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Online Actuator Selection and Controller Design for Linear Quadratic Regulation
with Unknown System Model

Lintao Ye, Ming Chi, Zhi-Wei Liu, and Vijay Gupta

Abstract—We study the simultaneous actuator selection and
controller design problem for linear quadratic regulation with
Gaussian noise over a finite horizon of length T and unknown
system model. We consider episodic and non-episodic settings of
the problem and propose online algorithms that specify both the
sets of actuators to be utilized under a cardinality constraint
and the controls corresponding to the sets of selected actuators.
In the episodic setting, the interaction with the system breaks
into N episodes, each of which restarts from a given initial
condition and has length T . In the non-episodic setting, the
interaction goes on continuously. Our online algorithms leverage
a multiarmed bandit algorithm to select the sets of actuators and
a certainty equivalence approach to design the corresponding
controls. We show that our online algorithms yield

√
N -regret

for the episodic setting and T 2/3-regret for the non-episodic
setting. We extend our algorithm design and analysis to show
scalability with respect to both the total number of candidate
actuators and the cardinality constraint. We numerically validate
our theoretical results.

I. INTRODUCTION

In large-scale control system design, the number of actuators
(or sensors) that can be installed is often limited by budget or
complexity constraints. The problem of selecting a subset of
all the candidate actuators (or sensors), in order to optimize
a system objective while satisfying a budget constraint is a
classic problem referred to as actuator (or sensor) selection
[1]–[8]. However, most of the existing works on this problem
assume the knowledge of the system model when designing
the actuator (or sensor) selection algorithms. In this work,
we are interested in the situation when the system model is
unknown [9]. In such a case, the existing algorithms for the
actuator selection problem do not apply.

We study the simultaneous actuator selection and controller
design problem for Linear Quadratic Regulation (LQR) [10].
The goal is to select a sequence of sets of actuators each with
a cardinality constraint, while minimizing the accumulative
quadratic cost over a time horizon. We assume that the system
model is unknown and the problem needs to be solved in an
online manner. We study two settings of the problem: episodic
and non-episodic settings. In the episodic setting, the interac-
tion with the system breaks into subsequences, each of which
starts from a given initial condition and ends at a terminal
time step. In the non-episodic setting, the interaction with
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the system goes on continuously. Both the episodic and non-
episodic settings are widely studied in general reinforcement
learning problems, and capture different scenarios in practice
[11], [12]. We provide online algorithms to solve the problem,
and characterize their regret performance [13]–[15].

Related Work: Actuator (or sensor) selection has been
studied in the literature extensively. Since the problem is NP-
hard [8], much work in the literature provides approximation
algorithms to solve the problem [3], [16], [17]. However,
most of the previous work assumes a known system model.
Exceptions are [18], [19], where the authors studied an online
sensor selection problem for the estimation of a static random
variable. Another related work is [20], where the authors
considered an unknown continuous-time linear time-invariant
system without stochastic noise and studied the problem of
selecting a subset of actuators under a cardinality constraint
such that a controllability metric of the system is optimized.

The LQR problem with unknown system matrices, also
known as the optimal adaptive control problem, has been
widely studied [21]–[25]. One standard approach (so-called
certainty equivalence) first estimates the system matrices from
system trajectories and then uses the estimate of the system
matrices to design the control as if the true system matrices
are available. Thus, it is crucial to ensure the consistency
of the estimate in order to achieve the optimal performance.
Based on the consistent estimates returned by least squares as
shown by [26], [27] designed a certainty equivalent controller
with an additive random perturbation. In [21] and [22], a
reward-biased estimate of the system matrices is utilized.
In [28], randomly perturbed least squares and Thompson
sampling were proposed to obtain the estimates to design the
certainty equivalent controller and a regret of nearly square-
root growth rate was established. However, the aforementioned
works focused on the asymptotic performance of the certainty
equivalent controller (as the number of data samples from the
system trajectories used for estimating the system matrices
goes to infinity). The finite-sample analyses of the certainty
equivalence approach have also been studied for learning LQR
[29]–[33]. It was shown in [30], [32] that the certainty equiv-
alent controller with a certain additive random perturbation
achieves a regret of Õ(

√
T ), where T is the number of time

steps in the LQR problem and Õ(·) hides logarithmic factors
in T . Moreover, [34] analyzed the regret of the certainty
equivalence approach based on a reward-biased estimate.

Contributions: We now summarize our contributions. First,
we formulate the simultaneous actuator selection and con-
troller design problem for LQR with unknown system model.
This problem is challenging since it contains both discrete
and continuous variables (the sets of actuators and the cor-
responding controls, respectively). The online algorithms that
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we propose to solve the problem contain two phases. First,
the system matrices are estimated based on the data samples
from a single system trajectory. Based on the estimated system
matrices, the online algorithms then leverage a multiarmed
bandit algorithm [35] to select the set of actuators, and lever-
age the certainty equivalence approach [30] for the controller
design. We carefully balance the length of the two phases,
when characterizing the regret of the online algorithms.

Second, we consider the actuator selection problem for
finite-horizon LQR. We extend the analysis and results for the
certainty equivalence approach proposed for learning infinite-
horizon LQR (without the actuator selection component) [30],
[31] to the finite-horizon setting. The analysis for the finite-
horizon setting is more challenging, since the optimal con-
troller for finite-horizon LQR is time-varying in general, while
the optimal controller for infinite LQR is time-invariant [36].

Third, we provide a comprehensive study of the problem by
considering both the online episodic and non-episodic settings.
The non-episodic setting is more challenging than the episodic
setting, since the system state cannot be reset to a given initial
condition after each episode. However, we show that given a
non-episodic instance of the problem, one can first construct a
corresponding episodic instance and then apply the proposed
online algorithms. We show that our online algorithm for the
episodic setting yields a regret of Õ(

√
T 2N), where N is the

number of episodes and T is the number of time steps in each
episode. For the non-episodic setting, the online algorithm
yields a regret of Õ(T 2/3), where T is the horizon length.

Finally, we extend our analysis to efficiently handle in-
stances of the problem when both the total number of can-
didate actuators and the cardinality constraint scale large.
Since the (offline) actuator selection problem for LQR with
known system model is NP-hard [8], we leverage a weaker
notion of regret, i.e., c-regret, introduced for online algorithms
for combinatorial optimization problems [19], [37], [38], and
characterize the performance of the online algorithm that we
propose for the large-scale problem instances. We show that
the c-regret of our online algorithm scales as Õ(TN2/3) (resp.,
Õ(T 3/4)) in the episodic (resp., non-episodic) setting, where
c ∈ (0, 1) is parameterized by the problem parameters.

An extended version of the paper that contains all the
omitted proofs can be found on arXiv as [39].

Notation and terminology: The sets of integers and real
numbers are denoted as Z and R, respectively. For a real
number a, let ⌈a⌉ be the smallest integer that is greater than
or equal to a. For a matrix P ∈ Rn×n, let P⊤, Tr(P ), and
{σi(P ) : i ∈ {1, . . . , n}} be its transpose, trace, and set of
singular values, respectively. Without loss of generality, the
singular values of P are ordered as σ1(P ) ≥ · · · ≥ σn(P ).
Let ∥·∥ denote the ℓ2 norm, i.e., ∥P∥ = σ1(P ) for a matrix
P ∈ Rn×n, and ∥x∥ =

√
x⊤x for a vector x ∈ Rn. Let

∥P∥F =
√

Tr(PP⊤) be the Frobenius norm of P ∈ Rn×m.
A positive semidefinite matrix P is denoted by P ⪰ 0, and
P ⪰ Q if and only if P − Q ⪰ 0. Let Sn+ (resp., Sn++)
denote the set of n × n positive semidefinite (resp., positive
definite) matrices. Let I be an identity matrix whose dimension
can be inferred from the context. For any integer n ≥ 1,
[n] ≜ {1, . . . , n}. The cardinality of a finite set A is denoted

by |A|. Let 1{·} denote an indicator function.

II. PROBLEM FORMULATION AND PRELIMINARIES

A. Problem Formulation

Consider a discrete-time linear time-invariant system

xt+1 = Axt +But + wt, (1)

where A ∈ Rn×n is the system dynamics matrix, xt ∈ Rn is
the state vector, B ∈ Rn×m is the input matrix, ut ∈ Rm is the
control, and {wt}t≥0 are i.i.d. noise terms with zero mean and
covariance W for all t ∈ Z≥0. Let G be the set that contains all
the candidate actuators. Denote B =

[
B1 · · · B|G|

]
, where

Bi ∈ Rn×mi for all i ∈ G with
∑

i∈G mi = m. For any i ∈ G,
Bi corresponds to a candidate actuator that can be potentially
selected and installed. At each time step t ∈ Z≥0, only a subset
of actuators out of all the candidate actuators is selected to
provide controls to system (1), due to, e.g., budget constraints.
For any t ∈ Z≥0, let St ⊆ G denote the set of actuators
selected for time step t, let BSt

≜
[
Bi1 · · · Bi|St|

]
be

the input matrix associated with the actuators in St, and

let ut,St
≜

[
u⊤
t,i1

· · · u⊤
t,i|St|

]⊤
be the control provided

by the actuators in St, where St = {i1, . . . , i|St|}. Given
a horizon length T ∈ Z≥1 and an actuator selection S ≜
(S0, . . . ,ST−1), we consider the following quadratic cost:

J(S, uS) ≜
( T−1∑

t=0

x⊤
t Qxt + u⊤

t,St
RSt

ut,St

)
+ x⊤

TQfxT , (2)

where uS ≜ (u0,S0
, . . . , uT−1,ST−1

), Q,Qf ∈ Sn+, R ∈ Sm++

are the cost matrices, and RSt ∈ SmSt
++ (with mSt =∑

i∈St
mi) is a submatrix of R corresponding to the set St.1

Given system (1) and T ∈ Z≥1, our goal is to solve the
following actuator selection problem for LQR:

min
S,uS

E
[
J(S, uS)

]
,

s.t. St ⊆ G, |St| = H, ∀t ∈ {0, . . . , T − 1},
(3)

where H ∈ Z≥1 is a cardinality constraint on the sets of
selected actuators, and the expectation is taken with respec-
tive to w0, . . . , wT−1. Conditioning on an actuator selection
S = (S0, . . . ,ST−1), it is well-known that the corresponding
optimal control, i.e., ũS ∈ argminuS E[J(S, uS)], is given by
a linear state-feedback controller [36, Chapter 3]

ũt,St
= Kt,Sxt, ∀t ∈ {0, 1, . . . , T − 1}, (4)

where the control gain matrix Kt,S ∈ RmSt×n, with mSt =∑
i∈St

mi, is given by

Kt,S = −(B⊤
S Pt+1,SBS +RS)

−1B⊤
St
Pt+1,SA, (5)

where Pt,S ∈ Sn+ is given recursively by the following Discrete
Algebraic Riccati Equation (DARE):

Pt,S = A⊤Pt+1,SA−A⊤Pt+1,SBSt

× (B⊤
St
Pt+1,SBSt +RSt)

−1B⊤
St
Pt+1,SA+Q (6)

1In other words, the matrix RSt is obtained by deleting the rows and
columns of R indexed by the elements in the set G \ St.
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initialized with PT,S = Qf . Moreover, conditioning on an
actuator selection S, we know that [36, Chapter 3]

J(S) ≜ min
uS

E
[
J(S, uS)

]
= E

[
J(S, ũS)

]
= E[x⊤

0 P0,Sx0] +

T−1∑
t=0

Tr(Pt+1,SW ). (7)

Thus, supposing the system matrices are known, we see that
solving Problem (3) is equivalent to solving

min
S

J(S)

s.t. St ⊆ G, |St| = H, ∀t ∈ {0, . . . , T − 1}.
(8)

When the system matrices A and B are unknown, Eqs. (4)-(6)
cannot be directly used to design the control uS conditioning
on an actuator selection S = (S1, . . . ,ST−1). We now define
and solve both the episodic and non-episodic settings of
Problem (3). In the sequel, we use superscript k to index an
episode and subscript t to index a time step.

B. Online Algorithm for Episodic Setting

In the episodic setting, system (1) starts from an initial
condition at the beginning of each episode, and we aim to
obtain a solution to Problem (3) by interacting with system (1)
for a set of episodes. Specifically, let N ∈ Z≥1 be the total
number of episodes and let be the time horizon length of any
episode k ∈ [N ]. Considering any k ∈ [N ], the dynamics of
system (1) in episode k is given by

xk
t+1 = Axk

t +BSk
t
uk
t,Sk

t
+ wk

t , (9)

where xk
t , uk

t,Sk and wk
t are the state, control and noise at time

step t in episode k, respectively, and Sk = (Sk0 , . . . ,SkT−1)
with Sk

t to be the set of actuators selected for time step t, for
all t ∈ {0, . . . , T −1}. We assume that {wk

t }T−1
t=0 are i.i.d with

E[wk
t ] = 0 and E[wk

t w
k⊤
t ] = W for all t ∈ {0, 1, . . . , T − 1}

and for all k ∈ [N ]. We also assume for simplicity that xk
0 = 0

for all k ∈ [N ]. In this work, we focus on the scenario with
Sk0 = · · · = SkT−1 for all k ∈ [K], i.e., the set of selected
actuators in each episode is fixed during that episode. Slightly
abusing the notation, we simply denote the set of selected
actuators for episode k as Sk ⊆ G.

Now, similarly to Eq. (2), for any k ∈ [N ] we define the
following quadratic cost of episode k when the set of actuators
Sk ⊆ G is selected to provide ut,Sk for all t ∈ {0, . . . , T −1}:

Jk(Sk, uk
Sk) =

( T−1∑
t=0

xk⊤
t Qkxk

t + uk⊤
t,SkR

k
Sku

k
t,Sk

)
+ xk⊤

T Qk
fx

k
T , (10)

where uk
Sk = (uk

0,Sk , . . . , u
k
T−1,Sk), Qk, Qk

f ∈ Sn+, R ∈ Sm++

are the cost matrices, and Rk
Sk ∈ SmSk

++ (with mSk =∑
i∈Sk mi) is a submatrix of Rk corresponding to the set Sk.

Note that we allow different cost matrices across the episodes.
We assume that Qk, Qk

f and Rk are known for all k ∈ [N ].
At the beginning of each episode k ∈ [N ], an online algo-

rithm for Problem (3) selects a set Sk ⊆ G (with |Sk| = H) of
actuators and designs the control uSk = (u0,Sk , . . . , uT−1,Sk)

provided by the actuators in Sk. Note that when making the
decisions at the beginning of any k ∈ [N ], the following
information is available to the online algorithm: (a) the system
state trajectories x1, . . . , xk−1, where xk′

≜ (xk′

0 , . . . , xk′

T−1)
for all k′ ∈ [k − 1]; and (b) previous decisions made by
the algorithm, i.e., S1, . . . ,Sk−1 and uS1 , . . . , uSk−1 . Since
Qk, Qk

f , R
k are assumed to be known, the costs Jk′(Sk′

, uk′

Sk′ )
∀k′ ∈ [k − 1] are also given at the beginning of any
episode k ∈ [N ]. Thus, the information setting discussed
above corresponds to the bandit information setting in online
optimization literature (see., e.g., [15]). To characterize the
performance of such an online algorithm, denoted as Ae, for
Problem (3) in the episodic setting, we aim to minimize the
following regret of Ae:

RAe
≜ EAe

[ N∑
k=1

Jk(Sk, uk
Sk)

]
−

N∑
k=1

Jk(Sk⋆ ), (11)

where EAe
[·] denotes the expectation with respect to the

randomness of the algorithm, Jk(Sk⋆ ) is defined as (7) and Sk⋆
is an optimal solution to (8) (with cost matrices Qk, Rk, Qk

f

and an extra constraint S0 = · · · = ST−1), for all k ∈ [N ].

Remark 1. Note that RAe compares the cost incurred by
the online algorithm to the benchmark given by the minimum
achievable cost of Problem (3) in the episodic setting. Since
Sk⋆ can potentially be different across the episodes in the
benchmark in Eq. (11), RAe

is a dynamic regret [14], [35],
[40]. In fact, one can consider any sets S1⋆ , . . . ,SN⋆ ⊆ G with
|Sk⋆ | = H for all k ∈ [N ] as the benchmark in Eq. (11). For
any S⋆ = (S1⋆ , . . . ,SN⋆ ), define

h((S1⋆ , . . . ,SN⋆ )) = 1+|{1 ≤ ℓ < N−1 : Sℓ⋆ ̸= Sℓ+1
⋆ }|. (12)

Our regret bound for RAe
holds for a general benchmark S⋆ =

(S1⋆ , . . . ,SN⋆ ), where Sk⋆ is any Sk⋆ ⊆ G with |Sk⋆ | = H . If we
consider benchmark S⋆ with h(S⋆) = 1, i.e., S1⋆ = · · · = SN⋆ ,
Eq. (11) reduces to a static regret [13], [35].

C. Online Algorithm for Non-Episodic Setting

In the non-episodic (i.e., continuous) setting, we interact
with system (1) over a horizon of length T ∈ Z≥1, where the
system is not reset to the initial condition x0 = 0 during the
interaction. At the beginning of each time step t ∈ {0, . . . , T−
1}, the algorithm selects a set St ⊆ G (with |St| = H)
of actuators and designs the corresponding control ut,St

,
using the following information available: (a) x0, . . . , xt−1;
and (b) S0, . . . ,St−1 and u0,S0 , . . . , ut−1,St−1 . Similar to our
arguments above, the information setting corresponds to the
bandit setting in the online optimization literature. Denote
S0:t ≜ (S0, . . . ,St) and uS0:t

≜ (u0,S0
, . . . , ut,St

) for all
t ∈ {0, . . . , T−1}. To characterize the performance of such an
online algorithm, denoted as Ac, we minimize the following
regret of Ac:

RAc ≜ EAc

[ T−1∑
t=0

ct(S0:t, uS0:t)
]
− J(S⋆), (13)

where EAc
[·] denotes the expectation with respect to the

randomness of the algorithm, and the benchmark J(S⋆) is
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defined as (7) with S⋆ = (S⋆0 , . . . ,S⋆T−1) to be an optimal
solution to (8). Note that in Eq. (13) we denote,

ct(S0:t, uS0:t
) = x⊤

t Qxt + u⊤
t,St

RSt
ut,St

, (14)

for all t ∈ {0, . . . , T − 2}, and

ct(S0:t, uS0:t
) = x⊤

t Qxt+u⊤
t,St

RSt
ut,St

+x⊤
t+1Qfxt+1, (15)

for t = T−1. Similarly, one can consider a general benchmark
S⋆ in Eq. (13) as we described in Remark 1.

III. ALGORITHM DESIGN FOR EPISODIC SETTING

We now design an online algorithm for the episodic setting
of Problem (3). In our algorithm design, we leverage an
algorithm for the multiarmed bandit problem (i.e., the Exp3.S
algorithm) [35] to select a set Sk ⊆ G (with Sk = H)
for all k. Given the set Sk of selected actuators, we then
leverage a certainty equivalence approach [30], [31] to design
the corresponding control uSk .

A. Exp3.S Algorithm for Multiarmed Bandit

The MultiArmed Bandit (MAB) problem is specified by
a number of episodes Ns, a finite set Q of possible actions
(i.e., arms), and costs of actions y1, . . . , yNs with yk =
(yk1 , . . . , y

k
|Q|) for all k ∈ [Ns], where Q = {1, . . . , |Q|}

and yki ∈ [ya, yb] (with ya, yb ∈ R) denotes the cost of
choosing action i in episode k, for all k ∈ [Ns] and for
all i ∈ Q. At the beginning of each episode k ∈ [Ns], one
can choose an action from the set Q. Choosing ik ∈ Q
for episode k ∈ [Ns] incurs a cost ykik , which is revealed
at the end of episode k. To minimize the accumulative cost
over the Ns episodes, an online algorithm AM chooses action
ik ∈ Q for each episode k ∈ [Ns], where the decision is
made based on ik′ and yk

′

ik′ for all k′ ∈ {1, . . . , k − 1}. For
any sequence of actions, i.e., jNs ≜ (j1, . . . , jNs

), denote
h(jNs) = 1 + |{1 ≤ k < Ns : jk ̸= jk+1}|. We introduce
the Exp3.S algorithm from [35].

Algorithm 1: Exp3.S
Input: Candidate set Q, total number of episode Ns,

parameters α1 ∈ (0, 1) and α2 > 0.
1 Initialize ϖ1

i = 1, ∀i ∈ [|Q|].
2 for k = 1 to Ns do
3 Set qki = (1− α1)

ϖk
i∑|Q|

j=1 ϖk
j

+ α1

|Q| , ∀i ∈ [|Q|].

4 Draw ik ∈ Q according to the probabilities
qk1 , . . . , q

k
|Q|, receive cost ykik ∈ [ya, yb], and

normalize ykik = (ykik − ya)/(yb − ya).
5 for j = 1, . . . , |Q| do

6 Set ŷkj =

{
ykj /q

k
j ifj = ik,

0 otherwise,

ϖk+1
j = ϖk

j exp
(

α1ŷ
k
j

|Q|

)
+ eα2

|Q|
∑|Q|

i=1 ϖ
k
i .

Lemma 1. [35, Corollary 8.2] Consider any sequence jNs =
(j1, . . . , jNs). In Algorithm 1, let α2 = 1/Ns and

α1 = min
{
1,

√
|Q|(h(jNs) ln(|Q|Ns) + e)

(e− 1)Ns

}
.

Let EM [·] denote the expectation with respective to the ran-
domness in the algorithm. Then, we have

RM (jNs) ≜ EM

[ Ns∑
k=1

ykik

]
−

Ns∑
k=1

ykjk

≤ 2(yb − ya)
√
e− 1

√
|Q|Ns(h(jNs) ln(|Q|Ns) + e). (16)

Remark 2. As argued in [14], [35], the regret bound in (16)
holds under the assumption that for any k ∈ [Ns], ykik does
not depend on the previous actions i1, , . . . , ik−1 chosen by the
Exp3.S algorithm. Other than this assumption, yki can be any
real number in [ya, yb], and no statistical assumption is made
on yki . Also note that the random choices i1, . . . , iNs in line 3
in Algorithm 1 ensure that in each episode k ∈ [Ns], with some
probability, the algorithm explores a new action or commits
to the action that gives the lowest cost so far. Lemma 1 shows
that such choices of i1, . . . , iNs

yield sublinear regret in Ns

against an arbitrary benchmark jNs .

B. Certainty Equivalence Approach

In this subsection, we assume that a set S ⊆ G (with
|S| = H) of actuators is selected and fixed for episode
k ∈ [N ]. We now describe our design of the corresponding
control uk

S = (uk
0,S , . . . , uT−1,S), based on the certainty

equivalence approach [30], [31]. First, conditioning on the set
S of selected actuators for episode k ∈ [N ], Eq. (4) states that
the corresponding optimal control is the linear state-feedback
control given by ũk

t,S = Kk
t,Sx

k
t for all t ∈ {0, . . . , T − 1},

where the control gain matrix Kk
t,S is obtained from Eq. (5)

(using the cost matrices Qk and Rk in episode k ∈ [N ]).
Since the system matrices A and B are unknown, the certainty
equivalence approach leverages estimates of the system matri-
ces, denoted as Â and B̂,2 in order to compute the control gain
matrix [30], [31]. For any t ∈ {0, 1, . . . , T − 1}, the certainty
equivalent controller for the kth episode of Problem (3) is

uk
t,S = K̂k

t,Sx
k
t , (17)

K̂k
t,S = −

(
B̂⊤

S P̂t+1,SB̂S +Rk
S
)−1

B̂⊤
S P̂k+1,SÂ (18)

P̂ k
t,S = Qk + Â⊤P̂ k

t+1,SÂ− Â⊤P̂ k
t+1,SB̂S (19)

×
(
B̂⊤

S P̂ k
t+1,SB̂S +Rk

S
)−1

B̂⊤
S P̂ k

t+1,SÂ,

where P̂ k
t,S ∈ Sn+ and (19) is initialized with P̂ k

T,S = Qk
f .

Next, we characterize the performance of the resulting
certainty equivalent controller, which naturally depends on
the estimation errors ∥Â − A∥ and ∥B̂ − B∥. Similarly to
(7), we denote the expected cost corresponding to S and
uk
t,S = K̂k

t,Sx
k
t for the kth episode as

Ĵk(S) = E[Jk(S, uk
S)], (20)

2The estimates Â and B̂ are obtained by some system identification
method, using data samples from the system trajectory; we will elaborate
more on the system identification part later.
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where Jk(S, uk
S) is defined in Eq. (10). One can show that the

following expression for Ĵk(S) holds [36, Chapter 3]:

Ĵk(S) = E
[
xk⊤
0 P̃ k

0,Sx
k
0

]
+

T−1∑
t=0

Tr(P̃ k
t+1,SW ), (21)

where P̃ k
t,S satisfies the following recursion with P̃ k

T,S = Qk
f

P̃ k
t,S = Qk + K̂k⊤

t,SR
k
SK̂

k
t,S

+ (A+BSK̂k,S)
k⊤P k

t+1,S(A+BSK̂
k
t,S). (22)

We now upper bound Ĵk(S) − Jk(S) in terms of the
estimation error in Â and B̂, where Jk(S) is defined in Eq. (7).
Note that both the optimal controller Kk

t,S given by Eq. (4)
and the certainty equivalent controller K̂k

t,S given by Eq. (18)
are time-varying for the finite-horizon setting. In contrast,
both the optimal controller [36] and the certainty equivalent
controller proposed in [30], [31] are time-invariant for the
infinite-horizon setting, which are obtained from steady-state
solutions to DAREs. Hence, our analysis for the certainty
equivalence approach for learning finite-horizon LQR will be
more challenging than that in [30], [31] for learning infinite-
horizon LQR. To proceed, supposing the estimation error
satisfies that ∥A−Â∥ ≤ ε and ∥B−B̂∥ ≤ ε with ε ∈ R>0, we
provide upper bounds on ∥Kk

t,S − K̂k
t,S∥ and ∥P k

t,S − P̂ k
t,S∥,

where P k
t,S (resp., P̂ k

t,S ) is given by Eq. (6) (resp., Eq. (19)).
We need the following mild assumption.

Assumption 1. We assume that σn(Q
k) ≥ 1 and σm(Rk) ≥ 1

for all k ∈ [N ].

In order to simplify the notations in the sequel, we denote

ΓS = max
k∈[N ],t∈[T ]

Γk
t,S , (23)

Γ̃S = 1 + ΓS , (24)

where Γk
t,S = max

{
∥A∥, ∥B∥, ∥P k

t,S∥, ∥Kk
t−1,S∥

}
. More-

over, we denote

σQ = max
{
max
k∈[N ]

σ1(Q
k), max

k∈[N ]
σ1(Q

k
f )
}
,

σR = max
k∈[N ]

σ1(R
k).

(25)

We have the following result; the proof can be found in [39].

Lemma 2. Consider any S ⊆ G, any k ∈ [N ] and any t ∈ [T ].
Let ε ∈ R≥0 and D ∈ R≥0 with ε ≤ 1 and D ≥ 1. Suppose
that ∥A− Â∥ ≤ ε, ∥BS − B̂S∥ ≤ ε, and ∥P k

t,S − P̂ k
t,S∥ ≤ Dε,

and that Assumption 1 holds. Then,

∥Kk
t−1,S − K̂k

t−1,S∥ ≤ 3Γ̃3
SDε, (26)

∥P k
t−1,S − P̂ k

t−1,S∥ ≤ 44Γ̃9
SσRDε. (27)

We make the following assumption on the controllability of
the pair (A,B) similar to [30], [41], [42].

Assumption 2. For any S ⊆ G with |S| = H , we
assume that the pair (A,BS) in system (1) satisfies that
σ1(Cℓ,S) ≥ ν, where ℓ ∈ [n − 1], ν ∈ R>0 and Cℓ,S ≜[
BS ABS · · · Aℓ−1BS

]
.

If Assumption 2 is satisfied, we say that (A,BS) is (ℓ, ν)-
controllable [30]. Note that if (A,BS) is controllable, (A,BS)
can be (ℓ, ν)-controllable for some ℓ ∈ [n − 1] that is much
smaller than n. One can also check that a sufficient condition
for Assumption 2 to hold is that for any actuator s ∈ G, the
pair (A,Bs) is (ℓ, ν)-controllable. Denoting

Ĉℓ,S =
[
B̂S ÂB̂S · · · Âℓ−1B̂S

]
∀S ⊆ G,

we have the following lower bound on σn(Ĉℓ,S).

Lemma 3. [30, Lemma 6] Consider any S ⊆ G. Suppose
that ∥A − Â∥ ≤ ε and ∥BS − B̂S∥ ≤ ε, where ε ∈ R≥0.
Under Assumption 2, σn(Ĉℓ,S) ≥ ν − εℓ

3
2 βℓ−1(∥BS∥ + 1),

where β ≜ max{1, ε+ ∥A∥}.

Lemma 3 states that if ε is small enough, then σn(Ĉℓ,S) > 0,
i.e., rank(Ĉℓ,S) = n and the pair (Â, B̂S) is controllable. We
have the following result proved in Appendix A.

Lemma 4. Consider any S ⊆ G with |S| = H and any
k ∈ [N ]. If Assumptions 1-2 hold, ∥A − Â∥ ≤ ε and ∥BS −
B̂S∥ ≤ ε, where ε ∈ R≥0, then, for any t ∈ {T − γℓ : γ ∈
Z≥0, γℓ ≤ T}, and with β = max{1, ε+ ∥A∥}, it holds that

∥P k
t,S − P̂ k

t,S∥ ≤ µk
t,Sε, (28)

under the assumption that µk
t,Sε ≤ 1 with

µk
t,S ≜ 32ℓ

5
2 β2(ℓ−1)(1 + ν−1)(1 + ∥BS∥)2

× ∥P k
t,S∥max{σQ, σR}. (29)

Let us further denote

µS = 32ℓ
5
2 β̃2(ℓ−1)(1 + ν−1)Γ̃3

S max{σQ, σR}, (30)

where β̃ = 1+ ∥A∥. Now, combining Lemmas 2 and 4 yields
the following result, which upper bounds ∥Kk

t,S − K̂k
t,S∥ and

∥P k
t,S − P̂ k

t,S∥ for all t; the proof can be found in [39].

Proposition 1. Consider any S ⊆ G with |S| = H . Suppose
that Assumptions 1-2 hold, and that ∥A − Â∥ ≤ ε, ∥BS −
B̂S∥ ≤ ε, where ε ∈ R≥0 and µSε ≤ 1. Then, for any t ∈
{0, 1, . . . , T}, it holds that

∥P k
t,S − P̂ k

t,S∥ ≤ (44Γ̃9
SσR)

ℓ−1µSε, (31)

Moreover, for any t ∈ {0, 1, . . . , T − 1}, it holds that

∥Kk
t,S − K̂k

t,S∥ ≤ 3Γ̃3
S(44Γ̃

9
SσR)

ℓ−1µSε. (32)

We are now in place to upper bound Ĵk(S) − Jk(S). We
begin with the following result; the proof can be found in [39].

Lemma 5. Consider any S ⊆ G and any k ∈ [N ]. Let xk
t be

the state corresponding to the certainty equivalence control
uk
t,S = K̂k

t,Sx
k
t , i.e., xk

t+1 = (A+BSK̂
k
t,S)x

k
t +wk

t , where wk
t

is the zero-mean white Gaussian noise process with covariance
W for all k. Let ∆Kk

t,S ≜ K̂k
t,S −Kk

t,S . Then,

Ĵk(S)− Jk(S) =
T−1∑
t=0

E
[
xk⊤
t ∆K̂k⊤

t,S (R
k
S +B⊤

S Pt,SBS)

×∆K̂k
t,Sx

k
t

]
. (33)
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To proceed, consider any S ⊆ G and any k ∈ [N ]. For any
t1, t2 ∈ {0, 1, . . . , T} with t2 ≥ t1, we use Ψk

t2,t1(S) to denote
the state transition matrix corresponding to A+BSK

k
t,S , i.e.,

Ψk
t2,t1(S) = (A+BSK

k
t2−1,S)(A+BSK

k
t2−2,S) · · ·

× (A+BSK
k
t1,S), (34)

and Ψk
t2,t1(S) ≜ I if t1 = t2, where Kk

t,S is given by Eq. (5).
Similarly, we denote

Ψ̂k
t2,t1(S) = (A+BSK̂

k
t2−1,S)×· · ·× (A+BSK̂

k
t1,S), (35)

and Ψ̂k
t2,t1(S) ≜ I if t1 = t2, where K̂k

t,S is given by Eq. (18).
One can now prove the following result, which shows that
the state transition matrix Ψk

t2,t1(S) is exponentially stable; a
proof of the result can be found in [43], [44].

Lemma 6. Consider any S ⊆ G with |S| = H and any k ∈
[N ]. Supposing Assumptions 1-2 hold. Then, there exist finite
constants ζS ∈ R≥1 and 0 < ηS < 1 such that ∥Ψk

t2,t1(S)∥ ≤
ζSη

t2−t1
S for all t1, t2 ∈ {0, 1, . . . , T} with t2 ≥ t1.

The following result characterizes the stability of Ψ̂k
t2,t1(S);

the proof follows from Lemma 6 and can be found in [39].

Lemma 7. Consider any S ⊆ G with |S| = H and any t ∈
[T ]. Suppose Assumptions 1-2 hold, and ∥Kk

t,S−K̂k
t,S∥ ≤ ε for

all t ∈ {0, 1, . . . , T−1}, where ε ∈ R>0. Then, for all t1, t2 ∈
{0, 1, . . . , T} with t2 ≥ t1, ∥Ψ̂k

t2,t1(S)∥ ≤ ζS(
1+ηS

2 )t2−t1 ,
under the assumption that ε ≤ 1−ηS

2∥BS∥ζS , where ζS ≥ 1 and
0 < ηS < 1 are given by Lemma 6.

Combining Lemmas 5 and 7, and Proposition 1 yields the
following result; the proof is included can be found in [39].

Proposition 2. Consider any S ⊆ G with |S| = H and any
k ∈ [N ]. Suppose Assumptions 1-2 hold, and ∥A − Â∥ ≤ ε
and ∥B − B̂∥ ≤ ε, where ε ∈ R>0. Then, it holds that

Ĵk(S)− Jk(S) ≤
4min{n,mS}Tζ2S

1− η2S
σ1(W )

(
σR + Γ3

S
)

×
(
3Γ̃3

S(20Γ̃
9
SσR)

ℓ−1µS
)2
ε2, (36)

under the assumption that ε ≤ 1−ηS
ζSµS

, where ζS ≥ 1 and
0 < ηS < 1 are given by Lemma 6, Jk(S) and Ĵk(S) are
defined in (7) and (20), respectively, and mS =

∑
i∈S mi.

Hence, supposing the estimation error of Â, B̂ can be made
small enough, Proposition 2 bounds the gap between the
(expected) costs incurred by the certainty equivalent controller
and the optimal controller that knows the system model A,B.

C. Overall Algorithm Design

We introduce the overall algorithm (Algorithm 2) for the
episodic setting of Problem (3), under the assumptions below.

Assumption 3. We assume that (a) for any k ∈ [N ], {wk
t }T−1

t=0

are i.i.d Gaussian with E[wk
t ] = 0 and E[wk

t w
k⊤
t ] = σ2I ,

i.e., wk
t

i.i.d.∼ N (0, σ2I), where σ ∈ R≥0 is known; (b) for any
distinct t1, t2 ∈ {0, 1 . . . , T−1} and any distinct k1, k2 ∈ [N ],
the noise terms wk1

t1 and wk2
t2 are independent.

Assumption 4. There exist G1, . . . ,Gp with Gi ⊆ G and |Gi| =
H for all i ∈ [p] such that G = ∪i∈[p]Gi and there is a known
stabilizing KGi ∈ RmGi

×n with ∥(A + BGiKGi)
t∥ ≤ ζ0η

t
0

and ∥KGi
∥ ≤ ζ0, ∀t ∈ R≥0 and ∀i ∈ [p], where p = ⌈m/H⌉,

mGi
=

∑
j∈Gi

mj , ζ0 ∈ R≥1 and η0 ∈ R>0 with 0 < η0 < 1.

Algorithm 2: Episodic Setting
Input: Parameters τ1, λ,N, T, ȳb, and KGj

for all
j ∈ [p] from Assumption 4.

1 Initialize N1 = 1.
2 for j = 1 to p do
3 Set Nj+1 ← Nj + τ1.
/* System identification phase */

4 for j = 1 to p do
5 for k = Nj to Nj+1 − 1 do
6 Select Sk = Gj .
7 Play uk

Gj
with uk

t,Gj

i.i.d.∼ N (KGjx
k
t , 2σ

2η20I),
∀t ∈ {0, . . . , T − 1}.

8 Obtain Θ̂Gj
from (37).

9 Obtain Â by extracting the first n columns from Θ̂G1 ;
obtain B̂ by extracting the last mGj

columns from
Θ̂Gj

for all j ∈ [p] and merging them into B̂.
/* Control phase */

10 Initialize an Exp3.S subroutine with
Ns = N −Np+1 + 1, Q = {S ⊆ G : |S| = H}, and
α1, α2 according to Lemma 1.3

11 for k = Np+1 to N do
12 Enter the (k −Np+1 + 1)th iteration of the for

loop in lines 2-6 in Exp3.S; select Sk ∈ Q
according to the probabilities qk1 , . . . , q

k
|Q|.

13 for t = 0 to T − 1 do
14 Obtain K̂k

t,Sk using Â, B̂Sk via Eq. (18).
15 Play uk

t,Sk = K̂k
t,Skx

k
t .

16 Receive the cost ykSk = Jk(S, uk
S); follow lines 4-6

in Exp3.S with ya = 0 and yb = ȳb.
Output: Sk, uk

Sk = (uk
0,Sk , . . . , u

k
T−1,Sk),∀k ∈ [N ].

Assumption 3(a) ensures that the noise terms from different
episodes are independent. Similarly to [30], [31], [42], assum-
ing the noise covariance is W = σ2I is only made to ease the
presentation; our analysis in the remaining of this paper can
be extended to wk

t with general covariance matrix W ∈ Sn++,
where the analysis will then depend on σ1(W ) and σn(W ).
Note that more general noise models are considered in, e.g.,
[32], [45], where {wk

t }T−1
t=0 can be non-stationary and non-

Gaussian. We restrict ourselves to the i.i.d. Gaussian noise
model of {wk

t }T−1
t=0 described in Assumption 3, and leave the

extension to the more general noise models to future work.
Similar assumptions to Assumption 4 can also be found in

[30], [31], [41], [42]. Note that under Assumption 2, the pair
(A,BGi) is controllable for all i ∈ [p], which guarantees the
existence of the KGi described in Assumption 4. Moreover,

3Note that h(jNs ) in Lemma 1 is set to be h(S⋆) defined in Eq. (12).
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the stability of A+BGi
KGi

ensures via the Gelfand formula
[46] that the finite constants ζ0 ≥ 1 and 0 < η0 < 1 exist,
which may be computed by the LQR cost of the control
ut = KGi

xt [31]. Also note that Assumption 4 gives us a
set of known stabilizing controllers that we can use in the
system identification phase of Algorithm 2 (see our detailed
descriptions below). In fact, using the techniques from [37],
[45], [47], one can introduce an extra warm-up phase before
the system identification phase in Algorithm 2, which learns
a stabilizing KGi

for all i ∈ [p] from the system trajectory.
In particular, as shown in [37], the extra warm-up phase will
incur an extra additive factor 2Õ(n) in the regret of Algorithm 2
defined in Eq. (11).

Now, we explain the steps in Algorithm 2.
System identification phase: In lines 4-9, Algorithm 2

computes estimates of A and B, denoted as Â and B̂,
respectively. This is achieved by first iteratively selecting the
sets G1, . . . ,Gp of actuators and playing the corresponding
stabilizing controller given by Assumption 4 for τ1 episodes.
Formally, for any j ∈ [p], Algorithm 2 selects Sk = Gj and
plays the control uk

t,Gj

i.i.d.∼ N (KGj
xk
t , 2σ

2η20I) for all time
steps t ∈ {0, . . . , T−1} and all episodes k ∈ {Nj , . . . , Nj+1−
1} with Nj+1 = Nj + τ1, where τ1 ∈ Z≥1 is an input
to Algorithm 2 whose value will be specified later. We
assume that uk

t,Gj
is independent of the noise wk′

t′ for all
t′ ∈ {0, . . . , T − 1} and all k′ ∈ [N ]. For any j ∈ [p],
the estimate Θ̂Gj

∈ Rn×(n+mGj
) (with mGj

=
∑

i∈Gj
mi) is

obtained by solving the following regularized least squares:4

Θ̂Gj
∈ argmin

Y

{
λ∥Y ∥2F +

Nj+1−1∑
k=Nj

T−1∑
t=0

∥xk
t+1 − Y zkt,Gj

∥2
}
,

(37)
where λ ∈ R>0 and

zkt,S ≜
[
xk⊤
t uk⊤

t,S
]⊤

, (38)

for all k ∈ [N ], all t ∈ {0, . . . , T −1} and all S ⊆ G. For any
j ∈ [p], Θ̂Gj

can be viewed as an estimate of ΘGj
≜

[
A BGj

]
[31], [49]. Thus, we can obtain estimates of A and B, i.e., Â
and B̂, respectively, according to line 9 in Algorithm 2.

Control phase: For any episode k ∈ {Np+1, . . . , N} in
lines 11-16 of Algorithm 2, the algorithm calls the Exp3.S
subroutine to select a set Sk of actuators, and invokes the
certainty equivalence approach described in Section III-B to
design uk

t,Sk = K̂k
t,Skx

k
t , ∀t ∈ {0, . . . , T −1}, where K̂k

t,Sk is
computed by Eq. (18) using the estimates Â, B̂ obtained from
the system identification phase. Here, the Exp3.S subroutine
is applied to the MAB instance, where the total number of
episodes is Ns = N−Np+1+1, the set of all possible actions
is Q = {S ⊆ G : |S| = H}, and the cost associated with
each possible action S ∈ Q in episode k is ykS = Jk(S, uk

S)
defined in Eq. (10), where uk

S = (uk
0,S , . . . , u

k
T−1,S) with

uk
t,S = K̂t,Sx

k
t . Thus, each arm in the MAB instance cor-

responds to a set of actuators with cardinality H .
Finally, one can check that the running time of each episode

in Algorithm 2 is O((n + m)3T + |Q|T ), where the factor

4Note that a solution to (37) can be obtained recursively as a new data
sample from the system trajectory becomes available at each time step [48].

(m+ n)3 is due to the computation of Eq. (18). Since |Q| =(|G|
H

)
, Algorithm 2 is efficient for instances of Problem (3) with

either |G| (i.e., the total number of candidate actuators) or H
(i.e., the cardinality constraint on the set of selected actuators)
to be small (or bounded by a constant). Nonetheless, we will
later extend our algorithm design to efficiently handle large-
scale instances of Problem (3) in Section VI.

Remark 3. Note from Eq. (10) that the cost of the ac-
tion chosen by the Exp3.S subroutine for any episode k ∈
{Np+1, . . . , N} of Algorithm 2, i.e., Jk(Sk, uk

Sk), does not
depend on the previous actions SNp+1 , . . . ,Sk−1 chosen by
the Exp3.S subroutine. Thus, we know from Remark 2 that
the result in Lemma 1 can be applied when we analyze the
regret of Algorithm 2 in the next section.

IV. REGRET ANALYSIS FOR EPISODIC SETTING

In this section, we aim to provide high probability upper
bounds on the regret of Algorithm 2 defined in Eq. (11) for the
episodic setting of Problem (3). To this end, we first analyze
the estimation error of the least squares approach given by
(37). For any j ∈ [p], we denote

VGj = λI +

Nj+1−1∑
k=Nj

T−1∑
t=0

zkt,Gj
zk⊤t,Gj

, (39)

where Gj is given by Assumption 4, λ ∈ R>0, Nj , Nj+1 are
given in Algorithm 2, and zkt,Gj

is given in Eq. (38). We then
have the following result; the proof is similar to that of [41,
Lemma 6] and is omitted here for conciseness.

Lemma 8. Consider any Gj from Assumption 4, where j ∈ [p].
Let ∆Gj = ΘGj − Θ̂Gj , where ΘGj =

[
A BGj

]
and Θ̂Gj is

given by (37). Suppose Assumption 3 holds. Then, for any
δ ∈ R with 0 < δ < 1, with probability at least 1− δ, it holds

Tr(∆⊤
Gj
VGj∆Gj ) ≤ 4σ2n log

(ndet(VGj
)

δ det(λI)

)
+ 2λ∥ΘGj∥2F .

For notational simplicity in the sequel, we further denote

ϑ = max{∥A∥, ∥B∥}, ε0 = min
S⊆G,|S|=H

1− ηS
ζSµS

,

ζ = max
{

max
S⊆G,|S|=H

ζS , ζ0
}
, η = max

{
max

S⊆G,|S|=H
ηS , η0

}
,

κ = max
{

max
S⊆G,|S|=H

(
ΓS +

1− ηS
2∥BS∥ζS

)
, η0

}
,

Γ = max
S⊆G,|S|=H

ΓS , Γ̃ = Γ + 1, (40)

where Γ̃S (resp., ΓS ) is defined in Eq. (24) (resp., (23)), ζS and
ηS are provided in Lemma 6, and µS is defined in Eq. (30).5

We then have the following result for the regret of Algorithm 2
defined in Eq. (11), where the results holds for any general
benchmark S⋆ = (S1⋆ , . . . ,SN⋆ ) described in Remark 1.

Theorem 1. Suppose that Assumptions 1-4 hold. Consider any
δ ∈ R>0 with 0 < δ < 1. Denote

τ0 =
160np

(
λϑ2

σ2 + 2(n+m) log
(
8n
δ (p+ TNzb

λ )
))

T − 1
, (41)

5Under Assumption 2, one can check via the definition of ΓS in Eq. (23)
that Γ is independent of T (see, e.g., [43], [44]).
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where

zb =
20ζ20 (1 + η0)

2σ2

(1− η0)2
(
2(ϑ2 + 1)η20m+ n

)
log

8TN

δ
. (42)

In Algorithm 2, let

τ1 =
⌈
max

{√
N,

τ0
ε20

}⌉
, (43)

ȳb = T (2σQ + κ2σR)
4ζ2σ2

(1− η)2
5n log

8TN

δ
. (44)

Then, for any N > τ1p, with probability at least 1− δ,

RAe = Õ(n(m+ n)2p
√
T 2|Q|h(S⋆)N), (45)

where RAe is defined in Eq. (11), h(S⋆) is defined in Eq. (12),
Q = {S ⊆ G : |S| = H}, and Õ(·) hides polynomial factors
in log(|Q|N), log((m+n)TN/δ), σR, σQ, σ, κ, ζ, Γ̃, ℓ, β̃, (1−
η)−1, ν−1, where β̃ = 1+∥A∥, ν ∈ R>0, ℓ ∈ [n−1] are given
in Assumption 2, and σR, σQ are defined in (25).

A. Proof of Theorem 1

Recalling lines 5-7 in Algorithm 2, for any j ∈ [p] and
any k ∈ {Nj , . . . , Nj+1 − 1}, one can show that the state of
system (9) satisfies that

xk
t+1 = (A+BGjKGj )x

k
t +BGj w̃

k
t + wk

t , (46)

for all t ∈ {0, . . . , T − 1}, where xk
0 = 0, KGj is given by

Assumption 4, and w̃k
t

i.i.d.∼ N (0, 2σ2η20I). Also note that wk
t

is independent of wk
t as we assumed before. For notational

simplicity in this proof, denote

K̃ = {k : Nj ≤ k ≤ Nj+1 − 1, j ∈ [p]}, (47)

K = [N ] \ K̃ = {Np+1, . . . , N}. (48)

Thus, the set K̃ (resp., K) contains the indices of episodes for
the system identification (resp., control) phase in Algorithm 2.

Note that (S1, . . . ,SN ) denotes the sequence of the sets
of actuators selected by Algorithm 2. From Eq. (11), one can
decompose the regret as RAe = R1

e +R2
e +R3

e +R4
e with

R1
e = EAe

[∑
k∈K̃

Jk(Sk, uk
Sk)

]
−

∑
k∈K̃

Jk(Sk⋆ ),

R2
e = EAe

[∑
k∈K

Jk(Sk, uk
Sk)

]
−

∑
k∈K

Jk(Sk⋆ , uk
Sk
⋆
),

R3
e =

∑
k∈K

(
Jk(Sk⋆ , uk

Sk
⋆
)− Ĵk(Sk⋆ )

)
,

R4
e =

∑
k∈K

(
Ĵk(Sk⋆ )− Jk(Sk⋆ )

)
,

where Jk(Sk, uk
Sk) is defined in Eq. (10) with uk

Sk given by
Algorithm 2, and Jk(Sk⋆ ) (resp., Ĵk(Sk⋆ )) is given by (7) (resp.,
(21)). Note that R2

e , R3
e and R4

e together correspond to the
regret incurred by the exploitation phase in Algorithm 2, and
R1

e corresponds to the regret incurred by the system identifi-
cation phase in Algorithm 2. In particular, R2

e corresponds to
the Exp3.S subroutine, and R3

e, R
4
e correspond to the certainty

equivalent control subroutine.
In order to prove the (high probability) upper bound on

RAe
, we will provide upper bounds on R1

e , R2
e , R3

e , and R4
e

separately in the sequel. First, considering any 0 < δ < 1, we
define the following probabilistic events:

Ew =
{
∥wk

t−1∥ ≤ σ

√
5n log

8TN

δ
,∀k ∈ [N ],∀t ∈ [T ]

}
,

Ew̃ =
{
∥w̃k

t−1∥ ≤ η0σ

√
10m log

8TN

δ
,∀k ∈ K̃,∀t ∈ [T ]

}
,

EΘ =
{

Tr(∆⊤
Gj
VGj

∆Gj
) ≤ 4σ2n log

(8npdet(VGj
)

δ det(λI)

)
+ 2λ∥ΘGj

∥2F ,∀j ∈ [p]
}
,

Ez =
{Nj+1−1∑

k=Nj

T−1∑
t=0

zkt,Gj
zk⊤t,Gj

⪰ (T − 1)τ1σ
2

80
I, ∀j ∈ [p]

}
.

Letting
E = Ew ∩ Ew̃ ∩ EΘ ∩ Ez, (49)

we have the following result which shows that E holds with
high probability; the proof can be found in [39].

Lemma 9. For any 0 < δ < 1, the event E defined in Eq. (49)
satisfies P(E) ≥ 1− δ/2.

Hence, we will provide upper bounds on R1
e , R2

e , R3
e and

R4
e , under the event E defined in Eq. (49). The following result

characterizes the estimation error of Θ̂Gj
, for all j ∈ [p]; the

proof can be found in [39]. Lemma 10 shows that setting the
system identification phase (i.e., τ1p) to be sufficiently long
(i.e., Eq. (43)) ensures that the estimation error of Â, B̂ is
small enough such that the results proved in Section III-B can
be applied to bound R3

e, R
4
e corresponding to the certainty

equivalence subroutine in Algorithm 2.

Lemma 10. Consider any 0 < δ < 1, and suppose that the
event E holds. For any j ∈ [p], it holds that ∥Θ̂Gj

−ΘGj
∥2 ≤

min{ ε
2
0

p ,
τ0√
N
}, where ΘGj

=
[
A BGj

]
.

We then have the following bounds on R1
e, R

2
e, R

3
e, R

4
e; all

the proofs are included in Appendix B. In particular, to bound
R2

e , we use ȳb to normalize (i.e., upper bound) the cost of
each episode in the control phase of Algorithm 2 so that the
Exp3.S subroutine and Lemma 1 can be applied.

Lemma 11. Under the event E , it holds that

R1
e ≤ max{σQ, σR}

τ1p(2η
2
0 + 3)Tζ20

(1− η0)2

×
(
20ϑ2η20σ

2m+ 10σ2n
)
log

8TN

δ
, (50)

where η0, ζ0 are given by Assumption 4.

Lemma 12. Under the event E , it holds that

R2
e ≤ ȳb2

√
e− 1

√
|Q|N(h(S⋆) log(|Q|N) + e). (51)

Lemma 13. Under the event E , the following holds with
probability at least 1− δ/2:

R3
e ≤ 64

√
TN

σ2(σQ + σRκ
2)ϑζ3

(1− η2)(1− η)

√
5n log

8TN

δ

+ 32(σQ + σRκ
2)

ζ2

1− η2
σ2

√
TN(log

16TN

δ
)3. (52)
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Lemma 14. Under the event E , it holds that

R4
e ≤

4maxS⊆G,|S|=H{n,mS}Tζ2τ0
√
N

(1− η2)
σ(σR + Γ3)

×
(
3Γ̃6(20Γ̃σR)

ℓ−132ℓ
5
2 β̃2(ℓ−1)(1 + ν−1)max{σQ, σR}

)2
.

(53)

Since P(E) ≥ 1 − δ/2 from Lemma 9, we can further
apply a union bound and obtain an upper bound on RAe

that holds with probability at least 1 − δ. Specifically, one
can show using (50)-(53) that R1

e = Õ(n(m + n)2p2T
√
N),

R2
e = Õ(nT

√
|Q|Nh(S⋆)), R3

e = Õ(
√
nTN), and R4

e =
Õ(n(n + m)2T

√
N), combining which implies (45) and

completes the proof of Theorem 1. ■

B. Discussions about the Results in Theorem 1

Length of the system identification phase: Recall that
Eq. (43) specifies the minimum length of the system identifi-
cation phase in Algorithm 2 (i.e., τ1p). To gain more insights
on how τ0, τ1 depend on other problem parameters, letting
the regularization in the least square approach be λ ≥ zb, and
supposing TN ≥ n and TN ≥ p, one can show

τ0
ε20

= O(1)
ζ4η40(ϑ

2 + 1)2

(1− η)4(T − 1)
n(m+ n)ℓ5Γ̃6β̃4ℓ−4

×max{σ2
R, σ

2
Q}(1 + ν−1)2 log

NT

δ
, (54)

where O(1) is a universal constant. Since log(NT/δ) = o(T ),
we see from Eq. (54) that a larger value of T , i.e., the number
of time steps in each episode k ∈ [N ] implies a smaller lower
bound on τ1. Thus, the regret bound in Theorem 1 holds for
N > τ1p, which can be shown to be equivalent to N being
greater than a polynomial in the problem parameters. If N ≥
τ20 /ε

4
0, τ1 = ⌈max{

√
N, τ0/ε

2
0}⌉ reduces to τ1 = ⌈

√
N⌉.

Knowledge of the unknown system: One can
check that the choices of τ1, ȳb require knowledge of
σQ, σR, ζS , ηS , σ

2, ζ0, η0, ϑ, ℓ, ν,ΓS (for all S ⊆ G with
|S| = H), where σQ, σR, σ are given by our assumptions
on the cost matrices and noise covariance, and ζ0, η0 (resp.,
ℓ, ν) are given by Assumption 4 (resp., Assumption 2).
The other parameters may also be computed (or bounded)
given some knowledge of the unknown system. First, as
shown in [44], for any S ⊆ G with |S| = H , ηS and ζS

can be expressed as ηS =
√

1− 1/maxt∈[T ],k∈[N ]∥P k
t,S∥

and ζS =
√
maxt∈[T ],k∈[N ]∥P k

t,S∥. For any t ∈ [T ] and
any k ∈ [N ], Eq. (5) yields ∥Kk

t−1,S∥ ≤ ϑ2∥P k
t,S∥, and

one can further upper bound ∥P k
t,S∥ given any stabilizing

controller KS (corresponding to the set of actuators S) (e.g.,
[36, Chapter 3] and [39]). Thus, by the definition of ΓS in
Eq. (23), to compute (or bound) ηS , ζS ,ΓS , we need to know
(or upper bound) maxt∈[T ],k∈[N ]∥P k

t,S∥ and know the upper
bound ϑ on ∥A∥ and ∥B∥.

Output of Algorithm 2: Since Algorithm 2 uses the
Exp3.S subroutine to select the sets of actuators in the control
phase of Algorithm 2, as we argued in Section III-A, Exp3.S
produces a (random) sequence of subsets of selected actuators
SNp+1

, . . . ,SN that can be different across the episodes, which

ensures exploring new sets of actuators that have not been
chosen before and exploiting the set of actuators that yield
the lowest cost up until the current episode. As we showed in
Section IV-A, such a sequence of subsets of selected actuators
yields a

√
N -regret bound on R2

e .
Factors in the regret bound: First, the regret bound in

Theorem 1 contains the
√
T 2N factor. Although

√
T 2N is

not sublinear in the total number of time steps in the episodic
setting of Problem (3) (i.e., TN ), it matches with the optimal
regret bound (in terms of the scaling of T,N ) that can be
achieved by any model-based algorithms for general episodic
reinforcement learning problems [50]. If T = o(

√
N) (i.e.,

the number of time steps in each episode is small relative
to the total number of episodes), the factor

√
T 2N will

become sublinear in N . Second, the regret bound contains
an exponential factor in ℓ. As we argued before, ℓ << n
if rank(BS) is large. In particular, ℓ = 1 if rank(BS) = n
(for any S ⊆ G with |S| = H). Third, since RAe defined
in Eq. (11) is a dynamic regret as we argued in Remark 1,
the regret bound in (45) contains the factor

√
h(S⋆), where

h(S⋆) measures the number of switchings in the benchmark
S⋆ = (S1⋆ , . . . ,SN⋆ ). Such a factor of h(S⋆) is typical in the
bounds on the dynamic regret of online algorithms [35], [40],
[51]. If the static regret described in Remark 1 is considered,
then h(S⋆) = 1. Finally, the regret bound contains the factor√
|Q| with |Q| =

(|G|
H

)
, which will not be a bottleneck if

either of |G| or H is small or bounded by a constant. In
fact, a factor of |Q| =

(|G|
H

)
is unavoidable in the regret of

any online algorithm defined in Eq. (11) for Problem (3),
since Problem (3) is an NP-hard combinatorial optimization
problem [8], [19]. In Section VI, we will show how to extend
our algorithm design and regret analysis to handle large-scale
instances of Problem (3).

V. ALGORITHM DESIGN FOR NON-EPISODIC SETTING AND
REGRET ANALYSIS

In this section, we consider the non-episodic setting of
Problem (3) described in Section II-C. For any St ⊆ G and
any t ∈ {0, . . . , T − 1}, we see from Eqs. (14)-(15) that the
cost ct(S0:t, uS0:t

) of time step t ∈ {0, . . . , T −1} depends on
S0, . . . ,St−1 via the state xt. Hence, Remark 2 implies that
the Exp3.S algorithm and Lemma 1 cannot be directly applied
to solve the non-episodic setting of Problem (3) in the same
way as Algorithm 2, which creates the major challenge when
we move from the episodic setting to the non-episodic setting.

Nonetheless, given a non-episodic instance of Problem (3)
described in Section II-C, one may construct an episodic
instance of Problem (3) as follows. First, we group the time
steps 0, . . . , T −1 in the non-episodic instance of Problem (3)
into N ′ = ⌊T/T ′⌋ consecutive episodes with length T ′ ∈ Z≥1,
where the kth episode starts at t = (k − 1)T ′ and ends at
t = kT ′ − 1. In each episode k ∈ [N ′], we fix the set of
selected actuators, i.e., we let S(k−1)T ′ = · · · = SkT ′−1 = Sk,
where Sk ⊆ G with |Sk| = H .6 We then follow the notations
introduced for the episodic setting in the previous sections.

6For simplicity, we assume that T ′N ′ = T ; otherwise, we can modify
the number of time steps in the last episode.
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Specifically, we may write the state, control and disturbance
at any time step t ∈ {0, . . . , T ′ − 1} in any episode k ∈ [N ′]
as xk

t , uk
t,Sk and wk

t , respectively, e.g., x(k−1)T ′+t = xk
t and

xk
0 = xk−1

T ′ with x1
0 = 0. Note that the initial state xk

0 of any
episode k ∈ [N ′] is not reset to 0 in the episodic instance of
Problem (3) constructed above, and that xk

0 = xk−1
T ′ depends

on S1, . . . ,Sk−1. For any episode k ∈ [N ′], the cost matrices
are set to be Qk = Q, Rk = R, Qk

f = 0 if k < N ′ and
Qk

f = Qf if k = N ′. Similarly to Eq. (10), we denote
the cost of episode k as Jk(Sk, uk

Sk), where for notational
simplicity we hide the dependency of Jk(Sk, uk

Sk) on the sets
of actuators S1, . . . ,Sk−1 selected before episode k. One can
now apply Algorithm 2 to the episodic instance constructed
above; the detailed steps are summarized in Algorithm 3.
Similarly, the Exp3.S subroutine in Algorithm 3 is applied
to the MAB instance, where the total number of episodes in
Exp3.S is Ns = N −N ′

p+1+1, the set of all possible actions
is Q = {S ⊆ G : |S| = H}, and the cost associated with each
possible action S ∈ Q in episode k is ykS = 1

T ′ Jk(Sk, uk
S).

Algorithm 3: Non-Episodic Setting
Input: Parameters τ ′1, λ,N

′, T ′, ȳ′b, and KGj for all
j ∈ [p] from Assumption 4.

1 Initialize N ′
1 = 1.

2 for j = 1 to p do
3 Set N ′

j+1 ← N ′
j + τ ′1.

4 Set T ← T ′, N ← N ′, Nj ← N ′
j ∀j ∈ [p+1], ȳb ← ȳ′b;

follow lines 4-16 in Algorithm 2, where the cost ykSk

in line 16 is changed to be ykSk = 1
T ′ Jk(Sk, uk

Sk).
Output: St, ut,St

,∀t ∈ {0, . . . , T − 1}.

The intuition behind the above construction is that if we
fix a set of actuators Sk for T ′ time steps in an episode k ∈
[N ′] (and design the corresponding control uk

Sk based on the
certainty equivalence approach), then one can use Lemma 7
to show that the influence of the initial condition xk

0 on the
cost ct(S0:t, uS0:t) (defined in Eqs. (14)-(15)) at any time step
t ∈ {(k−1)T ′, . . . , kT ′−1} in episode k decays exponentially
as t increases. This in turn implies that ct(S0:t, uS0:t

) tends
to be independent of S1, . . . ,Sk−1 selected before episode
k ∈ [N ′], and we can then adopt the analysis developed in
Section IV for the episodic setting.

We then prove the following result for the regret RAc
of

Algorithm 3 defined in Eq. (13), where we use the notations
introduced in (23)-(25) and (40) (with N = N ′ and T = T ′).
Note that since we let S(k−1)T ′ = · · · = SkT ′−1 = Sk
in any episode k ∈ [N ′], we consider the benchmark
S⋆ = (S⋆0 , . . . ,S⋆T−1) in Eq. (13) with S⋆(k−1)T ′ = · · · =
S⋆kT ′−1 = Sk⋆ for all k ∈ [N ′], where S is any Sk⋆ ⊆ G with
|Sk⋆ | = H . The proof of Theorem 2 follows by quantifying the
dependency of ct(S0:t, uS0:t

) on xk
0 as we described above, and

carefully adapting the techniques from the proof of Theorem 1.
The complete proof of Theorem 2 is included in [39].

Theorem 2. Suppose Assumptions 1-4 hold. Let T ′ =
⌈(
4(e−

1)(h(S⋆) ln(|Q|T ) + e)|Q|
)−1/3

T 1/3
⌉
, and N ′ = ⌈T/T ′⌉,

where Q = {S ⊆ G : |S| = H}, and h(S⋆) is defined in
Eq. (12). Consider any δ ∈ R>0 with 0 < δ < 1. Denote

τ ′0 =
160np

(
λϑ2

σ2 + 2(n+m) log
(
8n
δ (p+

Tz′
b

λ )
))

T ′ − 1
,

where

z′b =
180ζ40 (1 + η0)

2σ2

(1− η0)2
(
2(ϑ2 + 1)η20m+ n

)
log

8T

δ
.

In Algorithm 3, let τ ′1 =
⌈
max

{√
N ′,

τ ′
0

ε20

}⌉
and

ȳ′b = (2σQ + κ2σR)
36ζ4σ2

(1− η)2
(20ϑ2η20m+ 10n) log

8T

δ
.

Then, for any T > τ ′1pT
′ with T ′ > Tm = 2

1−η (
1
3 log T +

log ζ) > 0, the following holds with probability at least 1− δ:

RAc
= Õ(n(m+ n)2p2

√
|Q|h(S⋆)T 2/3). (55)

The complete proof of Theorem 2 can be found in [39].
Here, Õ(·) in Eq. (55) contains similar arguments to those
in Theorem 1, and similar arguments to those in Section IV-B
can be applied to Theorem 2. In particular, the regret bound in
Eq. (13) also contains the factor

√
h(S⋆) associated with the

benchmark S⋆. Recall that based on the above construction
of the episodic instance, we consider the benchmark S⋆ =
(S1⋆ , . . . ,SN

′

⋆ ) in Theorem 2 with h(S⋆) ≤ 1+N ′ = Õ(T 2/3).
In general, for any benchmark S⋆ with h(S⋆) = o(T 2/3), the
regret bound in Eq. (13) will be sublinear in T .

VI. HANDLING LARGE-SCALE PROBLEM INSTANCE

We now extend our algorithm design and regret analysis
to efficiently handle large-scale instances of Problem (3). We
first consider the episodic setting of Problem (3). Leveraging
the ideas from [19], we propose to use H statistically inde-
pendent copies of the Exp3.S subroutine in parallel, denoted
as M1, . . . ,MH , to choose the H actuators in each episode.
Detailed steps are summarized in Algorithm 4, where the
system identification phase is the same as Algorithm 2. We
now explain how the Exp3.S subroutines in Algorithm 4 are
used to select the actuators. Consider any j ∈ [H] and any
k ∈ {Np+1, . . . , N}. Let skj ∈ G be the actuator selected by
the Exp3.S subroutine Mj and let S ′kj = {sk1 , . . . , skj } with
S ′k0 = ∅. Thus, S ′kH is the set of actuators selected by the
H Exp3.S subroutines. The Exp3.S subroutine Mj is applied
to the MAB instance, where the total number of episodes is
Ns = N −Np+1+1, the set of all possible actions is Q = G,
and the cost associated with each possible action s ∈ Q in
episode k is

ykj,s = Jk(S ′kj−1, u
k
S′k
j−1

)− Jk(S ′kj−1 ∪ {s}, uk
S′k
j−1∪{s}), (56)

where Jk(·, ·) is defined in Eq. (10). Note that in Algorithm 4,
the actual cost that Mj receives by selecting skj is given by

ŷkj,skj
≜ −Jk(Sk, uk

Sk)1{s = sk, j = i, bk = 1}, (57)

which can be different from the true cost yk
j,skj

, where bk
is a Bernoulli random variable with parameter ρ, and i and
s are sampled from [H] and G uniformly at random (u.a.r),
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respectively. Moreover, the actual set of actuators selected by
Algorithm 4 in episode k (i.e., Sk) can also be different from
S ′kH selected by the Exp3.S subroutines, depending on bk.

Algorithm 4: Large-Scale Problem Instance
Input: Parameters τ1, λ,N, T, ȳb, ρ, and KGj

for all
j ∈ [p] from Assumption 4.

1 Follow lines 1-9 in Algorithm 2 to obtain Â, B̂.
2 Initialize H independent Exp3.S subroutines

M1, . . . ,MH with Ns = N −Np+1 + 1, Q = G, and
α1, α2 according to Lemma 1.

3 for j = 1 to H do
4 Enter the 1st iteration of the for loop in lines 2-6

in Mj ; select sNp+1

j ∈ Q according to the
probabilities q

Np+1

j,1 , . . . , q
Np+1

j,|Q| computed by

line 3 in Mj ; construct S ′Np+1

H = ∪j∈[H]s
Np+1

j .

5 for k = Np+1 to N do
6 Sample bk

i.i.d.∼ Bernoulli(ρ).
7 Sample i ∈ [H] u.a.r. and s ∈ G u.a.r.
8 If bk = 1, select Sk = S ′ki−1 ∪ {s} for episode k; if

bk = 0, select Sk = S ′kH for episode k.
9 for t = 0 to T − 1 do

10 Obtain K̂k
t,Sk using Â, B̂Sk via Eq. (18).

11 Play uk
t,Sk = K̂k

t,Skx
k
t .

12 for j = 1 to H do
13 Receive the cost ŷk

j,skj
; follow lines 4-6 in Mj

with ya = −ȳb and yb = ȳb; finish the
(k −Np+1 + 1)th iteration of the for loop in
lines 2-6 in Mj .

14 Enter the (k −Np+1 + 2)th iteration of the for
loop in lines 2-6 in Mj ; select sk+1

j according
to the probabilities qk+1

j,1 , . . . , qk+1
j,|Q|; construct

S ′k+1
H = ∪j∈[H]s

k+1
j .

Output: Sk, uk
Sk = (uk

0,Sk , . . . , u
k
T−1,Sk),∀k ∈ [N ].

As we argued in Sections III and IV, Problem (3) (i.e.,
Problem (8)) is NP-hard, and using a single Exp3.S subroutine
in Algorithm 2 leads to the exponential factor |Q| =

(|G|
H

)
in |G| in both the running time and the regret bound of
Algorithm 2. To overcome the computational bottleneck, Algo-
rithm 4 leverages H Exp3.S subroutines each of which selects
a single actuator in each episode as we described above. One
can check that the running time of each episode in Algorithm 4
is O(H((n+m)3T + |G|T )) = O(H(n+m)3T ).

To overcome the |Q| =
(|G|
H

)
factor in the regret analysis,

we will leverage the notion of c-regret introduced for online
algorithms for combinatorial optimization problems (see, e.g.,
[19], [38]). The c-regret is parameterized by c ∈ (0, 1] whose
value will be specified shortly. For any k ∈ [N ], denote

gk(S) ≜ Jk(∅)− Jk(S), (58)

for all S ⊆ G, where Jk(S) is given by Eq. (7). Now, we
augment the elements in the ground set G (of all the candidate

actuators) and define

Ḡ = {(sNp+1 , . . . , sK) : sk ∈ G, k ∈ K} (59)

with K given by Eq. (48). For any k ∈ K, let S̄k = {s̄k ∈ s̄ :
s̄ ∈ S̄} with s̄k denoting the kth element of the tuple s̄ ∈ S̄.
Next, we define ḡ(S̄) =

∑
k∈K gk(S̄k) for all S̄ ⊆ Ḡ. One

can check that Problem (8) (over the episodes in K) can be
equivalently written as

max
S̄⊆G,|S̄|=H

ḡ(S̄). (60)

Since Problem (60) is NP-hard, offline approximation algo-
rithms have been proposed to solve Problem (60) with known
system matrices A and B. For example, the (offline) greedy
algorithm can be applied to Problem (60) and return a solution
S̄g such that ḡ(S̄g) ≥ (1−e−cg )g(S̄⋆),7 where S̄⋆ is an optimal
solution to Problem (60) and cg ∈ (0, 1] is the submodularity
ratio of ḡ(·) defined to be the largest cg ∈ R such that∑
s̄∈B̄\Ā

(
ḡ(Ā ∪ {s̄})− ḡ(Ā)

)
≥ cg

(
ḡ(Ā ∪ B̄)− ḡ(Ā)

)
, (61)

for all Ā, B̄ ⊆ Ḡ (see, e.g., [52], [53], for more details).8 Based
on the above arguments, one can view the actuators selected
by any Mj from episodes k = Np+1 to N as a single action,
denoted as s̄j = (s

Np+1

j , . . . , sKj ), which corresponds to the
element in the jth iteration of the greedy algorithm.

Based on the above arguments, we introduce the following
(1−e−cg )-regret to measure the performance of Algorithm 4:

RAl
= (1− e−cg )

( N∑
k=1

Jk(∅)− Jk(Sk⋆ )
)

− EAl

[( N∑
k=1

Jk(∅)− Jk(Sk, uk
Sk)

)]
, (62)

where E[·] denotes the expectation with respect to the ran-
domness of the algorithm, and Sk⋆ is an optimal solution
to (8) (with cost matrices Qk, Rk, Qk

f and an extra con-
straint S0 = · · · = ST−1). Note that the benchmark∑N

k=1 Jk(Sk⋆ ) in Eq. (11) is equivalent to the normalized
benchmark

∑N
k=1(Jk(∅)−Jk(Sk⋆ )) in Eq. (62), since one can

replace the objective function Jk(S) in (8) with Jk(∅)−Jk(S),
and consider the maximization over all S, which does not
change the optimal solution to (8). In words, the benchmark∑N

k=1(Jk(∅) − Jk(Sk⋆ )) in RAl
is the improvement (i.e.,

decrease) of the cost of Problem (3) when the sets of actuators
S1⋆ , . . . ,SN⋆ are selected, over the cost when no actuator is
selected for any episode k ∈ [N ]. Such a normalization
of the benchmark is necessary when analyzing the c-regret
of online algorithms for combinatorial optimization problems
(see, e.g., [19], for more details). Accordingly, RAl

compares
the optimal improvement in the cost of Problem (3) against the
improvement corresponding to Algorithm 4. For our analysis
in this section, we make the following assumption.

7The greedy algorithm initializes S̄g = ∅ and iteratively adds s̄⋆ ∈
argmaxs̄∈Ḡ(ḡ(S̄g ∪ {s̄})− ḡ(S̄g)) to S̄g until |S̄g | = H .

8Note that computing the exact value of cg from (61) can be intractable.
Nonetheless, all of our arguments in Section VI still hold if cg is replaced
with a computable lower bound (e.g., [53]).
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Assumption 5. (a) The matrix A ∈ Rn×n in system (1) is
stable; (b) the pair (A,Bs) is (ℓ, ν) controllable for all s ∈ G.

Under Assumption 5(a), Assumption 4 is naturally satisfied
by choosing Gj = ∅ and KGj

= 0 for all j ∈ [p]. Recall that
Assumption 5(b) is a sufficient condition for Assumption 2 to
hold as we argued in Section III-B. Using similar arguments to
those in Section IV-A, one show that under Assumption 5 and
E defined in (49), Jk(∅), Jk(Sk, uk

Sk) and ykj,s scale linearly
with T for all k ∈ {Np+1, . . . , N}. In the sequel, we use
the same notations as those defined in (23)-(25) and (40) to
denote the parameters of Problem (3), except that we replace
|S| = H in the definitions with |S| ≤ H . We then have the
following result; the proof is included in Appendix C. The
proof extends the analysis in [19] for submodular objective
functions (i.e., cg = 1) to approximately submodular func-
tions (i.e., cg ∈ (0, 1]), and adopts the analyses and results
developed in Sections III-IV for Problem (3).

Proposition 3. Consider any δ ∈ R>0 with 0 < δ < 1, and
the same setting as Theorem 1. Additionally, suppose Assump-

tion 5 holds, and in Algorithm 4 let ρ =
(

log(|G|N)+e
N

)1/3

.
Then, for any N > max{τ1p, (log(|G|N)+ e)}, the following
holds with probability at least 1− δ:

RAl
= Õ(n(m+ n)2p2T |G|3/2H2h(S⋆)1/2N2/3), (63)

where h(S⋆) is defined in Eq. (12), and Õ(·) hides polynomial
factors in log(|G|N), log((m+n)TN/δ) and other parameters
of Problem (3).

Next, we consider the non-episodic setting of Problem (3).
Following the arguments in Section V, given a non-episodic
instance of Problem (3), we can first construct an episodic
instance with parameters N ′, T ′, and then apply Algorithm 4.
Here, the corresponding H Exp3.S subroutines in Algorithm 4
are applied to the same MAB instances described above
Eq. (56), except that we scale the costs ykj,s and ŷk

j,skj
de-

fined in Eqs. (56) and (57), respectively, by a multiplicative
factor 1/T ′. Similarly, following our arguments leading up to
Eq. (62) and using the notations in Section II-C, the (1−e−cg )-
regret of Algorithm 4 in the non-episodic setting is given by

RA′
l
= (1− e−cg )

(
J(∅)− J(S⋆)

)
− EA′

l

[
J(∅)−

T−1∑
t=0

ct(S0:t, uS0:t
)
]
. (64)

where J(S⋆) is defined as (7), S⋆ = (S⋆0 , . . . ,S⋆T−1) is an
optimal solution to (8) (with an extra constraint S⋆(k−1)T ′ =
· · · = S⋆kT ′−1 for all k ∈ [N ′]), ∅ is a short hand for the T -
tuple (∅, . . . , ∅), and ct(·, ·) is defined in Eqs. (14)-(15). The
result below is proved in [39].

Proposition 4. Suppose Assumptions 1-5 hold. Set T ′ =
⌈T 1/4⌉ and set N ′, τ ′1, ȳ

′
b in the same way as Theorem 2. Ad-

ditionally, in Algorithm 4 let ρ =

(
log(|G|N ′)+e

)1/3

T 1/4 . Consider
any δ ∈ R>0 with 0 < δ < 1. Then, for any T > τ ′1pT

′ with

T ′ > Tm = 2
1−η (

1
4 log T + log ζ) > 0, the following holds

with probability at least 1− δ:

RA′
l
= Õ(n(m+ n)2p2|G|3/2H2h(S⋆)1/2T 3/4), (65)

where h(S⋆) is defined in Eq. (12), and Õ(·) hides polynomial
factors in log(|G|N ′), log((m+n)T/δ) and other parameters
of Problem (3).

Recalling our arguments in Remark 1, one can check that
the regret bound on RAl

(resp., RA′
l
) in Propositions 3

(resp., Proposition 4) also holds for general benchmark S⋆ =
(S1⋆ , . . . ,SN⋆ ) (resp., S⋆ = (S1⋆ , . . . ,SN

′

⋆ )), where Sk⋆ is any
Sk⋆ ⊆ G with |Sk⋆ | = H .

VII. SIMULATION RESULTS

A. Medium-size Episodic Instances

We validate the results in Theorem 1 for Algorithm 2, using
the episodic instances of Problem (3) constructed as follows.
We randomly generate the matrices A ∈ R5×5 and B ∈ R5×10

such that Assumption 2 is satisfied and A is unstable. Let each
column in B ∈ R5×10 correspond to one candidate actuator,
and let the cardinality constraint on the set of selected actuators
be H = 2. The cost matrices are set to be Qk = Rk = I and
Qk

f = 2I for all k ∈ [N ]. The covariance of the disturbance wk
t

is set to be W = I for all t ∈ {0, . . . , T −1} and all k ∈ [N ].
The number of time steps in any episode k ∈ [N ] is set to
be T = 5. Given A and B generated above, we construct
the known stabilizing KGi

with |Gi| = 2 for all i ∈ [5] in
Assumption 4. We then apply Algorithm 2 to the instances of
Problem (3) constructed above, where the parameters τ1, ȳb
are set according to Theorem 1 and λ = 1 in the least squares
(37) for the system identification phase in Algorithm 2. We
obtain the regret RAe

of Algorithm 2 against an optimal static
benchmark S⋆ = (S1⋆ , . . . ,SN⋆ ), i.e., S1⋆ = · · · = SN⋆ = Sopt
and Sopt ∈ argminS⊆G,|S|=H

∑N
k=1 Jk(S), with h(S⋆) = 1.

In Fig. 1, we plot RAe
/N and RAe

/
√
N for different values

of the total number of episodes N .9 From Fig. 1(a), we see
that RAe/N decreases as N increases. From Fig. 1(b), we see
that RAe/

√
N (slightly) increases as N increases. Hence, the

results in Fig. 1(a) and (b) match with the regret bound given
by Eq. (45). Specifically, the regret bound in Eq. (45) scales as√
N logN , which implies that RAe

/N = O(logN/
√
N) and

RAe
/
√
N = O(logN). Moreover, RAe

/N is around 20 when
N = 3000, since the regret bound in Eq. (45) also contains
other parameters of Problem (3).

Now, we investigate how the other parameters of Prob-
lem (3) influence the performance and running times of
Algorithm 2, using the instances of Problem (3) constructed
above (with different values of H and n). In Fig. 2, we
plot RAe/N for different values of the cardinality constraint
H , which shows that as H increases, RAe

/N first increases
and then decreases. The result in Fig. 2(a) matches with the
regret bound in Eq. (45), since the regret bound contains the
factor

√
|Q| with |Q| =

(
10
H

)
in the instances of Problem (3)

that we constructed. Note that RAe/N in Fig. 2(a) decreases

9All the numerical results in Section VII are averaged over 20 experi-
ments and shaded regions display quartiles.
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(a) RAe/N vs. N (b) RAe/
√
N vs. N

Fig. 1: RAe
/N and RAe

/
√
N against N .

(a) RAe/N vs. H (b) Running times vs. n

Fig. 2: The influence of the problem parameter H (resp., n)
on the performance (resp., running times) of Algorithm 2.

as H increases from 1 to 2, which is potentially due to
the fact that the regret bound in Eq. (45) also contains the
factor p = ⌈10/H⌉. In Fig. 2, we plot the running times of
Algorithm 2 for different values of n (i.e., the dimension of
the system matrix A). Similarly, we generate A ∈ Rn×n for all
n = 5, 10, . . . , 50 and B ∈ Rn×15 randomly. Fig. 2(b) shows
that the running time of Algorithm 2 increases as n increases,
which aligns with the time complexity O((n+m)3T + |Q|T )
of each episode in Algorithm 2.

B. Large-Scale Non-Episodic Instances

We next validate the results in Proposition 4 for Algorithm 4
in the non-episodic setting. First, we randomly generate the
matrices A,B ∈ R50×50 such that A is stable. Let each
column in B ∈ R50×50 correspond to one candidate actua-
tor, and let the cardinality constraint on the set of selected
actuators be H = 20. The cost matrices are set to be
R = 10−3I,Q = Qf = 2 · 10−3I . The covariance of the
disturbance wt is set to be W = I for all t ∈ {0, . . . , T − 1}.
Since A is stable, we choose the stabilizing KGi = 0 for
all i ∈ [p] in Assumption 4. As argued in Sections V-VI,
we can first construct an episodic instance of Problem (3)
given the non-episodic instance generated above, and then
apply Algorithm 4, where the parameters T ′, N ′, τ ′1, ȳ

′
b, ρ are

set according to Proposition 4 and λ = 1 in the system
identification phase in Algorithm 4. Since

(
50
20

)
≈ 5×1013 and

Problem (3) is NP-hard, both Algorithm 3 and obtaining an
optimal solution S⋆ = (S⋆1 , . . . ,S⋆T−1) to Problem (8) become
intractable. Thus, we obtain the regret RA′

l
of Algorithm 4 (in

the non-episodic setting) against a random static benchmark
S⋆ = (S⋆1 , . . . ,S⋆T−1), where S⋆0 = · · · = S⋆T−1 = Srand and
Srand is chosen from G randomly with |Srand| = H . Moreover,
we replace 1 − e−cg with 1 in Eq. (64) so that RA′

l
is lifted

to the 1-regret of Algorithm 4. In Fig. 3, we plot RA′
l
/T

and RA′
l
/T 3/4 for different values of the total time steps T .

Fig. 3(a) shows that RA′
l
/T decreases as T increases, which

aligns with the T 3/4-regret bound in Eq. (64). Fig. 3(b) shows
that RA′

l
/T 3/4 also tends to decrease as T increases, which

potentially implies that the regret bound may not be tight in
terms of T . Fig. 3 also shows that Algorithm 4 yields good
regret performance in terms of the stronger notion of 1-regret.

(a) RA′
l
/T vs. T (b) RA′

l
/T 3/4 vs. T

Fig. 3: RA′
l
/T and RA′

l
/T 3/4 against T .

(a) Running times vs. m (b) Running times vs. H

Fig. 4: The running times of Algorithm 4 against m and H .

As for the running times of Algorithm 4, we plot the
running times of Algorithm 4 when applied to the non-episodic
instances constructed above with different values of m and H .
Fig. 4 aligns with the time complexity O(H(n + m)3T ) of
Algorithm 4 and shows that Algorithm 4 is suitable for large-
scale (non-episodic) instances of Problem (3).

VIII. CONCLUSION

We studied the online actuator selection and controller
design problem for LQR with unknown system matrices, under
episodic and non-episodic settings. We proposed algorithms
to solve the problem and showed that our online algorithms
yield sublinear regrets with respect to the horizon length of
the problem. We extended our algorithm design and analysis to
efficiently handle instances of the problem when both the total
number of candidate actuators and the cardinality constraint
scale large. We numerically validated our theoretical results.
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APPENDIX A: PROOFS PERTAINING TO THE CERTAINTY
EQUIVALENCE APPROACH

Proof of Lemma 4

Our proof is based on a similar idea to that for the proof
of [30, Proposition 3]. To simplify the notations in the proof,
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we assume that T = φℓ for some φ ∈ Z≥1; otherwise we
only need to focus on the time steps from T − φ̃ℓ to T of
Problem (3), where φ̃ is the maximum positive integer such
that T − φ̃ℓ ≥ 0. Under the assumption that T = φℓ, we
need to show that (28) holds for t ∈ {0, ℓ, . . . , φℓ}. Note that
(28) holds for t = T , since P k

T,S = P̂ k
T,S = Qk

f . In the rest
of this proof, we drop the dependency of various terms on
S and k for notational simplicity, while the proof works for
any S ⊆ G (with |S| = H) and any k ∈ [N ]. First, for any
γ ∈ Z≥1 (with γℓ ≤ T ), let us consider the noiseless LQR
problem for system (1), i.e., xt+1 = Axt + But, from time
step γℓ to T . Let the initial state xγℓ be any vector in Rn with
∥xγℓ∥ ≤ 1. Similarly to Eq. (10), we define the cost

J̃(A,B, uγℓ:T−1) ≜
( φ−1∑

j=γ

ℓ−1∑
t=0

x⊤
jℓ+tQxjℓ+t

+ u⊤
jℓ+tRujℓ+t

)
+ x⊤

TQfxT ,

where uγℓ:T−1 = (uγℓ, . . . , uT−1). Again, we know from
[36] that the minimum value of J̃(A,B, uγℓ:T−1) (over all
control policies uγℓ:T−1) is achieved by ũt = Kt,Sxt for all
t ∈ {γℓ, γℓ+ 1, . . . , T − 1}, where Kt,S is given by Eq. (5).
Moreover, we know that J̃(A,B, ũγℓ:T−1) = x⊤

γℓPγℓxγℓ,
where Pγℓ can be obtained from Eq. (6) with PT = Qf .

Next, consider another LTI system given by x̂t+1 = Âx̂t +
B̂ût over the same time horizon and starting from the same
initial state x̂γℓ = xγℓ as we described above. Similarly,
define the corresponding cost as J(Â, B̂, ûγℓ:T−1), where
ûγℓ:T−1 = (ûγℓ, . . . , ûT−1). Similarly, the minimum value
of J(Â, B̂, ûγℓ:T−1) (over all control policies ûγℓ:T−1) is
achieved by u′

t = K̂k
t,S x̂t for all t ∈ {γℓ, γℓ+ 1, . . . , T − 1},

where K̂t,S is given in Eq. (18). The minimum cost is
given by J(Â, B̂, u′

γℓ:T−1) = x⊤
γℓP̂γℓxℓγ , where P̂γℓ can

be obtained from Eq. (19) with P̂T = Qf . Moreover, note
that J(Â, B̂, u′

γℓ:T−1) ≤ J(Â, B̂, ûγℓ:T−1), where ûγℓ:T−1 is
an arbitrary control policy and the inequality follows from
the optimality of u′

γℓ:T−1. Recalling that ε is assumed to
be small enough such that the right-hand side of (28) is
smaller than or equal to 1, one can obtain from Lemma 3
that σn(Ĉℓ,S) ≥ ν

2 > 0, which implies that the pair (Â, B̂) is
controllable. Now, one can follow similar arguments to those
for the proof of [30, Proposition 3] and show that ûγℓ:φℓ−1 can
be chosen such that x̂φ′ℓ = xφ′ℓ for all φ′ ∈ {γ, γ+1, . . . , φ}.
It then follows from the above arguments that

x⊤
γℓP̂γℓxγℓ − x⊤

γℓPγℓxγℓ ≤
( φ−1∑

j=γ

ℓ−1∑
t=0

x̂⊤
jℓ+tQx̂jℓ+t

+ û⊤
jℓ+tRûjℓ+t − x⊤

jℓ+tQxjℓ+t − u⊤
jℓ+tRujℓ+t

)
. (66)

One can further follow similar arguments to those for the proof
of [30, Proposition 3] and show that ûγℓ:T−1 in Eq. (66) can
be chosen such that the following holds:

x⊤
γℓP̂γℓxγℓ − x⊤

γℓPγℓxγℓ ≤
1

2
µγℓε, (67)

under the assumption that 1
2µγℓε ≤ 1, where µγℓ (i.e., µk

γℓ,S )
is defined in Eq. (29). Now, reversing the roles of (A,B) and
(Â, B̂) in the arguments above, one can also obtain that

x⊤
γℓPγℓxγℓ − x⊤

γℓP̂γℓxγℓ ≤
1

2
µγℓ
∥P̂γℓ∥
∥Pγℓ∥

ε, (68)

under the assumption that 1
2µγℓ

∥P̂γℓ∥
∥Pγℓ∥ε ≤ 1.10 Note from

Eq. (6) and Assumption 1 that Pγℓ ⪰ Q ⪰ I , and note that
(67) and (68) hold for any xγℓ ∈ Rn with ∥xγℓ∥ ≤ 1 as we
discussed above. It then follows from (67) that λ1(P̂γℓ) ≤
λ1(Pγℓ) + 1, i.e., ∥P̂γℓ∥ ≤ ∥Pγℓ∥ + 1 ≤ 2∥Pγℓ∥. Hence,
we have from (67) and (68) that λ1(P̂γℓ − Pγℓ) ≤ µγℓε and
λ1(Pγℓ − P̂γℓ) ≤ µγℓε, which further implies (28). ■

APPENDIX B: PROOFS PERTAINING TO THEOREM 1

Proof Sketch of Lemma 11: The lemma can be proved by
upper bounding ∥xk

t ∥ and ∥uk
t ∥ for all t{0, . . . , T −1} and all

k ∈ K̃ under the event E . Details are included in [39]. ■
Proof of Lemma 12: Consider any episode k ∈ K in

Algorithm 2. Noting that xk
0 = 0, one can show that the state

of system (9) corresponding to Sk selected in line 12 of Al-
gorithm 2 satisfies xk

t+1 =
∑t

i=0 Ψ̂
k
t,i(Sk)wk

i , where Ψ̂k
t,i(Sk)

is defined in Eq. (35). Moreover, supposing that the event E
holds, we know from Lemma 10 that ∥Θ̂Gj

−ΘGj
∥ ≤ ε0/

√
p

for all j ∈ [p]. It follows that Â and B̂ obtained in line 9 of
Algorithm 2 satisfy that ∥Â − A∥ ≤ ε0 and ∥B̂ − B∥ ≤ ε0,
which also implies that ∥B̂Sk − BSk∥ ≤ ε0, where B̂Sk

contains the columns of B̂ that correspond to Sk. Now, one
can obtain from the choice of ε0 in (40) and Proposition 1
that ∥K̂k

t,Sk − Kk
t,Sk∥ ≤

1−ηSk

2∥BSk∥ζSk
, ∀t ∈ {0, . . . , T − 1},

which also implies that ∥K̂k
t,Sk∥ ≤ κ, ∀t ∈ {0, . . . , T − 1},

where K̂k
t,Sk and Kk

t,Sk are given by Eqs. (18) and (5),
respectively. We have from Lemma 7 that ∥Ψ̂k

t2,t1(S
k)∥ ≤

ζSk(
1+ηSk

2 )t2−t1 , for all t1, t2 ∈ {0, . . . , T − 1} with t2 ≥ t1,
where we know from Lemma 6 that 0 < (1+ηSk)/2 < 1. One
can now use similar arguments to those for [31, Lemma 38]
and show that

∥xk
t ∥ ≤

2ζSk

1− ηSk

max
k′∈K,t′∈{0,...,T−1}

∥wk′

t′ ∥.

Thus, under the event E defined in Eq. (49), we have
that ∥xk

t ∥ ≤
2ζσ
1−η

√
5n log 8TN

δ , for all k ∈ K and all
t ∈ {0, . . . , T}. Furthermore, from (10) and the fact that
uk
t,Sk = K̂k

t,Skx
k
t , one can similarly show that under E ,

Jk(Sk, uk
Sk) ≤ T (2σQ + κ2σR)

4ζ2σ2

(1− η)2
5n log

8TN

δ
= ȳb.

To proceed, recall that we use the Exp3.S algorithm in
Algorithm 2 to select Sk for all k ∈ K. As we argued in
Section III, each action in the Exp3.S algorithm corresponds to
a set S ⊆ G with |G| = H , i.e., the set of all possible actionsQ
in the Exp3.S algorithm is given by Q = {S ⊆ G : |S| = H}.
Moreover, the cost of the action corresponding to Sk in

10Note that the proof technique in [30] is for the infinite-horizon (noiseless)
LQR problem, which can be adapted to the finite-horizon setting studied here.
The details of such an adaption are omitted for conciseness.
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episode k ∈ [N ] is given by Jk(Sk, uk
Sk). Thus, we can

replace yb (resp., ya) in (16) with ȳb (resp., 0), and obtain
that (51) holds under the event E . ■

Proof Sketch of Lemma 13: We provide a proof sketch here;
the detailed proof can be found in [39]. Consider any k ∈ K.
As in the proof of Lemma 12, and applying Eqs. (9) and (22),
one can show that Jk(Sk⋆ , uk

Sk
⋆
) =

(∑T−1
t=0 2wk⊤

t P̃ k
t+1,Sk

⋆
(A+

BSk
⋆
)xk

t + wk⊤
t P̃ k

t+1,Sk
⋆
wk

t

)
, where we note that xk

0 = 0 and

P̃ k
T,Sk

⋆
= Qk

f . From the definition of R3
e , one can show that

R3
e =

∑
k∈K

(∑T−1
t=0 2wk⊤

t P̃ k
t+1,Sk

⋆
(A + BSk

⋆
)xk

t +

wk⊤
t P̃ k

t+1,Sk
⋆
wk

t −σ2Tr(P̃ k
t+1,Sk

⋆
)
)
. The proof follows by upper

bounding the terms in this summation via adapting [41,
Lemmas 31&32]. ■

Proof of Lemma 14: As in the proof of Lemma 12, under
the event E defined in Eq. (49), Â and B̂ obtained in line 9 of
Algorithm 2 satisfy ∥Â−A∥ ≤

√
τ0√
N

and ∥B̂−B∥ ≤
√

τ0√
N

,

which also implies that ∥B̂S − BS∥ ≤
√

τ0√
N

for all S ⊆ G
with |S| = H . Under the event E , one can then show via the
choice of ε0 in (40) and Proposition 2 that (14) holds. ■

APPENDIX C: PROOF SKETCH OF PROPOSITION 3

We provide a proof sketch here; the detailed proof can
be found in [39]. Similarly to the proof of Theorem 1
provided in Section IV-A, the regret RAl

of Algorithm 4
can be decomposed as RAl

= R1
Al

+ R2
Al

, where R1
Al

corresponds to the system identification phase and the certainty
equivalence subroutine, and R2

Al
corresponds to the Exp3.S

subroutines M1, . . . ,MH . Suppose the event E defined in (49)
holds. Following similar arguments to those for Lemmas 11,
13 and 14 in the proof of Theorem 1, one can show that
R1

Al
= Õ(n(m + n)2p2T

√
N). We then focus on upper

bounding R2
Al

. To proceed, for any S̄ ⊆ Ḡ with Ḡ defined in
Eq. (59) and any k ∈ K, define fk(S̄) = Jk(∅)−Jk(S̄k, uk

S̄k),
where S̄k = {s̄k ∈ s̄ : s̄ ∈ S̄} with s̄k denoting the
kth element of the tuple s̄ ∈ S̄, and uk

t,S̄k = K̂k
t,S̄kx

k
t for

all t ∈ {0, . . . , T − 1} with K̂k
t,S̄k obtained via Eq. (18)

using Â, B̂ from Algorithm 4. For any S̄ ⊆ Ḡ, we define
f̄(S̄) =

∑
k∈K fk(S̄). For any j ∈ [H], we further denote

S̄ ′j = {s̄1, . . . , s̄j} with S̄0 = ∅, where s̄j = (s
Np+1

j , . . . , sKj )
contains the actuators selected by Mj from episodes k = Np+1

to N . Eq. (56) implies that the regret of any Mj in Algorithm 4
can be written as

rj = max
s̄∈Ḡ

{
f̄(S̄ ′j−1∪s̄)−f̄(S̄ ′j−1)

}
−
(
f̄(S̄ ′j−1∪s̄j)−f̄(S̄ ′j−1)

)
.

Following similar arguments to those in the proof of Lem-
mas 13-14, one can show via the definition of Algorithm 4:

R2
Al

= (1− e−c′)
∑
k∈K

(
Jk(∅)− Jk(Sk⋆ , uk

Sk
⋆
)
)

− EAl

[∑
k∈K

Jk(∅)− fk(S̄ ′H)− Jk(Sk, uk
Sk) + fk(S̄ ′H)

]
≤ Õ(n(n+m)2T

√
N) + EAl

[ H∑
j=1

rj

]
+ EAl

[Ne]Õ(nT ).

Thus, it remains to bound EAl
[rj ] for all j ∈ [H]. Eq. (57)

and the definition of Algorithm 4 yield that for any j ∈ [H],
any s ∈ G and any k ∈ K, EAl

[ŷkj,s] = ρ
|G|H ykj,s +

ρ
|G|H Jk(S ′kj−1, u

k
S′k
j−1

). One can also show that ykj,s ∈ [−ȳb, ȳb]
for all j ∈ [H], all s ∈ G and all k ∈ K. Following similar
arguments to those for [19, Lemma 5&Theorem 13], one can
now show via Lemma 1 that for any j ∈ [H],

EAl
[rj ] ≤

|G|H
ρ

Õ(nT )EAl

[√
|G|Ne(h(S⋆) ln(|G|Ne) + e)

]
≤ |G|HÕ(nT )

√
|G|
ρ
N(h(S⋆) ln(|G|N) + e).

Combining these arguments with the choice of ρ, we obtain
R2

Al
= Õ(n(m + n)2T |G|3/2H2h(S⋆)1/2N2/3), which to-

gether with the upper bound on R1
Al

complete the proof. ■
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