(st, at;λ
i
t)

end

Update iteration counter t← t+ 1

to the projection in the consensus step. Nonetheless, we will

show that Algorithm 1 converges under similar assumptions

made in [9]. To analyze the convergence of Algorithm 2, we

need to rely on a set of assumptions introduced for resilient

learning with Byzantine agents [16]. In the sequel, we first

present common assumptions used in both Algorithms 1-2,

and then, in Section IV-A and IV-B, we introduce further

assumptions that are pertinent to the respective algorithms.

Assumption 1. The feature vectors f(s, a) =
[f1(s, a), . . . , fM (s, a)] ∈ R

M and ϕ(s) =
[ϕ1(s), . . . , ϕL(s)] ∈ R

L are uniformly bounded for

any s ∈ S , a ∈ A. Furthermore, if we define the feature

matrix F ∈ R
|S|·|A|×M with [fm(s, a), s ∈ S, a ∈ A]T as

its m-th column for any m ∈ [M ], and the feature matrix

Φ ∈ R
|S|×L with [ϕl(s), s ∈ S]T as its l-th column for any

l ∈ [L], then both Φ and F have full column rank.

Assumption 2. The policy πi(ai|s; θi) is stochastic, i.e.,

This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TAC.2024.3409676

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Purdue University. Downloaded on August 10,2024 at 15:54:21 UTC from IEEE Xplore.  Restrictions apply. 



7

πi(ai|s; θi) > 0 for any i ∈ N+, θi ∈ Θi, s ∈ S , ai ∈ Ai, and

continuously differentiable in θi. The Markov chain {st}t≥0

is irreducible and aperiodic under any π(a|s; θ).
Assumption 3. The reward ri(s, a) is uniformly bounded for

any i ∈ N+.

Assumption 4. The step sizes αx,t, x ∈ {v, λ, θ}, are positive

and satisfy
∑

t αx,t = ∞,
∑

t α
2
x,t < ∞, αθ,t = o(αv,t +

αλ,t), and limt→∞ αx,t+1 · α−1
x,t = 1.

Assumption 5. The update of the actor parameters θi, i ∈
N+, includes a projection operator ΨΘi : Rmi → Θi ⊂ R

mi

that ensures that θi ∈ Θi where the set Θi is compact and

hyperrectangular.

These assumptions are standard in the RL literature [9].

We make the assumption about uniformly bounded rewards

and feature vectors to prevent unbounded gradients in the

policy evaluation. On a similar note, we assume that the

policy is differentiable and strictly positive to avoid unbounded

gradients in the actor updates. The assumption of the full-rank

features matrices Φ and F allows us to characterize a unique

asymptotically stable equilibrium in the estimation of the critic

V (s; vi) and the team-average reward function r̄(s, a;λi). By

Assumption 4, we can analyze strong convergence on separate

timescales as the step sizes tend to zero and the updates

of the actor are slower than the updates of V (s; vi) and

r̄(s, a;λi). This is a reasonable assumption as we typically

perform multiple updates of V (s; vi) and r̄(s, a;λi) (policy

evaluation) before an actor update (policy improvement) in

practice. The inclusion of the projection operator in the actor

updates, as presented in Assumption 5, is considered in the

convergence analysis of RL algorithms [30] but is typically

omitted in the implementation. For simplicity, we consider Θi

to be hyperrectangular. In practice, we would select a large

interval for each element in the parameter vector θi which

would constitute a hyperrectangular set Θi.

Before we proceed to prove the convergence under

Algorithm 1 and 2, we introduce definitions that are

frequently used in both proofs. First, we let vt =
[

(v1t )
T . . . (vNt )T

]T
and λt =

[

(λ1t )
T . . . (λNt )T

]T
.

Second, we let Ds
π = diag([dπ(s), s ∈ S]) ∈ R

|S|×|S|

and Ds,a
π = diag([d′π(s, a), s ∈ S, a ∈ A]) ∈

R
(|S|·|A|)×(|S|·|A|) denote matrices with a stationary distribu-

tion of states and state-action pairs, respectively. Third, we

define pπ(s
′|s) =

∑

a∈A p(s
′|s, a)π(a|s; θ) and let Pπ =

[

pπ(s
′|s), s′ ∈ S, s ∈ S

]

∈ R
|S|×|S| denote the state transi-

tion matrix of the Markov chain {st}t≥0 induced by policy

π(a|s; θ). We also define the consensus matrices Cv,t =
[cv,t(i, j)]ij and Cλ,t = [cλ,t(i, j)]ij .

Definition 3 (Team-average). The averaging operator ⟨·⟩ :
R

NK → R
K is defined such that ⟨x⟩ = 1

N
(1T ⊗ I)x =

1
N

∑

i∈N xi, where ⊗ denotes the Kronecker product.

Definition 4 (Projection into consensus subspace). The oper-

ator J = ( 1
N
11

T )⊗ I is defined such that J x = 1⊗ ⟨x⟩.
Definition 5 (Projection into disagreement subspace). The

operator J⊥ = I − J is defined such that x⊥ = J⊥x =

x− 1⊗ ⟨x⟩.
Definition 6 (Projection into gradient subspace). The projec-

tion matrices are given as Γv,t =
ϕtϕ

T
t

∥ϕt∥2 and Γλ,t =
ftf

T
t

∥ft∥2 .

Definition 7 (Projection into orthogonal subspace). The or-

thogonal projection matrices are given as Γ̂v,t = I−Γv,t and

Γ̂λ,t = I − Γλ,t.

A. Convergence of Algorithm 1

In the analysis of Algorithm 1, we prove convergence

to unique asymptotically stable equilibria of the critic and

team-average reward parameters under fixed policy evalua-

tion and convergence of the actor to the stationary point

of the approximated team-average objective function. We let

A′
v,t = ϕt(γϕt+1 − ϕt)T , biv,t = ϕtr

i
t+1, A′

λ,t = −ftfTt , and

biλ,t = ftr
i
t+1. Furthermore, we define Ax,t = I ⊗ A′

x,t and

bx,t =
[

(b1x,t)
T . . . (bNx,t)

T
]T

for x ∈ {v, λ}. The critic

and team-average reward function updates under Algorithm 1

are compactly written as

vt+1 =vt + (Cv,t ⊗ Γv,t)(vt + αv,t(Av,tvt + bv,t))

− (I ⊗ Γv,t)vt (13)

λt+1 =λt + (Cλ,t ⊗ Γλ,t)(λt + αλ,t(Aλ,tλt + bλ,t))

− (I ⊗ Γλ,t)λt. (14)

We make the following assumption about the communication

graph Gt and the consensus matrices Cv,t and Cλ,t.

Assumption 6. The sequence of time-varying communi-

cation graphs {Gt}t≥0 and associated consensus matrices

{Cx,t}t≥0 ∈ R
N×N , for x ∈ {v, λ}, satisfy:

(1) Gt is independent of all random variables and connected

in the mean.

(2) Cx,t respects Gt. That is, cx,t(i, j) = 0 if (i, j) /∈ Gt and

cx,t(i, j) ≥ ν if (i, j) ∈ Gt for some ν > 0.

(3) Given Gt, Cx,t is conditionally independent of all other

random variables.

(4) Cx,t is row stochastic and E[Cx,t] is column stochastic.

That is, Cx,t1 = 1 and 1
T
E[Cx,t] = 1

T .

Assumption 6 states that the communication graph Gt is

connected in the mean and the consensus matrix Cx,t has a

well-defined mean value that ensures balanced updates in any

visited state-action pair. Along with the application of nonzero

consensus weights, these assumptions guarantee contraction

of the estimated function parameters to a consensus value

in our analysis. We note that our assumptions are slightly

different than in [9] but they essentially describe the same

conditions needed to ensure balanced distributed estimation

of the critic and team-average reward function. We are now

ready to establish convergence in the policy evaluation.

Lemma 4. Suppose there are no adversarial agents in the

network. Under Assumption 1-4 and 6, the critic param-

eters satisfy supt∥vt∥< ∞ with probability one. Further-

more, they asymptotically converge with probability one, i.e.,

limt→∞ vit = vπ for i ∈ N . The limit vπ is a unique solution

to ΦTDs
π(

1
N

∑

i∈N Ri
π + γPπΦvπ − Φvπ) = 0.
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Lemma 5. Suppose there are no adversarial agents in the net-

work. Under Assumption 1-4 and 6, the team-average reward

function parameters satisfy supt∥λt∥< ∞ with probability

one. Furthermore, they converge with probability one, i.e.,

limt→∞ λit = λπ for i ∈ N . The limit λπ is a unique solution

to FTDs,a
π ( 1

N

∑

i∈N Ri − Fλπ) = 0.

We note that the convergence point λπ corresponds to the

minimum mean squared error (MMSE) estimate of the true

team-average reward weighted over the distribution of state-

action pairs (s, a), d′π(s, a), and the convergence point vπ
corresponds to the minimum mean squared projected Bellman

error estimate of the true team-average critic weighted over the

state distribution dπ(s). Lemma 4 and Lemma 5 indicate that

the cooperative agents estimate the critic and the team-average

reward function in the MMSE sense and hence the agents can

approximately evaluate the team-average advantage function

established in (2). We now establish the actor convergence by

showing that the agents’ policies converge to a stationary point

of the objective function J+(π+) defined in (1). Due to the

absence of adversarial agents, the policy π− is omitted in the

analysis.

Theorem 6. Suppose there are no adversarial agents in the

network. Under Assumption 1-6, the policy parameter θit, i ∈
N , converges with probability one to a point in the set of

locally asymptotically stable equilibria of the ODE

θ̇i = ΨΘi [Eπ,dπ,p{(r̄(s, a;λπ) + γV (s′; vπ)− V (s; vπ))

· ∇θi log πi(ai|s; θi)}],
where the parameters λπ and vπ are the globally asymptoti-

cally stable equilibria under policy π(a|s; θ).

B. Convergence of Algorithm 2

Analysis of Algorithm 2 is complicated by the fact that As-

sumption 6 is no longer valid because the consensus matrices

Cv,t and Cλ,t take values based on the estimated estimation

errors ϵijv,t and ϵijλ,t, and thus they are not conditionally inde-

pendent of other signals in the algorithm updates. We introduce

a new set of assumptions about the network robustness and the

behavior of the Byzantine agents following, e.g., [16]. Define

a new communication graph G′t that is generated by removing

2H incoming edges at each node in Gt.
Assumption 7. The sequence of time-varying communi-

cation graphs {Gt}t≥0 and associated consensus matrices

{Cx,t}t≥0 ∈ R
N×N , for x ∈ {v, λ}, satisfy:

(1) Gt includes up to H Byzantine agents.

(2) Gt is (2H + 1)-robust.

(3) Cx,t respects G′t. That is, cx,t(i, j) = 0 if (i, j) /∈ G′t. and

cx,t(i, j) ≥ ν if (i, j) ∈ G′t for some ν > 0.

(4) Cx,t is row stochastic. That is, Cx,t1 = 1.

A wide range of graphs have been proven to be robust

[16], [32]. For example, for an Erdős-RÂenyi random graph

Gn,p, if the probability p is above (resp., below) a threshold
lnn+(ζ−1) ln lnn

n
, then Gn,p is ζ-robust with probability one

(resp., zero) as n → ∞ [32]. In fact, the ζ-connectivity of

Gn,p is characterized by the same threshold
lnn+(ζ−1) ln lnn

n

on p [33]. Thus, robustness is not a stronger assumption than

connectivity on the Erdős-RÂenyi random graphs.

Assumption 8. The policy of every Byzantine agent converges

to a stationary policy, i.e., limt→∞ πi
t → πi

∗ for i ∈ N−.

Furthermore, |πi
t+1 − πi

t|= O(αθ,t).

The assumption that the policy of Byzantine agents con-

verges to a fixed policy ensures that the uncontrollable parts of

the environment, e.g., the Byzantine agents, eventually induce

a stationary MMDP, where the objective function J+(π+, π−)
can be maximized over π+. We note that we do not assume a

stationary behavior of the adversarial agents in the numerical

simulations presented in Section V.

To distinguish between the parameters of cooperative and

Byzantine agents, we make slight changes in the notation.

Without loss of generality, we assume that the agents’ indices

are ordered such that N+ = {1, . . . , N+} and N− =
{N−N−+1, . . . , N}. We use superscripts + and − to denote

signals of all cooperative and Byzantine agents, respectively.

For example, the cooperative agents’ rewards are given as

r+t+1 = [(r1t+1)
T . . . (rN

+

t+1)
T ]T . We have the following result

on the consensus updates.

Proposition 7. [34, Prop. 5.1] Under Assumption 7,

the resilient consensus update for each i ∈ N+ with

weights cx,t(i, j) is mathematically equivalent to ϵix,t =
∑

j∈N i
in,t

∩N+ c
+
x,t(i, j)ϵ

ij
x,t, where c+x,t(i, j) are consensus

weights that satisfy
∑

j∈N i
in,t

∩N+ c
+
x,t(i, j) = 1. Moreover, it

holds that c+x,t(i, i) ≥ ν and c+x,t(i, j) ≥ ν/2 for some ν > 0
and j ∈ N i

in,t ∩N+.

Proposition 7 ensures that the consensus updates of the co-

operative agents can be expressed purely in terms of the

cooperative agents’ values. We let C+
x,t = [c+x,t(i, j)]ij , x ∈

{v, λ}, denote the equivalent consensus matrix and define

A+
x,t = (I ⊗A′

x,t) and b+x,t = [(b1x,t)
T . . . bN

+

x,t )
T ]T . Applying

Proposition 7, we write the cooperative agents’ updates in

Algorithm 2 as follows

v+t+1 =v+t + (C+
v,t ⊗ Γv,t)(v

+
t + αv,t(A

+
v,tv

+
t + b+v,t))

− (I ⊗ Γv,t)v
+
t (15)

λ+t+1 =λ+t + (C+
λ,t ⊗ Γλ,t)(λ

+
t + αλ,t(A

+
λ,tλ

+
t + b+λ,t))

− (I ⊗ Γλ,t)λ
+
t . (16)

While these updates are similar to those in Algorithm 1, the

consensus matrices C+
v,t and C+

λ,t are influenced by the Byzan-

tine agents and are not unique in general. For x ∈ {x, λ}, we

let ξx,t = (rt, st, at, C
+
x,t−1) denote a collection of random

variables and Wx all possible realizations of the Markov chain

{ξx,t}t≥0. The main convergence results regarding the policy

evaluation are now given.

Lemma 8. Under Assumption 1-4, 7, and 8, the critic pa-

rameters vit, i ∈ N+, are uniformly bounded and converge to

a consensus value
〈

v+t
〉

with probability one. The consensus

value
〈

v+t
〉

converges with probability one to a bounded
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neighborhood around a fixed point v+π that satisfies

ΦTDs
π

(

1

N+

∑

i∈N+

Ri
π + γPπΦv

+
π − Φv+π

)

= 0.

The limiting sequence of the team-average critic parameter,

⟨v+⟩, satisfies ∥ΦTDs
π(γPπ−I)Φ(⟨v+⟩−v+π )∥≤ ∥∆v∥, where

∥∆v∥≤ lim
t,m

sup
ξt∈W

∥

∥

∥

∥

1

m

t+m−1
∑

k=t

1

N+

(

(1TC+
v,kr

+
k+1 ⊗ ϕk)

+ (1TC+
v,k ⊗

ϕkϕ
T
k

∥ϕk∥2
)α−1

v,kv
+
⊥,k

)

− 1

N+

∑

i∈N+

ΦTDs
πR

i
π

∥

∥

∥

∥

.

(17)

Lemma 9. Under Assumption 1-4, 7, and 8, the team-average

reward function parameters λit are uniformly bounded and

converge to a consensus value
〈

λ+t
〉

with probability one. The

consensus value
〈

λ+t
〉

converges with probability one to a

bounded neighborhood around a fixed point λ+π that satisfies

FTDs,a
π

(

1

N+

∑

i∈N+

Ri − Fλ+π
)

= 0.

The limiting sequence of the team-average update, ⟨λ+⟩,
satisfies ∥FTDs,a

π F (⟨λ+⟩ − λ+π )∥≤ ∥∆λ∥, where

∥∆λ∥= lim
t,m→∞

sup
ξt∈W

∥

∥

∥

∥

1

m

t+m−1
∑

k=t

1

N+

(

(1TC+
λ,kr

+
k+1 ⊗ fk)

+ (1TC+
λ,k ⊗

fkf
T
k

∥fk∥2
)α−1

λ,tλ
+
⊥,k

)

− 1

N+

∑

i∈N+

FTDs,a
π Ri

∥

∥

∥

∥

.

(18)

Remark 2. The critic and team-average reward function

parameters converge to a bounded neighborhood around the

optimal MMSE parameters. The size of the neighborhood

depends primarily on the behavior of the Byzantine agents. We

note that the equivalent consensus matrices C+
v,t and C+

λ,t are

not column stochastic in general since they are influenced by

the parameter values communicated by the Byzantine agents.

Thus, the parameters estimated by the cooperative agents

generally cannot converge to the optimal MMSE parameters

of the critic and team-average reward function, vπ and λπ .

A special case that permits this to happen includes when all

cooperative agents receive the same reward, i.e., ri = rj for

i, j ∈ N+ and t ≥ 0.

Theorem 10. Under Assumption 1-5, 7, and 8, the policy

parameter θit, i ∈ N+, converges with probability one to a

neighborhood of a locally asymptotically stable equilibrium

of the ODE

θ̇i = Ψi
Θ[Eπ,dπ,p{(r̄(s, a;λ+π ) + γV (s′; v+π )− V (s; v+π ))

·∇ log πi(ai|s; θi)}].
Due to the ever-present disturbance in the approximation of

the critic and team-average reward function, the cooperative

policy converges to a compact set of policies that are at

best close to a policy that forms a stationary point of the

cooperative team’s objective function J+(π+, π−). The size

of the limit set is determined by the size of the deviation from

Fig. 2: Cooperative navigation task in the grid world environment.

the optimal MMSE parameters in the distributed estimation,

that is r̄(s, a; ⟨λ+⟩ − λ+π ) and V (s′; ⟨v+⟩ − v+π ). In the worst

case scenario, the limit set is equal to the constraint set Θi.

However, if the deviation from the optimal MMSE parameters

is small, then the size of the limit set is small as well.

V. SIMULATION RESULTS

For a numerical illustration, we consider a multi-agent

grid world environment of size 10 × 10 (Figure 2), where

five agents learn to solve the cooperative navigation task by

communicating in an all-to-all fashion. The cooperative goal

of the agents is to follow a path to their respective targets that

yields the highest team-average returns. We let si denote the

2D positional coordinates of agent i and di the 2D positional

coordinates of its desired position. Each agent chooses from

a set of five actions that correspond to the cardinal direction

of its next state transition and staying put in the same state.

A transition to an adjacent cell occurs only if the cell is not

occupied by another agent. The dynamics are deterministic

and the agents are rewarded by −∥s′i−di∥1, and an additional

−1 if they attempt to move into an occupied cell or leave the

boundaries of the grid world. Each agent approximates the

actor, critic, and team-average reward with neural networks

that have two dense hidden layers with 30 units and leaky

ReLU activation function with α = 0.1. The actor includes an

output layer with a softmax activation.

We define an episode as a single run of the simulation

from start to finish, consisting of a sequence of time steps in

the agents’ dynamics described above, where the initial and

target positions of each agent are chosen randomly from the

10×10 grid. We train the neural networks for 10000 episodes

with each episode lasting 20 steps. Within an episode, agents

interact with the environment to collect experiences, which are

tuples of (state, action, reward, next state). The team-average

reward function r̄(s, a;λi) and the critic V (s; vi) are evaluated

under a fixed policy π(a|s; θ) every 100 episodes. The agents

perform local updates and resilient projection-based consensus

updates in Algorithm 2 every 20 episodes based on the most

recent 1000 experiences obtained under the current policy as

well as further 2000 experiences from a replay buffer. The

hidden layer parameters are aggregated using the method of

trimmed means. The actor is updated based on the 1000 most

recent experiences. We select the discount factor γ = 0.9 and

the learning rates αθ,t = 0.0005 and αv,t = αλ,t = 0.05. Each

This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TAC.2024.3409676

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Purdue University. Downloaded on August 10,2024 at 15:54:21 UTC from IEEE Xplore.  Restrictions apply. 



10

episode takes around 7.9 seconds to complete.1

(a) All-cooperative, H = 0, 1

(b) Greedy, H = 0, 1

(c) Strategic, H = 1, Projection based and Trimmed-mean based

Fig. 3: True and estimated team-averaged rewards among the coop-
erative agents.

We consider three scenarios. The results presented in Fig-

ure 3 correspond to a rolling average of Returns over 200

episodes, where the Return value is the (true or estimated)

cumulative team-averaged reward (among the cooperative

agents) in a single episode. In the first scenario, we assume that

all five agents are cooperative. From Fig. 3a, we see that with

the trimming parameter in the projection step in Algorithm 2 at

either H = 0 or H = 1, the true and estimated team-averaged

1All the experiments are performed on a computer cluster
with 1 NVIDIA A30 GPU and 192GB RAM. Code available
at https://github.com/mainakpal08/Resilient

-consensus-based-MARL.

rewards are close to each other. In the second scenario, we

assume that one agent is greedy and sends its parameter values

to the other agents but does not utilize any values from them.

From Fig. 3b, we see that when H = 0, the cooperative agents

overestimate the team-averaged reward and end up maximizing

the greedy agent’s objective. In contrast, when H = 1, the

cooperative agents are resilient to the greedy agent, and better

estimate and maximize the team-average objective function

among the cooperative agents. In the last scenario, we assume

that one strategic agent attempts to minimize the cooperative

agents’ objective and maximize its own objective. Here, we

compare between the performances of Algorithm 2 and the

algorithm proposed in [27]. As we described in Section II,

the algorithm proposed in [27] is based on trimmed means.

To obtain the results in Fig. 3c, we set H = 1 in both the

trimmed-mean based algorithm in [27] and our projection-

based algorithm. From Fig. 3c, we see that the trimmed-mean

based algorithm tends to overestimate the team-average reward

so that the cooperative agents cannot learn an optimal policy to

maximize the team-averaged reward. In contrast, Algorithm 2

is resilient to this strategic agent, and again better estimates

and maximizes the team-averaged reward.

VI. CONCLUSION

We introduced novel resilient projection-based consensus

actor-critic MARL algorithms that ensure Byzantine-resilient

learning of cooperative agents in environments influenced by

Byzantine agents. We provided a convergence analysis of the

algorithm that uses linear approximation. In simulations, we

implemented the resilient algorithm that employs nonlinear

approximation and demonstrated its functionality.

APPENDIX A

STOCHASTIC APPROXIMATION

For completeness, we state here standard results on stochas-

tic approximation.

1) Unconstrained Stochastic Approximation with Corre-

lated Noise: We let θn, Yn and ξn denote the estimated param-

eter, observation, and state of a Markov chain, respectively.

We define the filtration Fn = σ(θ0, Yi−1, ξi, i ≤ n). The

unconstrained stochastic updates are given as follows

θn+1 = θn + ϵn[E(Yn|Fn) + δMn] (19)

= θn + ϵn[gn(θn, ξn) + δMn + βn] (20)

where ϵn > 0 and δMn = Yn − E(Yn|Fn) is a martingale

difference.

Assumption 9. Consider the following assumptions:

(1) The function gn(θn, ξn) is Lipschitz continuous in the first

argument.

(2) The step size sequence {ϵn}n≥0 satisfies
∑

n ϵn =∞ and
∑

n ϵ
2
n <∞, for n ≥ 0.

(3) The martingale difference sequence {δMn}n≥0 satisfies

E(∥δMn+1∥2|Fn) ≤ K · (1 + ∥θn∥2) for all n ≥ 0 and

some K > 0.

(4) The random sequence {βn}n≥0 is bounded and satisfies

βn → 0 with probability one.
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(5) {ξn}n≥0 is an irreducible Markov chain with stationary

distribution η.

(6) The Markov chain {ξn}n≥0 is uniformly bounded and has

a set of occupation measures D(θ) for any θ.

Theorem 11. [31, Chapter 6] Under Assumption 9.(1)-(5),

the asymptotic behavior of the algorithm (20) is described by

the ODE

θ̇ = ḡ(θ) := Ei∈η[g(θ, i)]. (21)

Theorem 12. [31, Chapter 6] Under Assumption 9.(1)-(5),

suppose that limc→∞ ḡ(cθ) · c−1 = g∞(θ) exists uniformly on

compact sets for some g∞ ∈ C(Rn). If the ODE θ̇ = g∞(θ)
has the origin as the unique globally asymptotically stable

equilibrium, then supn∥θn∥<∞ with probability one.

Theorem 13. [31, Chapter 6] If the ODE (21) has a unique

globally asymptotically stable equilibrium θ∗ and supn∥θn∥<
∞ with probability one, then θn → θ∗ as n → ∞ with

probability one.

Theorem 14. [30, Chapter 6] Under Assumption 9.(1)-(4)

and (6), the asymptotic behavior of the algorithm (20) is

described by the differential inclusion

θ̇ ∈ G(θ) :=
{

lim
n,m→∞

1

m

n+m−1
∑

i=n

gi(θ, j), j ∈ D
}

. (22)

Theorem 15. [35, Theorem 2] Under Assumption 9.(1)-(4)

and (6), suppose that limc→∞G(cθ) · c−1 = g∞(θ) exists

uniformly on compact sets for all i ∈ D and some g∞ ∈
C(Rn). If the ODE θ̇ = g∞(θ, i) has the origin as the unique

globally asymptotically stable equilibrium, then supn∥θn∥<
∞ with probability one.

Theorem 16. [30, Chapter 6] If supn∥θn∥< ∞, then

the trajectories converge to the limit set of the differential

inclusion θ̇ ∈ G(θ).
2) Constrained Stochastic Approximation with Martingale

Difference Noise: We let θn and Yn denote the estimated pa-

rameter and observation, respectively. We define the filtration

Fn = σ(θ0, Yi−1, i ≤ n). The constrained stochastic updates

are given as follows

θn+1 = ΨΘ(θn + ϵn[E(Yn|Fn) + δMn]) (23)

= ΨΘ(θn + ϵn[gn(θn) + δMn + βn]), (24)

where ΨΘ(·) is a projection operator that maps the stochas-

tic updates into a compact admissible set Θ, and δMn =
Yn − E(Yn|Fn) is a martingale difference. We introduce

assumptions for the algorithm updates.

Assumption 10. Consider the following assumptions:

(1) supn E(∥Yn∥|Fn) <∞.

(2) The step size sequence ϵn satisfies
∑

n ϵ
2
n < ∞ and

limn→∞
ϵn+1

ϵn
= 1.

(3) The random sequence {βn}n≥0 satisfies βn → 0 with

probability one.

(4) The admissible set Θ is a hyperrectangle, i.e., there exist

a and b such that a < b and Θ = {θn : a ≤ θn ≤ b}.

(5) The function gn(·) is continuous uniformly in n. Further-

more, there exists a function ḡ(θ) such that for all m > 0,

we have limn→∞ ∥
∑n+m−1

i=n ϵi[gi(θ)− ḡ(θ)]∥ = 0.

(6) The function gn(·) is continuous uniformly in n. Moreover,

there exists an upper semicontinuous set-valued function

G(θ) such that limn,m→∞
1
m

∑n+m−1
i=n gi(θ) ∈ G(θ).

Theorem 17. [36, Chapter 5] Under Assumption 10.(1)-(5),

the asymptotic behavior of the algorithm (24) is described by

the ODE θ̇ = ΨΘ[ḡ(θ)].

Theorem 18 is a direct consequence of Theorem 17.

Theorem 18. Under Assumption 10.(1)-(6), if there exists a

continuously differentiable function ω(θ) such that ḡ(θ) = dω
dθ

and ω(θ) is constant on disjoint compact sets Li, i =
1, . . . ,M , then the parameters θn converge with probability

one to Li for some i ∈ {1, . . . ,M} as n→∞.

Theorem 19. [36, Chapter 5] Under Assumption 10.(1)-(4)

and (6), the limit points are contained in an invariant set of

the differential inclusion θ̇ ∈ ΨΘ[G(θ)].

APPENDIX B

PROOFS OF THEORETICAL RESULTS IN SECTION IV

We repeatedly use shorthand πt = π(a|s; θt) to describe the

dependence of the policy on the time-varying parameters θt.

1) Algorithm 1: To complete the proofs, we need to estab-

lish several technical lemmas. First, we analyze the spectral

radius of the mean consensus update in the disagreement

subspace. We let Fx
t = σ(x0, Yt−1, ξτ , τ ≤ t) denote a

filtration of a random variable x ∈ {v, λ}, where Yt are the

incremental changes in parameters v and λ due to the updates

in (13) or (14), and ξτ = (rτ , sτ , aτ , Cx,τ−1) is a collection of

random variables. The filtration captures the evolution of the

random variable x based on its initial value x0 and updates

Yt that occur along the trajectory of the Markov chain ξτ .

Lemma 20. Under Assumption 6, the spectral radius

ρ(E[CT
x,t(I − 11

T /N)Cx,t|Fx
t ]) < 1, where x ∈ {v, λ}.

Proof. We begin by showing some properties of the matrix

I − 11
T /N . First, since I − 11

T /N is diagonal domi-

nant and symmetric, we know that I − 11
T /N ⪰ 0 [37,

Chapter 7]. Considering any y ∈ R
N , we have yT (I −

11
T /N)y ≤ yT y, which implies that I − 11

T /N ⪯
I . Using the above properties of I − 11

T /N , we obtain

yTCT
x,t(I − 11

T /N)Cx,ty ≤ yTCT
x,tCx,ty = ∥Cx,ty∥2. Since

Cx,t is row stochastic and Gt is connected in the mean

by Assumption 6, we know that ρ(E[Cx,t|Fx
t ]) = 1 and

∥E[Cx,t|Fx
t ]y∥2≤ ρ(E[Cx,t|Fx

t ])
2∥y∥2 for all y ∈ R

N and

the inequality holds when y = 1 [37, Chapter 8]. Note also

that 1
TCT

x,t(I − 11
T /N)Cx,t1 = 0. Combining the above

arguments, we have yTE[CT
x,t(I−11

T /N)Cx,t|Fx
t ]y < ∥y∥2

for all y ∈ R
N . Finally, since CT

x,t(I − 11
T /N)Cx,t ⪰

0, we know that ρ(E[CT
x,t(I − 11

T /N)Cx,t|Fx
t ]) =

maxy∈RN ,∥y∥=1 y
T
E[CT

x,t(I − 11
T /N)Cx,t|Fx

t ]y < 1 [37,

Chapter 4].
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Lemma 21. Suppose there are no adversarial agents in the

network. Under Assumption 1-4 and 6, the agents reach

consensus on the critic parameters with probability one,

i.e., limt→∞ v⊥,t = 0. Furthermore, the term E(∥(I ⊗
Γv,t)α

−1
v,tv⊥,t∥2|Fv

t ) is uniformly bounded.

Lemma 22. Suppose there are no adversarial agents in the

network. Under Assumption 1-4 and 6, the agents reach

consensus on the team-average reward function parameters

with probability one, i.e., limt→∞ λ⊥,t = 0. Furthermore, the

term E(∥(I ⊗ Γλ,t)α
−1
λ,tλ⊥,t∥2|Fλ

t ) is uniformly bounded.

Proof. Since the proofs of Lemma 21 and 22 are analogous,

We only present the proof for the critic parameters vt. The

updates of v⊥,t can be compactly written as follows

v⊥,t+1

=J⊥[vt + (Cv,t ⊗ Γv,t)(vt + αv,t(Av,tvt + bv,t))

− (I ⊗ Γv,t)vt]

=J⊥[(I ⊗ Γ̂v,t)vt + (Cv,t ⊗ Γv,t)(vt + αv,t(Av,tvt + bv,t))]

=J⊥[(Cv,t ⊗ Γv,t)(v⊥,t + αv,t(Av,tv⊥,t + bv,t))]

+ (I ⊗ Γ̂v,t)v⊥,t, (25)

where we used the fact that (Cv,t ⊗ Γv,t)(1 ⊗ ⟨x⟩) = 1 ⊗
(Γv,t ⟨x⟩) and J⊥[1⊗(Γv,t ⟨x⟩)] = 0. The updates of v⊥,t can

be viewed in two mutually orthogonal subspaces as follows

v⊥,t+1 = (I ⊗ Γ̂v,t)v⊥,t+1 + (I ⊗ Γv,t)v⊥,t+1, where

(I ⊗ Γ̂v,t)v⊥,t+1 =(I ⊗ Γ̂v,t)v⊥,t (26)

(I ⊗ Γv,t)v⊥,t+1 =[(I − 11
T /N)Cv,t ⊗ I](I ⊗ Γv,t)

· (v⊥,t + αv,t(Av,tvt + bv,t)) (27)

Consider the expected values E(∥(I ⊗ Γ̂v,t)v⊥,t+1∥2|Fv
t ) and

E(∥(I ⊗ Γv,t)v⊥,t+1∥2|Fv
t ). By (26), the first term satisfies

E(∥(I ⊗ Γ̂v,t)v⊥,t+1∥2|Fv
v,t) = E(∥(I ⊗ Γ̂v,t)v⊥,t∥2|Fv

t ) and

the disagreement vector v⊥,t remains stable in the orthogonal

subspace. To analyze stability of the term in (27), we write

E(∥(I ⊗ Γv,t)v⊥,t+1∥2|Fv
t )

=E(∥[(I − 11
T /N)Cv,t ⊗ I](I ⊗ Γv,t)

· ((I + αv,tAv,t)v⊥,t + αv,tbv,t))∥2|Fv
t )

≤ρv,t · E(∥(I ⊗ Γv,t)((I + αv,tAv,t)v⊥,t + αv,tbv,t))∥2|Fv
t )

(28)

where ρv,t = ρ(E(Cv,t(I − 11
T /N)Cv,t|Fv

t )). We note that

the inequality holds by the conditional independence of Cv,t

stated in Assumption 6. Regarding the terms that involve v⊥,t,

we have I + αv,tAv,t = I ⊗ (I + αv,tA
′
v,t), and hence we

obtain (I ⊗ Γv,t)(I + αv,tAv,t) = I ⊗ (Γv,t + αv,tA
′
v,t). The

eigenspace of matrix Γv,t + αv,tA
′
v,t is spanned by vector

Γv,tϕt. Hence, for νt that satisfies νt ≤ (1+αv,tK1)
2, where

K1 = supt∥(γϕt+1 − ϕt)
Tϕt∥< ∞ by Assumption 1, we

have ∥(I ⊗Γv,t)(I +αv,tAv,t)v⊥,t∥2≤ νt · ∥(I ⊗Γv,t)v⊥,t∥2.

We apply this inequality in the following lines, where we first

premultiply both sides of (28) by α−2
v,t+1 and apply the triangle

inequality. Letting ηt+1 = E(∥(I ⊗ Γv,t)α
−1
v,t+1v⊥,t+1∥2|Fv

t ),
we obtain the following inequality

ηt+1 ≤ρv,t · νt ·
α2
v,t

α2
v,t+1

(ηt + 2ν
− 1

2

t η
1
2

t · E(∥bv,t∥|Fv
t )

+ ν−1
t · E(∥bv,t∥2|Fv

t )).

Under Assumption 4, limt→∞
α2

v,t

α2
v,t+1

= 1 and limt→∞ νt = 1,

and so there exists finite time t0 and constant δ > 0 such that

νt > 0 and ρv,t · νt · α2
v,t

α2
v,t+1

≤ 1 − δ for all t > t0. Since

bv,t is uniformly bounded by Assumption 1 and 3, we have

ν−1
t · E(∥bv,t∥2|Fv

t ) ≤ K2 for some K2 <∞. Therefore, for

t > t0 we can write

ηt+1 ≤ (1− δ)(ηt + 2
√
ηt ·

√

K2 +K2)

= (1− δ

2
)ηt −

δ

2
(
√
ηt −

2

δ
(1− δ)

√

K2)
2

+
2

δ
(1− δ)2K2 + (1− δ)K2 ≤ (1− δ/2)ηt +K3,

where K3 = 2
δ
(1 − δ)2K2 + (1 − δ)K2. By induction,

ηt ≤ (1− δ
2 )

t−t0ηt0 +
2K3

δ
. Therefore, we have supt E(∥(I ⊗

Γv,t)α
−1
v,tv⊥,t∥2|Fv

t ) < K4 for some K4 > 0. Since

the states are visited according to the stationary distribu-

tion dπ(s), the uniform bound holds for all Γv,t visited in

the infinite sequence. Therefore, we consider
∑

t E(∥(I ⊗
Γv,t)v⊥,t∥2|Fv

t ) < K4 ·
∑

t α
2
v,t and obtain limt→∞(I ⊗

Γv,t)v⊥,t = 0 with probability one by Assumption 4. This

implies that limt→∞ v⊥,t = 0 with probability one.

From Lemma 21 and 22, under a sufficiently small step size,

the disagreement vector scaled by the step size is contractive

and subject to a bounded ªinputº disturbance that is due to the

heterogeneous rewards observed by individual agents. There-

fore, if the trajectories of α−1
v,tv⊥,t and α−1

λ,tλ⊥,t happen to

escape a compact set for t > t0, the trajectories exponentially

converge back to the set, which implies the boundedness in

the disagreement space.

Proof. (Lemma 4) We write the iteration of ⟨vt⟩ as follows

⟨vt+1⟩
=
〈

(I ⊗ Γ̂v,t)vt

〉

+
〈

(Cv,t ⊗ Γv,t)(1⊗ ⟨vt⟩+ v⊥,t

+ αv,t[(I ⊗A′
v,t)(1⊗ ⟨vt⟩+ v⊥,t) + bv,t])

〉

=Γv,t ⟨vt⟩+ Γ̂v,t ⟨vt⟩
+ αv,t

〈

(Cv,t ⊗ Γv,t)(I ⊗A′
v,t)(1⊗ ⟨vt⟩)

〉

+ αv,t

〈

(Cv,t ⊗ Γv,t)(α
−1
v,tv⊥,t + (I ⊗A′

v,t)v⊥,t + bv,t)
〉

= ⟨vt⟩+ αv,tA
′
v,t ⟨vt⟩

+ αv,t

〈

(Cv,t ⊗ Γv,t)(α
−1
v,tv⊥,t +Av,tv⊥,t + bv,t)

〉

= ⟨vt⟩+ αv,t[gt( ⟨vt⟩ , ξt) + δMt + βt],
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where the functions gt(·, ·), δMt, and βt are given as

gt( ⟨vt⟩ , ξt) = E(A′
v,t ⟨vt⟩+ ⟨(Cv,t ⊗ Γv,t)bv,t⟩ |Fv

t )

δMt = A′
v,t ⟨vt⟩+ ⟨(Cv,t ⊗ I)bv,t⟩

+
〈

(Cv,t ⊗ Γv,t)(α
−1
v,tv⊥,t +Av,tv⊥,t)

〉

− E

(

A′
v,t ⟨vt⟩+ ⟨(Cv,t ⊗ Γv,t)bv,t⟩

+
〈

(Cv,t ⊗ Γv,t)(α
−1
v,tv⊥,t +Av,tv⊥,t)

〉

|Fv
t

)

βt = E(
〈

(Cv,t ⊗ Γv,t)(α
−1
v,tv⊥,t +Av,tv⊥,t)

〉

|Fv
t ).

We now verify the conditions in Appendix A-1.

(1) We have ∥gt( ⟨x⟩ , ξt) − gt( ⟨y⟩ , ξt)∥= ∥E(Av,t(⟨x⟩ −
⟨y⟩)|Fv

t )∥≤ K1 · ∥⟨x⟩ − ⟨y⟩ ∥2 for some K1 > 0 since

A′
v,t is uniformly bounded by Assumption 1. Therefore,

gt( ⟨vt⟩ , ξt) is Lipschitz continuous in ⟨vt⟩.
(2) The step size sequence {αv,t}t≥0 satisfies

∑

t αv,t = ∞
and

∑

t α
2
v,t <∞, for t ≥ 0.

(3) The martingale difference sequence δMt satisfies

E(∥δMt∥2|Fv
t ) ≤ K2 · (1 + ∥⟨vt⟩ ∥2), since Av,t, bv,t,

and α−1
v,tv⊥,t are uniformly bounded by Assumption 1

and 3, and Lemma 21.

(4) By Assumption 6, we can write βt =
E(

〈

(Ct ⊗ Γv,t)(α
−1
v,tv⊥,t +Av,tv⊥,t)

〉

|Fv
t ) = 1

N
(1T ⊗

I)E(Ct⊗ I|Fv
t )E((I ⊗Γv,t)(α

−1
v,tv⊥,t +Av,tv⊥,t)|Fv

t ) =
1
N
(1T ⊗ I)E((I ⊗ Γv,t)(α

−1
v,tv⊥,t + Av,tv⊥,t)|Fv

t ).
The last term is uniformly bounded by Lemma 21

and Assumption 1. This and the fact that

(1T ⊗ I)(I ⊗ Γv,t)(α
−1
v,tv⊥,t + Av,tv⊥,t) = 0 imply

that βt = 0.

(5) The Markov chain {ξt}t≥0 is irreducible and has a sta-

tionary distribution η.

Applying Theorem 11, it follows that the asymptotic behav-

ior is described by the ODE

⟨v̇⟩ = ḡ( ⟨v⟩ ) = Edπ
[gt(⟨vt⟩ , ξt)]

= ΦTDs
π(γPπ − I)Φ ⟨v⟩+

1

N

∑

i∈N

ΦTDs
πR

i
π.

Let limc→∞ ḡ(cx) · c−1 = g∞(x) = ΦTDs
π(γPπ − I)Φx.

Since Φ is full column rank by Assumption 1, let ζ and Φy
denote an arbitrary eigenvalue-eigenvector pair of the matrix

product Dπ(γPπ− I). Since Dπ(γPπ− I)Φy = ζΦy, we can

write yTΦT (γPπ−I)Dπ(γPπ−I)Φy = ζyTΦT (γPπ−I)Φy,

which implies that with probability one

ζ =
yTΦT (γPπ − I)TDπ(γPπ − I)Φy

yTΦT (γPπ − I)Φy
< 0 ,

since the numerator is positive definite and the denominator is

negative definite with probability one. Therefore, the system

ẋ = g∞(x) has a unique globally asymptotically stable (GAS)

equilibrium. Theorem 12 yields desired boundedness of the

iterates, i.e., supt∥vt∥< ∞ with probability one. Finally, we

apply Theorem 13 to establish convergence with probability

one to the GAS of the ODE ⟨v̇⟩ = ḡ( ⟨v⟩ ) = ΦTDs
π(γPπ −

I)Φ ⟨v⟩+ 1
N

∑

i∈N ΦTDs
πR

i
π .

Proof. (Lemma 5) Analogous to the proof of Lemma 4.

Proof. (Theorem 6) We define a filtration Fθ
t =

σ(θ0, Yτ−1, τ ≤ t), where Yt are the actor updates. The

recursion of agent i, i ∈ N , is given as

θit+1 = Ψi
Θ(θ

i
t + αθ,t · δit · ψi

t) (29)

= Ψi
Θ(θ

i
t + αθ,t · [git(θit) + δMt + βt]), (30)

where δit = fTt λ
i
t + γϕTt+1v

i
t − ϕTt v

i
t, ψi

t =
∇θi log πi(ait|sit; θit), and the functions gt(·), δMt, βt
are given as

git(θ
i
t) = Eπt,dπt

,p(δt,πt
· ψi

t|Fθ
t ) (31)

δMt = δitψ
i
t − Eπt,dπt

,p(δ
i
t · ψi

t|Fθ
t ) (32)

βt = Eπt,dπt
,p((δ

i
t − δt,πt

) · ψi
t|Fθ

t ). (33)

The signal δt,πt
is the approximated team-average TD error

upon convergence of the parameters vt and λt under the

current network policy π(a|s; θt), i.e., δt,πt
= fTt λπt

+
γϕTt+1vπt

− ϕTt vπt
. To complete the convergence proof, we

verify the conditions given in Appendix A-2.

(1) The function δit is bounded by Assumption 1, and

Lemma 4 and 5. The function ψi
t is bounded by Assump-

tion 5. Therefore, we obtain supt E(∥δit · ψi
t∥|Fθ

t ) <∞.

(2) The step size sequence αθ,t satisfies
∑

t α
2
θ,t < ∞ and

limt
αθ,t+1

αθ,t
= 1.

(3) The bias term satisfies βt → 0 with probability one since

vt → vπt
and λt → λπt

on the faster time scale by

Assumption 4.

(4) The admissible set Θ is a hyperrectangle by Assumption 5.

(5) The function git(·) is continuous in θit uniformly in t.
Furthermore, git(·) := ḡi(·) since it is independent of t.

From Theorem 17, the asymptotic behavior of the actor

updates is given by the ODE θ̇i = ΨΘi [ḡi(θi)]. Now note

that ḡi(θi) = ∇θi J̃(θ), where J̃(θ) = Eπ,dπ,p[r̄(s, a;λπ) +
γV (s′; vπ) − V (s; vπ)]. The rate of change of J̃(θ) is given

as
˙̃J(θ) = ∇θJ̃(θ)

T (∇θJ̃(θ) + z), where z is the reflec-

tion term that projects the actor parameters back into the

admissible set Θ, i.e., z = −∇θJ̃(θ) whenever a constraint

is active and z = 0 otherwise (elementwise). Therefore,
˙̃J(θ) > 0 if ∇θJ̃(θ) + z ̸= 0 and

˙̃J(θ) = 0 otherwise.

By Theorem 18, the solution of the ODE θ̇ = ΨΘ[ḡ(θ)] =
[

ΨΘ1 [ḡ1(θ1)]
T

. . . ΨΘN [ḡN (θN )]
T
]T

converges to a set

of stationary points ∇θJ̃(θ) + z = 0 that correspond to the

stationary points of J̃(θ).

2) Algorithm 2:

Lemma 23. Under Assumption 7, the spectral radius

ρ+x,t(C
+T
x,t (I − 11

T /N+)C+
x,t) < 1, for x ∈ {v, λ}.

Proof. The proof is analogous to the proof of Lemma 20. The

difference here is that the communication graph after edge

removal, G′t, remains connected for t > 0. Furthermore, the

communication subgraph of the cooperative agents is rooted

under Assumption 7 [38]. Therefore, we conclude that C+
x,t

has only one eigenvalue equal to one by Proposition 7. Using

the same reasoning about the eigenvalues as in the proof of

Lemma 20, we obtain ∥(I−11
T /N+)C+

x,tx∥2≤ ρ+x,t∥x∥2 for

all x and some ρ+x,t < 1.
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Lemma 24. Under Assumption 1-4 and 7, the agents

reach consensus on the critic parameters with probability

one, i.e., limt→∞ v+⊥,t = 0. Furthermore, the term ∥(I ⊗
Γv,t)α

−1
v,tv

+
⊥,t∥2 is uniformly bounded.

Lemma 25. Under Assumption 1-4 and 7, the agents reach

consensus on the team-average reward function parameters

with probability one, i.e., limt→∞ λ+⊥,t = 0. Furthermore, the

term ∥(I ⊗ Γλ,t)α
−1
λ,tλ

+
⊥,t∥2 is uniformly bounded.

Proof. As the proofs of Lemma 24 and 25 are analogous,

we only present the proof for the critic parameters v+t . The

updates of v+⊥,t are given as follows

v+⊥,t+1 =J⊥[(C+
v,t ⊗ Γv,t)(v

+
⊥,t + αv,t(A

+
v,tv

+
⊥,t + b+v,t))]

+ (I ⊗ Γ̂v,t)v
+
⊥,t.

Splitting the updates into two orthogonal subspaces yields

(I ⊗ Γ̂v,t)v
+
⊥,t+1 =(I ⊗ Γ̂v,t)v

+
⊥,t

(I ⊗ Γv,t)v
+
⊥,t+1 =[(I − 11

T /N+)C+
v,t ⊗ I](I ⊗ Γv,t)

· (v+⊥,t + αv,t(A
+
v,tv

+
⊥,t + b+v,t))

The first term equation implies ∥(I ⊗ Γ̂v,t)v
+
⊥,t+1∥2= ∥(I ⊗

Γ̂v,t)v
+
⊥,t∥2 and for the second equation we write

∥(I ⊗ Γv,t)v
+
⊥,t+1∥2

=∥[(I − 11
T /N+)C+

v,t ⊗ I](I ⊗ Γv,t)

· (v+⊥,t + αv,t(A
+
v,tv

+
⊥,t + b+v,t))∥2

≤ρ+v,t · ∥(I ⊗ Γv,t)((I + αv,tA
+
v,t)v

+
⊥,t + αv,tb

+
v,t))∥2,

where ρ+v,t < 1 by Lemma 23. Following the steps in the proof

of Lemma 21, we obtain supt∥(I ⊗ Γv,t)α
−1
v,tv

+
⊥,t∥2<∞ and

lim
t→∞

v+⊥,t = 0 with probability one.

Lemma 24 and 25 ensure that the updates in the disagreement

subspace become contractive with a decreasing step size and

are subject only to a bounded disturbance that originates in

the homogeneous rewards. Therefore, the trajectories of v+⊥,t

and λ+⊥,t remain in a compact set for t > 0.

Proof. (Lemma 8) We let Fv
t = σ(v+0 , Yτ−1, ξτ , τ ≤ t)

denote a filtration, where Yτ is a critic update and ξτ =
(r+τ , sτ , aτ , C

+
v,τ−1) is a collection of random variables. We

write the iteration of
〈

v+t
〉

as follows
〈

v+t+1

〉

=
〈

(I ⊗ Γ̂v,t)v
+
t + (C+

v,t ⊗ Γv,t)(v
+
t + αv,t(A

+
v,tv

+
t + b+v,t))

〉

=
〈

v+t
〉

+ αv,tA
′
v,t

〈

v+t
〉

+ αv,t

〈

(C+
v,t ⊗ Γv,t)(α

−1
v,tv

+
⊥,t +A+

v,tv
+
⊥,t + b+v,t)

〉

=
〈

v+t
〉

+ αv,t[gt(
〈

v+t
〉

, ξt) + δMt + βt],

where the functions gt(·, ·), δMt, and βt are given as

gt(
〈

v+t
〉

, ξt) =E(A′
v,t

〈

v+t
〉

|Fv
t ) +

〈

(C+
v,t ⊗ Γv,t)b

+
v,t

〉

+
〈

(C+
v,t ⊗ Γv,t)α

−1
v,tv⊥,t

〉

(34)

δMt =A
′
v,t

〈

v+t
〉

− E(A′
v,t

〈

v+t
〉

|Fv
t ) (35)

βt =
〈

(C+
v,t ⊗ Γv,t)A

+
v,tv

+
⊥,t

〉

. (36)

We now need to verify the conditions in Appendix A-1.

(1) We have ∥gt( ⟨x⟩ , ξt) − gt( ⟨y⟩ , ξt)∥= ∥E(Av,t(⟨x⟩ −
⟨y⟩)|Fv

t )∥≤ K1 · ∥⟨x⟩ − ⟨y⟩ ∥2 for some K1 > 0
since A′

v,t is uniformly bounded by Assumption 1. Thus,

gt(
〈

v+t
〉

, ξt) is Lipschitz continuous in
〈

v+t
〉

.

(2) The step size sequence {αv,t}t≥0 satisfies
∑

t αv,t = ∞
and

∑

t α
2
v,t <∞, for t ≥ 0.

(3) The martingale difference sequence δMt satisfies

E(∥δMt∥2|Fv
t ) ≤ K2 · (1 + ∥

〈

v+t
〉

∥2), since A′
v,t is

uniformly bounded by Assumption 1.

(4) By Lemma 24 and Assumption 1, the bias term βt is

uniformly bounded and βt → 0 with probability one.

(5) We let W (⟨v⟩) denote a set of all occupation measures

of the Markov chain {ξt}t≥0 for a fixed ⟨v⟩. The Markov

chain {ξt}t≥0 is uniformly bounded since rt, st, at, and

C+
v,t are uniformly bounded.

By Theorem 15, the asymptotic behavior is described by

the differential inclusion ⟨v̇+⟩ ∈ ΦTDs
π(γPπ − I)Φ ⟨v+⟩ +

1
N+

∑

i∈N+ ΦTDs
πR

i
π +∆v , where

∥∆v∥≤ lim
t,m

sup
ξt∈W

∥

∥

∥

∥

1

m

t+m−1
∑

k=t

[(1TC+
v,kr

+
k+1 ⊗ ϕk)

+ (1TC+
v,k ⊗

ϕkϕ
T
k

∥ϕk∥2
)α−1

v,kv
+
⊥,k]−

1

N+

∑

i∈N+

ΦTDs
πR

i
π

∥

∥

∥

∥

.

Since the terms b+v,t and α−1
v,tv

+
⊥,t, and consequently ∆v , are

uniformly bounded by Assumption 1 and 3 and Lemma 24,

we can apply Theorem 12 to establish boundedness of the

critic updates. Finally, we apply Theorem 16 to establish that

the team-average critic value ⟨v+⟩ converges with probabil-

ity one to a bounded neighborhood around the cooperative-

team-average true minimizer v+π that satisfies ΦTDs
π(γPπ −

I)Φv+π + 1
N+

∑

i∈N+ ΦTDs
πR

i
π = 0.

Proof. (Lemma 9) The proof is nearly identical to the proof of

Lemma 8. We let Fλ
t = σ(λ0, ξτ , τ ≤ t) denote a filtration,

where ξτ = (rτ , sτ , aτ , C
+
λ,τ−1) is a collection of random

variables. We write the updates in the form

〈

λ+t+1

〉

=
〈

(I ⊗ Γ̂λ,t)λ
+
t

+ (C+
λ,t ⊗ Γλ,t)(λ

+
t + αλ,t(A

+
λ,tλ

+
t + b+λ,t))

〉

=
〈

λ+t
〉

+ αλ,t[gt(
〈

λ+t
〉

, ξt) + δMt + βt],

where the functions gt(·, ·), δMt, and βt are given as

gt(
〈

λ+t
〉

, ξt) =E(A′
λ,t

〈

λ+t
〉

|Fλ
t ) +

〈

(C+
λ,t ⊗ Γλ,t)b

+
λ,t

〉

+
〈

(C+
λ,t ⊗ Γλ,t)α

−1
λ,tλ⊥,t

〉

(37)

δMt =A
′
λ,t

〈

λ+t
〉

− E(A′
λ,t

〈

λ+t
〉

|Fλ
t ) (38)

βt =
〈

(C+
λ,t ⊗ Γλ,t)A

+
v,tλ

+
⊥,t

〉

. (39)

The conditions can be verified as in the proof of Lemma 8,

which leads to the convergence of
〈

λ+t
〉

to a limit set
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of the differential inclusion
〈

λ̇+
〉

∈ −FTDs,a
π F ⟨λ+⟩ +

1
N+

∑

i∈N+ FTDs,a
π Ri +∆λ, where

∥∆λ∥= lim
t,m→∞

sup
ξt∈W

∥

∥

∥

∥

1

m

t+m−1
∑

k=t

1

N+

(

(1TC+
λ,kr

+
k+1 ⊗ fk)

+ (1TC+
λ,k ⊗

fkf
T
k

∥fk∥2
)α−1

λ,tλ
+
⊥,k

)

− 1

N+

∑

i∈N+

FTDs,a
π Ri

∥

∥

∥

∥

.

Hence, the team-average value of the team-average reward

function parameter, ⟨λ+⟩, converges with probability one to a

bounded neighborhood around the desired minimizer λ+π that

satisfies FTDs,a
π ( 1

N+

∑

i∈N+ Ri − Fλ+π ) = 0.

Proof. (Theorem 10) We define a filtration Fθ
t = σ(θiτ , τ ≤

t). The actor updates of agent i, i ∈ N+, are given as

θit+1 = ΨΘi(θit + αθ,t · δit · ψi
t) (40)

= ΨΘi(θit + αθ,t · [gt(θit) + δMt]), (41)

where δit = fTt λ
i
t + γϕTt+1v

i
t − ϕTt v

i
t, ψi

t =
∇θi log πi(ait|st; θit), and the function gt(·) and martingale

difference δMt are given as

gt(θ
i
t) =Eπt,dπt

,p(δt,πt
· ψi

t|Fθ
t )

+ Eπt,dπt
,p((δ

i
t − δt,πt

) · ψi
t|Fθ

t ) (42)

δMt =δ
i
t · ψi

t − Eπt,dπt
,p(δ

i
t · ψi

t|Fθ
t ). (43)

The signal δt,πt
is the approximated network TD error under

the current network policy π(a|s; θt) evaluated at v+πt
and λ+πt

,

i.e., δt,πt
= fTt λ

+
πt
+γϕt+1v

+
πt
−ϕTt v+πt

. To complete the proof,

we verify the conditions in Appendix A-2.

(1) The function δit is bounded by Assumption 1 and Lemma 8

and 9. The function ψi
t is bounded by Assumption 5.

Therefore, we obtain supt E(∥δit · ψi
t∥|Fθ

t ) <∞.

(2) The step size sequence αθ,t satisfies
∑

t α
2
θ,t < ∞ and

limt→∞
αθ,t+1

αθ,t
= 1.

(3) The bias term satisfies βt = 0 with probability one.

(4) The admissible set Θ is a hyperrectangle by Assumption 5.

(5) The function git(θ
i) is continuous in θi

uniformly in t; thus, a set-valued function

G(θi) = { limn,m→∞
1
m

∑n+m−1
t=n git(θ

i)} is upper

semicontinuous.

Applying Theorem 19, the asymptotic behavior of the actor

updates is given by the differential inclusion θ̇i∈ΨΘi [Gi(θi)].
We let J̃+(θ+, π−) = Eπ,dπ,p[r̄(s, a;λ

+
π ) + γV (st+1; v

+
π ) −

V (st; v
+
π )] denote the approximated team-average objec-

tive function. Since v+π and λ+π are continuously differen-

tiable in θi and Assumption 2 ensures differentiability of

∇θi log πi(ait|st; θi), J̃+(θ+, π−) is continuously differen-

tiable in θi with the associated local AC policy gradient

∇θi J̃+(θ+, π−) =Eπ,dπ,p[(r̄(s, a;λ
+
π ) + γV (s′; v+π )

− V (s; v+π )) · ∇θi log πi(ai|s; θi)].

We note that G(θi) = ∇θi J̃+(θ+, π−) + εit, where εit
is a set-valued error due to the discrepancy Eπ,dπ,p((δ

i
t −

δt,πt
) · ψi

t|Fθ
t ). Using Assumption 8, the rate of change of

J̃+(θ+, π−) is given in terms of the cooperative agents

˙̃J+(θ+, π−) =
∑

i∈N+

∇θi J̃+(θ+, π−)T

× (∇θi J̃+(θ+, π−) + εit + zit).

Here, zit is the reflection term that projects the actor

parameters back into the admissible set Θi, i.e., zit =
−∇θi J̃(θ+, π−)−εit whenever a constraint is active and zit =
0 otherwise (elementwise). Suppose that

∑

i∈N+∥zit + εit∥2≤
∑

i∈N+∥∇θi J̃(θ+, π−)∥2 on a compact subset. By Cauchy-

Schwartz inequality,
˙̃J+(θ) ≥ 0 and the policies converge to

a neighborhood of a stationary point of the cooperative team-

average objective function provided that εi are small.
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