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Abstract. We present results for a Bayesian analysis of the location of the QCD
critical point constrained by first-principles lattice QCD results at zero baryon
density. We employ a holographic Einstein-Maxwell-dilaton model of the QCD
equation of state, capable of reproducing the latest lattice QCD results at zero
and finite baryon chemical potential. Our analysis is carried out for two different
parametrizations of this model, resulting in confidence intervals for the critical
point location that overlap at one sigma. While samples of the prior distribution
may not even predict a critical point, or produce critical points spread around
a large region of the phase diagram, posterior samples nearly always present a
critical point at chemical potentials of ug. ~ 550 — 630 MeV.

1 Introduction

Exploring the QCD phase diagram is one of the major goals of experimental programs at
RHIC and FAIR [1]. While the hadronic and quark-gluon plasma (QGP) phases are smoothly
connected at low values of the baryon density [2], where first-principles lattice QCD simu-
lations are feasible, a first-order transition line is conjectured at high densities, starting at a
second-order critical endpoint (CEP).

Here, we aim to extrapolate knowledge from lattice QCD, available at lower baryon chem-
ical potential up, to draw predictions for the QCD CEP expected at large values of up. For
that, we employ a holographic model of the QCD equation of state, which is capable of re-
producing lattice QCD results and is compatible with findings on QGP properties from the
phenomenology of relativistic heavy-ion collisions [3]. By using Bayesian inference tools,
we perform a systematic scan over model realizations, selecting those that reproduce a set of
lattice QCD constraints at zero density [4, 5] with a probability given by the respective error
bars. We then compute predictions for the QCD CEP corresponding to each of the selected
models to find an a posteriori probability distribution for the CEP location.
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2 Holographic model

Our description of the QCD equation of state is based on the gauge/gravity correspondence,
which allows us to use dual black holes in a 4+1 dimensional asymptotically anti-de Sitter
bulk spacetime to describe the physics of a thermal, strongly coupled field theory sitting in
the 3+1 Minkowski boundary of that geometry.

More precisely, we employ a bottom-up Einstein-Maxwell-dilaton (EMD) model [3], in
which a Maxwell field A* is used to endow dual black holes with baryon number, while a
dilaton scalar field ¢ is used to break conformal invariance and shape the renormalization
group flow of the theory. The action of our theory is given by
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where ¢ is the determinant of the metric, R is the Ricci scalar, F,,, = d,A, — 0,A, is the
Maxwell field strength, and V(¢) and f(¢) are potentials which are tweaked to reproduce
QCD physics. To assess the robustness of our results, we employ two different parametriza-
tions of the potentials V(¢) and f(¢):

1. Polynomial-hyperbolyc Ansatz (PHA): A more traditional parametrization, similar to
the one used in [6]:

V(¢) = —12cosh(y ¢) + by ¢* + ba ¢* + b ¢°, 2)
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2. Parametric Ansatz (PA): A parametrization where parameters directly control plateaus
and exponential slopes in the potentials [7]:
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Holographic models of this kind have successfully reproduced lattice QCD results at in-
termediate temperatures 7 ~ 100 — 500 MeV at both vanishing and finite baryon density [3].
They can also predict a CEP in the QCD phase diagram and naturally describe the nearly
inviscid nature of the QGP observed in high-energy heavy-ion collisions [8].
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3 Bayesian analysis

We wish to scan over realizations of the model parametrizations above to generate an ensem-
ble of models distributed according to the error bars on lattice QCD results. We thus employ
Bayes’ theorem to find the posterior probability over model parameters, g, given the lattice
QCD constraints d

P@|d) = w’ (6)
P(d)

where P(0) is the prior probability distribution over model parameters, and we treat P(d),
known as the evidence, as a normalization factor for the posterior.
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Figure 1. Prior and posterior distribution for the CEP location in the PHA (red) and PA (blue)
parametrizations. Left: Histograms for the critical temperature, 7., and baryon chemical potential,
M., and the corresponding 68% and 95% confidence levels in the posterior, together with critical point
locations sampled from the prior (crosses). Right: Probability density function for the center-of-mass
energy corresponding to up., according to the freeze-out line of Ref. [10].

The likelihood L(ﬁ) = P(cf | 5) represents the probability of obtaining the lattice QCD
results & given a set of model parameters 6. We model it as a Gaussian,
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where d;, o; and pi(ﬁ) represent, respectively, the i-th point in the lattice results under con-
sideration, the corresponding error, and the prediction for that point given model parameters
6. The matrix A;; models correlations between different points, given by an extra parameter
I' e (-1, 1), which measures correlations between neighboring points.

To draw samples from the posterior in Eq. (6), we employ a Markov chain Monte Carlo
(MCMC), in which parameter sets " are randomly modified at each iteration to find #”*), in
such a way that eventually #"~*) becomes distributed according to the target probability dis-
tribution P(5 | 57) In particular, we use differential evolution MCMC [9]. After a sufficiently
large number of iterations, the equilibrium probability distribution P@| J) is achieved, and
we can obtain samples of the posterior.

As inputs for our Bayesian analysis, we take the latest lattice QCD results for the entropy
density and baryon susceptibility at vanishing baryon density from the Wuppertal-Buddapest
collaboration [4, 5]. More details on this analysis and the MCMC implementation can be
found in the supplemental materials of Ref. [7].

4 Results

Finally, we compute the predictions for the QCD CEP location in the samples of the poste-
rior distribution we obtain and compute confidence levels for its location on the QCD phase
diagram. For each parameter set or sample, we find the corresponding location of the CEP by
following the procedure outlined in Ref. [7]. Results are shown in Fig. 1, where confidence
levels for the critical temperature, 7., and baryon chemical potential, ug. are shown, along-
side the posterior distribution for the corresponding beam energy, extracted from pp. with the
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parametrization from Ref. [10]. CEP locations for the prior distribution are shown as crosses
in the left panel.

5 Conclusions

We have presented results for the first Bayesian analysis of the phase diagram of QCD con-
strained by first-principles lattice QCD results at zero baryon density. The posterior distribu-
tion of CEP locations was computed for two different parametrizations of a holographic EMD
model. We find that imposing agreement with lattice QCD tightly constrains predictions for
the QCD CEP location, which were spread all around the phase diagram in the unconstrained
prior. Moreover, bands for the CEP location within each model overlap within one sigma,
indicating the robustness of our results against parametrization choices. While 20% of the
prior predicts no CEP, a CEP is found in nearly all of the posterior, indicating that a CEP is
statistically favored [7].
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