

1 **Danicamтив affected isometric force and cross-bridge kinetics similarly in**
2 **skinned myocardial strips from male and female rats**

3
4 Peter O. Awinda¹, Blake J. Vander Top¹, Kyrah L. Turner², and Bertrand C.W. Tanner^{1*}

5
6 ¹Department of Integrative Physiology and Neuroscience, and ²School of Molecular Biosciences
7 Washington State University Pullman, WA 99164

8
9
10
11
12
13 *Author addresses for correspondence:

14 Bertrand C. W. Tanner
15 Dept. of Integrative Physiology and Neuroscience
16 Room 255 Vet/Biomed Research Building
17 1815 Ferdinand's Lane
18 Pullman, WA. 99164-7620
19 email: bertrand.tanner@wsu.edu
20 ORCID: <https://orcid.org/0000-0003-1711-852>
21 phone: (509)-335-7785
22 Fax: 509-335-4650
23
24

25 **Abstract**

26
27 Myotropes are pharmaceuticals that have recently been developed or are under investigation for
28 the treatment of heart diseases. Myotropes have had varied success in clinical trials. Initial research
29 into myotropes have widely focused on animal models of cardiac dysfunction in comparison with
30 normal animal cardiac physiology—primarily using males. In this study we examined the effect
31 of danicamтив, which is one type of myotrope within the class of myosin activators, on contractile
32 function in permeabilized (skinned) myocardial strips from male and female Sprague-Dawley rats.
33 We found that danicamтив increased steady-state isometric force production at sub-maximal
34 calcium levels, leading to greater Ca^{2+} -sensitivity to contraction for both sexes. Danicamтив did
35 not affect maximal Ca^{2+} -activated force for either sex. Sinusoidal length-perturbation analysis was
36 used to assess viscoelastic myocardial stiffness and cross-bridge cycling kinetics. Data from these
37 measurements did not vary with sex, and the data suggest that danicamтив slows cross-bridge
38 cycling kinetics. These findings imply that danicamтив increases force production via increasing
39 cross-bridge contributions to activation of contraction, especially at sub-maximal Ca^{2+} -activation.
40 The inclusion of both sexes in animal models during the formative stages of drug development
41 could be helpful for understanding the efficacy or limitation of a drug's therapeutic impact on
42 cardiac function.

43

44 **Keywords**

45

46 cardiac muscle, contraction, myotrope, cross-bridge kinetics

47

48

49 **Introduction**

50 Danicamtiv is a pharmaceutical under development for the treatment of heart disease. Danicamtiv
51 binds to the head of myosin and acts as a ‘myosin activator’ because it is designed to increase
52 contractility of cardiac muscle, potentially improving the pumping ability of the heart (Voors et
53 al. 2020; Grillo et al. 2021). We recently contributed to a detailed study investigating the
54 mechanism of action for danicamtiv in porcine cardiac muscle, and using a transgenic mouse
55 model of dilated cardiomyopathy (Kooiker et al. 2023). We found that danicamtiv increased force
56 and calcium sensitivity due to slowed ADP release (Kooiker et al. 2023), which prolongs cross-
57 bridge attachment duration and slows relaxation (Voors et al. 2020; Shen et al. 2021; Ráduly et al.
58 2023; Kooiker et al. 2023) A portion of this increased cardiac contractility also followed from
59 danicamtiv increasing the OFF-to-ON population of myosin to augment cross-bridge binding.
60

61 Previous studies of danicamtiv have not systematically investigated any potential effects of sex on
62 cardiac muscle function (Voors et al. 2020; Shen et al. 2021; Ráduly et al. 2023; Kooiker et al.
63 2023; Choi et al. 2023). Where female subjects were included in a study, their representation was
64 limited (Voors et al. 2020; Kooiker et al. 2023; Choi et al. 2023). With the current study we tested
65 whether danicamtiv affected myocardial contractility differently between male and female rats.
66 We find that danicamtiv increases Ca^{2+} -sensitivity of contraction, sub-maximal Ca^{2+} -activated
67 isometric force production, and slowed cross-bridge cycling similarly in myocardial strips from
68 male and female rats, with no observable sex difference.
69

70 **Materials and Methods**71 *72 Animal Models*
73

74 All procedures were approved by the Institutional Animal Care and Use Committee at
75 Washington State University and complied with the U.S. National Institute of Health’s guidelines
76 for animal use. Sprague-Dawley rats (4 male and 4 female, 15-30 weeks old) were acquired from
77 Envigo (Indianapolis, IN). Rats were anesthetized by isoflurane inhalation (3% volume in 95%
78 O_2 -5% CO_2 flowing at 2 L/min), following which hearts were immediately excised and placed in
79 dissecting solution on ice.
80

81 *Papillary muscle preparation*
82

83 Papillary muscles from the left ventricle wall were dissected from the hearts and trimmed
84 to $\sim 180 \mu\text{m}$ in diameter and $700 \mu\text{m}$ in length with iridectomy scissors and skinned overnight at
85 4°C . Skinned papillary muscle strips were transferred to storage solution (which contained 50%
86 glycerol), and if not used immediately for mechanics experiments, strips were stored at -20°C for
87 1-3 days until experiments were performed. Three to four strips from each heart were used for
88 muscle mechanics experiments under each condition, with the specific number of strips listed in
89 Table 1.
90

91

92 *Solutions*

93
94 Solutions were adapted from Pulcastro *et al.* (Pulcastro et al. 2016a) and Tanner *et al.*
95 (Tanner et al. 2011), with solution formulations calculated via solving ionic equilibria according
96 to Godt and Lindley (Godt and Lindley 1982). All concentrations are listed in mM unless otherwise
97 noted. Dissecting solution: 50 N,N-Bis(2-hydroxyethyl)-2-aminoethanesulfonic acid (=BES),
98 30.83 K propionate, 10 Na azide, 20 Ethylene glycol- bis(2-aminoethylether)-N,N,N',N'-
99 tetraacetic acid (=EGTA), 6.29 MgCl₂, 6.09 ATP, 1 1,4-dithiothreitol (=DTT), 20 2,3-
100 butanedione- monoxime (=BDM), 50 μ M leupeptin, 275 μ M pefabloc, and 1 μ M trans-
101 epoxysuccinyl-L-leucylamido(4-guanidino)butane (=E-64). Skinning solution: dissecting
102 solution with 1% Triton-XT vol/vol and 50% glycerol vol/vol. Storage solution: dissecting solution
103 with 50% glycerol vol/vol. Relaxing solution: pCa 8.0 (pCa = $-\log_{10} [Ca^{2+}]$), 20 BES, 5 EGTA, 5
104 MgATP, 1 Mg²⁺, 0.3 P_i, 35 phosphocreatine, 300 U/mL creatine kinase, 3% dextran T-500 wt/vol,
105 200 ionic strength, and adjusted to pH 7.0 with Na methanesulfonate. Maximal Ca²⁺-activating
106 solution: same as relaxing solution with pCa 4.8.

107
108 Danicamтив was purchased from MedChemExpress (Monmouth Junction, NJ) and
109 dissolved in dimethylsulfoxide (DMSO) to make a 1 mM stock solution (Kooiker et al. 2023). This
110 stock was then diluted in relaxing (pCa 8.0) and activating (pCa 4.8) solutions to yield a final
111 danicamтив concentration of 3 μ M (with 0.3% DMSO). This 3 μ M danicamтив concentration was
112 the EC₅₀ of actomyosin ATPase measurements from Voors *et al* (Voors et al. 2020) and the same
113 concentration as they used in their mechanics measurements.

114
115 *Muscle mechanics*

116
117 Aluminum t-clips were attached to both ends of skinned papillary muscle strips and
118 mounted between a piezoelectric motor (P841.40, Physik Instrumente, Auburn, MA) and a strain
119 gauge (AE801, Kronex, Walnut Creek, CA) in relaxing solution that contained either no
120 danicamтив or 3 μ M danicamтив. These danicamтив concentrations were maintained for each
121 individual strip at a temperature of 28°C throughout the entire experiment. Sarcomere length was
122 set to 2.2 μ m using microscopy, imaging with a CCD camera, and a real-time Fourier transfer
123 algorithm (Tanner et al. 2015; Pulcastro et al. 2016b; Kieu et al. 2019). Then the strip was
124 shortened until slack, and the force gauge was balanced to 0 mV to set the reference voltage for
125 the force-pCa curve. Next the strip was re-stretched, sarcomere length was confirmed, and the
126 absolute, isometric tension value (=force normalized to cross-sectional area of each strip) at pCa
127 8.0 was recorded (=T_{min}, Table 1). From here, strips were Ca²⁺-activated to assess steady-state
128 isometric stress across a range of pCa values.

129
130 Sinusoidal length perturbations at an amplitude of 0.125% muscle length were applied at
131 discrete frequencies (0.125-200 Hz) (Tanner et al. 2011). Elastic and viscous moduli were
132 measured as a function of angular frequency from the in-phase and out-of-phase portions of the
133 stress-strain response to the length perturbations. The resulting frequency-dependent viscoelastic
134 response reflects characteristics of cross-bridge binding and cross-bridge cycling, as further
135 discussed in the results.

136

137 *Statistical analysis*

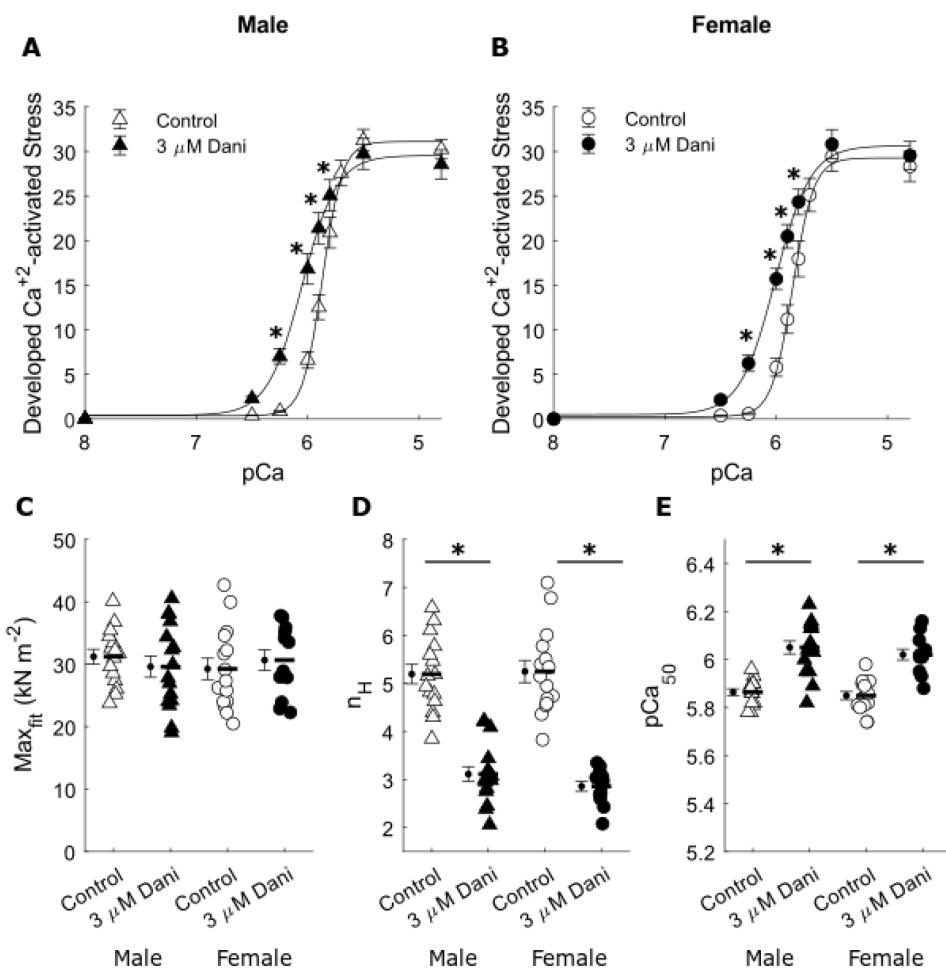
138

139 All data are listed or plotted as mean \pm SE. Constrained non-linear least squares fitting of
140 data to a three-parameter Hill equation (Table 1) was performed using sequential quadratic
141 programming methods in Matlab (v.9.13.0, The Mathworks, Natick MA). Statistical analyses
142 applied nested linear mixed models with main effects of danicamtiv, sex, and their interaction in
143 SPSS (IBM Statistical, Chicago, IL). An additional main effect of pCa or frequency was used for
144 statistical analysis of the force-pCa relationships (Fig. 1A-B), or the elastic and viscous moduli vs.
145 frequency relationships (Figs. 2-3). Nested linear mixed model analyses link data from the same
146 heart, with hearts being a random effect, to optimize statistical power.

147

148 **Results**

149


150 *Steady-state isometric stress*

151

152 Developed stress (=Ca²⁺-activated stress minus stress at pCa 8.0, T_{min}, for each strip)
153 increased as activating [Ca²⁺] increased in skinned papillary muscle strips from all groups (Fig.
154 1A-B, Table 1). There were no differences in maximal force among all four groups, nor between
155 male and female force measurements in the absence or presence of danicamtiv (main effects of
156 pCa, treatment, and a pCa*treatment interaction at p<0.001). Danicamtiv produced greater stress
157 at sub-maximal pCa values between 6.25-5.8, leading to greater Ca²⁺-sensitivity (Fig. 1E) and
158 decreased cooperativity (Fig. 1D) of the force-pCa relationship for both sexes (main effect of
159 treatment at p<0.001 for pCa₅₀ and n_H).

160

161

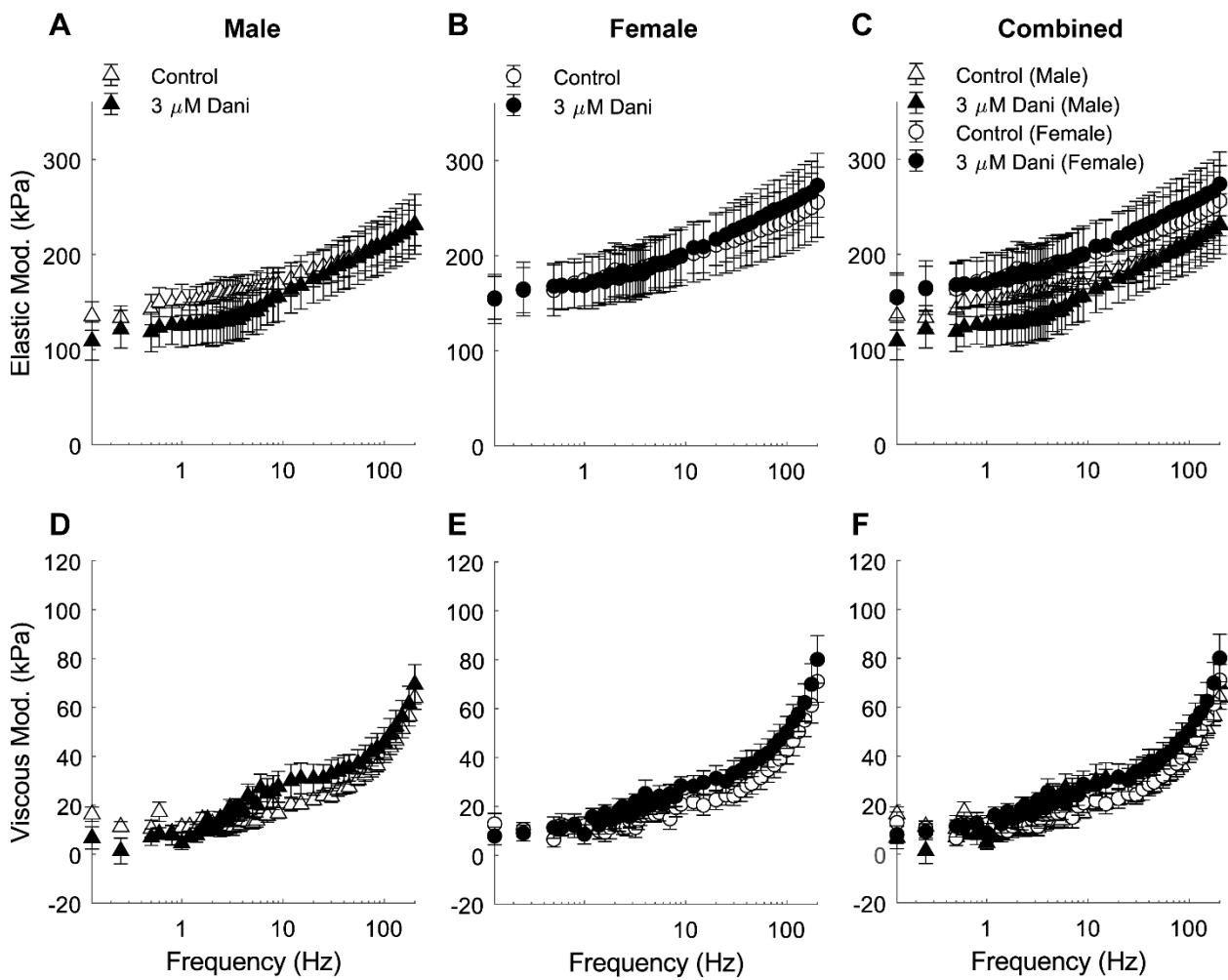
163
164 Fig. 1. Ca^{2+} -activated stress is plotted against pCa for myocardial strips from (A) male
165 and (B) female rats. Lines represent fits to a 3-parameter Hill equation (see legend of
166 Table 1). Steady-state isometric tension increased as $[\text{Ca}^{2+}]$ increased for all myocardial
167 strips. There were not statistical differences in maximal force between groups (individual
168 Max_{fit} values shown in panel C). Force- pCa relationships were shifted to the left with
169 danicamтив, showing increased Ca^{2+} -sensitivity (pCa_{50} values shown in panel E) for both
170 sexes. Danicamтив also produced a lower slope, or Hill coefficient (n_H values shown in
171 panel D). Number of biological and technical replicates for each condition are listed at
172 the bottom of Table 1. * post-hoc effect of danicamтив at $p < 0.001$.
173

174
175
176**Table 1:** Characteristics of tension-pCa relationships.

Treatment	Male		Female		Male and female combined	
	Control	3 μ M Dani	Control	3 μ M Dani	Control	3 μ M Dani
T_{\min} (kN m $^{-2}$)	2.38 \pm 0.21	2.15 \pm 0.25	2.40 \pm 0.32	2.67 \pm 0.28	2.39 \pm 0.19	2.38 \pm 0.19
T_{\max} (kN m $^{-2}$)	32.63 \pm 1.16	30.71 \pm 1.75	30.72 \pm 1.87	32.21 \pm 1.74	31.68 \pm 1.09	31.35 \pm 1.24
T_{dev} (kN m $^{-2}$)	30.26 \pm 1.10	28.55 \pm 1.63	28.32 \pm 1.70	29.54 \pm 1.58	29.29 \pm 1.01	28.97 \pm 1.13
pCa ₅₀	5.86 \pm 0.01*	6.05 \pm 0.03	5.85 \pm 0.02*	6.02 \pm 0.02	5.86 \pm 0.01*	6.04 \pm 0.02
n _H	5.19 \pm 0.20*	3.11 \pm 0.16	5.25 \pm 0.23*	2.86 \pm 0.11	5.22 \pm 0.15*	3.00 \pm 0.10
Max _{fit} (kN m $^{-2}$)	31.23 \pm 1.17	29.61 \pm 1.70	29.26 \pm 1.71	30.66 \pm 1.65	30.25 \pm 1.04	30.06 \pm 1.18
n (strips)	15	16	15	12	30	28
N (# of hearts)	4		4		8	

177
178
179
180
181
182

Values are means \pm SEM, T_{\min} , absolute tension value at pCa 8.0., T_{\max} , absolute tension value at pCa 4.8., T_{dev} , Ca^{2+} -activated, developed tension (T_{\max} - T_{\min}). Max_{fit}, pCa₅₀, and n_H represent fit parameters to a 3-parameter Hill equation: $T(pCa) = \frac{\text{Max}_{\text{fit}}}{[1+10^{n_H(pCa-pCa_{50})}]}$ for the developed tension vs. pCa relationships shown in Fig. 1. * post-hoc effect of danicamtil at $p < 0.001$.


183
184

Viscoelastic myocardial stiffness

185
186
187
188
189
190
191
192
193
194
195
196
197
198
199

Elastic and viscous modulus values were measured at relaxed (pCa 8.0, Fig. 2) and maximally activated (pCa 4.8, Fig. 3) conditions. Under relaxed conditions elastic and viscous moduli values increased as oscillatory frequency increased (main effect of frequency at $p < 0.001$ for males, females, and the combined data sets), which arises from the viscoelastic stiffness of the tissue increasing as it is oscillated faster at higher frequencies. There were statistically significant effects of danicamtil on elastic and viscous moduli under relaxed conditions, although the minor differences are unlikely to influence physiological contractility. Elastic moduli values decreased slightly for the males with danicamtil treatment (main effect of treatment at $p=0.024$, Fig. 2A). Viscous moduli values increased for both sexes with danicamtil treatment (main effect of treatment at $p < 0.001$ for males, females and the combined data set, Fig. 2D-F). There was not a significant main effect of sex nor any significant interaction for elastic or viscous moduli at pCa 8.0. The small, albeit consistent, increases in viscous modulus suggest subtle, yet detectable, increases in cross-bridge binding and altered cross-bridge cycling for the danicamtil treated strips at low $[\text{Ca}^{2+}]$.

200

201

202

203

204

205

206

Fig. 2. (A-C) Elastic and (D-F) viscous moduli are plotted against frequency under relaxed conditions (pCa 8.0) for males, females, and combined for both sexes. Number of biological and technical replicates for each condition are listed at the bottom of Table 1.

207

208

209

210

211

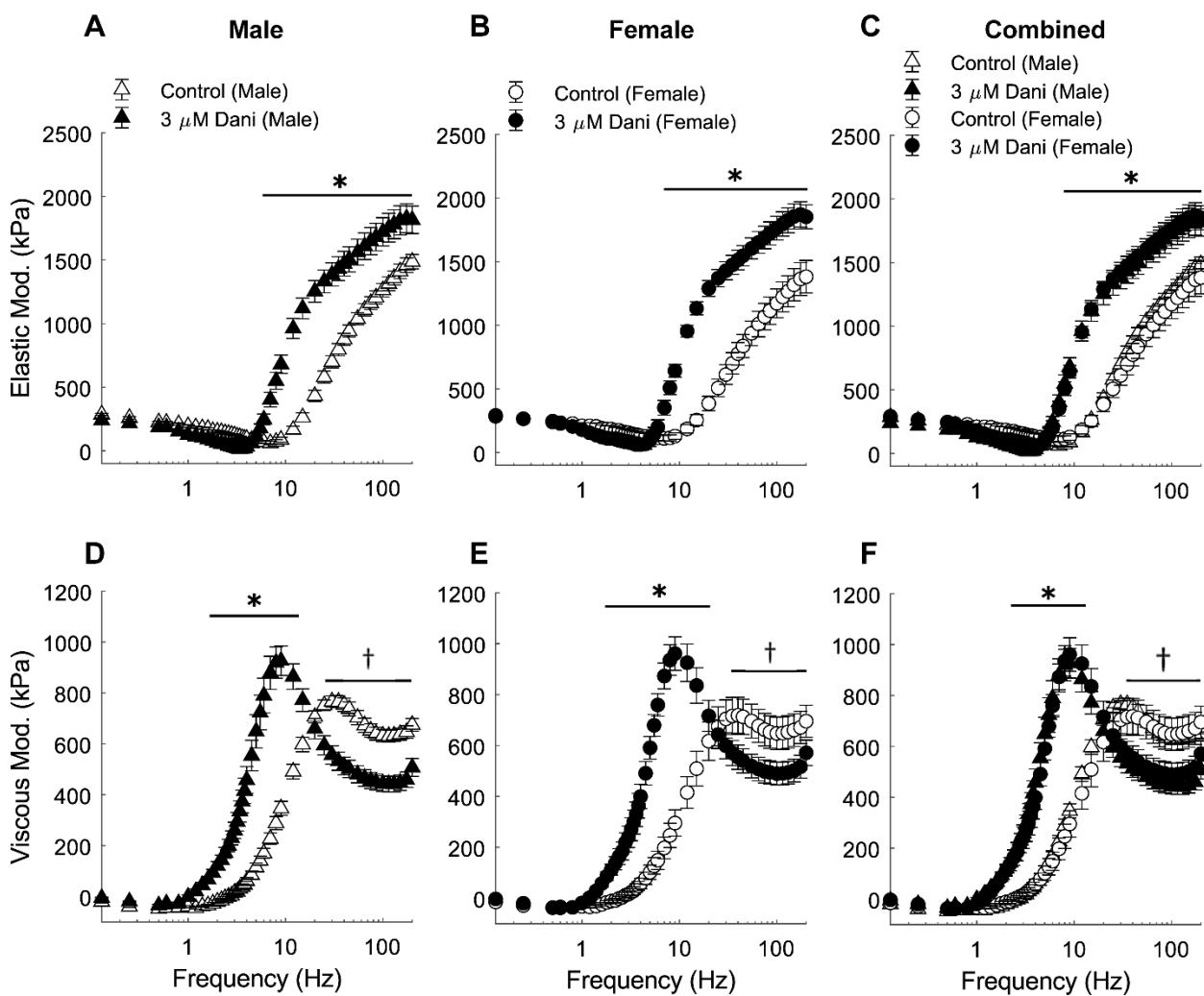
212

213

214

215

216


217

218

At maximal Ca^{2+} -activation (pCa 4.8), elastic moduli values were greater for danicamтив treated strips above 8 Hz for both sexes, compared to controls (main effects of frequency, treatment, and a frequency*treatment interaction at $p<0.001$ for both sexes and the combined data, Fig. 3A-C). Viscous moduli values were also greater for danicamтив treated strips between 2-10 Hz, but less than control strips above 35 Hz (main effects of frequency, treatment, and a frequency*treatment interaction at $p<0.001$ for both sexes and the combined data, Fig. 3D-F). Both the elastic and viscous modulus vs. frequency relationships were shifted leftward, towards lower frequencies for both sexes. This leftward shift in the moduli-frequency relationships indicates slower overall cross-bridge cycling in danicamтив treated strips vs. control strips. The “dip frequency”, or smallest elastic modulus value, is shifted from ~8-9 Hz for control strips to ~4-5 Hz for danicamтив-treated strips, which suggests that danicamтив slows cross-bridge attachment. Similarly, the maximal viscous modulus value is shifted from ~30 Hz for control strips to ~10 Hz

Awinda et al. (2023)

219 for danicamтив treated strips, which indicates that danicamтив also slows cross-bridge detachment.
 220 The remarkable similarities between male and female myocardial strips in the presence and
 221 absence of danicamтив indicates that danicamтив produces the same chemomechanical or
 222 biophysical effects on cross-bridge binding, cycling, and force production in myocardium from
 223 male and female rats (Fig. 3C and 3F).
 224

225
 226
 227 **Fig. 3.** (A-C) Elastic and (D-F) viscous moduli are plotted against frequency under
 228 maximally activated conditions (pCa 4.8) for males, females, and combined for both
 229 sexes. Number of biological and technical replicates for each condition are listed at the
 230 bottom of Table 1. * post-hoc effect of danicamтив at $p < 0.001$. † post-hoc effect of
 231 danicamтив at $p < 0.05$.
 232

233

234 **Discussion**

235

236 Danicamтив targets cardiac myosin to augment contractility, and it represents a sub-set of small
237 molecules that are under development to target myofilament protein function as potential therapies
238 for heart disease (Alsulami and Marston 2020; Lehman et al. 2022). Compared to some more
239 studied myotropes, such as omecamтив mecarbil (a myosin activator), (Malik et al. 2011; Woody
240 et al. 2018; Kieu et al. 2019) or mavacamten (a myosin inhibitor), (Stern et al. 2016; Awinda et al.
241 2020), danicamтив is still in clinical trials (Voors et al. 2020). Only a few mechanistic studies have
242 investigated effects of danicamтив on contractility in cardiac muscle (Shen et al. 2021; Ráduly et
243 al. 2023; Kooiker et al. 2023; Choi et al. 2023); these have not investigated sex as a biological
244 variable, with limited data related to any effects of danicamтив on contractility between males and
245 females. Herein we systematically assessed the effects of danicamтив on myocardial function using
246 male and female rat hearts. While this is a focused study on a few metrics of contraction (isometric
247 tension, viscoelastic myocardial stiffness, and cross-bridge kinetics), the remarkable similarities
248 in myocardial function between sexes suggest that danicamтив influences molecular and cellular
249 mechanisms of contraction the same for both sexes.

250

251 We show that danicamтив increases Ca^{2+} -sensitivity of contraction, but does not increase maximal
252 force production (Fig. 1). The increase in sub-maximal force agrees with prior observations in
253 permeabilized myocardial strips or myofibrils from pigs and humans (Voors et al. 2020; Kooiker
254 et al. 2023; Choi et al. 2023). However, data showing increases in maximal force with danicamтив
255 treatment are mixed. Like Choi et al. 2023, we did not see any increases in maximal force, but
256 others have seen increases in maximal force (Kooiker et al. 2023; Voors et al. 2020). Although we
257 did not observe increased maximal force, danicamтив-treated strips had greater myocardial
258 viscoelastic stiffness; this could imply that danicamтив increases the number of strongly-bound
259 cross-bridges that contribute to stiffness, but not to tension. Given that *in vivo* cardiac contraction
260 and intact myocardial twitches typically occur at sub-maximal calcium levels, these data also agree
261 with prior observations that danicamтив augments systolic function in mouse and dog models of
262 heart failure (Voors et al. 2020; Kooiker et al. 2023), rats (Ráduly et al. 2023), and human
263 engineered heart tissue (Shen et al. 2021). There is no evidence that danicamтив affects Ca^{2+} -
264 binding to troponin C (Kooiker et al. 2023) and it did not alter intracellular Ca^{2+} -transients in
265 canine cardiomyocytes (Ráduly et al. 2023). However, it is possible that danicamтив could alter
266 thin-filament regulation via binding to tropomyosin or actin, which we have not ruled out with our
267 measurements herein and could not confirm through previously published studies. Nonetheless,
268 much of our data suggests that danicamтив affects cross-bridge behavior, consistent with the idea
269 of a ‘myotrope’ being designed to affect myosin function.

270

271 The leftward shift in the peak viscous modulus value from 30 Hz in control strips to 10 Hz in
272 danicamтив treated strips (Fig. 2D) suggests that danicamтив slows cross-bridge cycling. Although
273 we did not explicitly measure ADP dissociation nor ATP association rates herein, this observation
274 likely follows from slowed cross-bridge detachment (Kawai and Halvorson 1989; Kawai et al.
275 1993) Moreover, this interpretation is supported by our prior measurement of danicamтив
276 prolonging cross-bridge attachment duration due to slowed ADP release (Kooiker et al. 2023).
277 Thus, it is likely that the increases in sub-maximal force production partially stem from prolonged
278 cross-bridge binding, which augments cross-bridge contributions to thin-filament activation
279 (Bremel and Weber 1972; Smith et al. 2009). Once full activation (or saturating Ca^{2+} -activation)

Awinda et al. (2023)

280 along the thin filament is reached, however, cross-bridge contributions to thin-filament activation
281 may have already saturated, whereby danicamтив treatment no longer augments force production
282 at maximal Ca^{2+} -activation (Fig. 1).

283
284 It is likely that danicamтив increases sub-maximal force production by two separate, yet
285 complementary, mechanisms. The first one we introduced just above, related to prolonged cross-
286 bridge binding due to slowed ADP release. The second one was introduced by Kookier *et al.*,
287 (Kooiker et al. 2023) showing that danicamтив changes myosin head positioning along the thick-
288 filament. This conformational change reduced the population of myosin heads in the OFF state
289 (super-relaxed state), leading to more myosin heads populating the ON state (or disordered relaxed
290 state); the ON state is capable of binding actin to form a cross-bridge. A portion of this could
291 follow from danicamтив amplifying the mechanosensitive thick-filament regulation pathway as
292 force production begins to increase at sub-maximal calcium levels (Ait-Mou et al. 2016; Fusi et
293 al. 2016; Piazzesi et al. 2018; Park-Holohan et al. 2021). However, it is possible that increases in
294 sub-maximal force could also follow from danicamтив simply disorganizing the OFF state, which
295 also agrees with the x-ray diffraction data from in pig myocardial strips (under relaxed conditions)
296 (Kooiker et al. 2023). Any of these structural effects of danicamтив are likely to be amplified as
297 Ca^{2+} increases throughout (systolic) contraction as more cross-bridges begin to generate force.
298

299 Recent efforts have found discrepancies in the pathophysiology of heart disease between males
300 and females (Bui et al. 2011; Sciomer et al. 2020; Lala et al. 2022). Despite this, large gaps have
301 remained in assessing, preventing, and treating cardiovascular disease in both sexes. Females have
302 remained underrepresented in randomized clinical trials assessing myotropic efficacy in recent
303 years, with females only comprising 19-32% of total participants (Sullivan et al. 2021; Wang et
304 al. 2023; Pabon et al. 2023). Data from these limited trials have alluded to differences in the
305 response to therapy between sexes, contributing to modified optimal dose levels of therapeutics.
306 This could arise from altered presentation and manifestation of cardiovascular disease as well as
307 differences in metabolism and drug clearance. Thus, it is important to assess the sex-specific
308 efficacy and safety of clinical treatments. Here, we have assessed the effects of danicamтив on
309 healthy male vs female rats to understand any sex differences that may arise at a genetic or
310 molecular level. Our study shows no significant changes in the mechanism by which danicamтив
311 augments myocardial contraction between sexes, although further characterization of sex-
312 differences under pathophysiological conditions may still be warranted to better inform future
313 clinical trials.
314

315 Acknowledgments

316
317 This work was supported by grants from the American Heart Association (23TPA1074093,
318 <https://doi.org/10.58275/AHA.23TPA1074093.pc.gr.172307>), National Science Foundation (IOS-
319 2312925 to BCWT), and National Institutes of Health (R01HL149164, R01HL164795 and
320 R21AG077125).

321 Author Contributions

322
323 Conceptualization: P.O.A., K.L.T., B.C.W.T.; Performed experiments: P.O.A., B.J.V.T., K.L.T.;
324 Analyzed and curated data: P.O.A., B.J.V.T., K.L.T., B.C.W.T.; Drafted original manuscript:
325

Awinda et al. (2023)

326 P.O.A., B.C.W.T.; Reviewed, edited, and revised manuscript: P.O.A., B.J.V.T., K.L.T.,
 327 B.C.W.T.; All authors approved the final version submitted for review.
 328

329 **Statements and Declarations**

330
 331 The authors have nothing to disclose and no conflicting interests.
 332

333 **References**

334 Ait-Mou Y, Hsu K, Farman GP, et al (2016) Titin strain contributes to the Frank-Starling law of
 335 the heart by structural rearrangements of both thin- and thick-filament proteins. *Proc Natl
 336 Acad Sci U S A* 113:2306–11. <https://doi.org/10.1073/pnas.1516732113>

337 Alsulami K, Marston S (2020) Small molecules acting on myofilaments as treatments for heart
 338 and skeletal muscle diseases. *Int J Mol Sci* 21:1–31. <https://doi.org/10.3390/ijms21249599>

339 Awinda PO, Bishaw Y, Watanabe M, et al (2020) Effects of mavacamten on Ca²⁺ sensitivity of
 340 contraction as sarcomere length varied in human myocardium. *Br J Pharmacol* 177:5609–
 341 5621. <https://doi.org/10.1111/bph.15271>

342 Bremel R, Weber A (1972) Cooperation within actin filament in vertebrate skeletal muscle. *Nat
 343 New Biol* 238:97–101. <https://doi.org/10.1038/newbio238097a0>

344 Bui AL, Horwitz TB, Fonarow GC (2011) Epidemiology and risk profile of heart failure. *Nat
 345 Rev Cardiol* 8:30–41. <https://doi.org/10.1038/nrccardio.2010.165>

346 Choi J, Holmes JB, Campbell KS, Stelzer JE (2023) Effect of the Novel Myotrope Danicamтив
 347 on Cross-Bridge Behavior in Human Myocardium. *J Am Heart Assoc* 12:e030682.
 348 <https://doi.org/10.1161/JAHA.123.030682>

349 Fusi L, Brunello E, Yan Z, Irving M (2016) Thick filament mechano-sensing is a calcium-
 350 independent regulatory mechanism in skeletal muscle. *Nat Commun* 7:13281.
 351 <https://doi.org/10.1038/ncomms13281>

352 Godt RE, Lindley BD (1982) Influence of temperature upon contractile activation and isometric
 353 force production in mechanically skinned muscle fibers of the frog. *J Gen Physiol* 80:279–
 354 297. <https://doi.org/10.1085/jgp.80.2.279>

355 Grillo MP, Markova S, Evanchik M, et al (2021) Preclinical in vitro and in vivo pharmacokinetic
 356 properties of danicamтив, a new targeted myosin activator for the treatment of dilated
 357 cardiomyopathy. *Xenobiotica* 51:222–238. <https://doi.org/10.1080/00498254.2020.1839982>

358 Kawai M, Halvorson HR (1989) Role of MgATP and MgADP in the cross-bridge kinetics in
 359 chemically skinned rabbit psoas fibers. Study of a fast exponential process (C). *Biophys J*
 360 55:595–603. [https://doi.org/10.1016/S0006-3495\(89\)82857-7](https://doi.org/10.1016/S0006-3495(89)82857-7)

361 Kawai M, Saeki Y, Zhao Y (1993) Crossbridge scheme and the kinetic constants of elementary
 362 steps deduced from chemically skinned papillary and trabecular muscles of the ferret. *Circ
 363 Res* 73:35–50. <https://doi.org/10.1161/01.res.73.1.35>

364 Kieu TT, Awinda PO, Tanner BCW (2019) Omecamtiv Mecarbil Slows Myosin Kinetics in

365 Skinned Rat Myocardium at Physiological Temperature. *Biophys J* 116:2149–2160.
366 <https://doi.org/10.1016/j.bpj.2019.04.020>

367 Kooiker KB, Mohran S, Turner KL, et al (2023) Danicamtiv Increases Myosin Recruitment and
368 Alters Cross-Bridge Cycling in Cardiac Muscle. *Circ Res*.
369 <https://doi.org/10.1161/CIRCRESAHA.123.322629>

370 Lala A, Tayal U, Hamo CE, et al (2022) Sex Differences in Heart Failure. *J Card Fail* 28:477–
371 498. <https://doi.org/10.1016/j.cardfail.2021.10.006>

372 Lehman SJ, Crocini C, Leinwand LA (2022) Targeting the sarcomere in inherited
373 cardiomyopathies. *Nat Rev Cardiol* 19:353–363. <https://doi.org/10.1038/s41569-022-00682-0>

375 Malik FI, Hartman JJ, Elias KA, et al (2011) Cardiac myosin activation: a potential therapeutic
376 approach for systolic heart failure. *Science* 331:1439–43.
377 <https://doi.org/10.1126/science.1200113>

378 Pabon M, Cunningham J, Claggett B, et al (2023) Sex Differences in Heart Failure With
379 Reduced Ejection Fraction in the GALACTIC-HF Trial. *JACC Heart Fail* 11:1729–1738.
380 <https://doi.org/10.1016/j.jchf.2023.07.029>

381 Park-Holohan S-J, Brunello E, Kampourakis T, et al (2021) Stress-dependent activation of
382 myosin in the heart requires thin filament activation and thick filament mechanosensing.
383 *Proc Natl Acad Sci U S A* 118:. <https://doi.org/10.1073/pnas.2023706118>

384 Piazzesi G, Caremani M, Linari M, et al (2018) Thick Filament Mechano-Sensing in Skeletal
385 and Cardiac Muscles: A Common Mechanism Able to Adapt the Energetic Cost of the
386 Contraction to the Task. *Front Physiol* 9:736. <https://doi.org/10.3389/fphys.2018.00736>

387 Pulcastro HC, Awinda PO, Breithaupt JJ, Tanner BCWW (2016a) Effects of myosin light chain
388 phosphorylation on length-dependent myosin kinetics in skinned rat myocardium. *Arch
389 Biochem Biophys* 601:56–68. <https://doi.org/10.1016/j.abb.2015.12.014>

390 Pulcastro HC, Awinda PO, Methawasin M, et al (2016b) Increased Titin Compliance Reduced
391 Length-Dependent Contraction and Slowed Cross-Bridge Kinetics in Skinned Myocardial
392 Strips from Rbm^{20ΔRRM} Mice. *Front Physiol* 7:. <https://doi.org/10.3389/fphys.2016.00322>

393 Ráduly AP, Sárkány F, Kovács MB, et al (2023) The Novel Cardiac Myosin Activator
394 Danicamtiv Improves Cardiac Systolic Function at the Expense of Diastolic Dysfunction In
395 Vitro and In Vivo: Implications for Clinical Applications. *Int J Mol Sci* 24:1–17.
396 <https://doi.org/10.3390/ijms24010446>

397 Sciomer S, Moscucci F, Salvioni E, et al (2020) Role of gender, age and BMI in prognosis of
398 heart failure. *Eur J Prev Cardiol* 27:46–51. <https://doi.org/10.1177/2047487320961980>

399 Shen S, Sewanan LR, Jacoby DL, Campbell SG (2021) Danicamtiv enhances systolic function
400 and frank-starling behavior at minimal diastolic cost in engineered human myocardium. *J
401 Am Heart Assoc* 10:1–3. <https://doi.org/10.1161/JAHA.121.020860>

402 Smith L, Tainter C, Regnier M, Martyn DA (2009) Cooperative cross-bridge activation of thin
403 filaments contributes to the Frank-Starling mechanism in cardiac muscle. *Biophys J*

404 96:3692–702. <https://doi.org/10.1016/j.bpj.2009.02.018>

405 Stern JA, Markova S, Ueda Y, et al (2016) A Small Molecule Inhibitor of Sarcomere
406 Contractility Acutely Relieves Left Ventricular Outflow Tract Obstruction in Feline
407 Hypertrophic Cardiomyopathy. *PLoS One* 11:e0168407.
408 <https://doi.org/10.1371/journal.pone.0168407>

409 Sullivan K, Doumouras BS, Santema BT, et al (2021) Sex-Specific Differences in Heart Failure:
410 Pathophysiology, Risk Factors, Management, and Outcomes. *Can J Cardiol* 37:560–571.
411 <https://doi.org/10.1016/j.cjca.2020.12.025>

412 Tanner BCW, Breithaupt JJ, Awinda PO (2015) Myosin MgADP release rate decreases at longer
413 sarcomere length to prolong myosin attachment time in skinned rat myocardium. *Am J
414 Physiol Circ Physiol* 309:H2087–H2097. <https://doi.org/10.1152/ajpheart.00555.2015>

415 Tanner BCW, Wang Y, Maughan DW, et al (2011) Measuring myosin cross-bridge attachment
416 time in activated muscle fibers using stochastic vs. sinusoidal length perturbation analysis. *J
417 Appl Physiol* 110:1101–1108. <https://doi.org/10.1152/japplphysiol.00800.2010>.-The

418 Voors AA, Tamby JF, Cleland JG, et al (2020) Effects of danicamtiv, a novel cardiac myosin
419 activator, in heart failure with reduced ejection fraction: experimental data and clinical
420 results from a phase 2a trial. *Eur J Heart Fail* 22:1649–1658.
421 <https://doi.org/10.1002/ejhf.1933>

422 Wang X, Vaduganathan M, Claggett BL, et al (2023) Sex Differences in Characteristics,
423 Outcomes, and Treatment Response With Dapagliflozin Across the Range of Ejection
424 Fraction in Patients With Heart Failure: Insights From DAPA-HF and DELIVER.
425 *Circulation* 147:624–634. <https://doi.org/10.1161/CIRCULATIONAHA.122.062832>

426 Woody MS, Greenberg MJ, Barua B, et al (2018) Positive cardiac inotrope omecamtiv mecarbil
427 activates muscle despite suppressing the myosin working stroke. *Nat Commun* 9:3838.
428 <https://doi.org/10.1038/s41467-018-06193-2>

429