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Abstract

Large-scale circulation of the atmosphere in the Earth’s extratropics is dom-
inated by eddies, eastward (westerly) zonal winds, and their interaction.
Eddies not only bring about weather variabilities but also help maintain the
average state of climate. In recent years, our understanding of how large-
scale eddies and mean flows interact in the extratropical atmosphere has
advanced significantly due to new dynamical constraints on finite-amplitude
eddies and the related eddy-free reference state. This article reviews the
theoretical foundations for finite-amplitude Rossby wave activity and re-
lated concepts. Theory is then applied to atmospheric data to elucidate how
angular momentum is redistributed by the generation, transmission, and
dissipation of Rossby waves and to reveal how an anomalously large wave
event such as atmospheric blocking may arise from regional eddy-mean flow
interaction.
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Troposphere:
weather layer of the
atmosphere that
occupies from the
ground up to about
11 km in altitude on
average

Jet stream:

fast eastward winds
that dominate the
mid- to upper
troposphere (5-10 km
above sea level)
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1. INTRODUCTION

Weather and climate variabilities in the Earth’s midlatitudes (30-60°) affect the lives of billions.
The spatio-temporal structure of atmospheric circulation that drives these variabilities is domi-
nated by large-scale eddies (weather systems) and an eastward mean flow that steers them. In the
upper troposphere, they manifest themselves as a meandering jet stream (Figure 14). How eddies
and the mean flow interact with each other is central to our understanding of weather and climate
in the extratropics, and it has been a main theme of atmospheric dynamics for decades (Hartmann
2015, Vallis 2017, Wallace et al. 2023).

Linear wave theory explains the origin and propagation of the waveforms in large-scale ed-
dies known as the Rossby waves (Rossby 1939, Haurwitz 1940, Longuet-Higgins 1965, Platzman
1968). The Rossby waves arise from hydrodynamic instabilities of the zonal-mean state such as
baroclinic instability (Charney 1947, Eady 1949, Phillips 1951) or from external forcing such as
form stress of topography (Eliassen & Palm 1961, Hoskins & Karoly 1981, Held 1983). The mean
flow then regulates the dispersion of the generated waves. The waves in turn modify the mean flow
by redistributing angular momentum through their radiation stress and the wave-induced circula-
tion (Eliassen 1951; Kuo 1956; Charney & Drazin 1961; Eliassen & Palm 1961; Dickinson 1968,
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Figure 1

(@) Jet stream in the upper troposphere of the Northern Hemisphere on March 23,2022 (00 UTC). The
map shows geopotential height Z (altitude; contours in meters) and horizontal wind speed (& + v?)'/2(color in
ms~!) for the 250 hPa pressure surface. At this altitude, geopotential height is approximately a
streamfunction according to the geostrophic balance, so the winds blow parallel to Z eastward. Large-scale
eddies create chaotic meandering of the eastward jet stream, a manifestation of Rossby waves. (b)) Same as
panel # but for local wave activity (Huang & Nakamura 2016), which equals negative angular
pseudomomentum density carried by eddies. Data from European Centre for Medium-Range Weather
Forecasts Reanalysis v5 (Hersbach et al. 2020).
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1970; Rhines 1975; Andrews & Mclntyre 1976; Boyd 1976; Salmon 1980). Changes in angular
momentum distribution also alter heat distribution because in large-scale circulations of rapidly
rotating atmospheres, momentum and temperature are related through thermal wind balance.
Theory of eddy-mean flow interaction resolved some key questions—for example, why surface
westerlies in the extratropics can be maintained against friction (Jeffreys 1926, Held & Hoskins
1985) and what causes stratospheric sudden warming (Matsuno 1971).

While much progress was made in the latter half of the previous century, certain gaps still
remained between the theory of eddy-mean flow interaction and its application to meteorolog-
ical data. For one, although the theory for the zonal-mean zonal circulation and its response to
eddy forcing was fully developed, the corresponding theory for eddy and its role in redistributing
angular momentum and heat was mostly linear and thus limited to small-amplitude eddy. Finite-
amplitude theory was developed but not in a form readily applicable to atmospheric data. As a
result, unlike the Lorenz energy cycle (Lorenz 1955), the angular momentum cycle between eddy
and the mean flow was not closed, leaving some key questions unanswered: e.g., how much is the
observed zonal-mean state already modified by the eddy effects and to what extent are noncon-
servative processes (e.g., wave dissipation and/or diabatic heating) responsible for the observed
angular momentum distribution?

In recent years some advances have been made, and one can now evaluate and map the amount
of angular pseudomomentum carried by finite-amplitude Rossby waves (Figure 15; for details, see
Section 3) and its regional budget (Section 4). Not only does this help close the angular momentum
cycle, but also it identifies the conditions conducive to large-amplitude wave events driven by
eddy-mean flow interaction. In this article I review the theoretical framework behind this new
development and highlight its applications to meteorological data. To set the stage, I start with a
brief review of fundamentals. For a more complete introduction to the subject, see, for example,
chapter 10 of Vallis (2017).

2. FUNDAMENTALS

Due partly to the strong height and latitude dependence of the atmospheric state and partly to
the ease of application to gridded data, it is common to adopt longitudinal (zonal) averaging to
define the mean state and the local departure from the zonal mean to define eddy. In this article I
denote the zonal mean by an overbar and eddy by a prime:

W (x,3,2,1) = W (y,2,1) + W'(x,y,2,1), L.

where I is any field variable in the Cartesian coordinate (x, y, z), where x is longitude, y is lati-
tude, z = —HIn (p/po) is pressure pseudoheight (H is constant scale height and py = 1,000 hPa),
and 7 is time. (I introduce a spherical coordinate suitable for data analysis in Section 3.) W is as-
sumed to be cyclic in x. Equation 1 is a special form of Reynolds decomposition. It is not the
only way to define eddy and mean, and later I introduce a new definition of eddy incorporating a
(quasi-)Lagrangian coordinate. Such freedom in the choice of coordinate proves essential for
making progress in theory.

2.1. Quasigeostrophic Approximation

The first step is to simplify the governing equations for the analysis of extratropical circulation.
In the Earth’s extratropics, the evolution of the large-scale circulation of the atmosphere is slower
than the rotation of the planet with respect to the local vertical axis. By assuming that the at-
mospheric state is a small perturbation to a (constant) solid body rotation and to a horizontally
uniform stable stratification, one can apply perturbation theory to the equations of motion and first
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Rossby waves:
horizontal undulation
of the flow in a
rotating fluid due to
meridional gradient of
vorticity

Baroclinic instability:
instability of a rotating
stratified fluid in the
presence of meridional
density gradient

Thermal wind
balance:

balance between
vertical wind shear and
horizontal
temperature gradient
that arises from
hydrostatic and
geostrophic balance of
forces

Stratospheric sudden
warming:

major disruption of
the stratospheric polar
vortex involving
reversal of the jet and
rapid warming

Lorenz energy cycle:
4-component cycle
that defines the
partition and transfer
of energy between the
zonal-mean state and
eddy field, as well as
between kinetic and
available potential
energy

Angular
pseudomomentum:
average angular
momentum carried by
the wave field, or the
wave’s ability to
modify the angular
momentum of the
mean flow
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Pressure
pseudoheight:

a scaled pressure
coordinate that
approximates altitude
under hydrostatic
assumption while
eliminating density as
a dynamic variable

Potential vorticity
(PV): a materially
conserved dynamic
tracer in adiabatic,
frictionless flow (a
differential form of
Kelvin’s circulation); ¢
in Equation 4 is a
quasigeostrophic
approximation to PV

Wentzel-Kramers—
Brillouin (WKB)
approximation:
mathematical
approximation to
describe a wave train
traveling in a slowly
varying medium, with
modulations in the
wave structure

352

thermodynamics to derive quasigeostrophic dynamics. Quasigeostrophy is an approximate state
of the atmosphere that evolves slowly maintaining hydrostatic and geostrophic balance, wherein
pressure (streamfunction ¥) becomes the sole variable in the fluid interior. Horizontal winds and
temperature simply become gradients of . Acoustic and inertia-gravity waves are filtered out. The
quasigeostrophic dynamics is governed by the material conservation and invertibility of potential

vorticity (PV) ¢:

Dg _ 2
D! =T .
D,_d 9y 8y3d 3
Dt ot dy ox | ox 9y '
29 ([ po(z) Oy
= VZ ﬁ) a_ . 4'
q@,y,2,1) = By + Vi + po(z) 0z (N(%(Z) 0z >’

where ¢ is nonconservative sources and sinks of ¢, f = f; + By is the latitude-dependent Coriolis
parameter (= twice the rate of planetary rotation about the local vertical axis), po(z) oc e=*/ is
background density, Nj (z) is the squared buoyancy frequency, and V4 is horizontal Laplacian (see,
e.g., Charney 1948, section 3.2.3 of Andrews et al. 1987). To invert ¢ from ¢ with Equation 4, one
needs boundary conditions. In particular, at the lower boundary a separate prediction of 0v/0z
is needed with the help of the thermodynamic equation.

2.2. Rossby Waves in a Slowly Varying Flow

The rudimentary behavior of the Rossby waves in the midlatitude atmosphere is described by
the quasigeostrophic PV equation linearized about a steady zonal-mean state. By substituting
q7=1790,2)+ ¢ (x,y,21t) and ¥ = ¥ (y,2) + ¥'(x,,2,¢) in Equation 2, one obtains an eddy PV
equation,

g dq' | 0y’ 97

— 4u= =0 +q 5.
or T ax T ax gy - 0@ FD
;0 po By Iy
/:VZ / fioi s 7R 6
1 v po 0z (NOZ 0z )’ “ ay’
i, v R0 (e :
y 3y’ po 9z \NZ 9z )’

where o denotes the amplitude of eddy. Now linearize the equation by discarding the right-hand
side (RHS) terms of Equation 5. If one assumes that %, 37/9y, and the wave amplitude vary in the
meridional plane only slowly compared to the scale of the wavelength [the Wentzel-Kramers—
Brillouin (WKB) approximation] and that Ni also varies smoothly and slowly over the scale
height H, Equation 5 accepts a monochromatic waveform modulated over the slow scale (¥, Z) =
€y, 2) (e < 1)

1/// — \I’(Y, Z)ei&)(KZ)/e ez/ZHei(kx—a)t), 3.
where
00 ®
o=l S =mt2) 5

define the modulated wavenumbers. The zonal wavenumber £ and frequency w are constant, con-
sistent with the zonally uniform, steady background. Substituting in Equation 5 and collecting the
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real part to the leading order, one obtains a local WKB dispersion relation,
ki

e f o+ )

10.

w =Tk —

while from the imaginary part a constraint on the wave amplitude W along the ray emerges:

%(1 )+£<f—°m >_0 11.

Since d7/dy is usually dominated by the gradient of the Coriolis parameter > 0, Equation 10
shows that the zonal phase speed of the Rossby wave ¢ = w/k is slower than % (i.e., westward with
respect to the zonal-mean zonal wind). This is because the flow induced by the eddy PV gives rise
to meridional advection of the background PV (the third term of Equation 5), which produces a
tendency of ¢’ opposite of eastward zonal advection (second term), known as the -effect.

2.3. Generalized Eliassen-Palm Theorem

A key role of Rossby waves is to transmit zonal pseudomomentum (in the spherical coordinate
this is generalized to angular pseudomomentum, with a multiplication factor zcos ¢, where # is
the radius of the planet and ¢ is latitude relative to the Equator) from the wave source region to a
remote sink, where the momentum is deposited to the mean flow. Characterization of atmospheric
waves as a transmitter of pseudomomentum originated from the work of Eliassen & Palm (1961)
and was later generalized by Andrews & Mclntyre (1976, 1978D).

According to the Hamiltonian formulation of wave dynamics, pseudomomentum density
carried by a small-amplitude wave traveling through a zonally uniform medium is given by
E/(c —u), where E is energy density of the wave (Bretherton & Garrett 1968). In the present
case, E = [k 4+ I* + (f§ /N§ )’ + 7)1 and by using Equation 8 to rewrite ¢’ in Equation 6
and by incorporating Equation 10, one can show

E 1 42
c—1u 2 9q/dy

Since 97/dy is dominated by g > 0, it follows that E/(c — %) < 0, viz the Rossby wave carries
negative (westward) pseudomomentum. I revisit this point in Section 3.2. The opposite of pseu-
domomentum density (4, > 0) is called (linear) wave activity. The transmission of wave activity
(pseudomomentum) by the Rossby wave is governed by

9 — Yy’

—A;, =—vq H+D ‘= 13.

o v'q' + O(e’) + D, v o 3

where the first term on the RHS is the meridional flux of eddy PV and D denotes nonconservative

sources and sinks. This equation may be derived by multiplying Equation 5 by ¢, taking the zonal
average, and dividing by 87/9y (which is assumed to be time independent so it goes inside the time
derivative). Noting the identity (known as the Taylor-Bretherton identity; it applies to geostrophic
eddies of all amplitudes)

1
Vg = —V -F, 14.
1 o

Y Y fy By Y fov'o’
F—po (0, 220 Jo VOV _ o, — 15.
,00< " ox 3y N} ox 0z po Z“)’deg/dz ’ g
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Hamiltonian
formulation of wave
dynamics:
formulation in which
the dispersion relation
and amplitude
equation of the waves
are derived from the
principle of stationary
action applied to the
average Lagrangian

density
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where o' = —0v'/0y is eddy zonal wind and ¢’ and 6¢(2) are eddy and background potential
temperature, Equation 13 becomes

d 1
—A; =——V -F+0@?*)+D. 16.
ot Po

The flux F is called the generalized Eliassen-Palm flux density (E-P flux), and it quantifies the ra-
diation stress of the Rossby wave (Andrews & McIntyre 1976, Edmon et al. 1980). Note that the
components of F have the dimension of momentum flux, but the vertical component is propor-
tional to the meridional eddy heat flux v'6’. With geostrophic balance v’ o 0p'/0x (p is pressure)
and the effective vertical displacement of isentropic surface £’ ~ —6’/(d6/dz), v'6’ is proportional
to p'0&'/dx, i.e., form stress (pressure torque) between adjacent (wavy) isentropic layers. This mode
of momentum transfer dominates the vertical momentum flux —#'w’ in the quasigeostrophic limit.

Furthermore, for a small-amplitude wave, by substituting Equation 8 in Equation 15 and by using
Equation 10, it is straightforward to show that

F = pocgAy, Cg = (O,%,g—;), 17.
so the E-P flux is the flux of wave activity density (the opposite of pseudomomentum density),
which is transported at the group velocity of the Rossby wave in the meridional plane, c,. [Al-
though this result is based on the dispersion relation of a monochromatic wave (Equation 10),
both linear wave activity A;, and the E-P flux F permit superposition of multiple wave compo-
nents. Equations 16 and 17 apply to the superposition of waves if one interprets ¢, as the average
group velocity weighted by wave activity density of the component waves.] Equation 16 is known
as the generalized Eliassen—Palm theorem (E-P theorem) (Andrews & Mclntyre 1978b, Andrews
et al. 1987). It depicts the conservation of wave activity density poAy, up to O(a?). For a conser-
vative (D = 0) small-amplitude wave, wave activity changes only where V - F # 0. However, the
WKB wave train traveling in a steady flow does not satisfy this condition because Equation 11
is equivalent to V - F = 0. The inhomogeneity in the mean state modulates the amplitude and
wavenumbers of the wave spatially, but the E-P flux remains nondivergent and wave activity re-
mains steady. The only exception is when the wave encounters a critical line z = ¢, across which
the E-P flux changes discontinuously (e.g., Dickinson 1968, 1970). Thus, the wave transience re-
quires a critical line (at least according to the linear WKB theory; this does not necessarily apply
to finite-amplitude eddies).

2.4. Transformed Eulerian Mean Formalism

When the convergence of the E-P flux leads to a change in wave activity, pseudomomentum of the
Rossby wave is deposited to the zonal-mean circulation. To the extent that such deposition is fre-
quent and efficient, one expects the zonal-mean circulation of the atmosphere to be substantially
altered/driven by the waves. Jeffreys (1926) was among the first to recognize the importance of
eddy transport of angular momentum for the maintenance of the general circulation of the atmo-
sphere against surface friction. Yet angular momentum is also transported by the mean meridional
(overturning) circulation (v, w), and the relative role of eddies and the overturning circulation in
the angular momentum transport became the subject of a colorful debate later (Palmén 1949,
Rossby & Starr 1949, Starr 1949).
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In the quasigeostrophic limit, zonal-mean zonal wind Z and potential temperature 6 obey

d 00— —

&ﬁzﬁ)iﬂ— @ll/v/‘i‘X, 18.
0 — dé, 0 — =
0 =—w,—— — —VO +6, 19.
ot dz 9y

where (v,, W,) is ageostrophic mean meridional circulation satisfying mass continuity (the form of
mass continuity follows from the definition of pressure pseudoheight) 3v,/dy + p, ' (0ow,)/dz =
0, X is the zonal-mean frictional force, and 6 denotes zonal-mean nonadiabatic heating. Unlike
the generalized E-P theorem, Equations 18-22 are exact—that is, eddies need not be of small am-
plitude. Although Equations 18 and 19 demonstrate that the zonal-mean state of the atmosphere
is affected by both the mean meridional circulation and eddy fluxes, the role of the radiation stress
of the Rossby wave becomes more transparent if we rewrite the equations in the following form:

d 1 —
—n=fo'+—V -F+X 20.
Y fov' + P +X,
39— a6~
—0=-w'"—+86 21.
ot w dz +o
1 8 Q7 Q7
PR S (LG B Ay i | 22.
00 0z \ dby/dz dy \ dby/dz

Here (v*,w") is called the residual circulation. As Equation 21 shows, w* is the effective ver-
tical velocity that advects the zonal-mean isentropes and the difference between w* and w, is
akin to the Stokes drift velocity. As we see later in Equation 58, v* is the effective meridional
velocity that advects Kelvin’s circulation. In this sense, the residual circulation is analogous to
the Lagrangian-mean circulation, and it can be significantly different from the Eulerian-mean
circulation (Andrews & MclIntyre 1976, 1978a). The residual circulation in the troposphere
constitutes one overturning cell per hemisphere, rising in the tropics and descending in high
latitudes, whereas the Eulerian-mean meridional circulation forms three cells. Note (v*, w*) still
satisfies mass continuity 9v*/dy + p, ' d(pow*)/dz = 0. Equations 20-22 are called the trans-
formed Eulerian mean (TEM) equations (Andrews & McIntyre 1976, Andrews et al. 1987). In
the TEM set, % and 6 are governed by the divergence of the E-P flux (eddy forcing), the residual
circulation, and frictional and diabatic forcing. As % and @ evolve, they maintain thermal wind
balance, whereas the eddy and other forms of forcing tend to disrupt it. The residual circulation
plays the role of restoring the thermal wind balance of the zonal-mean state.
In the time average, Equations 16 and 20 become

1
0=——V -F+0*)+D, 23.
Lo
1 —
0= fov'+ —V-F+X. 24.
Po

Equation 23 states that, apart from the O(e*) term, the time-mean E-P flux divergence (conver-
gence) is balanced by the positive (negative) D, meaning that the E-P flux transports wave activity
from the wave source region to the wave sink, or transports (positive) pseudomomentum from the
wave sink to the wave source. Equation 24 then shows that the E-P flux divergence is balanced by
the Coriolis torque of the residual circulation and the frictional force. Friction is generally weak
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Stratosphere: layer of
the atmosphere above
the troposphere that
extends to about

50 km in altitude; the
ozone layer is in the
stratosphere

356

30 T T

25 -

20 -

Pseudoheight (km)
T
§k~ = e oo
\%«:‘ SRR

NN
5, ‘
0 A
80°S 60°S 40°S 20°S 0° 20°N 40°N  60°N  80°N

Latitude
| |
-30 -20 -10 0 10 20 30 40 50
Wind speed (m/s)

Figure 2

Climatology of the Eliassen-Palm (E-P) flux o IF = cos ¢(0, /v, fv'67/(d6y/dz)) (arrows) and the
zonal-mean zonal wind 7 (color) for December—February as functions of latitude and altitude (pseudoheight).
Here ¢ is latitude and f = 2Qsin ¢ is the Coriolis parameter (2 = 7.29 x 10~° s~! is the rotation rate of the
Earth), po(z) and 0¢(z) are the background density and potential temperature, and (z', v’, and 0’) are the eddy
components of zonal and meridional winds and potential temperature. The horizontal to vertical scale for
the E-P flux vector is adjusted for an easy visual reference. The upper tropospheric maxima in the
zonal-mean zonal wind at ~30°N and 50°S denote the axes of the jet stream. Data from European Centre
for Medium-Range Weather Forecasts Reanalysis v5 (Hersbach et al. 2020).

above the boundary layer, so in the balanced state the wave sink (convergence of the E-P flux) is
coincident with a poleward residual circulation.

2.5. Observed Eliassen-Palm Flux Cross Section

Since its introduction by Edmon et al. (1980), the E-P flux cross section remains a popular diag-
nostic for the flow of wave activity/pseudomomentum in the meridional plane, in no small part
because it is easy to compute from gridded meteorological data. Figure 2 shows the vertical cross
section of the average E-P flux vectors in the troposphere and the lower stratosphere for the
months of December through February, together with the zonal-mean zonal wind (color). Here I
define the E-P flux in the spherical coordinate, where wave activity is the opposite of angular pseu-
domomentum. The E-P flux is greatest in the midlatitudes, and it points predominantly upward.
In both hemispheres, the flux enters the atmosphere from the lower boundary in the midlatitudes.
The main source of wave activity at the lower boundary is baroclinic instability, which siphons
wave activity from the surface reservoir associated with temperature gradient. Other sources at
the surface include form stress of topography and heat exchanges with the ground.

Much of the tropospheric E-P flux is deflected equatorward in the upper troposphere and con-
verges into the subtropics. A smaller fraction of the E-P flux is also deflected to higher latitudes.
The convergence of the E-P flux in the flanks of the jet stream suggests that wave activity is dissi-
pated there (Equation 23) due to mixing (wave breaking) associated with critical lines. The pattern
of the tropospheric E-P flux largely reflects life cycles of baroclinic waves [baroclinic growth
followed by a meridional transmission of synoptic Rossby waves (Held & Hoskins 1985)].
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Angular pseudomomentum is transported in the opposite direction of wave activity: Itis drawn
from the subtropical upper troposphere and transported to the extratropical lower troposphere.
The positive (eastward) angular pseudomomentum deposited to the boundary layer is partially
balanced by the negative angular momentum advection by the equatorward residual circulation
near the surface (Held & Schneider 1999), but it is also balanced by the frictional loss of angular
momentum of the zonal-mean flow (Equation 24). From the density-weighted vertical integral
of Equation 24, the frictional loss of angular momentum through surface westerlies is balanced
by the convergence of the vertically integrated eddy angular momentum flux associated with the
meridional radiation of the Rossby waves from the midlatitudes. This resolves the rather counter-
intuitive observation that the action of eddies is antifrictional, which had puzzled atmospheric
scientists for some time (e.g., Starr 1968). It attests to the importance of radiation stress and
eventual dissipation of Rossby waves in the maintenance of general circulation.

In the winter Northern Hemisphere, part of the E-P flux enters the stratosphere, where the
zonal-mean zonal winds are westerly (color in Figure 2). This represents vertical propagation of
planetary-scale Rossby waves forced by large land masses in the Northern Hemisphere (Charney
& Drazin 1961), distinct from baroclinic instability.

Opverall, when averaged globally, wave activity is injected at the lower boundary and dissipated
in various parts of the atmosphere through mixing and radiative damping.

2.6. Nonacceleration Theorem

On short timescales, pseudomomentum deposited by the Rossby wave directly alters the zonal-
mean zonal wind through the second term on the RHS of Equation 20. However, even if one
ignores friction X, eddy forcing is partly balanced by the Coriolis torque of the residual circulation
fov™. Thus, it is not obvious how much zonal-mean zonal wind will accelerate in response to eddy
forcing. A more direct relationship between the zonal acceleration and eddy forcing emerges after
one eliminates the residual circulation from Equations 20 and 21 using mass continuity:

2 i 0 (1 - 6
|:8f7+fi<,00803>:|%=3—<—V-F+X)—ﬁ3 P30 25.

3y’ po dz 0z ar  3y* \ po po 9z \ dby/dz dy
where &y(z) = f¢ /N7 (2). In particular, 97/9t = 0 ifX =6 =V.F=0and if the boundary con-

ditions are also time independent. (Equation 25 is essentially the equation for the meridional
gradient of zonal-mean PV.) Meanwhile, from Equation 16, V - F = 0 if 34,/9t =D = 0 for

small-amplitude waves. Therefore, under conservative dynamics (X = 6 = D = 0), if the ampli-
tude of wave is small and steady, the zonal-mean zonal wind will not change. This result is known
as the nonacceleration theorem (Charney & Drazin 1961, Andrews & Mclntyre 1978b). Since the
E-P flux divergence appears in both Equations 16 and 25 with opposite signs, these equations es-
tablish a generalized action-reaction relation for the zonal-mean zonal wind and the Rossby wave.
This result is extended to finite-amplitude eddy in Sections 3 and 4. One can also derive an
analogous equation for f,7™:

92 10 0 10 d 1 —
_— 4 —— — 7= —— — —(—V-F+X
[ayz o0 0z (" “":"azﬂf"” po 02 [" "%z (Po " )]

fod £0 90
——— — 26.

po 3z \ dby/dz dy
Comparing the RHS of Equations 25 and 26, one sees that the second-order horizontal derivative
of the E-P flux divergence drives the zonal acceleration, whereas the vertical derivative invokes
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Primitive equations:
set of equations that
governs the motion of
a compressible,
hydrostatic
atmosphere on a
rotating sphere
without the
quasigeostrophic
approximation

Isentropic
coordinate: use of
potential temperature
as the vertical
coordinate under
hydrostatic balance
and stable
stratification, wherein
diabatic heating
becomes “vertical”
velocity

Generalized
Lagrangian mean
(GLM) formalism:
formalism in which the
mean is defined over a
moving material tube;
it affords an exact
finite-amplitude
nonacceleration
theorem following the
Lagrangian-mean
motion of the tube
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the residual circulation. Therefore, if the vertical-to-horizontal aspect ratio (b/L) of the E-P flux
divergence exceeds fy/Ny, the wave forcing tends to accelerate the zonal-mean zonal wind rather
than be balanced by the Coriolis torque of the residual circulation (Pfeffer 1987, Nakamura &
Solomon 2010).

2.7. Some Generalizations and Limitations

The foregoing formalism was well developed by the early 1980s but has a few limitations. First,
the formalism is based on the quasigeostrophic approximation on the Cartesian coordinate and
ignores full spherical geometry and nonquasigeostrophic effects such as horizontal variation of
static stability. Second, it only depicts the zonally averaged budget of wave activity and zonal-mean
zonal wind and remains silent about the longitudinal variation of eddy-mean flow interaction.
Finally, the generalized E-P theorem (Equation 16) and the nonacceleration theorem are valid
only for small-amplitude eddy.

On the first point, the TEM set and the generalized E-P theorem have been extended to the
primitive equations on a rotating sphere through the use of the isentropic coordinate, which sim-
plifies the formalism for the upper troposphere and the lower stratosphere (Andrews 1983, Tung
1986, Held & Schneider 1999). On the other hand, the isentropic coordinate complicates the
treatment of the lower boundary where the isentropes intersect the ground. Iwasaki (1989) and
Chen (2013) address this by using mass above a given isentropic level as the vertical coordinate.

The formalism has also been extended to describe wave propagation in three dimensions
(Hoskins et al. 1983; Plumb 1985, 1986; Takaya & Nakamura 2001; Kinoshita & Sato 2013).
The 3D extension of the generalized E-P theorem allows one to track the longitudinal movement
of wave train and to infer more precise locations of wave sources from the wave activity fluxes. To
remove phase dependence from wave activity and its fluxes, Takaya & Nakamura (2001) combine
the two expressions of pseudomomentum (Equation 12) locally. Yet most of these extensions still
assume that eddies are of small amplitude and the mean state changes only slowly and mildly.

The small-amplitude requirement of the wave activity equation severely limits its utility for
the real atmosphere, where eddy amplitudes are large and the mean state undergoes substantial
fluctuations. For example, 37/dy often changes sign once wave amplitude becomes large and hence
Ap, diverges (Equation 12), and the wave activity budget (Equation 16) is dominated by the O(*)
term. This hampers an accurate assessment of the roles of wave transience (wave activity tendency)
and wave dissipation in the formation of the E-P flux divergence. Attempts at extending the
generalized E-P theorem to finite amplitude were active through the 1970s and 1980s in the fluid
mechanics literature. They culminated in the generalized Lagrangian mean (GLM) formalism of
Andrews & MclIntyre (1978a,c) (see also Grimshaw 1984, Salmon 1988, Biihler 2014), in which
wavy displacements of a material tube from its center-of-mass latitude/height are used to define
eddy. Unfortunately, the GLM set is difficult to use with gridded meteorological data because the
center of mass of a wavy material tube becomes quickly intractable (McIntyre 1980). An Eulerian
formalism utilizing impulse-Casimir conservation had some success (Killworth & McIntyre 1985,
Mclntyre & Shepherd 1987, Haynes 1988), but it also contains a cubic amplitude term that leads
to the same issue as the small-amplitude formalism when applied to meteorological data.

Thus, up to this point one still lacks a theoretical framework for finite-amplitude eddy-mean
flow interaction applicable to gridded meteorological data for evaluating the angular momentum
cycle of eddy and the mean flow. The next section provides an overview of the recent advances
to overcome these obstacles. I begin by laying out a diagnostic framework suitable for finite-
amplitude eddies on a rotating sphere and demonstrate its applications to data. I limit the scope
to the extratropical circulation and assume that it is governed by balanced yet fully nonlinear
dynamics under the influence of forcing and dissipation.
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3. FINITE-AMPLITUDE WAVE ACTIVITY

Difficulty associated with the Reynolds decomposition like Equation 1 becomes apparent when
the eddy amplitude « is large. To the extent that wave activity is defined as an Eulerian field variable
and to the extent that it is O(«?) at small amplitude, its eddy advective flux is O(a?®). Unless its
divergence vanishes, the budget of wave activity will be quickly dominated by this nonlinear flux
as the eddy amplitude grows, obscuring the role of wave transience and wave dissipation.

More fundamentally, when the eddy amplitude is large, the observed zonal-mean state is likely
already modified by the eddy effects, so eddy in Equation 1 is not defined relative to a truly eddy-
free state. (This is not the case for stationary homogeneous turbulence, in which the eddy fluxes
do not alter the mean state.) If a flow were stirred from a condition devoid of eddies, the initial
condition could serve as a reference eddy-free state, but for the observed (already highly wavy)
atmosphere, such initial condition is not known.

3.1. Quasi-Conservative Eddy-Free Reference State

Taking a cue from the relabeling symmetry of Hamiltonian fluid mechanics (Virasoro 1981, Griffa
1984, Salmon 1988), Nakamura & Zhu (2010) use the level sets (contours) of PV as a quasi-
Lagrangian meridional coordinate to define a hypothetical eddy-free reference state. To describe
this process in ways amenable to gridded meteorological data, I adopt the spherical coordinate
(longitude A and latitude ¢) instead of the Cartesian coordinate (x, y) and rewrite quasigeostrophic
PV (Equation 4) as

27.

Oty = f —— 2 ! 8(”COS¢)+fi<M)

acosg 0L acosp 3¢ 000z \ 90/dz

where f= 2Qsin ¢ is the Coriolis parameter (€ = 7.29 x 107° s~} is the rotation rate of the Earth)
and 0 (z, t) is hemispheric-mean potential temperature (time dependence is weak). The coordinate
transformation obeys dx = (# cos ¢)dA,dy = ad¢, where 2 = 6,378 km is the planet’s radius. ¢
is —0.57 at the South Pole, 0.5 at the North Pole, and 0 at the Equator. Strictly speaking,
quasigeostrophic approximation in the spherical coordinate is not dynamically self-consistent.
Making fa full function of latitude causes the geostrophic wind to be (slightly) divergent, yet I still
treat it as nondivergent. This inconsistency is minor compared to the benefit of finite-amplitude
formalism applicable to meteorological data while maintaining the theoretical simplicity of
quasigeostrophic dynamics.

Because of the predominance of fin Equation 27, PV is a strong function of latitude, generally
increasing from a negative value at the South Pole to a positive value at the North Pole, although
it may be wavy in the presence of eddies (Figure 34). Since PV is materially conserved in the
absence of forcing and dissipation, it serves as a quasi-material coordinate for latitude. It is possible
to associate the value of PV, Q, with the area S(Q, t) that resides north of that contour,

S(Q,3,1) = / /D L osg B, DIQ) 106,202 0 2s.

Equation 28 defines one-to-one mapping from the value of PV to area S: S = 0 corresponds to
the maximum value of Q, and S = 474’ corresponds to the minimum value. To the extent that
winds that advect PV are divergence free and area preserving, S(Q, 2, ) is independent of time
unless PV has nonadvective sources and sinks. Any time dependence of S(Q, z, t) is a sign that
nonconservative processes are altering PV.

One can construct a hypothetical, quasi-conservative, eddy-free reference state by zonalizing
the wavy PV contour into a latitude circle without changing the enclosed area. This would be the
initial state if the present (wavy) condition evolved conservatively from a zonally symmetric state.
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Figure 3

(@) Schematic diagram of potential vorticity (PV; denoted by ¢) distribution on the sphere. (5) Lobes enclosed by a wavy PV contour
with a value Q (¢ = Q) and the line of latitude that encloses the same area as the PV contour (equivalent latitude, ¢.). In lobe L1, ¢ < Q
so a negative (clockwise) circulation is induced around it, whereas ¢ > Q in L; so a positive (counterclockwise) circulation is induced.
Areas of L1 and L, are the same by construction. (¢) Meridional displacement of PV contour from ¢, as a function of longitude A.
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Since the reference state is zonally symmetric, it is a function of latitude, height, and time only,
and its latitude is related to the area S(Q, z, t) through

S(Q,z,t) = 2ma’ (1 —sin,). 29.

¢.(Q, 2, t) is known as equivalent latitude (Butchart & Remsberg 1986, Allen & Nakamura 2003).
Q is a monotonic function of ¢, for given z and #. Equations 28 and 29 allow Q to be written as a
function of ¢,, z, and #:

Q = QREF(¢E7Z7t)' 30.

Note that the mapping of PV onto equivalent latitude is instantaneous and does not depend on
the geometry of the PV contours. Contours can be overturned or cut off (in which case all islands
are counted as part of a contiguous area). With gridded PV data, the evaluation of the surface
integral in Equation 28 is approximated by conditional box counting for the chosen values of Q,
and Q(¢.) is numerically inverted from ¢,(Q). Since the area-PV relation does not change under
conservative dynamics, the reference-state PV Qggr changes only in response to nonconservative
processes. Even though Qggy is zonally symmetric, it shares the same area-PV relationship with
the actual (wavy) state, and in that sense it is strongly constrained to the actual climate state.

The reference-state zonal wind uggr and potential temperature Orgr may be inverted hemi-
spherically from Qggp (Pfeffer 1987, Nakamura & Solomon 2010, Nakamura et al. 2020). For the
details of this inversion, see the supporting information of Neal et al. (2022) and Section 1 of the
Supplemental Material. Since uggy is inverted from Qggr and since the latter is invariant under
conservative dynamics, any changes in #gpy reflect nonadiabatic changes to Qggr. For example,
seasonal cycle driven by radiative process and eddy-induced mixing events all affect Qrpr and
hence #rpr. Since ugpy is an eddy-free state reachable from the actual (wavy) state through con-
servative dynamics, the difference between % and uggr may be interpreted as the adiabatic effects
of eddy on the zonal-mean zonal wind.

Figure 4a,b shows the Northern Hemisphere monthly mean % and #ggr for January 2021.
While % shows a robust subtropical jet (~45 m s7!) in the upper troposphere, #ggr in the same
region is about 10 m s~! weaker. Therefore, eddies and eddy-induced residual circulation en-
hance the zonal-mean subtropical jet. However, the greatest difference is in the polar stratosphere,
where uggr reaches nearly ~60 m s~! at 30 km but # remains weakly negative (easterly). This
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(@) Northern Hemisphere monthly mean, zonal-mean zonal wind # for January 2021. (5) Same as panel # but for the reference-state
zonal wind #rgr. (¢) Time series of % (red) and urgr (blue) at 60°N 10 hPa (~30 km) for October—April 1979-2020. Data from European

Centre for Medium-Range Weather Forecasts Reanalysis v5.

stark difference is a result of the polar vortex being highly distorted and displaced from the pole
by a large-amplitude Rossby wave. An example of such event in 2009 is shown in a later figure.
Figure 4c¢ plots time series of #ggr and % at 60°N 10 hPa (z ~ 30 km) during October to April for
42 years. u is generally lower than ugryr and shows much greater year-to-year variability, including
some winters in which % is consistently negative. In comparison, #ggr shows much less interannual
variability, particularly up to December. Thus, #rgr captures a canonical seasonal cycle of the po-
lar vortex driven by radiative cooling of the polar region, whereas % is much more volatile because
of frequent and chaotic large wave events (Nakamura & Solomon 2010). In late winter #ggr also
becomes somewhat volatile because the mixing process driven by large wave events alters Qggr
significantly. (See Equation 53.)

3.2. Eddy-Mean Flow Interaction in Barotropic Flow on a Rotating Sphere

In this subsection, the concept of finite-amplitude Rossby wave activity is introduced using
barotropic flow on a rotating sphere as a prototype. The objective is to extend the generalized
E-P theorem to finite-amplitude eddies and to describe eddy-mean flow interaction (including
dissipative effects) in a way amenable to gridded meteorological data. Generalization to stratified
quasigeostrophic flow is straightforward, which is discussed in the next subsection. The governing
equation is analogous to Equation 2, but PV (Equation 27) simplifies to absolute vorticity:

Dg 8+ u 8+v8 . 31
Dt~ \9t acos¢ dr  ad¢p =% '

g ¢,1) = f + V2, 32.
. . 10 1 0
(u,v) = (acos¢ A, aq&):(—;%, m%). 33.

It is assumed that § in Equation 31 represents turbulent diffusion of vorticity.
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Figure 3a stll characterizes the overall spatial distribution of ¢. Instead of using
Equation 1, I define eddy with the meridional displacement of PV from the eddy-free reference
state (Figure 34). Consider a wavy contour of ¢ with the value Q and the corresponding circle of
equivalent latitude ¢ = ¢,.(Q). The construction of ¢, is such that the two curves enclose the equal
area on the sphere (Equation 29). Now suppose that the observed (wavy) PV evolved conserva-
tively from the eddy-free reference state; i.e., the PV contour (¢ = Q), was at ¢ = ¢, before the
displacement. Then the eddy amplitude may be defined as the amount of PV exchanged across
¢ = ¢, during the displacement, that is, the difference between the surface integral of ¢ over the
lobe L, displaced to the south of ¢, (Figure 3b) and that over the lobe L, displaced to the north:

AC(¢,, 1) = // qa* cos pdrde — / qa* cos pdrde, 34.
L, L
Ly:q¢,t) <Qand ¢ > ¢,  Lr:q(r,¢,t) > Qand ¢ < ¢.. 35.

Since ¢ > Q everywhere in L, and ¢ < Q everywhere in Ly, it follows that AC > 0 and AC vanishes
only when PV is zonally symmetric (i.e., when the areas of L; and L, are both zero). Therefore,
AC is suitable as a metric for eddy amplitude. Note that the definition of AC is independent of
the shape of the PV contours and therefore applies to eddies with arbitrary amplitudes (waves or
turbulent eddies). Equation 34 may be written in an alternative form,

AC(g., 1) = C1(Q(¢e, 1)) — (e 1), 36.
Q@)= [[ i cosodids,  Di:ghuun) = Q0u), 37.
Dy
Cy(pe,t) = /f qa* cos pdrde, D;: ¢ > ¢, 38.
D,

Finite-amplitude Rossby wave activity is then defined as
A(gpe,t)cos ¢, = A—C = L C -Gy =0. 39.

2nra 2ma

The two integrals in Equations 37 and 38 are readily calculable from gridded data using condi-
tional box counting. It can be shown that 4 cos ¢, approaches A}, cos ¢ (Equation 12) in the limit
of small-amplitude eddy (Nakamura & Zhu 2010, Solomon & Nakamura 2012), while A4 cos ¢,
does not involve 347/d¢ and remains finite even when the latter changes sign.

Figure 5 depicts evolution of ¢(%, ¢, 2), A1.(¢, t) cos ¢, and A(¢., t) cos ¢, during a barotropic de-
cay experiment on a rotating sphere. The model setup follows Held & Phillipps (1987) and solves
Equation 31 with ¢ being small numerical viscosity. Eddy is initially concentrated in the midlat-
itudes and superposed on a stable zonal jet. As the eddy radiates meridionally as Rossby waves,
they encounter critical lines on the flanks of the jet and break, and the contours of PV (abso-
lute vorticity) turn over (Figure 5a-d). This produces a local reversal of 97/3¢ and consequently
a singular behavior in Aj, cos ¢ (Equation 12), limiting its utility as a diagnostic (Figure Se). In
contrast, 4 cos ¢, avoids this problem and correctly identifies the meridional separation of wave
activity and its accumulation in the critical layers (Figure 5f). Although the overall patterns of
Ay, cos¢ and A cos ¢, are similar, clearly the latter offers a more meaningful diagnostic at finite
amplitude. On the other hand, the accuracy of A cos ¢, may be compromised at small amplitude,
as it is computed as a difference of two large integrals (Equation 39).

Because C; and C, are surface integrals of absolute vorticity (Equations 37 and 38), by the
Stokes theorem, they are equivalent to Kelvin’s circulation around the wavy PV contour and
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(a—d) Evolution of potential vorticity (PV) (absolute vorticity) during barotropic decay experiment on a rotating sphere for days 0, 3, 6,
and 9. The model setup follows equations 2 and 3 of Held & Phillipps (1987) with an initial eddy vorticity amplitude ¢ = 8 x

10 s71. Due to zonal symmetry (wavenumber 6), only one-third of the domain is shown. (¢) Latitude-time cross section for linear
wave activity Ay, cos ¢ during the experiment. The green regions are where the zonal-mean PV gradient is negative and/or Ay, is
exceedingly large. (f) Same as panel ¢ but for finite-amplitude wave activity A cos ¢.. Figure adapted with permission from Huang
(2017); copyright Clare S.Y. Huang.

around the line of equivalent latitude, respectively. Under conservative dynamics (§ = 0) PV is
materially conserved so the PV contour is a material line. Therefore, C; becomes a constant of
motion (Kelvin’s circulation theorem):
acl (¢e: t) _
ot

0. 40.

Meanwhile, from Equation 38,
8CZ (¢Ea t)
t

— = 2macos p vy, 41.

where V¢’ denotes the zonal-mean meridional advective flux of vorticity across the latitude line
¢ = ¢.. Then from Equations 14 and 39-41,

M:—cosq}ev/_q/:—lV-F, 42.
ot Po
where F = py cos ¢(0, —#'v/,0) is the E-P flux in spherical coordinate (o, may be considered
constant in barotrophic flow) and —p;'V - F = (2cos ¢.) "' d(u'v’ cos’ ¢)/d¢. Equation 42 is a
finite-amplitude extension to Equation 16 for barotropic flow in the conservative limit (D = 0).
Most notably, unlike Equation 16, there is no cubic term in eddy amplitude: This term has been
absorbed in the new definition of wave activity.
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Since C; is absolute circulation around the latitude circle at ¢ = ¢, (Equation 38),

Cy(¢pe,t) = 2macos ¢.(Q2a cos ¢, + u(¢., 1)), 43.
where  is the rotation rate of the sphere. Substitution in Equation 41 then yields
a7 cos ¢, — 1
—_— = "¢ = —V_.F. .
o cos ¢, v'q . 44

Equation 44 is analogous to Equation 20, but there is no residual circulation because the zonal-
mean meridional velocity identically vanishes in barotropic flow. Thus, in the absence of friction,
angular momentum of the zonal-mean flow is solely driven by the eddy PV flux (the E-P flux
divergence). Then from Equations 42 and 44
om oA
a ot

Therefore, the zonal-mean zonal wind will not accelerate without a change in wave activ-

45.

ity (wave transience). This is a fully finite-amplitude statement of nonacceleration theorem.
Equation 45 also suggests that #(¢,, ) + A(¢,, ) is a constant under conservative dynamics. In
fact, from Equations 39 and 43,

A+A= Cy — Qa cos ¢, = urer(¢.), 46.

27 acos @,

where C is a constant of motion [Kelvin’s circulation (Equation 40)]. If a wave packet arrives from
elsewhere and changes an eddy-free state (uggyr, 0) to a wavy state (#,4) (4 > 0) conservatively,
then # < uggr from Equation 46; that is, zonal-mean zonal wind must be decelerated. That the
wave packet decelerates the zonal flow means that the Rossby wave carries negative angular pseu-
domomentum density: —Az cos ¢, < 0. [It also means that a negative (westward) zonal torque must
be added to the fluid to excite Rossby waves.] Once the wave packet exits the region, the eddy-
free state will be restored—that is, eddy-mean flow interaction under a conservative dynamics is
reversible. By integrating Equations 42 and 44 globally and using the fact that V - F integrates to

Zero,

d [, _d 22 _
E/uﬂ cos” ¢ d¢p, = 5/1‘14 cos” ¢.dg, = 0. 47.

This is a statement of the volume conservation of angular momentum and angular pseudomo-
mentum. The latter may be used for deriving a sufficient condition for modal stability of the flow
at finite amplitude (Shepherd 1988, Nakamura & Zhu 2010).

When there is turbulent mixing (diffusion) § = —V - Fy4, where Fy is diffusive flux of vorticity,
Cy becomes time dependent and (with Equation 37, and the divergence theorem)

B8O _ [ et cosodrdp = § Fu-mat, 4.
ot Dy Q

where n = —V¢/|Vyg|. The RHS quantifies the diffusive loss of vorticity out of the domain D,
(Equation 37). Using ¢, as a coordinate, Equation 48 may be written as (Nakamura & Zhu 2010)

Ci (¢ ) - 0Qrer
— = —2m Kt cos ¢, o6,

49.

where Ke(@., ) is effective diffusivity of PV across its own contour and Qgrer(¢., #) denotes the
zonalized reference PV field (Equation 30). See Nakamura (1996, 2008) and Nakamura & Zhu
(2010) for the definition of K¢ and derivation of Equation 49 from Equation 48.
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Meanwhile, assuming that the zonal-mean diffusive flux of vorticity is small compared to the
advective flux in a high-Reynolds number flow, Equations 41 and 44 remain intact, provided that

there is no additional frictional torque. Then from Equations 14, 39, 41, and 49,
9A cos ¢, 1 1 3Qrer

978 _ Ly .F- - .

% P K cos¢ PRETS

The last term is nonpositive because K. > 0 and 0Qgrrr/0¢, > 0. It represents wave dissi-

50.

pation due to mixing (enstrophy dissipation). From Equations 44 and 50 one obtains, instead of
Equation 45,

duw _ 94 Ker 0Qer 51
ot ot a 8¢, ’

Therefore, in the presence of mixing (K. > 0), both wave transience and wave dissipation affect
eddy-mean flow interaction (McIntyre & Norton 1990). Integrating Equation 51 over a time
period t € [to, 1],

_ f Kot 0Qrer
n 4 ¢,

Thus, even if there is no secular variation in wave activity (A4 = 0), the zonal-mean zonal wind

A= —AA dt. 52.

will be decelerated irreversibly (Az < 0) because wave dissipation causes negative pseudomo-
mentum to be left behind. The reference-state wind zgrgr = % + A also becomes time dependent,
since Kelvin’s circulation in Equation 46 is no longer a constant of motion:

duger Ko 0Qger

= . 53.
ot 4 0,
However, the difference between % and urgr is solely governed by wave transience,
d 0A
— (n— )= ——. 54.
ar (# — uggpyr) 37

This suggests that the partitioning of the mean flow into #rgr and % — ugpr will help compare
the relative effects of wave dissipation and wave transience.

3.3. Eddy-Mean Flow Interaction in Stratified Quasigeostrophic Flow

It is straightforward to extend the foregoing formalism to stratified quasigeostrophic flow. Wave
activity is evaluated at each altitude in the same way as the barotropic case using quasigeostrophic
PV instead of absolute vorticity. Thus, in the calculation of C; and C; in Equations 37-39, ¢4 is de-
fined by Equation 27. Equation 50 remains the same except that F is now redefined as Equation 15
times cos¢, and there is an additional term associated with the diabatic source of PV. For
conciseness, all nonconservative sources and sinks of wave activity will be lumped into 4 cos ¢,:

A cos ¢, 1 .
ddcosd. _ _1g Fidcose. 55.
ot L0

Equation 55 is a finite-amplitude extension to the generalized E-P theorem (Equation 16).
Meanwhile, in the spherical coordinate, Equation 20 is modified to

d 1 _
—7zucos¢, = fvcos¢, + —V - F+ X cos¢,. 56.
ot 0o
In the conservative limit (4 = X = 0), Equations 56 and 55 give
ou A4
— — [ = ——. 57.
ot fo at
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Unlike Equation 45, wave transience is related not only to the deceleration of the zonal-mean
zonal wind but also to the Coriolis torque of the residual circulation. To get better sense of
Equation 57, note that it differs from

5 T 9\, , 9 v 9
<$+;8¢6) (ucos¢f+52acos ¢5) = —(54—;8—@) (A cos ¢,) 58.

only by an order of Rossby number (which is small under quasigeostrophic scaling); that is,
O@/Qua cos ¢,) = O (A/Quacos ¢,) <K 1. Thus, to within the accuracy of quasigeostrophic approx-
imation, Equation 58 states that the absolute angular momentum of the zonal-mean state does not
change following the residual circulation 7* unless wave activity changes on the same path. This
is a nonlocal statement of nonacceleration theorem. With Equation 46 it is clear that Equation 58
also states material conservation of Kelvin’s circulation C; following v* (to be more precise, Cy here
should be called pseudocirculation since it is an area integral of quasigeostrophic PV, not absolute
vorticity, conserved on isobaric surface, not isentropic surface). Baroclinic extension to the nonac-
celeration theorem (Equations 53 and 54) is expressed in Equations 5 and 6 of the Supplemental
Material.

Figure 6 shows the behavior of PV and streamfunction (Figure 64—d) and the relationships be-
tween A cos ¢, and (@ — uggr) cos ¢, (Figure 6e) and between A cos ¢, and uggy cos ¢, (Figure 6f)
during the stratospheric sudden warming event in 2009 (Harada et al. 2010). During this event, the
circumpolar vortex is disrupted, split, and dissipated by a large-amplitude planetary Rossby wave
propagating from the troposphere over the course of a few weeks (Figure 6a-d). The circumpo-
lar winds reversed from strong westerlies to weak easterlies. Leading up to the peak of the event,
(# — uggr) cos ¢, decreases linearly with an increasing A cos ¢,. After the vortex splits, 4 cos ¢, de-
creases while (z — uggy) cos ¢, recovers, tracing nearly the same path as the lead (Figure 6e). The
behavior of uggr cos ¢,, on the other hand, is distinctly irreversible. It stays nearly steady until the
vortex splits; after that it declines steadily as a result of enhanced mixing, and it does not recover
even after A cos ¢, decays (Figure 6f). Thus, the partition of the flow into # — ugpr and #ggr in-
deed quantifies the separate signals of wave transience and dissipation during this highly nonlinear
event.

Although in Figures 4¢ and 6e, % — uggr < 0 for A cos¢, > 0, that is not always the case
for baroclinic flow because of the residual circulation. For example, in Figure 4a,b % — ugpr > 0
around the subtropical jet in the upper troposphere. As stated in Section 2.6, wave transience has
less ability to decelerate the flow when the aspect ratio of eddy forcing is small (shallow) (Pfeffer
1987, Nakamura & Solomon 2010).

4. LOCAL WAVE ACTIVITY

Finite-amplitude wave activity developed in the previous section extends the generalized E-P the-
orem and the associated nonacceleration theorem to eddies with arbitrary amplitudes. Yet it is an
overall measure of waviness of PV for a given latitude and height; it does not describe longitu-
dinal variation of waviness. Meteorological events are often geographically localized, and hence
it is desirable to generalize wave activity as a function of longitude to characterize eddy-mean
flow interaction on regional scales. To this end, Huang & Nakamura (2016) define the meridional
displacement of PV at each longitude as

AP(hypez,t)
Ay 2, 1) cOS G, = —a / 4o bur ', 2, ) cOS(che + @), 59,

0
qe()": ¢L’7 ¢/7 Z, t) = 4(}\, ¢E + ¢,a z, t) - QREF(¢€; z, t)v 60.
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Figure 6

(a—d) Polar projection of potential vorticity (PV) (color, | PVU = 1076 m? s~! K kg~!) and Montgomery streamfunction (contours every
1,250 m? s72) on 850-K isentropic surface (pseudoheight z ~ 32 km) during the 2009 stratospheric sudden warming. (#) January 8.

(b) January 19. (c) January 28. (d) February 5. (¢) Finite-amplitude wave activity 4 cos ¢, (abscissa) versus the departure of the zonal-mean
angular momentum from the reference-state angular momentum (z — uggr) cos ¢, (ordinate) at equivalent latitude ¢, = 60°N, z =

32 km during the same event (30-day lead plus 30-day lag). Labels A-D correspond to the timing of panels a—d. (f) Same as panel e but
A cos ¢, versus urgr cos ¢.. Figure adapted with permission from Nakamura et al. (2020); copyright American Meteorological Society.

where A¢ denotes the meridional displacement of the wavy PV contour relative to the line of
equivalent latitude ¢, at longitude A (Figure 3c¢). ¢, is the difference between PV and its reference-
state value at ¢, (Q = Qrgr), and A* cos ¢, is the line integral (weighted by cos ¢) of ¢, from ¢ =
¢. + A¢ to ¢, (along the dashed lines in Figure 3¢). ¢’ € [0, Ag] is a displacement coordi-
nate to perform this integral. In the lobe L; of Figure 34, 4 < Q = Qggr, thus ¢, < 0 whereas
A¢ > 0; therefore, 4* cos ¢, > 0.In L,, ¢, > 0 and A¢ < 0, so again A* cos ¢, > 0. Thus, A* cos ¢,
is positive regardless of the direction of the displacement. Where the PV contour is overturned,
the integral path may intersect the contour multiple times, changing the sign of ¢.. In this case
the integral is performed over all segments of the path in which ¢, takes the correct sign. Defined
this way, A* cos ¢, amounts to the longitude-by-longitude contribution to A cos ¢, (Equation 39)
in the sense that the zonal average of the former recovers the latter (for derivation, see Huang
& Nakamura 2016): A* cos ¢, = A(¢., 2, ) cos ¢,. Huang & Nakamura (2016) call 4* cos ¢, finite-
amplitude local wave activity (strictly speaking, local wave activity is local only in longitude but
nonlocal in latitude). In the small-amplitude limit, A* cos ¢, approaches # cos ¢.¢*(29g/3¢)~" (the
limit considered by Plumb 1986).
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Figure 15 shows a snapshot of local wave activity in the upper troposphere corresponding
to Figure 1a. Generally speaking, local wave activity is large where the jet stream is displaced
meridionally and small along the axis of the jet. Wave activity tends to form lumps at the troughs
and ridges of the jet stream, and they collectively migrate eastward. Note that local wave activity
and its budget are defined at each longitude and therefore contain phase structure of the Rossby
waves. Thus, local wave activity may be used to detect phase-specific weather events (e.g., an
anomalously strong trough or ridge in the westerlies). It is distinct from pseudomomentum density
of a wave packet (amplitude envelope), which is defined as a phase-averaged quantity. The phase
variation of local wave activity may be removed by moderate spatial and/or temporal smoothing
to analyze the behavior of a Rossby wave packet (e.g., Ghinassi et al. 2018).

4.1. Column Budget of Local Wave Activity

The governing equation for local wave activity may be obtained by taking the time deriva-
tive of Equation 59, substituting the PV equation, and applying the Leibniz rule repeatedly
(Huang & Nakamura 2016) (see also Section 3 of the Supplemental Material):

0A4* . 1 .
9 coste _ 1 (g Fppy+ V- Fep) + 4° cos g, 61.
ot £0
A
F.v = 00 [uREFA* cos ¢, — / teq. cos(¢, + ¢")dg’, 0, 0], 62.
0
1 R e=/Hp? foeb
F = Ccos e = cos = 2_”2,_* = e);_ue ey ~f”i|, 63
EP = 00 COS P Vg, 1000¢|:2<Ue * " H 9892 v 90 /02

where the departure from the reference state (#,, v., 6,) is defined in a similar way to ¢,
(Equation 60) and 4* is nonconservative sources and sinks of 4*. The reference state is inverted
from Qggy as described in Section 1 of the Supplemental Material. Equation 61 is a 3D extension
to Equation 55 (zonal average of Equation 61 recovers Equation 55), and it governs the evolution
of local wave activity (opposite of angular pseudomomentum density). F,4, and Fgp denote the
advective flux of wave activity and 3D radiation stress, respectively. Notice that the advective flux
involves only the longitudinal component, since the meridional advection is absorbed in
the tendency of wave activity through displacements of PV. An analogous result for
small-amplitude wave activity is derived by Plumb (1986).

In the troposphere, there is a significant difference in the vertical structures of wave activity and
the zonal wind (Nakamura & Solomon 2010), and often their covariation becomes evident only
after taking the vertical average (Wang & Nakamura 2015). With the density-weighted vertical
average denoted by angle brackets, Equation 61 becomes
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Terms I and IT in Equation 64 denote the zonal and meridional convergence of the column-mean
wave activity flux, whereas term IIT denotes the wave activity source at the surface, and term IV
is the nonconservative sources/sinks. The left-hand side (LHS) and terms I-III may be evalu-
ated from gridded meteorological data, whereas term IV is commonly computed as the residual
of the budget (Huang & Nakamura 2017; Neal et al. 2022; H.-I. Lee, N. Nakamura, submitted
manuscript). Because of the density weighting in the vertical average, the column budget mainly
samples the troposphere. In the time mean and global mean, the LHS and terms I and II vanish
so the primary balance is between terms III (positive) and IV (negative): As depicted in Figure 2,
wave activity enters the atmosphere at the surface and is dissipated in the interior.

In Section 4 of the Supplemental Material, seasonal climatology of column-mean local wave
activity and its budget is analyzed for the Northern Hemisphere winter. The analysis generalizes
Figure 2 and reveals regional sources and sinks of Rossby wave activity, as well as the horizontal
transmission of wave activity between them.

4.2. Regional Eddy-Mean Flow Interaction

Compared to Equations 45 and 51, the local relationship between wave activity and zonal wind
involves more terms (even after column average), and their action-reaction relation is not imme-
diately obvious (Huang & Nakamura 2016). Nevertheless, there is a robust negative correlation
between the observed column-mean local wave activity and zonal wind (Wang & Nakamura 2015,
Nakamura & Huang 2018). Figure 74 shows the covariance of (4*) cos ¢, and (u) cos ¢, for the
Northern Hemisphere winter. The covariance is everywhere negative but is particularly strong
over the eastern Pacific and eastern Atlantic in the exit regions of the jet stream. The peak covari-
ance occurs slightly south to the peak wave activity values (Supplemental Figure 1#), and these
locations define the hotspots for eddy-flow interaction. Scatter plots constructed for the locations
of peak covariance clearly show that the regional condition of the atmosphere swings between the
state with a strong westerly wind and small wave activity and the state with a weak (or reversed)
westerly wind and large wave activity (Figure 7b,c).

5. EDDY-MEAN FLOW INTERACTION AND ATMOSPHERIC
BLOCKING

Figure 8 shows composites of winter tropospheric circulation for the anomalous large wave events
identified in Figure 7b,c. A stationary wave with zonal wavenumber 2 is evident in geopoten-
tial height, and the locations identified in Figure 74 are both in the vicinity of the stationary
ridges. The composites reveal anomalous meandering of the jet stream around these locations,
with markedly enhanced wave activity values slightly to the north (Figure 84,b). These are charac-
teristics of atmospheric blocking, a main cause for weather extremes in the extratropics (Woollings
et al. 2018, Lupo 2021, Kautz et al. 2022). Blocking events are notoriously difficult to predict,
and despite the improvement in forecast skills, they still cause occasional forecast busts (Rodwell
et al. 2013). Forecasts tend to exhibit strong sensitivity to the initial condition before a blocking
event (Matsueda 2011). So what drives such anomalous behavior of the jet stream, and can it be
understood in terms of local wave activity dynamics?
Analysis of meteorological data reveals the following two points (Nakamura & Huang 2018):

m Wave activity budget (Equation 64) in the hotspots of eddy-flow interaction is dominated
by the LHS and term I on short timescales (days).

m The second term on the RHS of Equation 65 is predominantly negative and quickly
overwhelms the positive first term as wave activity grows.
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a Covariance of (A*)cos¢, and (u)cos¢, DJF 1979-2016
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Figure 7

(@) Covariance of column-mean local wave activity (4*)cos ¢, and zonal wind (u)cos ¢, for the boreal winter
[December, January, and February (D]JF); color]. Contours indicate climatological values of (u#)cos ¢, in m/s.
The locations of peak covariance are labeled A (9°W 45°N) and B (147°W 42°N). (b) Scatter diagrams of
4-day averaged (4*)cos ¢, and (u)cos ¢, at location B. The red diamonds are the instances when (4*)cos ¢,
and (u)cos ¢, are simultaneously in the top and bottom 5 percentile, respectively, of all 853 sampled values.
The orange line is the least square fit with the value of slope indicated. (¢) Same as panel 4 but for location A.
Figure adapted from Nakamura & Huang (2018).

Based on these observations, the following idealization to Equations 64 and 65 may be adopted:

0A* _ dF, S A*
ar  ox T’
F. = UpA* — a A + Cq *, 67.

66.

where S, 7, U, a, ¢, are all positive constants. The cosine factor and angle bracket have been
dropped. To go from Equation 64 to Equation 66, only the zonal flux convergence is explicitly
modeled and the remaining (unimportant) terms are parameterized as external forcing and lin-
ear damping. From Equation 65 to Equation 67, the first and second terms are approximated
as (Uy — aA*)A*, while the last term is approximated as group velocity ¢, times wave activity.
The key element is that the advecting wind Uy — aA* decreases with increasing wave activity
(Figure 7b,c), which represents the regional eddy-flow interaction. Because of this, the flux I,
becomes a nonlinear function of wave activity. (If small viscosity is added, Equation 66 may be
linearized using the Cole-Hopf transformation, but the resultant form of the solution does not
elucidate physics, so it is not employed here.) Furthermore, wave activity 4* may be partitioned
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Figure 8

(@) Northern Hemisphere column-mean local wave activity (4*)cos ¢, (color) and 500 hPa geopotential
height (contours in meters) for a composite of 22 anomalous Pacific events marked in red in Figure 7.
(b) Same as panel # but a composite of 24 anomalous Atlantic events in Figure 7c¢. The stars (A, B)
correspond to the locations marked in Figure 74. Figure adapted from Nakamura & Huang (2018).

into the baseline (steady) component Ay(x) and the transient component A(x,t) (Supplemental
Figure 1b,c) A*(x,1) = Ao(x) + A(x, ). Substituting in Equation 66, one obtains

A

[(C(x)—aA) ]+S— = 68.
Clx) = Uy + ¢ — 2ady(x). 69.

A 9
ar  ow

The effective advecting wind C(x) for the transient wave activity is modulated by the station-
ary wave Ao(x), and C(x) is weaker where Ay(x) is large. The flux of transient wave activity
(C(x) — aA)A increases with A when A is small, but due to nonlinearity it peaks at C*/4a when
A reaches the critical value of C 2a = /fcrit, and beyond that the flux decreases with increasing A
If A exceeds A somewhere, the flux begins to decrease, and if the incident flux from upstream
does not change, it creates flux convergence and hence further increases 4. Because of this positive
feedback, as long as the incident flux is sustained, 4 surges to C/a, at which point the flux vanishes
and the wave stalls.

This stalling mechanism is mathematically equivalent to traffic congestion on a highway if one
reinterprets A as traffic density (Lighthill & Whitham 1955, Richards 1956, Nakamura & Huang

www.annualreviews.org o Atmospheric Eddy-Mean Flow Interaction

Supplemental Material >

371


https://www.annualreviews.org/doi/suppl/10.1146/annurev-fluid-121021-035602

Supplemental Material >

372

2018). As traffic density increases, the drivers’ braking frequency increases and the traffic speed
decreases. As a result, beyond a critical value of traffic density, the traffic flux decreases and a jam
ensues quickly. C(x) corresponds to the speed limit or the number of open lanes on a highway, and
where C(x) is small, AAmt = C/2a« is also small, making the location prone to congestion. Viewed
this way, it is natural to liken atmospheric blocking to a traffic jam on the highway—the weather
highway of the jet stream. That the preferred regions of blocking coincide with the exit regions
of the jet stream is also consistent with the traffic theory. Figure 9 shows simple 1D and 2D
numerical experiments in which waves traveling along a PV front encounter a diffluent flow and
exceed the critical value of wave activity (Nakamura & Huang 2017). When this happens the wave
envelope develops a sudden jump (shock), and it slowly migrates upstream, as the stagnant region
expands by absorbing the incident flux.

The idea that wave transience occurs when the flux of wave activity reaches the carrying capac-
ity of the flow may be applicable to other large wave events such as wave breaking and stratospheric
sudden warming (see related discussions by Fyfe & Held 1990, Wang & Fyfe 2000, Nakamura et al.
2020). The argument does not require the preexistence of critical lines (Dickinson 1968, 1970),
yet the absorption of wave activity into a stagnant region (Figure 9) is akin to the critical layer
behavior of the meridionally propagating Rossby waves (Killworth & McIntyre 1985).

6. CONCLUSIONS

The purpose of this rather technical review was to demonstrate how the principles of fluid dy-
namics may be applied to the Earth’s extratropical atmosphere to advance our understanding of
large-scale circulation and assist the interpretation of meteorological data. The focus of the article
was how finite-amplitude Rossby waves and geostrophic eddies interact with the mean flow and
redistribute angular momentum (and heat) within the atmosphere.

The most recent advances in this area entail two aspects. The first concerns an extension of
wave activity conservation [the generalized E-P theorem (Equation 16)] to finite amplitude in a
way amenable to gridded meteorological data (Section 3). Rather than seeking a most general
theory, making a judicious choice of quasi-Lagrangian coordinate helps achieve this goal. Specifi-
cally, eddy has been redefined in terms of displacement of PV with respect to a quasi-conservative
reference state. The reference state is constructed by zonalizing the wavy PV field through an
area preserving map (Section 3.1). It is invariant under adiabatic, frictionless dynamics and in re-
ality only slowly evolves in response to seasonal radiative forcing and mixing processes. The new
formulation simplifies the conservation equation for wave activity and makes it easy to evaluate
the relative importance of wave transience and wave dissipation/forcing in the modification of the
mean flow. Meanwhile, the TEM set that governs the zonal-mean state is not altered at all by the
finite-amplitude wave activity formalism.

The second aspect concerns the localization of wave activity to identify regional sources and
sinks of Rossby waves and their transmission between those regions (Section 4; Section 4 in the
Supplemental Material). Local wave activity is introduced as a longitude-by-longitude contribu-
tion to finite-amplitude wave activity. Local wave activity budget, when combined with regional
eddy-mean flow interaction, elucidates how wave transience and large-amplitude events such as
atmospheric blocking might emerge (Section 5). In the governing equation of local wave activity, a
higher-order term in eddy amplitude appears only in the zonal advective flux of wave activity, and
this term plays a key role in causing stagnation of the jet stream through regional eddy-mean flow
interaction. An idealized model based on the observed budget of local wave activity suggests that
blocking arises when the flow’s carrying capacity for wave activity is reached. If this is how large
wave events (and associated extreme weather) occur in the extratropics, one may be able to project
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how climate change might affect the frequency and strength of large wave events by studying the
sensitivity of carrying capacity. Section 5 of the Supplemental Material demonstrates the usage
of the 1D traffic flow model for this purpose.

Although I chose to work within the framework of quasigeostrophic dynamics to keep the
theoretical interpretation simple, most of the conclusions about finite-amplitude Rossby waves
are generalizable to the primitive equations, particularly if one adopts Kelvin’s circulation theo-
rem in isentropic coordinate (Nakamura & Solomon 2011, Methven & Berrisford 2015, Ghinassi
et al. 2018). It is important to point out that, while the Rossby waves and geostrophic eddies play
dominant roles in the extratropics, they are not the only agents of eddy-mean flow interaction
in the atmosphere. For example, equatorial waves (particularly gravity waves) drive the well-
documented quasi-biennial oscillation in the equatorial stratosphere (Lindzen & Holton 1968,
Holton & Lindzen 1972, Plumb 1977, Baldwin et al. 2001). Gravity waves are also important
in exerting drag in the zonal wind in the upper atmosphere (Lindzen 1981, Fritts & Alexander
2003). Wave-mean flow interaction involving gravity waves is more complex than that for Rossby
waves because gravity waves are bidirectional. Pseudomomentum (hence wave activity) of gravity
waves can take either sign depending on their propagation speed (Equation 12). Still, some of the
concepts discussed in this article (e.g., carrying capacity of wave activity flux in relation to wave
breaking) likely transcend wave types and are applicable to gravity waves as well.
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