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Abstract. We present results for a Bayesian analysis of the location of the QCD

critical point constrained by first-principles lattice QCD results at zero baryon

density. We employ a holographic Einstein-Maxwell-dilaton model of the QCD

equation of state, capable of reproducing the latest lattice QCD results at zero

and finite baryon chemical potential. Our analysis is carried out for two different

parametrizations of this model, resulting in confidence intervals for the critical

point location that overlap at one sigma. While samples of the prior distribution

may not even predict a critical point, or produce critical points spread around

a large region of the phase diagram, posterior samples nearly always present a

critical point at chemical potentials of µBc ∼ 550 − 630 MeV.

1 Introduction

Exploring the QCD phase diagram is one of the major goals of experimental programs at

RHIC and FAIR [1]. While the hadronic and quark-gluon plasma (QGP) phases are smoothly

connected at low values of the baryon density [2], where first-principles lattice QCD simu-

lations are feasible, a first-order transition line is conjectured at high densities, starting at a

second-order critical endpoint (CEP).

Here, we aim to extrapolate knowledge from lattice QCD, available at lower baryon chem-

ical potential µB, to draw predictions for the QCD CEP expected at large values of µB. For

that, we employ a holographic model of the QCD equation of state, which is capable of re-

producing lattice QCD results and is compatible with findings on QGP properties from the

phenomenology of relativistic heavy-ion collisions [3]. By using Bayesian inference tools,

we perform a systematic scan over model realizations, selecting those that reproduce a set of

lattice QCD constraints at zero density [4, 5] with a probability given by the respective error

bars. We then compute predictions for the QCD CEP corresponding to each of the selected

models to find an a posteriori probability distribution for the CEP location.

∗e-mail: hippert@illinois.edu

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons 
Attribution License 4.0 (https://creativecommons.org/licenses/by/4.0/).

EPJ Web of Conferences 296, 06003 (2024) https://doi.org/10.1051/epjconf/202429606003

Quark Matter 2023



2 Holographic model

Our description of the QCD equation of state is based on the gauge/gravity correspondence,

which allows us to use dual black holes in a 4+1 dimensional asymptotically anti-de Sitter

bulk spacetime to describe the physics of a thermal, strongly coupled field theory sitting in

the 3+1 Minkowski boundary of that geometry.

More precisely, we employ a bottom-up Einstein-Maxwell-dilaton (EMD) model [3], in

which a Maxwell field Aµ is used to endow dual black holes with baryon number, while a

dilaton scalar field ϕ is used to break conformal invariance and shape the renormalization

group flow of the theory. The action of our theory is given by

S =
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where g is the determinant of the metric, R is the Ricci scalar, Fµν = ∂µAν − ∂νAµ is the

Maxwell field strength, and V(ϕ) and f (ϕ) are potentials which are tweaked to reproduce

QCD physics. To assess the robustness of our results, we employ two different parametriza-

tions of the potentials V(ϕ) and f (ϕ):

1. Polynomial-hyperbolyc Ansatz (PHA): A more traditional parametrization, similar to

the one used in [6]:

V(ϕ) = −12 cosh(γ ϕ) + b2 ϕ
2 + b4 ϕ

4 + b6 ϕ
6, (2)
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sech(d2ϕ). (3)

2. Parametric Ansatz (PA): A parametrization where parameters directly control plateaus

and exponential slopes in the potentials [7]:
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Holographic models of this kind have successfully reproduced lattice QCD results at in-

termediate temperatures T ∼ 100 − 500 MeV at both vanishing and finite baryon density [3].

They can also predict a CEP in the QCD phase diagram and naturally describe the nearly

inviscid nature of the QGP observed in high-energy heavy-ion collisions [8].

3 Bayesian analysis

We wish to scan over realizations of the model parametrizations above to generate an ensem-

ble of models distributed according to the error bars on lattice QCD results. We thus employ

Bayes’ theorem to find the posterior probability over model parameters, θ⃗, given the lattice

QCD constraints d⃗:

P(θ⃗ | d⃗) =
P(d⃗ | θ⃗) P(θ⃗)

P(d⃗)
, (6)

where P(θ⃗) is the prior probability distribution over model parameters, and we treat P(d⃗),

known as the evidence, as a normalization factor for the posterior.
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Figure 1. Prior and posterior distribution for the CEP location in the PHA (red) and PA (blue)

parametrizations. Left: Histograms for the critical temperature, Tc, and baryon chemical potential,

µBc, and the corresponding 68% and 95% confidence levels in the posterior, together with critical point

locations sampled from the prior (crosses). Right: Probability density function for the center-of-mass

energy corresponding to µBc, according to the freeze-out line of Ref. [10].

The likelihood L(θ⃗) ≡ P(d⃗ | θ⃗) represents the probability of obtaining the lattice QCD

results d⃗ given a set of model parameters θ⃗. We model it as a Gaussian,

L ∼
1
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where di, σi and pi(θ⃗) represent, respectively, the i-th point in the lattice results under con-

sideration, the corresponding error, and the prediction for that point given model parameters

θ⃗. The matrix Λi j models correlations between different points, given by an extra parameter

Γ ∈ (−1, 1), which measures correlations between neighboring points.

To draw samples from the posterior in Eq. (6), we employ a Markov chain Monte Carlo

(MCMC), in which parameter sets θ(n) are randomly modified at each iteration to find θ(n+1), in

such a way that eventually θ(n→∞) becomes distributed according to the target probability dis-

tribution P(θ⃗ | d⃗). In particular, we use differential evolution MCMC [9]. After a sufficiently

large number of iterations, the equilibrium probability distribution P(θ⃗ | d⃗) is achieved, and

we can obtain samples of the posterior.

As inputs for our Bayesian analysis, we take the latest lattice QCD results for the entropy

density and baryon susceptibility at vanishing baryon density from the Wuppertal-Buddapest

collaboration [4, 5]. More details on this analysis and the MCMC implementation can be

found in the supplemental materials of Ref. [7].

4 Results

Finally, we compute the predictions for the QCD CEP location in the samples of the poste-

rior distribution we obtain and compute confidence levels for its location on the QCD phase

diagram. For each parameter set or sample, we find the corresponding location of the CEP by

following the procedure outlined in Ref. [7]. Results are shown in Fig. 1, where confidence

levels for the critical temperature, Tc, and baryon chemical potential, µBc are shown, along-

side the posterior distribution for the corresponding beam energy, extracted from µBc with the
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parametrization from Ref. [10]. CEP locations for the prior distribution are shown as crosses

in the left panel.

5 Conclusions

We have presented results for the first Bayesian analysis of the phase diagram of QCD con-

strained by first-principles lattice QCD results at zero baryon density. The posterior distribu-

tion of CEP locations was computed for two different parametrizations of a holographic EMD

model. We find that imposing agreement with lattice QCD tightly constrains predictions for

the QCD CEP location, which were spread all around the phase diagram in the unconstrained

prior. Moreover, bands for the CEP location within each model overlap within one sigma,

indicating the robustness of our results against parametrization choices. While 20% of the

prior predicts no CEP, a CEP is found in nearly all of the posterior, indicating that a CEP is

statistically favored [7].
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