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Comprehensive memory safety validation identifies the memory objects whose accesses provably comply
with all classes of memory safety, protecting them from memory errors elsewhere at low overhead. We

assess the breadth and depth of comprehensive memory safety validation.

M emory safety is paramount for software secu-
rity. In the early days of computer security

research, the Anderson Report underscored the risks
of unchecked memory access, providing a foundational
understanding of memory errors. Subsequent events,
such as Code Red, the Morris Worm, and Slammer,
showcased the real-world impact of memory exploits.
Google and Microsoft recently shed light on the persis-
tent nature of memory vulnerabilities, emphasizing the
need for continuing memory safety enhancement.

The vulnerability landscape now spans from ran-
somware to high-profile vulnerabilities, including Spec-
tre, Meltdown, DirtyPipe, and DirtyCred, to memory
errors generated by large-language-model-based arti-
ficial intelligence code generators, highlighting the
enduring relevance of memory safety.

The efforts of the past twenty years have produced
many defenses against memory errors that target one
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or more of the classes of memory safety: spatial, type,
and temporal safety. However, building defenses against
memory errors poses significant challenges as any effec-
tive defense must navigate the intricate balance of three
properties, which we call the 3-C principle. The ideal
memory error defense should 1. offer enforcement of
all classes of memory safety and 2. ensure coverage for
all memory objects. Importantly, any defense should 3.
achieve these objectives at a reasonable cost, minimiz-
ing the impact of performance and memory overheads.
Despite a wide variety of defenses, e.g., based on run-
time checks, memory-safe programming languages, and
hardware-assisted enforcement, the search for a perfect
solution, a defense that protects against all classes of
memory errors and covers all memory objects for a rea-
sonable cost, remains elusive.

The common goal among the proposed research
defenses is that they tend to pursue complete coverage of
all memory objects. To achieve this goal, these defenses
often present challenging tradeoffs between protected
error classes and cost; most defenses only enforce one or
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a subset of the classes of memory safety. Even so, effec-
tive defenses often retain high performance and mem-
ory overheads, preventing their adoption in practice. As
a result, the defenses applied in practice do not cover
all angles from which memory errors may be exploited,
leaving all memory objects at risk.

CCured! offers an alternative approach for enforcing
memory safety by triaging memory accesses through
memory safety validation. Memory safety validation aims
to determine whether all memory accesses to a memory
object (e.g,, through pointers that may reference a mem-
ory object) comply with memory safety. The CCured
method validates whether a pointer cannot violate spa-
tial and type safety to elide runtime checks. The safe
stack approach? takes this idea further by isolating stack
objects found to comply with spatial safety on a separate
stack. Researchers have also proposed isolating objects
on separate heaps to enforce temporal memory safety.
Both the stack and heap isolation techniques enforce
protection against memory errors for low overhead.
However, none of these techniques provide memory
safety validation for all classes of memory safety nor
ensure protection from all classes of memory errors for
even one object.

We examine the potential for applying comprehen-
sive memory safety validation for all classes of memory
errors to provide a foundation of memory safety for
programs. The idea is that the objects whose memory
accesses can be proven to comply with all classes of
memory safety can be isolated from memory errors in
other accesses to protect a large fraction of objects (but
not all objects). After motivating the potential for mem-
ory safety validation, we introduce the DataGuard* and
Uriah® systems, which perform comprehensive mem-
ory safety validation for the stack and heap regions,
respectively. We then perform a study of Ubuntu Linux
packages to evaluate the fraction of stack and heap
objects whose memory accesses can be proven to satisfy
memory safety for all classes, finding that over 77% of
heap objects and over 85% of stack objects can be pro-
tected at low overhead via isolation. We then perform a
longitudinal study over software versions covering the
last 10 years, finding that the number of objects whose
memory safety can be validated comprehensively is
increasing, hinting that leveraging memory safety vali-
dation may become even more beneficial in the future.
Finally, we examine other possible benefits of applying
comprehensive memory safety validation, from reduc-
ing effort in bug finding, even for nonmemory bugs, to
improving defenses.

The Memory Safety Problem
Unsafe programming languages, such as C and C++,
distinguish memory objects from memory references
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(ie., pointers), allowing pointers to reference any object.
While these languages remove the overhead of code that
maintains memory safety and provide programmers
with tremendous flexibility for accessing and managing
memory use, this separation often leads to programming
errors, generally called memory errors, where pointers
may be used to access memory locations and/or interpret
memory incorrectly. These errors create powerful attack
vectors for adversaries, enabling them to hijack program
executions for a variety of malicious purposes.

Memory errors can be categorized into three classes:
spatial errors, type errors, and temporal errors. A mem-
ory access causes a spatial error when the pointer used
refers to memory outside the referent object’s (i.e., the
object to which a pointer is assigned) allocated memory
region. Spatial errors are the most well-known memory
errors, such as buffer overflows and overreads. A mem-
ory access causes a type error when the pointer used
refers to a memory location using a different data type
than that associated with the object or field at that loca-
tion. A common type error allows a pointer object to be
referenced as a data object or vice versa. Finally, a mem-
ory access causes a femporal error when the pointer may
be used before an object is assigned (i.e., use-before-ini-
tialization) or after it is deallocated (i.e., use-after-free).

Researchers have explored a multitude of meth-
ods to eliminate memory errors and/or prevent their
exploitation. On one hand, researchers have long advo-
cated switching to safe programming languages, even
safe variants of the C language. However, C/C++,
which serves as the pivotal language for system-level
programming (e.g., OS kernel and embedded systems)
and performance-critical applications (e.g., web brows-
ers and server programs), remain popular among pro-
grammers and cannot be completely substituted given
the large legacy codebase. On the other hand, a variety
of defenses have been proposed to provide safety to pro-
grams written in unsafe languages. While some defenses
with lower cost, such as stack canaries, have been
adopted, they do not offer complete protection. Conse-
quently, memory errors remain in programs, and adver-
saries can still exploit them. More complete defenses
that prevent exploitation of memory errors (for at least
one class) have been found to be too expensive. An
open question is whether a new approach is needed.

A Case for Memory Safety Validation

The CCured system proposed the idea of memory
safety validation to avoid unnecessary runtime checks
to prevent memory errors.! CCured highlights the fact
that spatial errors are not possible for pointers that are
never used in pointer arithmetic operations, and type
errors are not possible for pointers that are never used
in type cast operations. With these insights, CCured
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found that approximately 90% of all pointers in C/C++
programs are never used in either pointer arithmetic or
type casts. Thus, only approximately 10% of pointers
require runtime checks to prevent either of these classes
of memory errors.

There are two conjectures that one can draw from
these results. On one hand, since only 10% of pointers
require runtime checks to enforce spatial and type safety,
defenses only need to prevent unsafe memory accesses
on this fraction of pointers to enforce memory safety
with full coverage of all unsafe operations. Unfortunately,
the experience of many researchers has shown that the
number of operations using this fraction of unsafe point-
ers is still sufficiently large enough to create a substantial
runtime and/or memory overhead. In addition, CCured
did not assess pointers for possible violations of tempo-
ral safety, so additional runtime checks will be necessary
to enforce memory safety for all three memory error
classes. As a result, all memory objects remain prone to
exploitation due to memory errors in current programs.

An alternative conjecture is that many objects have
only memory-safe accesses, so these safe objects should
be protected to maintain their safety. The idea is to
apply comprehensive memory safety validation for each
object, whereby a memory object is classified as safe
only when every pointer that may reference (i.e., alias;
the term alias refers to the pointers that reference [i.e.,
point to] the same memory object [i.e., memory loca-
tion]) the object can be proven to comply with memory
safety for all three classes of memory errors. If so, these
objects do not require any memory safety defenses for
their aliases and can be protected from unsafe memory
accesses to other, unsafe objects, which can be accom-
plished without runtime checks [e.g,, via information
hiding, such as address space layout randomization
(ASLR)]. Researchers have proposed techniques to
isolate objects from memory errors using separate
stacks? and typed heaps,® in which objects that have
been shown to be safe from some classes of memory
errors are isolated from accesses to objects that may be
prone to such memory errors. While isolation can be a
simple and efficient defense, these prior techniques did
not consider memory safety comprehensively, i.e., for
all three classes of memory safety, potentially exposing
supposedly isolated objects to memory errors.

While extensive research has explored the first con-
jecture extensively to try to protect all memory objects
from memory errors, little effort has examined the
potential of identifying and protecting safe objects
using comprehensive memory safety validation. In the rest
of this article, we examine methods for comprehensive
memory safety validation, their impact on enforcing
memory safety in programs, and their potential impact
in enhancing software security more broadly.

ecurity & Privacy

Methods for Comprehensive Memory
Safety Validation

We have developed memory safety validation meth-
ods for the stack, called DataGuard,* and heap, called
Uriah.> Memory safety validation aims to prove that
every alias of an object must only be used in operations
that satisfy spatial, type, and temporal safety. If we can-
not prove all classes of memory for even one alias, then
the object is classified as unsafe. The memory safety val-
idation has to be conservative to ensure that any object
classified as safe must not be potentially unsafe. We
require such a conservative analysis to avoid placing any
object in a safe region (stack or heap) that may possibly
be unsafe as any unsafe operation could compromise
the entire safe region.

By isolating the safe and unsafe memory regions,
DataGuard and Uriah protect safe objects from all
classes of memory errors and enable developers to
inspect which objects may be unsafe. Isolation for both
DataGuard and Uriah relies on ASLR. While ASLR is
prone to compromise via information leaks, DataGuard
and Uriah both ensure that no pointers (aliases) to safe
objects are located in the unsafe memory regions. That
is, any otherwise safe object that is referenced by an
object classified as unsafe becomes unsafe. This guar-
antees that potential information leaks resulting from
memory errors in an unsafe region will not expose any
addresses in the safe region.

The protection of the unsafe memory region is
beyond the scope of this work. We note that any exist-
ing defenses can be utilized in the unsafe region (e.g,
ASan’ and FuZZan®). It is one of our goals to remove
unnecessary runtime checks on proven safe memory
objects. Moreover, we discuss how memory safety val-
idation may improve testing for exploitable memory
errors and hardware-assisted enforcement of memory
safety later in the article.

Figure 1 shows the high-level approach for compre-
hensive memory safety validation; there are several crit-
ical differences for validating stack versus heap memory,
described below. We first describe stack memory safety
validation via DataGuard, then describe the additions
and changes necessary to perform heap memory safety
validation using Uriah. First, CCured showed that many
pointers satisfy spatial and type safety because they
never perform any operations that could cause a vio-
lation, so DataGuard extends this analysis with a sim-
ple escape analysis for temporal safety to find objects
whose aliases all satisfy the three classes of memory
errors trivially (i.e., have no aliases that are used in any
operation that could violate memory safety). We found
that 72% of stack objects satisfy memory safety compre-
hensively using this analysis.* Second, for objects that
may be aliased by pointers through which potentially
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unsafe memory operations may be performed (e.g,
pointer arithmetic), we find they can still be validated
if we can determine concrete safety constraints for spa-
tial, type, and temporal safety. Objects lacking concrete
constraints (e.g., the concrete size of a buffer for spa-
tial safety) are classified as unsafe. Third, DataGuard
applies static analyses for each class of memory safety
to validate compliance with each object’s constraints for
all of its aliases. An additional 16% of stack objects are
validated statically.* Fourth, for objects found unsafe via
static analysis, we apply a targeted symbolic execution
that follows the execution paths (i.e.,, def-use chains)
of each pointer found unsafe to validate whether they
actually comply with the object’s memory safety con-
straints (i.e, were a false positive in static analysis).
Approximately 4% of stack objects are validated via this
method,* leading to a total of over 91% of stack objects
being safe. The set of safe objects are then isolated using
the safe stack technique® to protect them from unsafe
memory accesses, incurring an average overhead of
4.3% for SPEC CPU 2006 benchmarks. (The origi-
nal SafeStack mechanism presents 0.1% overhead in
Kuznetsov et al.> SafeStack in Clang is different from
the academic prototype. Our evaluation shows 11.3% of
runtime overhead for Clang’s SafeStack for SPEC CPU
2006 Benchmark.)

Validating memory safety for the heap in Uriah fol-
lows the same high-level flow but has significant differ-
ences in each step as detailed in Figure 1. First, there
is no general, static memory safety validation method
for temporal safety, so only validation for spatial and
type safety are performed. Objects that satisfy spatial
and type safety are allocated in a manner that enforces
a form of temporal memory safety called temporal type
safety.> Second, Uriah validates type safety for com-
pound types, which was not validated by DataGuard,

by generating and checking constraints on safe upcasts.
Third, Uriah’s static analysis for heap data accounts
for dynamic resizing of heap objects during realloca-
tion, which was not necessary for stack objects. Fourth,
Uriah applies symbolic execution to prune infeasible
paths until only feasible safe paths remain, in addition
to validating compliance in execution paths as in Data-
Guard. Uriah can validate that over 70% of allocation
sites produce only objects whose memory accesses (i.e.,
via all their aliases) satisfy spatial and type memory
safety, accounting for over 70% of allocated objects at
those sites for the programs tested.® Uriah employs a
per-type allocator that enforces temporal type safety
using strict type-based reuse at runtime, preventing
both use-before-initialization (e.g, zeroing memory
before the first use) and use-after-free (e.g., enforcing
temporal type safety) with 2.9% overhead.

Memory Safety Validation Results

‘We compute safe objects from Linux packages to assess
the applicability and effectiveness of DataGuard and
Uriah over across a diverse set of software. The evalu-
ation is performed on Ubuntu 20.04 with Linux kernel
5.8.0-44-generic and LLVM 10.0, using the published
versions of DataGuard and Uriah, including their PDG
and SVF analysis capabilities. (DataGuard is available
open source at https://github.com/Lightninghkm/
DataGuard. The link to the Uriah source is: https://
github.com/Lightninghkm/Uriah. The Uriah article
is still under submission process, we will open-source
Uriah to the provided link upon acceptance.) We source
preinstalled packages directly from the official Ubuntu
repositories. For generating LLVM bitcode, we opt for
the uClibc library and employ the wllvm tool to com-
pile Linux packages. Packages incompatible with this
toolchain are excluded from further analysis.
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Figure 1. The memory safety validation approach: applied to the stack (DataGuard) and heap (Uriah).
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Memory Safety in Ubuntu Packages

First, we examine DataGuard and Uriah’s adaptability
across diverse Linux packages. We assess whether these
approaches can be applied to Ubuntu packages automati-
cally. Out of the 1,623 packages in the Ubuntu distribu-
tion, DataGuard and Uriah successfully processed 1,245,
representing 76.7% of the distribution. This translates
to analyzing roughly 266 million source lines of code
(SLOC), which constitute 77.8% of the total 342 million
SLOC. However, 378 packages remain unanalyzable due
to compatibility issues, such as conflicts with the LLVM
version used by DataGuard and Uriah. Uriah is able to
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Figure 2. The distribution of packages w.r.t. the fraction of safe stack objects
and safe heap allocations. The x-axis represents the interval of the fraction of
safe stack objects or safe heap allocations that are protected by DataGuard or
Uriah; 0%—-50% is omitted since both DataGuard and Uriah offer at least 50%
protection among all packages. The y-axis represents the number of packages
that fall into the corresponding fraction interval of safe stack objects (blue) and
safe heap allocations (orange).
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Figure 3. The cumulative distribution of the fraction of protected safe stack objects
and safe heap allocations for all analyzed Linux packages. The x-axis represents the
percentage of analyzed Linux packages. The y-axis represents the percentage of safe
stack objects and safe heap allocations found by DataGuard and Uriah. The figure
can be understood as “(1 - x-axis)% of analyzed packages have at least y-axis% of
safe stack objects or safe heap allocations.” The slope of the line correlates to the
order of packages; we followed the sequence in Ubuntu repositories.

analyze and harden all 202 Linux packages that make use
of heap allocations, with its original tool chain.

Second, we investigate DataGuard and Uriah’s poten-
tial to automatically protect stack and heap objects
against memory errors. We compute the safe objects
within a Linux distribution. Among all the packages
analyzed, DataGuard validates that all accesses to
12,484,971 out of 14,627,355 (85.35%) stack objects
are free from all three classes of memory errors. These
objects can all be protected by stack isolation. Uriah val-
idates that all accesses to objects produced in 425,317
out of 545,560 heap allocation sites (77.96%) satisfy
spatial and type safety. These objects are protected
from attacks on temporal memory errors and memory
accesses from unsafe objects using the Uriah runtime
allocation scheme. We note that this is a slightly greater
fraction of the protected heap objects than in the Uriah
article.® One reason is that these Linux packages are the
most recent versions, so heap use tends to be safer than
for older SPEC CPU 2006 programs. Also, some of the
SPEC benchmarks that were evaluated originally in
Uriah have a limited number of heap allocations, and a
large fraction are unsafe, which biases the results.

Third, we assess the security impact by analyzing the
fraction of protected stack and heap objects validated.
Figure 2 shows the distribution of the fractions of safe
stack objects (i.e., allocation sites for the heap) across
the Ubuntu packages. As we can see, using the memory
safety validation of DataGuard and Uriah, a majority of
the Ubuntu packages have more than 70% of stack and
heap objects protected from all classes of memory safety
errors. The cumulative distribution (Figure 3) also
shows a similar finding. Specifically, DataGuard pro-
tects more than 70% of the stack objects for 97% of the
packages (i.e., at 3% in Figure 3) and more than 80% of
the stack objects for 75% (i.e., at 25%) of the packages.
Uriah protects more than 60% of the heap allocation
sites for 90% of the packages (i.e., at 10% in Figure 3)
and more than 70% of the heap allocation sites for 60%
(ie., at 40%) of the packages.

Assessing Memory Safety Over Time

We perform a longitudinal study using DataGuard
and Uriah to assess how memory safety has evolved
in programs over time. We showcase results for Nginx
(versions 1.4.0-1.25.0), Httpd (2.2.24-2.4.57), and
Firefox (21-115), spanning ten years ( January 2013 to
May 2023) of released versions for each.

For stack memory protection, we deployed Data-
Guard on the three programs. Figure 4 shows that
memory safety, in terms of the fraction of stack objects
validated to be free from all classes of memory errors,
has been trending upward over the past ten years for all
three programs. We observe a few brief reductions in
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the fraction of safe stack objects, such as the year 2016
for Firefox and the year 2018 for Nginx and Httpd. We
note that major updates of the corresponding programs
(e.g., new functionalities, modules, or interfaces) occurred
during these years, which may have introduced new,
unsafe objects. For heap memory, we deployed Uriah on
the three programs as well. Similarly, Figure 5 shows
that memory safety in terms of the fraction of heap allo-
cation sites has trended upward the past ten years for all
three programs. Drops are also observed for safe heap
allocations (e.g., 2016 for Httpd and 2017 for Nginx)
due to new version releases.

Generally speaking, the surge in safe memory objects
on both stack and heap can be attributed to a confluence
of several factors: evolving coding standards, develop-
ers’ awareness of memory safety, and powerful vulner-
ability detection tools. This synergy strengthens the
memory safety of software by progressively removing
unsafe memory operations for more memory objects.
Moreover, programmers can leverage the static memory
safety validation from DataGuard and Uriah to get feed-
back on the remaining potential unsafety in their code
(i.e., unsafe memory operations/objects). This empow-
ers the developers to fix their code, making it resilient
against memory errors.

Applying Memory Safety Validation

to Further Improve Security

In addition to enabling the protection of safe memory
objects, memory safety validation may improve soft-
ware security in other important ways. Below, we exam-
ine the potential for improving security in ways that
range from improved bug detection, even for nonmem-
ory bugs, to more effective prevention of the remaining
Memory errors.

Improving Dynamic Memory

Safety Testing

One key goal is to test software for memory errors for
the remaining unsafe objects and their aliases. However,
in testing unsafe operations, the enforcement of mem-
ory safety must be effective but not necessarily complete.
An approximation of memory safety suffices to detect
flaws. In testing, there is no adversary that carefully tai-
lors exploits to bypass the checks. The lack of an active
adversary allows the memory safety checks for detecting
bugs to use a weaker safety property. Instead of ensuring
the validity of pointers, i.e., all pointer uses are memory
safe with respect to the referenced objects, memory
safety testing only ensures that memory accesses target
valid objects. This is a subtle but important change of
perspective. On one hand, a program has strictly fewer
live objects than live pointers, so fewer metadata need
to be managed. On the other hand, the metadata lookup

Authorized Iicenst?,d use limited to: Univ of Calif Riverside. Downloaded on August 10,2024 at 21:43:12 UTC from |IEEE Xplore. Restrictions apply.

www.computer.org/securl

can be organized in a much more efficient way, reduc-
ing the key cost of checks. Additionally, keeping meta-
data per object increases compatibility with software as
the underlying memory location already varies for each
execution due to, e.g., ASLR.

Address sanitizer’ introduced the idea of memory
safety checks to test that memory accesses target valid
objects, called sanitizers in general. Memory sanitiza-
tion cleverly pads memory objects on both sides with
so-called red zones. When accessing memory, it checks
if the pointer references a red zone and triggers an excep-
tion. Strict memory safety requires tracking each pointer
to ensure it remains tied to its original object and that
the object remains valid. Keeping metadata for each
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object loses the relationship between pointer and object.
Instead, it only allows detection if a pointer points out-
side of all objects. The underlying hypothesis is that
pointers will only go out of bounds near the target object.
This hypothesis is true for testing where developers aim
at finding bugs but fails if an adversary carefully modifies
the pointer to go out of bounds into an adjacent object
(and not into a red zone). Memory sanitization is there-
fore useful for testing but insufficient for hardening.

Dynamic testing engines, commonly fuzz testing
today, apply memory sanitizers as an oracle that tells
them when a bug is triggered. For fuzzing, performance
is key. Any cycle spent on sanitizer checks is a cycle not
spent running another test, so reducing the overhead
is key (e.g., the ASan extension ASan—’ and FuZZan®).
When analyzing the performance of the address sani-
tizer, the key overheads fall into the following categories:
startup cost, managing metadata, and individual checks.
The startup cost is paid once per execution to initialize
the metadata memory
structure, which entails
allocating a large area
of memory. Managing
metadata incurs a cost
for each allocated object
to store the initial man-
agement information.
During execution, each
check incurs a cost.

By increasing the
number of objects that
can be proven to sat-
isfy classes of memory
safety via memory
safety validation, we can reduce overheads proportion-
ally. DataGuard and Uriah validate memory safety for
each class independently, enabling a reduction of metadata
management and checks for those classes found safe. For
the safe classes, metadata may be removed entirely. For
the per-check cost, optimizations can simplify the checks
or fully remove them. In addition to removing checks
for more objects that can be proven safe for all memory
error classes, we can leverage memory safety validation
to remove checks for individual classes proven safe. We
will explore other optimizations, such as merging checks
for related aliases and for operations dominated by other
checks, extending approaches proposed recently.” These
optimizations can improve the performance of dynamic
testing without reducing the precision.

Improving Hardware Enforcement

of Memory Safety

Memory safety is a software correctness property, but
hardware can offer attractive benefits in either reducing

ecurity & Privacy

DataGuard and Uriah validate memory
safety for each class independently, enabling
a reduction of metadata management and
checks for those classes found safe.

the overhead of enforcing safety properties, e.g., bounds
checking or cryptographic authentication acceleration,
or by providing new features, such as capabilities, that
expose safety properties at the instruction set architec-
ture (ISA) level. However, while an increasing number
of features have been deployed in recent years, such as
Intel MPK and cryptographic pointer authentication
support, these features are almost universally opt in
with respect to effective use; hardware is ill equipped
to understand the intended memory safety semantics of
an arbitrary binary. Thus, static analyses and/or explicit
programmer use of intrinsics remain a fundamentally
necessary component in utilizing the breadth of hard-
ware features intended to enhance memory safety.

While existing hardware support is employed to
enhance memory safety, ubiquitous adoption, by
software, of any particular hardware mechanism as
the basis to support memory safety remains elusive.
Among the limiters of adoption are that many
commercial hardware
memory safety mech-
anisms are platform
specific and reduce
code portability. This,
in turn, slows the
automation of tool-
chains looking to map
the memory accesses
of unsafe languages
into the specific con-
straints needed to uti-
lize a heterogeneous
offering of protection,
enforcement, and viola-
tion detection techniques. Further, acutely finite bounds
in many hardware mechanisms have either made
them hard to apply (e.g, how to map more than
16 domains into MPK’s 4-bit space) or susceptible
to attacking the hardware security mechanism directly
(e.g., the PACMAN attack on Apple M1 pointer
authentication).

The focus, as exemplified by DataGuard* and
Uriah,® on identifying inherently safe objects and pro-
tecting them from unsafe interactions aligns well with
the strengths and limitations of hardware support for
memory safety. Provably safe objects not only allow eli-
sion of explicit checks, they also elide tracking of associ-
ated metadata, which aligns well with the finite resources
hardware can devote to tracking it. By collapsing the
most common (and, as seen in Figures 4 and S, increas-
ingly common) case of safe objects into a single safety
class, approaches with small domain counts (e.g., 4 bits
for MPK) become more practical to employ, and the
working set of metadata for approaches like capabilities
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becomes more scalable. Similarly, focusing on the protec-
tion of safe objects aligns with hardware design and veri-
fication complexity: protecting known-safe objects from
being accessed by any pointer not similarly proven safe
has well-defined semantics and limited state and can be
encoded as a static property of a memory access instruc-
tion, whereas covering all possible origins and implica-
tions of unsafe accesses requires substantial generality.

One of the more promising efforts in the evolv-
ing space of hardware support for memory safety is
the CHERI'? project that seeks to provide a common
set of capability-based features that can be added as
extensions to any RISC style architecture. The Morello
platform represents an application of CHERI to the
ARM ISA, showing its practical viability to industry
standard designs. While replacing pointer-based
access with hardware-native capabilities addresses the
protected memory error classes and coverage aspects
of the 3-C principle,
prior capability-based
architectures have
often run aground on
cost: capabilities are
fundamentally larger
than pointers, involve
more computation,
and require manag-
ing (even with hard-
ware support, such
as capability cach-
ing) larger amounts
of metadata. Along
similar lines to the
DataGuard and Uriah approaches, the Morello tool-
chain heavily leverages static analysis to mitigate the
number of distinct capabilities required: all provably
safe stack accesses share the same capability ranging
over the entirety of the safe stack, vastly reducing run-
time overheads. Whether it be through capabilities (as
with CHERI), memory protection domains, or other
novel mechanisms to enforce isolation of safe objects
from the unsafe, current trends indicate that making the
common case of protecting provably safe objects cheap
and easy, more so than any particularly clever means of
curtailing a given class of unsafe accesses, will be a foun-
dational component of any hardware memory safety
support that achieves widespread adoption.

Improving the Use of

Privilege Separation

Privilege separation in software refers to separating a
software application into multiple modules, each with
its own set of privileges and each loaded into sepa-
rate protection domains. Privilege separation provides
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Privilege separating programs in unsafe
languages such as C/C++ is especially
beneficial to security because they are

prone to memory errors.

a coarse-grained notion of memory safety in the sense
that a protection domain’s code can only access its own
domain’s memory and is prevented from accessing any
other domains’ memory directly. A buffer overflow
within a domain remains possible, but such a buffer
overflow cannot read or modify memory in another
domain. This notion of cross-domain memory safety
can be enforced using either software-based fault isola-
tion or one of many hardware-based mechanisms.

Privilege separating programs in unsafe languages
such as C/C++ is especially beneficial to security
because they are prone to memory errors. For example,
OpenSSH was refactored to create unprivileged moni-
tor domains for handling user connections that were
prone to memory errors and to isolate one privileged
server domain.!! Such efforts, however, relied on labor
intensive manual efforts, but recent work has shown
that many tasks in privilege separation can be auto-
mated,'? even for ker-
nel,'®> which reduces
threats due to mem-
ory safety for privi-
leged domains.

While automated
privilege separation pre-
vents the exploitation of
Memory errors among
domains, memory safety
validation may address
some limitations. First,
even after privilege sep-
aration, the data con-
veyed from unprivileged
domains may cause memory errors in privileged domains.
For example, an unprivileged domain may provide
a value used to compute a memory reference in the
privileged domain (e.g., an offset), which may cause a
memory error when used in the privileged domain.
One possible solution is to apply memory safety vali-
dation to determine the constraints on inputs from
unprivileged domains to provably prevent memory
errors. We will have to explore the fraction of cases for
which such constraints can be derived for the privi-
leged domain code. Second, memory safety valida-
tion could be used to reduce the size of unprivileged
domains or the frequency of domain crossings among
domains. For example, memory safety validation
may enable us to find that a significant fraction of the
unprivileged domain’s code is memory safe, perhaps
enabling optimizations that improve the performance
of privilege-separated systems. We will have to explore
how knowledge of memory safety in unprivileged
domains can improve security—performance tradeoffs
in privilege separation.




Il VEMORY SAFETY

Improving Detection of

Nonmemory Bugs

Programmers also want to ensure that the secrecy
and integrity of their program data are protected for
all possible executions. The lack of memory safety
in C and C++ has precluded the development of
automated analyses to validate secrecy and integrity
requirements for programs in these languages. How-
ever, memory safety validation may make validation
of secrecy and integrity in C/C++ programs practical
in some cases.

Researchers have long known how to validate the
secrecy and integrity of program data in memory-safe
languages. Denning formalized the notion of secure
information flow in programs in 1975.'% There are
two types of information flows in programs: 1. explicit
flows, where a direct assignment (e.g, a = b) implies an
information flow (ie., from b to a), and 2. implicit flows,
where an assignment that is indirectly dependent on a
conditional [e.g, if (c) then a = b] implies an informa-
tion flow from the conditional expression to another
assigned value (i.e., from c to a). All explicit and implicit
tlows must comply with a security policy for a program
to have only secure information flows. Later, Myers
defined language extensions to validate that a program
has only secure information flows for memory-safe
languages'® (i.e., building an extension of the Java pro-
gramming language). This approach has since been
applied to many programs to validate the secrecy and
integrity of sensitive data.

However, programs in unsafe languages, such as C
and C++, may have memory errors, which create data
tlows that are not explicitly defined by a program. For
example, a buffer overflow may allow a statement to
read or write memory objects other than the objects
referenced in the statement (e.g., by accessing memory
outside the memory region of the referenced object due
to a spatial memory error). This is what occurred in the
Heartbleed vulnerability. As a result, information flow
analyses for C/C++ programs, when applied, assume
memory safety. While the use of information flow anal-
ysis assuming memory safety may identify bugs that can
occur, even when a memory error is not exploited, such
analyses cannot validate that the secrecy and integrity
of program data will be protected in all executions (e.g.,
validate that the secrecy of keys cannot be violated by an
error like Heartbleed).

Memory safety validation may enable program-
mers to validate the secrecy and integrity of some
program data in C/C++ programs. The key insight
is that the ability to protect the memory safety of a
large fraction of program objects means that informa-
tion flow validation may leverage these objects to vali-
date secure information flows. For example, consider

ecurity & Privacy

a secret value “key” that is not supposed to be leaked
to a public sink p. Currently, we cannot validate the
secrecy of “key” in a C/C++ program, because there
may be a memory error that enables access to another
variable to access “key,” as in the Heartbleed bug.
With memory safety validation, if we can validate the
memory safety of “key” and all the variables depen-
dent on information flows from “key” in the program,
then these variables can be isolated from memory
errors, preventing access to “key” outside of the pro-
gram’s information flows. If this situation were true
for the keys in Heartbleed, then they could have been
protected from the bug, even if a bug in an unsafe
memory access remained latent.

There are questions to assess before we can deter-
mine whether memory safety validation may enable
information flow analysis. One question is what fraction
of sensitive data are memory safe and only flow to other
memory-safe objects. We have previously assessed the
fraction of objects used in conditionals that is memory
safe (i.e., to assess implicit flows), finding that 91.3% of
such objects can be validated to satisfy memory safety.
While this is not 100%, programmers may be able to
apply defenses to preserve memory safety in a targeted
way to enable the validation of secrecy and integrity for
critical sensitive data. Again considering Heartbleed, if
some object that is dependent on an information flow
from a key may be accessed in a way that may violate
one or more classes of memory safety, memory safety
validation can identify which classes cannot be proven
to satisfy memory safety, enabling defenses to be tar-
geted to prevent these violations, enabling validation of
information flows.

M

this article, we evaluated the state-of-the-art break-

emory safety validation emerges as a game-
changer in the memory vulnerability war. In

through defenses that leverage memory safety valida-
tion: DataGuard and Uriah. Results show that they
deliver coverage for 77% of heap and 85% of stack
objects while enforcing all memory safety classes: spa-
tial, type, and temporal. Given the current situation
where the number of safe objects increases over time,
memory safety validation will become more important.
The future holds even brighter possibilities: improv-
ing bug detection using fuzzing and information flows,
layering with other defensive techniques like privilege
separation, and harnessing hardware for dramatic per-
formance boosts. m
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