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Abstract
While studying gradient dynamical systems,Morse introduced the idea of encoding the
qualitative behavior of a dynamical system into a graph. Smale later refined Morse’s
idea and extended it to Axiom-A diffeomorphisms on manifolds. In Smale’s vision,
nodes are indecomposable closed invariant subsets of the non-wandering set with a
dense orbit and there is an edge from node M to node N (we say that N is downstream
from M) if the unstable manifold of M intersects the stable manifold of N . Since
then, the decomposition of the non-wandering set was studied in many other settings,
while the edges component of Smale’s construction has been often overlooked. In the
same years, more sophisticated generalizations of the non-wandering set, introduced
by Birkhoff in 1920s, were elaborated first by Auslander in early 1960s, by Conley
in early 1970s and later by Easton and other authors. In our language, each of these
generalizations involves the introduction of a closed and transitive extension of the
prolongational relation, that is closed but not transitive. In the present article, we
develop a theory that generalizes at the same time both these lines of research. We
study the general properties of closed transitive relations (which we call streams)
containing the space of orbits of a discrete-time or continuous-time semi-flow and
we argue that these relations play a central role in the qualitative study of dynamical
systems. All most studied concepts of recurrence currently in literature can be defined
in terms of our streams. Finally, we show how to associate to each stream a graph
encoding its qualitative properties. Our main general result is that each stream of
a semi-flow with “compact dynamics” has a connected graph. The range of semi-
flows covered by our theorem goes from 1-dimensional discrete-time systems like the
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logistic map up to infinite-dimensional continuous-time systems like the semi-flow of
quasilinear parabolic reaction–diffusion partial differential equations.
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1 Introduction

This article is about the following two fundamental ingredients in the qualitative
description of a dynamical system: the invariant sets of the system and the dynamical
relations between them. The foundational example we have in mind, introduced and
studied by Smale in [1], is the flow of a Morse gradient vector field on a compact
manifold. In this case, each invariant set is a fixed point and there are only finitely
many of them. Heteroclinic trajectories of the system determine a relation between
invariant sets that we express as “being downstream from” and can be encoded into a
graph.

We aim at providing a natural framework that unifies and widely generalizes the
following two fundamental and seminal ideas and results on the subject.

1.1 Smale’s Graph of a Dynamical System

In [2], as a generalization of the example above, Smale introduced the concept of
graph of a dynamical system and studied the case of Axiom-A diffeomorphisms on a
compact manifold. In that case, given anAxiom-A diffeomorphism F , the nodes of the
associated graph are (finitely many) closed, disjoint invariant subsets Ni of the non-
wandering set NWF such that: (i) F |Ni is topologically transitive; (ii) ∪Ni = NWF .
There is an edge from node N1 to node N2 if and only if the unstable manifold of N1
has non-empty intersection with the stable manifold of N2. In our terminology, we say
that N1 is downstream from N2. This decomposition of NWF in “nodes” was called
by Smale its spectral decomposition and it has been widely generalized, e.g., to maps
on the interval [3], homeomorphisms on compact [4, 5] and non-compact [6, 7] metric
spaces and on non-metrizable spaces [8]. On the contrary, the edges—and so the whole
graph point of view—did not receive, in the authors knowledge, much attention by
the dynamical system community, with the following noticeable exceptions: an article
by Mizin [9] (in Russian; see Chap. 9 in Osipenko’s book [10] for a presentation in
English of Mizin’s results); several works by Fiedler and Rocha on the graphs of the
semi-flows of some class of semi-linear parabolic PDEs [11–13]; two recent works
by the present authors on the logistic map and the Lorenz system [14, 15]. The graph
introduced by Mizin is the same we introduced independently in [14].
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1.2 Quasi-Orders and Auslander’s Generalized Recurrence

In [16], as a generalization of the concept of non-wandering point of a semi-flow F ,
Auslander studied the smallest quasi-order (i.e., reflexive and transitive) relation �A

that extends the orbit relation (i.e., for all x in the phase space, x �A y for all y in the
orbit of x) and is topologically closed. Auslander used �A to generalize the set NWF

as follows: x is a generalized recurrent point if and only if either x is a fixed point or
there is a y such that x �A y and y �A x . Thanks to the transitivity of the relation,
the set of all these generalized recurrent points has the nice property, similar to the
spectral decomposition of Smale, to naturally decompose into the disjoint union of
closed invariant sets (which we still call nodes). Notice that nodes in Smale’s spectral
decomposition (i.e., “non-wandering nodes”) can be sometimes not disjoint (e.g., see
Example 4.2.6 and 4.2.7) while nodes of Auslander’s generalized recurrent set, as
mentioned above, are always disjoint. More details, with a thorough discussion about
relations and generalized recurrence, can be found in a recent work by Akin and
Auslander [17].

In a nutshell, in this work we extend Auslander’s idea by considering all (rather
than just the smallest one) closed quasi-orders that extend the orbit relation of F (we
call these relations streams), and by showing that their qualitative features can be
encoded into a graph, similarly to how Smale did for Axiom-A systems. Each stream
S has a set RS of S-recurrent points, defined in the same way we defined above the
generalized recurrent points, and on RS is defined a natural equivalence relation that
decomposes it into the disjoint union of closed forward-invariant sets. We show that,
besides Auslander’s generalized recurrent points, also Conley’s chain-recurrent points
[18] and Easton’s strong-recurrent points [19] arise naturally as the sets of recurrent
points of a stream, that we call respectively the chains and the summable chains
streams. In particular, we show that several common properties of these sets derive
from general properties of streams. Finally, we extend Smale’s graph idea to streams
by associating to each stream S a directed graph �S as follows: the nodes of �S are
the equivalence classes of the recurrent points of S and there is an edge from node N1
to node N2 if and only if N1 �S N2 (Definitions 5.2.1 and 5.2.2).

We point out that some authors already used similar relations in the study of gen-
eral properties of dynamical systems. For instance Akin, inspired by [16], based his
monography on topological dynamical systems [4] on streams (although he does not
use this terminology). Duarte and Torres used similar relations in the framework of
set-valued dynamical system [20]. More recently, Akin and Auslander used streams
(again, not with this terminology) in their work on compactification of locally compact
dynamical systems [17].

Our main results are the following. Assume that the semi-flow F has a compact
global trapping region (Definition 2.1.1; notice that this condition is trivially satisfied
when X is compact). Then:

1. The graph of the prolongational relation of F is connected (Theorem 1).
2. The graph of each stream of F is connected (Theorem 2).
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3. Given any stream S of F , for each node N there is at least a top node T (i.e., T
has no incoming edges) and a bottom node B (i.e.. B has no outgoing edges) such
that T �S N �S B (Theorem 3).

4. The nodes and graph of the chains stream of a continuous-time semi-flow coincide
with those of its time-1 map (Theorem 4). This extends a result by Hurley [21]
that the set of the recurrent points of the two systems coincide.

5. If the smallest (i.e.,Auslander’s) streamhas atmost countablymanynodes, then the
chains streams and Auslander’s stream (and so every stream in between, including
all summable chains streams) are equal to each other (Theorem 5). In particular,
their nodes and graphs are equal.

Moreover, in Sect. 4.4 we classify the prolongational graph of T-unimodal maps (Def-
inition 4.4.1), namely continuous unimodal maps without wandering intervals and
without non-topological attracting periodic orbits. This extends and clarifies some
aspect of our classification of the graph of the logistic map in [14] and of the graph of
T-unimodal maps with a chaotic attractor in [22].

2 Setting, Main Definitions and Tools

Throughout the article, X will denote a metrizable connected topological space. We
will usually denote points in X by x, y, z.

The main object of interest of this work is a discrete-time or continuous-time semi-
flow, as defined below.

Definition 2.0.1 A semi-flow on a topological space X is a continuous map F : T ×
X → X , where either T = 0, 1, 2, . . . (discrete time) or T = [0,∞) (continuous
time), satisfying the following properties:

1. F0(x) = x for each x ∈ X ;
2. Ft1+t2(x) = Ft2(Ft1(x)) for each x ∈ X and t1, t2 ≥ 0.

Notice that the discrete case consists in the iterations of the time-1map F1.Discussions
here will usually focus on discrete time semi-flows, and we leave it to the reader to
adapt the notation to the continuous-time case.

Our motivational example is the (continuous-time) semi-flow induced by a (finite-
or infinite-dimensional) ODE

ẋ = f (x),

whose solutions are unique and defined for all times t ≥ 0. In this case, Ft0(x0) is
defined as the value at time t = t0 of the solution of the ODE that passes through x0
at time t = 0.

The following definitions are crucial for this article.

Definition 2.0.2 Given a semi-flow F , we write x �F y if y = Ft (x) for some t ≥ 0

and we say that y is F-downstream from x . We write x
F= y if x �F y and y �F x .
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We call orbit space of F the set

OF = {(x, y) : x �F y},

namely the binary relation on X whose symbol is �F . The orbit of any given point x
under F is

OF (x) = {y : (x, y) ∈ OF }.

In analogy with the orbit space, we call limit space of F the binary relation

�F = {(x, y) : there is tn → ∞ as n → ∞ such that Ftn (x) → y}.

The limit set of a point x under F is the set

�F (x) = {y : (x, y) ∈ �F }.

We say that x is fixed for F , or that x is a fixed-point of F , if OF (x) = {x}; that x
is periodic if either x is fixed or there is a y �= x such that x

F= y; that x is recurrent
(or, to emphasize the map, F-recurrent) if x ∈ �F (x). Finally, we say that a function
L ∈ C0(X) is a Lyapunov function for F if x �F y implies L(x) ≥ L(y).

2.1 Compactness and Trapping Regions

In this article, we focus on the case of semi-flows with “compact dynamics”. By this,
we mean semi-flows such that each of their orbit are contained within a compact
set. Of course we could just assume X to be compact. Such a strong assumption,
though, would rule out cases important in applications, as examples below will show.
In fact, even local compactness would be too strong because it would rule out infinite-
dimensional dynamical systems (e.g., parabolic PDEs). Hence, from now on, we do
not make any extra assumption on X and we rather focus on the case when all orbits
of F are attracted by some compact set Q ⊂ X , as illustrated below.

Definition 2.1.1 Let Q ⊂ X . We say that Q is a trapping region for F if it is closed
and forward-invariant under F . Set Nε(Q) = {y : d(y, Q) < ε}. A trapping region
Q is:

• stable if, for every ε > 0, there is a δ > 0 such that
Ft (Nδ(Q)) ⊂ Nε(Q) for all t ≥ 0;

• uniformly asymptotically stable if there is an η > 0 such that, for every ε, δ ∈
(0, η), there is τ > 0 such that
Ft (Nδ(Q)) ⊂ Nε(Q) for all t ≥ τ ;

• globally attracting if, for every x , �F (x) ⊂ Q.

We say that a trapping region Q is a global trapping region if it is globally attracting
and uniformly asymptotically stable. Finally, we say that F is a semi-flowwith compact
dynamics if F has a compact global trapping region.
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Notice that X is, trivially, a global trapping region for every semi-flow on X . Hence,
when X is compact, each semi-flow on X has compact dynamics.

We leave to the reader the proof of the next statement.

Proposition 2.1.2 Let F be a semi-flowwith compact dynamics and let Q be a compact
global trapping region for F. Then, for each x, �F (x) is a non-empty subset of Q.

Proposition 2.1.3 Let F be a semi-flow with compact dynamics. Then, for every x,
there is an F-recurrent point in �F (x).

Proof Let y ∈ �F (x). If y is not F-recurrent, then y /∈ �F (y) and so�F (y) is a proper
subset of �F (x). Let � be the set of all subsets of �F (x) that are the limit set of some
point in�F (x). The collection of such sets is partially ordered by inclusion. By Zorn’s
lemma, there is a maximal ordered collection C of these sets. They are all compact,
so their intersection �∗ is compact and non-empty. Since the intersection of invariant
sets is invariant, for each z ∈ �∗ we have that �F (z) ⊂ �∗. By maximality, �F (z)
must be in C and it cannot be strictly smaller than �∗. Hence, z ∈ �F (z) = �∗. 
�

While having compact dynamics is a quite restrictive condition, there are many
important classes of semi-flows that satisfy it.We present some of them in the examples
below.

Example 2.1.4 (Logistic map) Consider the logistic map

	μ(x) = μx(1 − x),

whereμ ∈ (2, 4) and X = (0, 1), and set ck(μ) = 	kμ(1/2). Then Q = [c2(μ), c1(μ)]
is a compact global trapping region for 	μ.

Example 2.1.5 (Lorenz system) Consider the Lorenz ODE system in X = R
3

⎧
⎪⎨

⎪⎩

ẋ = −σ x + σ y

ẏ = −xz + r x − y

ż = xy − βz

.

The convex function

L(x, y, z) = r x2 + σ y2 + σ(z − 2r)2

is a Lyapunov function for the flow Ft of the Lorenz system far enough from the
origin. More precisely,

d

dt
L(Ft (x0, y0, z0))

∣
∣
∣
t=0

< 0

for all (x0, y0, z0) far enough from the origin. Hence, every ball of large enough radius
centered at the origin is a compact global trapping region for F .
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Example 2.1.6 (Reaction–Diffusion PDEs) One of the simplest infinite-dimensional
dynamical systems to which our machinery applies is the reaction diffusion scalar
PDE

ut = uxx + f (x, u,∇u), u(0, x) = u0(x),

where x ∈ (0, 1). PDEs of this type arise from many phenomena in chemistry reac-
tions, population dynamics, biophysics and more (see [13] for a large number of
references). It turns out that the most convenient setting for these PDEs is the func-
tional space X = L2(0, 1) of all square-summable functions on the unit interval. It
can be proved, indeed, that the weak version of the PDE above admits a continuous
semi-flow F : R × L2(0, 1) → L2(0, 1). Moreover, for some choice of the right-
hand-side f , the corresponding semi-flow F has a compact global trapping region.
This is the case, for instance, when f (x, u, 0) · u < 0 for large |u| and f (x, u, p) has
subquadratic growth in |p|. In this case, indeed, one can prove that there is a ball Q in
the subset of H1

0 functions (namely L2 functions whose weak first derivative is also
L2 and that are limit of continuous functions on (0, 1) with compact support) such
that, for each x , there is a T such that Ft (x) ∈ Q for each t ≥ T . Since H1

0 (0, 1) is
a compact subset of L2(0, 1), then Q is compact as a subset of L2 (see [23], Chapter
11). Hence, Q is a compact global trapping region for this system. The graphs of many
of this type of PDEs are under investigation by Fiedler and Rocha [11–13].

Example 2.1.7 (Navier–Stokes) Consider the 2D Navier–Stokes PDEs on the 2-torus
T
2, given by

{
u̇ − ν
u + (u · ∇)u + ∇ p = f

∇ · u = 0
,

where ν is a positive parameter and the unknowns u and p are a square-integrable
vector field and a square-integrable function on T

2. As in the example above, this
PDE defines a continuous semi-flow on X = L2 and one can prove that there is a ball
Q in the H1 norm that each trajectory enters in finite time. Notice that a set that is
bounded with respect to the H1 norm is compact in the L2 topology. This ball Q is a
compact trapping region for the semi-flow (see [23], Chapter 12).

Example 2.1.8 (Ricci flow) Ivancevic and Ivancevic showed in [24] that every reaction–
diffusion model in literature can be seen as a special case of the celebrated Ricci PDE
on manifolds

ġ = Riccig,

where g is a smooth metric on a manifold M and Riccig is the corresponding Ricci
manifold, a (0, 2) tensor obtained as contraction of the curvature tensor of g. This
shows that Ricci flow has in many cases a compact global trapping region.
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2.2 Chains

Since X is metrizable, given a semi-flow F we can use distances to define finite
sequences of points called chains, as definedbelow.Chains play amajor role in defining
the main types of recurrence. Below we define chains only for discrete semi-flows. In
Sect. 6.1 we show that this is enough for our goals (see Theorem 4).

Definition 2.2.1 A (F, d, ε)-bchain (or simply ε-bchain, when there is no ambiguity)
from point x to point y is a finite sequence C of k points z1, . . . , zk , with k > 1, such
that:

1. d(z1, x) ≤ ε;
2. d(zk, y) ≤ ε;
3. d(F(zi ), zi+1) ≤ ε for i = 1, . . . , k − 1.

We say that an ε-bchain C is:

1. An ε-chain if z1 = x and zk = y.
2. An ε-αchain if zk = y and F(zi ) = zi+1 for all i = 2, . . . , k − 1.
3. An ε-ωchain if z1 = x and F(zi ) = zi+1 for all i = 1, . . . , k − 2.
4. An ε-αωchain if F(zi ) = zi+1 for all i = 1, . . . , k − 2.

Finally, we say that C is an (F, d, ε)-�chain if

k−1∑

i=0

d(xi , F(xi )) < ε.

In other words, an ε-bchain is like an ε-chain where it is allowed to make a jump
before the first application of F ; an ε-αchain is an ε-bchain with a single jump, the
very first one; an ε-ωchain is an ε-bchain with a single jump, the very last one; an
ε-αωchain is an ε-bchain with just two jumps: the very first one and the very last one.

The concept of chains for maps goes back at least to Birkhoff [25]. To the authors’
knowledge, chains for (semi-)flows (see Definition 6.2.1) were introduced by Conley
[26] to define the chain-recurrent set. Later Bowen [27], while studying the shadowing
phenomenon, considered also the case of infinite chains and called them pseudo-orbits.
Some authors still use the term chains for finite truncations of pseudo-orbits [28, 29].
Nowadays, though, the terms chains and pseudo-orbits are often used as synonyms
[30, 31]. Finally,�chains were introduced by Easton, under the name of strong chains,
in [19].

As a first application of chains, we provide a characterization of recurrent points in
metric spaces. We leave its proof to the reader.

Proposition 2.2.2 A point x is recurrent under F if and only if, for every ε > 0, there
is an ε-ωchain from x to itself.

3 Quasi-Orders and “Being Downstream”

The relation �F is clearly reflexive and transitive. It is therefore natural generalizing
the concept of being downstream by considering the following class of relations.
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Definition 3.0.1 A quasi-order on X is a binary relation D ⊂ X × X that is reflexive
and transitive, namely:

1. (x, x) ∈ D for every x ;
2. If (x, y) ∈ D and (y, z) ∈ D, then (x, z) ∈ D.

We sometimes use the notation x �D y to say that (x, y) ∈ D. We call�D the symbol
of D. Then reflexivity means that x �D x for all x and transitivity that, if x �D y and
y �D z, then x �D z.

Example 3.0.2 The orbit spaceOF of a semi-flow F is a quasi-order on X . The symbol
�F introduced in Definition 2.0.2 is precisely the symbol of this quasi-order.

The following definition generalizes Definition 2.0.2 to quasi-orders.

Definition 3.0.3 Given a relation D, we use the notation

DownD(x) = {y : x �D y}, UpD(y) = {x : x �D y},

and we say that the points of DownD(x) are D-downstream from x (or simply down-
stream when there is no ambiguity) and points in UpD(x) are D-upstream from x (or
simply upstream when there is no ambiguity). Finally, for a M ⊂ X we set

DownD(M) = ∪x∈M DownD(x), UpD(M) = ∪x∈M UpD(x).

We say that M is D-invariant if DownD(M) ⊂ M . We refer sometimes to the set
UpD(M) as the D-basin of M .

Proposition 3.0.4 Let D be a quasi-order. Then DownD(DownD(x)) = DownD(x)
and UpD(UpD(x)) = UpD(x) for every x. In particular, for every M ⊂ X,
DownD(M) is D-invariant.

Proof It is an immediate consequence of transitivity. 
�

Notice that, in general, the set of all points downstream from a closed set of points
is not closed.

Example 3.0.5 Let F be the flow of the vector field ∂
∂x on R2. Consider the quasi-order

OF ⊂ R
4 and set C = {xy = −1 : y > 0}. The set C is a closed subset of the plane

but the sets

DownOF (C) = {(x, y) : y > 0, xy ≥ −1},
UpOF

(C) = {(x, y) : y > 0, xy ≤ −1}

are not.
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3.1 Closed Quasi-Orders and Lyapunov Functions

It turns out that strong properties hold for closed quasi-orders, namely quasi-orders
that are closed in the product topology of X × X .

Afirst important property is that,when D is closed, the setsDownD(C) andUpD(C)

are closed for every compact set C .

Proposition 3.1.1 If K ⊂ X is compact, then DownD(K ) and UpD(K ) are closed.
In particular, when X is compact, if C is closed then DownD(C) and UpD(C) are
closed.

Proof Let xn ∈ UpD(K ) be a sequence converging to a point x̄ ∈ X . Then there
exists a sequence yn ∈ K such that (xn, yn) ∈ D. Since K is compact, there is a
subsequence ynk converging to a ȳ ∈ K . Hence, in D, (xnk , ynk ) → (x̄, ȳ). Since
D is closed, (x̄, ȳ) ∈ D, namely x̄ ∈ UpD(K ). Hence, UpD(K ) is closed. Mutatis
mutandis, the same argument works for DownD(K ). 
�

Notice that in the proof we never used the transitivity of the relation. Hence, this
result holds also for the prolongational relation (see Sect. 4).

A second important property is that every closed quasi-order can be defined through
a collection of continuous functions as described below.

Definition 3.1.2 A function L ∈ C0(X) is a Lyapunov function for a quasi-order D if
x �D y implies L(x) ≥ L(y). We denote by LD ⊂ C0(X) the set of all Lyapunov
functions of D.

Notice that constant functions are Lyapunov for every quasi-order and that, if
L1, L2 ∈ LD , then a1L1 + a2L2 ∈ LD for all a1, a2 ≥ 0. Hence, the proposition
below follows.

Proposition 3.1.3 For any quasi-order D, the set LD is a non-empty closed convex
cone.

Example 3.1.4 The set of Lyapunov functions of the quasi-order OF coincides with
the set of Lyapunov functions of the semi-flow F .

One can also run things backward and use collections of functions to define quasi-
orders, as illustrated below.

Given a collection S ⊂ C0(X), we set

DS = {(x, y) : L(x) ≥ L(y) for all L ∈ S}.

Notice that, if CS is the convex cone generated by S (namely the smallest closed
convex cone containing S), then DS = DCS .

Proposition 3.1.5 The set DS is a topologically closed quasi-order on X. Moreover,
if T ⊂ S, then DS ⊂ DT .

We leave to the proof to the reader.
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Example 3.1.6 (The largest and smallest quasi-order)

D∅ = X × X .

DC0(X) = ∅.

Auslander showed that, when X is separable and locally compact (in particular,
when X is compact), for every closed quasi-order D, the set LD contains enough
functions to fully characterize D, as illustrated below. The proof, by Auslander, that
we include for reader’s convenience, is a variant of the standard proof of Urhyson’s
Lemma.

Lemma A (Auslander [16], Theorem 4) Let X be separable and locally compact and
let D be a closed quasi-order on X. Then, if x ��D y (equivalently, if (x, y) /∈ D),
there exists a function L ∈ LD such that L(x) < L(y).

Proof Assume first that X is compact. We will show below that one can build an
infinite countable family of closed sets Ur , labeled by rational (dyadic) numbers r in
[0, 1] such that:

1. x ∈ ∩rUr ;
2. y /∈ ∪rUr ;
3. If r < r ′, then Ur ⊂ interior(Ur ′);
4. Ur is D-invariant, namely DownD(Ur ) = Ur .

With the sets Ur , one can define the function L in the proposition claim as follows:

L(z) = inf{r : z ∈ Ur }.

A standard argument shows that L , by point (3) above, is continuous. Moreover:

• L(x) = 0 by point (1) above;
• L(y) = 1 by point (2) above;
• if z �D z′, then L(z) ≥ L(z′) by points (3) and (4) above.

Now we will show how to build the sets Ur . Let A0 and B disjoint closed neighbor-
hoods of, respectively, x and y such that Down(A0) ∩ B = ∅. Such neighborhoods
exist because D is closed. Indeed, assume that there is no such neighborhoods A0
and B. This means that there is a sequence yi converging to y and xi converging to x
such that xi �D yi for all i . Since D is closed, this implies that x �D y, against the
hypotheses.

Set U0 = Down(A0). Since X is compact, U0 is closed by Proposition 3.1.1.
Moreover, we also have that x ∈ U0, Down(U0) = U0 and U0 ∩ B = ∅.

Now, let A 1
2
be a closed neighborhood of U0 such that U0 ⊂ interior(A 1

2
) and

Down(A 1
2
) ∩ B = ∅. As above, set U 1

2
= Down(A 1

2
). Then, by the same argument

above, U 1
2
is closed, Down(U 1

2
) = U 1

2
, U 1

2
∩ B = ∅ and U0 ⊂ interior(U 1

2
).

By repeating this construction, we can build sets U 3
4
,U 7

8
, . . .. To build U 1

4
, we

proceed as follows. Let B 1
2

= closure(X\U 1
2
). ThenU0 ∩ B 1

2
= ∅ and we can repeat
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the first step of our construction with B 1
2
in place of B. We denote byU 1

4
the compact

set we get this way. Notice that U 1
4

⊂ interior(U 1
2
). This way, we can build a set Ur

for each dyadic r with the four properties listed above.
Consider now, the general case, when X is a non-compact, locally compact and

separable space. Recall that every separable metric space is Lindelof and that every
locally compact Lindelof space is hemicompact. Hence, there are compact sets Xi ⊂
X , i ∈ N, such that Xi � Xi+1 for all i and X = ∪i∈NXi . Let i0 be any integer such
that x, y ∈ Xi0 . Then, by the argument above, there is a Lyapunov function L for D
in Xi0 . In order to prove the theorem, it is enough to prove that we can extend L to a
Lyapunov function for D on Xi0+1. By induction, indeed, this allows to extend L to
the whole X .

We can accomplish this by noticing that closed neighborhoods A′
0 of x and B ′ of y

such that DownD(A′
0) ∩ B ′ = ∅ exist in X (notice, though, that in this case A′

0 is not
necessarily compact and so DownD(A′

0) is not necessarily closed). Hence, in Xi0 , we
can elect to choose A0 = A′

0 ∩ Xi0 and B = B ′ ∩ Xi0 . By repeating this argument at
every step of the construction of the sets Ur , we build a Lyapunov function Li0 for D
in Xi0 . Then we can repeat the same construction in Xi0+1 by setting A0 = A′

0∩Xi0+1
and B = B ′ ∩ Xi0+1 and so on. This way, we end up with a Lyapunov function Li0+1
for D in Xi0+1 such that, by construction, Li0+1|Xi0

= Li0 . 
�

The following theorem, implicitly contained in [16], shows that closed quasi-orders
are completely determined by their set of Lyapunov functions.

Theorem A (Auslander [16]) Let X be separable and locally-compact and let D be a
closed quasi-order on X. Then D = DLD .

Proof Let L ∈ LD . By definition, L(x) ≥ L(y) for all pairs (x, y) ∈ D, so D ⊂ DLD .
By Lemma A above, if (x, y) /∈ D, there is some L ∈ LD such that L(x) < L(y).
Hence (x, y) /∈ DLD , namely DLD ⊂ D. 
�

We conclude this discussion on general closed quasi-orders by showing that, for
each relation, there is a smallest closed quasi-order that contains it.

Proposition 3.1.7 The set of all quasi-orders on X is closed under intersection.

Proof The intersection of closed sets is closed. We leave to the reader to verify that
the intersection of two quasi-orders is a quasi-order. 
�

Definition 3.1.8 We say that a relation R extends a relation R′ if R′ ⊂ R.

Corollary 3.1.9 Given any relation R on X, there is a smallest closed quasi-order D
on X extending R.

Proof The set D is the intersection of all closed quasi-orders that contain R. This set
is non-empty because X × X is a closed quasi-order. 
�
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4 ClosingOF : the Prolongational RelationPF and the Non-wandering
Set NWF .

The orbit space OF is a quasi-order but, in general, is not closed. Hence, in general,
OF is strictly contained in DLF , that is the smallest closed quasi-order extension of
OF .

Example 4.0.1 Let F be the flow of the ODE x ′ = 1 on the real line. Then OF (x) =
[x,+∞) and OF = {(x, y) : y ≥ x}. In this case, OF is a closed quasi-order.

Example 4.0.2 Let F be the flow of the ODE x ′ = − sin(πx) on the [0, 1] segment.
ThenOF (0) = {0},OF (1) = {1} andOF (x) = (0, x] for each x ∈ (0, 1) (see Fig. 6,
left).Hence, in this caseOF equals the closed trianglewith vertices (0, 0), (1, 0), (1, 1)
minus the segments (0, 1] × {0} and {1} × [0, 1). In particular, OF is not closed.

Having a topologically closed relation is preferable—for instance, closedness is
essential to prove all general theorems we present in this article. A natural option is
considering the relation obtained by taking the topological closure of OF .

4.1 The Prolongational Relation

Definition 4.1.1 We denote byPF the relationOF , the topological closure ofOF , and
by �PF the corresponding symbol. We call this relation the prolongational relation.

This relation was first introduced and studied by Auslander and Guerin [32] as a
tool to study weak mixing in minimal flows. By definition, a point belongs to PF

if and only if there is a sequence (xn, yn) ⊂ OF such that (xn, yn) → (x, y) in
the product topology. This means that, arbitrarily close to x and y, it is possible to
find, respectively, points x ′ and y′ such that y′ ∈ OF (x ′). The reader can verify the
following elementary fact.

Proposition 4.1.2 Let d be any metric on X compatible with the topology of X. Then
(x, y) ∈ PF if and only if, for every ε > 0, there is an ε-αωchain from x to y.

The set DownPF (x) coincides with the so-called first prolongation of x [16, 33],
which justifies the name prolongational relation for PF . Notice that, since PF is not
transitive, in general DownPF

(
DownPF (x)

)
is strictly larger than DownPF (x).

Example 4.1.3 Let X = [0, 2] and let F be the flow of the ODE

x ′ = | sin(πx)|.

Notice that DownPF (1) = [1, 2] and, for each x ∈ (0, 1),

DownPF (x) = OF (x) ∪ {1}.

Hence, for each x ∈ (0, 1),

DownPF

(
DownPF (x)

) = OF (x) ∪ [1, 2].
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The following technical elementary lemma, that will be used in several proofs of
this section, shows that some weaker notion of transitivity does hold for PF .

Lemma 4.1.4 Assume that x �PF y. Then x �PF OF (y) ∪ �F (y).

Proof We prove first that, if x �PF y, then x �PF Fn(y) for every n ≥ 0. This is an
immediate consequence of the continuity of Fn . Indeed, fix a n ≥ 0 and let ε > 0.
Then we can find an η > 0 such that d(z, y) < η implies d(Fn(z), Fn(y)) < ε.
If η > ε, set η = ε. Let now c1, . . . , Fk(c1) be an η-αωchain from x to y, namely
d(c1, x) < η and d(Fk(c1), y) < η. Then c1, . . . , Fk+n(c1) is an ε-αωchain from x
to Fn(y). Hence, x �PF OF (y).

Let now z ∈ �F (y). Then, for every ε > 0, there is a N > 0 such that
d(FN (y), z) < ε. By continuity, we can also find η > 0 such that d(w, y) < η

implies d(FN (w), FN (y)) < ε. Now, set η = ε if η > ε. Then, by the triangular
inequality, every η-αωchain from x to y can be extended to a 2ε-αωchain from x to
z. Hence, x �PF �F (y). 
�
Proposition 4.1.5 (Properties of PF ) For any semi-flow F, PF is forward-invariant
under the induced action of F on X × X given by Ft (x, y) = (Ft (x), Ft (y)). More-
over, for every x, the following holds:

1. DownPF (x) is forward-invariant under F;
2. DownPF (x) ⊃ OF (x) ∪ �F (x);
3. If �F (x) �= ∅, OF (x) ∪ DownPF (�F (x)) ⊃ DownPF (x);
4. OF (x) ∪ DownPF (y) ⊃ DownPF (x) for all y ∈ OF (x);
5. If Ft is open for all t ≥ 0 (for instance if F is a flow or an open map), then

DownPF (x) = OF (x) ∪ DownPF (y) for all y ∈ OF (x).

Proof (1) Let y ∈ DownPF (x). We need to show that F(y) ∈ DownPF (x). This
follows immediately from Lemma 4.1.4.

(2) This is an immediate consequence of the facts that OF ⊂ PF and that PF is
closed.

(3) Let x �PF z and y ∈ �F (x). Then either z ∈ OF (x) or, for every η > 0, there is
an ε > 0 such that every ε-αωchain from x to z has an element within η from y.
Hence, y �PF z, namely �F (x) �PF z.

(4) This can be proven by the same argument of point (3).
(5) By (4), it is enough to prove the inverse inclusion. Let y = Fn(x), z ∈ Down(y)

and fix an ε > 0. By continuity and since Fn is open, there is an η > 0 such
that, for every y′ such that d(y, y′) < η, there is an x ′ with d(x, x ′) < ε and
F(x ′) = y′. We can assume without loss of generality that η ≤ ε. Hence, every
η-αωchain from y to z can be extended to an ε-αωchain from x to z.
Finally, we prove the forward-invariance of PF . We need to prove that x �PF y

implies Ft (x) �PF Ft (y) for every t ≥ 0. Notice first that x �F y implies trivially
that Ft (x) �F Ft (y). Suppose now that y is not on the orbit of x . Then, by point (4)
above, Ft (x) �PF y and furthermore, by Lemma 4.1.4, Ft (x) �PF Fs(y) for every
s ≥ 0. Hence, in particular, Ft (x) �PF Ft (y). 
�

The following examples show that there is no way to improve the inclusions in the
proposition above.
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Example 4.1.6 (DownPF (x) can be larger than OF (x) ∪ �F (x)) Consider a flow F
on R

2 with a single recurrent point f , which is a saddle point of the type shown
in Fig. 1(right). We denote by C the “critical loop” equal to the union of f with
the homoclinic trajectory h. In this example we assume that, outside of the portion
displayed, each non-critical trajectory coincides with some horizontal line. Hence, if
x lies on a non-critical open trajectory, �F (x) = ∅. In case of the closed trajectories,
all of which are inside C , OF (x) = �F (x) for each x on them. Moreover, the reader
can verify that there is no point PF -downstream from a point x on a non-critical
trajectory other than the points on its trajectory, namely DownPF (x) = OF (x) for
all such points. The situation is different for points on some critical trajectory. Notice
that the saddle consists of the fixed point f , its stable manifolds gs and h and its
unstable manifold gu and h. All points on gs asymptote to the fixed point f , so that
DownPF (x) ⊃ OF (x) ∪ { f } for all x ∈ gs . Moreover, by hopping on trajectories
above gs , from any x ∈ gs one can reach every other point on h and gu , so that

DownPF (x) = OF (x) ∪ �F (x) ∪ h ∪ gu for all x ∈ gs,

where all these sets are pairwise disjoint. Similarly, the reader can verify thatOF ( f ) =
�F ( f ) and

DownPF ( f ) = OF ( f ) ∪ h ∪ gu

and that

DownPF (x) = OF (x) ∪ �F (x) ∪ gu for all x ∈ h,

where all unions above are union of pairwise disjoint sets.
In the saddle displayed in Fig. 1(left), the only difference is that the trajectories

inside C other than the fixed point are not closed but rather spiral outwards. Conse-
quently, for all non-fixed points inside C , �F (x) = h ∪ { f } and

DownPF (x) = OF (x) ∪ �F (x).

Finally, OF (c) = �F (c) = {c} while

DownPF (c) = OF (c) ∪ D,

where D is the closed disc having C as its boundary.

Example 4.1.7 (OF (x) ∪ DownPF (�F (x)) can be larger than DownPF (x)) Let X =
[0, 2] and let F be the flow of the ODE x ′ = | sin(πx)|. Then DownPF (1) = [1, 2]
while, for any x ∈ (0, 1), �F (x) = {1} and DownPF (x) = OF (x) ∪ {1}. Hence
OF (x) ∪ DownPF (�F (x)) = OF (x) ∪ [1, 2] is strictly larger than DownPF (x).
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f
gs gu

h f
gs gu

h

c

Fig. 1 Two topologically inequivalent homoclinic saddle points on a surface. The prolongational relation
for the corresponding flows is discussed in Example 4.1.6

Example 4.1.8 (OF (x) ∪DownPF (y) can be larger than DownPF (x) for y ∈ OF (x))
Let F : [0, 2] → [0, 2] be the continuous function

F(x) =
{
1, x ≤ 1√
x − 1 + 1, x ≥ 1

Then DownPF (1) = [1, 2] while, for every x ∈ (0, 1),

DownPF (x) = OF (x) = {x, 1}.

Hence, for each such x , 1 ∈ OF (x) and OF (x) ∪ DownPF (1) is strictly larger than
DownPF (x).

AlthoughPF is not, in general, transitive, the two examples below show that some-
times it is, even in non-trivial cases. When this happens, then PF is necessarily the
smallest closed quasi-order containing OF and so it equals DLF .

Example 4.1.9 Let F be the flow in Example 4.0.2. Then PF ⊂ R
2 is the closed

triangle with vertices (0, 0), (1, 0), (1, 1). A direct check shows that this relation is
transitive.

Example 4.1.10 Consider the restriction of the logistic map 	μ, μ ∈ (1, 3), to its
image X = [0, 	μ(1/2)]. The dynamics of 	μ in this range of μ is very simple:
there are two fixed points, 0 and pμ = 1 − 1/μ, and every point but 0 and 1 con-
verges to pμ. Hence, DownP	μ

(x) = O	μ(x) ∪ {pμ} for all x �= 0, 1. Moreover,
DownP	μ

(0) = [0, 	μ(1/2)], since every point in the image of 	μ has a backward tra-
jectory asymptoting to 0. Then P	μ is transitive because is transitive on its subsetO	μ

and it contains all possible pairs (0, x), x ≤ 	μ(1/2), and (x, pμ), x ∈ [0, 1). Notice
that P	μ is not fully transitive on X = [0, 1] because 1 �PF 0 and, by transitivity, 1
is upstream from all points x ∈ X , but (1, x) ∈ P	μ only for x = 0.

The lack of transitivity ofPF comes from the fact that, in general, the concatenation
of two ε-αωchains is not an ε-αωchain. Linkable pairs, defined below, are precisely
those ones for which this happens.
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Definition 4.1.11 LetC be an ε-αωchain from x to ywithpoints c1, F(c1), . . . , Fk(c1)
and let C ′ be an ε-αωchain from y to z with points c′

1, F(c′
1), . . . , F

k′
(c′

1). We say
that C and C ′ are linkable if c′

1 = Fk(c1).
If x �PF y and y �PF z and, for every ε > 0, there is an ε-αωchain from x to y

and one from y to z that are linkable, we say that PF is transitive on the pairs (x, y)
and (y, z).

In the definition belowwe define non-wandering points, first introduced in literature
by Birkhoff [34], using the prolongational relation.

Definition 4.1.12 We say that a point x is non-wandering for F if either x is fixed or
there exists a y �= x such that:

1. x �PF y and y �PF x ;
2. PF is transitive on the pairs (x, y) and (y, x).

In this case, we say that x and y arePF -equivalent and write that x =PF y. We denote
by NWF the set of all non-wandering points of F . We say that a set M ⊂ NWF is
PF -equivalent if all points of M are PF -equivalent to each other.

Proposition 4.1.13 Let F be a semi-flow with compact dynamics and let Q be a global
trapping region for F. Then NWF ⊂ Q.

Proof Since F has compact dynamics, �F (x) �= ∅ for every x and so, by Proposi-
tion 4.1.5(3), all points downstream from x either belong toOF (x) or are downstream
from �F (x). Moreover, �F (x) ⊂ Q. Assume that there are x ∈ Q and y /∈ Q such
that x �PF y. Then, for every ε > 0, there is a trajectory starting from some z, with
d(x, z) < ε, and a N > 0 such that d(y, FN (z)) < ε. Since y /∈ OF (x), because
Q is a trapping region for F , then N → ∞ as ε → 0. This leads to a contradiction.
Indeed, let η = d(y, Q) and set Qδ = {w : d(w, Q) < δ}. Then, by hypothesis, there
is a T > 0 such that Ft (Qη) ⊂ Qη/2 for all t ≥ T . In particular, for small enough ε,
d(y, Ft (z)) > ε for all t ≥ T . So, it is impossible that, at the same time, for diverging
values of N we have that d(y, FN (z)) < ε. 
�

The following proposition shows, in particular, that the definition above of non-
wandering point is equivalent to the standard definition, introduced by Birkohff in
1927.

Proposition 4.1.14 Given a point x, the following are equivalent:

1. x is non-wandering;
2. For each ε > 0, there is an ε-αωchain from x to itself;
3. For every neighborhood U of x, there is a t > 0 such that Ft (U ) ∩U �= ∅.
Proof (a) Let us show that 1 �⇒ 2. Suppose first that x is fixed. Then, by continuity

of F1, for every ε > 0, there is a δ ∈ (0, ε) such that d(x, z) < δ implies that
d(x, F1(z)) < ε. Hence, the sequence z, F1(z) is an ε-αωchain from x to itself.
Suppose now that x is not fixed. Then, there is a y �= x such that, for every ε > 0,
there is an ε-αωchain from x to y and one from y to x and these chains are linkable.
The concatenation of these two chains is an ε-αωchain from x to itself.
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(b) Let us show that 2 �⇒ 3. Let U be a neighborhood of x and let ε > 0 so small
that every point within ε > 0 from x is inU . By hypothesis, there is an ε-αωchain
from x to itself, namely there is y ∈ U such that, for some t > 0, Ft (x) ∈ U .
Hence, U ∩ Ft (U ) �= ∅.

(c) The fact that 3 �⇒ 2 is essentially a tautology. We will now show that
2 �⇒ 1. By continuity of F1, for every ε > 0, there is a δ ∈ (0, ε) such
that d(x, z) < δ implies that d(F1(x), F1(z)) < ε. Hence, for any δ-αωchain
z, F1(z), F2(z), . . . FN (z) from x to itself, the sequence z, F1(z) is an ε-αωchain
from x to F1(x) and the sequence F1(z), F2(z), . . . FN (z) is an ε-αωchain from
F1(x) to x .


�
The fact that x �PF y and y �PF z are not enough to grant x �PF z is illustrated

in the following elementary example.

Example 4.1.15 Consider a circlewith a fixed point N and every other point that rotates
clockwise and asymptotes to N . Then, for every x �= N , we have that x �PF N , since
x asymptotes forward to N , and N �PF x , because x asymptotes backward to N .
On the other side, every ε-αωchain from x cannot move beyond N by more than ε.
Hence, for ε small enough, no such chain can reach x .

A particularly important type of PF -equivalent sets is limit sets.

Proposition 4.1.16 For every x, the set �F (x) is PF-equivalent.

Proof For every y ∈ �F (x), the orbit OF (x) can be used to build, for every ε > 0,
ε-αωchains from y to any other point in y ∈ �F (x). Hence, y ∈ NWF and �F (x) is
PF -equivalent. 
�

Recall that recurrent points and ω-limit points are non-wandering (e.g., compare
Proposition 2.2.2 with point (2) of the proposition above) but the converse is not true,
as next examples illustrates.

Example 4.1.17 (Not all non-wandering points are limit points) Consider the two flows
depicted in Fig. 1. In the left picture, the limits sets are the following: the fixed points
f and c and the critical loop C = h ∪ { f }. As pointed out in the previous example,
NWF = { f , c}∪h and so every non-wandering point is a limit point. On the contrary,
in the right picture, while NWF is the same, the limit sets are the following: the
fixed points f and c and each periodic orbit inside C . Hence, each point of h is
non-wandering but not a limit point.

4.2 Nodes and Spectral Decomposition of NWF

The PF -equivalence induces a decomposition of NWF as follows.

Definition 4.2.1 We call nodes of NWF (or, equivalently, of PF ) the maximal PF -
equivalent subsets of NWF .
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Example 4.2.2 Let F be the flow displayed in Fig. 1(left). Then NWF = { f }∪h∪{c}
and there are two nodes: the critical loop C = { f } ∪ h and the fixed point c. Notice
that, unlike in the logistic map case above, node C contains no dense orbit but rather
is a limit set (of any non-fixed point inside C).

Example 4.2.3 Let G be the flow displayed in Fig. 1(right). Then NWG = { f , c} ∪
h ∪ D, where D is the open disk that has C as boundary, and there are uncountably
many nodes: the critical loop C = { f } ∪ h and each periodic trajectory of G (whose
union is equal to D). Recall that C contains no dense orbit and, in this case, it is not
even a limit set.

Example 4.2.4 Let H be the restriction of either F or G above to their closed invariant
set C . Then NWH = { f }, so there is a single node.

Notice that the example above shows also the well-known fact that the non-
wandering set is not natural with respect to restrictions.

Proposition 4.2.5 For any semi-flow F, NWF satisfies the following:

1. For each x ∈ NWF, OF (x) is a PF-equivalent set;
2. NWF and each of its nodes are forward-invariant under F;
3. NWF and each of its nodes are closed.

Assume now that F has compact dynamics. Then NWF satisfies the following further
properties:

4. Each node of NWF contains at least a recurrent point x (and so the whole set
�F (x));

5. Each node of NWF contains a limit set and each limit set is contained in at least
a node of NWF;

6. NWF and its nodes are F-invariant.

Proof (1) Since x ∈ NWF , for every ε > 0 there is an ε-αωchain from x to itself. Let
y = Fk(x) for some k ≥ 0 and let ε > 0. Since Fk is continuous, there are η > 0
such that d(x, c) < η implies d(y, Fk(c)) < ε and η′ > 0 such that d(x, c) < η′
implies d(y, Fk(c)) < η. Let C be an η′-αωchain from x to itself with points
c, F(c), . . . , Fr (c). We can assume without loss of generality that ε ≥ η ≥ η′.
Then the chain C ′ with points Fk(c), . . . , Fr (c) is an η-αωchain from y to x
and C ′′ with points Fk(c), . . . , Fr+k(c) is an ε-αωchain from y to itself. Hence,
y ∈ NWF . Moreover, our argument shows that y �PF x , so x =PF y.

(2) This is an immediate consequence of (1).
(3) Let x1, x2, . . . be a sequence of points in NWF converging to some x̄ ∈ X . If x̄

is fixed, the claim is trivially true. If x̄ is not fixed, then we can assume without
loss of generality that the sequence xi has no fixed points since, by continuity,
the limit of fixed points would be fixed. Hence, for each i , F1(xi ) �= xi but, by
Proposition 4.1.16, F1(xi ) =PF xi . Then, by the closure of PF and continuity of
F , F1(x̄) =PF x̄ . Hence, x̄ ∈ NWF . Now, suppose that all of the xi lie in a node
N . Then xn =PF xm for all n,m and so, by the closure of PF , xn =PF x̄ for all
n, so x̄ ∈ N . Hence, both NWF and its nodes are closed.
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(4) This is an immediate consequence of point (2) together with Proposition 2.1.3.
(5) By (4), each node contains at least a limit set. By Proposition 4.1.16, every limit

set is PF -equivalent and so it is contained in a node.
(6) Let N be a node and x ∈ N . Let γi , i = 1, 2, . . ., be an εi -αωchain from x to itself

of length ni +1, with εi → 0. Then d(x, Fni (x0)) < εi . Set yi = Fni−1(x0). Then
d(x, F(yi )) < εi , so that lim F(yi ) = x . Since either X is compact or NWF is
contained in Q, that is compact as well, we can assume without loss of generality
that yi → ȳ. By continuity, F(ȳ) = x . Since N is forward invariant and closed,
ȳ ∈ N . Since this holds for every x ∈ N , it follows that F(N ) = N . Since this is
true for all nodes, then also F(NWF ) = NWF .


�
Since every point of NWF belongs to a maximal PF -equivalent subset of NWF

(i.e., to a node), NWF decomposes naturally as the union of nodes.
The first result about decomposing NWF into “elementary pieces” goes back to

Smale [2], that proved that the non-wandering set of an Axiom-A diffeomorphism f
on a compact manifold is the finite union of disjoint closed invariant sets, on each of
which f is transitive (i.e., has a dense orbit). Smale called this the spectral decompo-
sition of NW f . Due to the presence of a dense orbit, clearly each set in the spectral
decomposition is a P-equivalent set and so it is entirely contained in a single node
of the non-wandering set. In case of Axiom-A diffeomorphisms and all generaliza-
tion of Smale’s spectral decomposition known to the authors (maps on the interval [3],
homeomorphisms on compact [4, 5] and non-compact [6, 7] metric spaces and on non-
metrizable spaces [8]), the spectral decomposition coincides with the decompostion
of NWF into nodes of PF .

Notice that, due to the fact that PF is not transitive, non-wandering nodes are not,
in general, disjoint from each other, as illustrated in next examples.

Example 4.2.6 Consider the physical pendulum system q ′′ = − sin q, whose phase-
space portrait is shown in Fig. 2. Here X is the (q, p) plane and F is the flow of the
vector field η = (p,− sin q). In the figure, we labeled by si the fixed saddle points,
by ci the fixed centers and by hi (resp. gi ) the heteroclinic trajectory from si to si+1
and lie above (resp. below) the center ci . We denote by Di the open disc bounded by
the critical loop Ci = {si } ∪ gi ∪ {si+1} ∪ hi . In this case,

NWF = ∪i Di ∪i {si } ∪i hi ∪i gi .

The reader can verify that the nodes are the following: each periodic trajectory plus
each critical loop. Each pair of consecutive critical loop nodesCi ,Ci+1 has in common
the saddle point si+1. Notice that each point of hi is upstream from all points ofCi and
all points of the h j with j ≥ i but the only g j it is upstream from is gi . A corresponding
property holds for the points of gi .

Example 4.2.7 Let μr � 3.868 · · · be the parameter value of the right endpoint of the
period-3 window of the logistic map’s bifurcation diagram (see Fig. 5). Then the
logistic map 	μr has precisely three closed forward invariant indecomposable sets:
the repelling fixed point 0, a repelling Cantor set C (painted in red in Fig. 5) and an
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Fig. 2 Two examples of bidimensional dynamical systems and their prolongational graphs. (Above) Phase-
portrait of the physical pendulum on R. In this case there are no attractors. Each periodic orbit (painted in
blue) is a non-wandering node. Besides these nodes, the only other nodes are the boundaries Ci of each
disc foliated by concentric periodic orbits. For instance, C0 is the disjoint union of the heteroclinic orbits
h0 and g0 and the two saddle fixed points s0 and s1. Notice that this system, being Hamiltonian, has no
attractor nor repellor and has a set of nodes with the power of continuum. The loops in the graph are due to
the fact that each red node intersects its nearest neighborhoods. (Below) After replacing the periodic orbits
with spirals spiralling outward, the fixed points ci become repelling and each interval of nodes above gets
replaced by a repellor/attractor pair

attracting period-3 cycle of intervals A. Each of these sets has an F-dense orbit and
so is a node of NW	μr

, namely the spectral decomposition of the non-wandering set
of 	μr is NW	μr

= {0} ∪ C ∪ A.
The Cantor set and the attractor have in common a period-3 repelling periodic orbit

γ . It is this non-empty intersection that makes P	μr
non transitive. Take indeed a

x ∈ C\A, y ∈ γ and z ∈ A\C . Then (x, y) ∈ P	μr
and (y, z) ∈ P	μr

but, for ε > 0
small enough, there is no ε-αωchain from x to z since any chain from x to z needs an
intermediate jump to pass from C to A. Hence, (x, z) /∈ P	μr

.

4.3 The Graph ofPF

The qualitative properties of PF can be encoded into a graph as follows.

Definition 4.3.1 The graph ofPF is the directed graph �PF having the nodes of NWF

as its vertices and such that there is an edge from node N to node M if and only if
there is an x ∈ N and a y ∈ M such that x �PF y.
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Example 4.3.2 In case of an Axiom-A diffeomorphism F ,�PF coincides with Smale’s
graph of F described in the introduction.

Example 4.3.3 Consider a continuous-time semi-flow F on the unit circle C such that
its north pole N and south pole S are fixed while every other point rotates clockwise.
Then �PF has two nodes, namely the fixed poles N and S, and two edges, one from
N to S and one from S to N .

Example 4.3.4 Extend the example above to a flow F̃ on the closed unit disc D so
that F̃ |C = F , the origin c is fixed and every point in the interior of D belongs to
a bi-infinite spiral that asymptotes to c for t → −∞ and to C for t → ∞. Then
NWF̃ = {c} ∪C and there are two nodes: C and p. The graph �PF̃

has a single edge,
going from p to C .

Example 4.3.5 Consider the phase-space dynamics of the physical pendulum in Exam-
ple 4.2.6. In this case �F̃ consists in countably many infinite segments, say Ii =
{i} × [0, 1], where (i, 0) represents the critical loop Ci and each other point of I1
represents a periodic orbit in the disc Di . There is a loop between each pair of nodes
(i, 0) and (i + 1, 0). As discussed in the example above, if we replace the dynamics
in the Di by spirals, then there is a pair of nodes Ci , ci for every i , namely each Ii
gets replaced by a pair of nodes Ci , ci and an edge from one to the other (depending
on whether the spiral runs outward or inward).

Example 4.3.6 Let F be the continuous-time semi-flow whose dynamics is sketched
in Fig. 3(left). Here X is the Klein bottle, seen as the unit square with boundary
conditions: the opposite vertical sides of the square are glued after a twist, while the
horizontal ones are glued straight. The set of fixed points of F consists in all points
painted in green plus the points p1 and p2. There is a homoclinic orbit based at the
middle point of the segment of green fixed points, painted in teal. Each other orbit is
heteroclinic, joining either q with p1 or p2 to r or two points of the green segment
symmetricwith respect to its center.As shown in the picture, all points on the horizontal
segment between p1 and p2 are non-wandering but are not limit-points nor limits of
limit-points. Hence, NWF is the union of the closed horizontal segment G between
q and r (painted in green) and of the closed horizontal segment S between p1 and
p2 (painted in red). While S is a node, each green fixed point is a node in itself. The
prolongational graph of F is shown in Fig. 3(right). The red saddle represents the node
S. The central point c of G has a loop edge, due to the trajectory painted in teal in the
left picture. Every other point of G has an edge towards its symmetric with respect
to c and viceversa. Namely, for each such pair x, y ∈ G, we have that x �PF y and
y �PF x . Notice that, nevertheless, x and y do not belong to the same node because
the chains from x to y and back from y to x are not linkable to each other.

Example 4.3.7 Let F be the continuous-time semi-flow whose dynamics is sketched
in Fig. 4. Here X = {(x, y) : x ≥ 0} \ {(x, 0) : x ≥ 1}, F has two fixed nodes
N = (0, 0) and M = (1, 0) (painted in blue) and every other point with x > 0 lies on
a homoclinic orbit based at N . In this case, the two fixed points are the only nodes of
F and the graph of F has an edge from M to N and an edge from N to M .
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Fig. 3 A semi-flow with “purely non-wandering” points. (Left) In the picture we show the dynamics of the
semi-flow F in Example 4.3.6, where NWF contains points that do not belong to the closure of the set of
all limit points of F . The phase space X is the Klein bottle, the arrows next to the sides show the way the
opposite sides are glued. (Right) prolongational graph of F . The red saddle is the node of all points on the
horizontal closed segment between p1 and p2. Each of the green fixed points is a node in itself. The point
c at the center of the green segment has a self-edge, each other point x on it has an edge going to the point
symmetric with respect to c—only two pairs of these edges are plotted

N M

MN

Fig. 4 A semi-flow with “purely non-wandering” edges. (Left) In the picture we show the dynamics of a
semi-flow with two fixed points M and N and where every other point lie on homoclinic trajectories based
at N . In this case, there are non-wandering edges from M to N and viceversa but no bitrajectory between
the two. (Right) Prolongational graph of F

Definition 4.3.8 Wecallbitrajectoryof F a sequenceof pointsb = (. . . , b−1, b0, b1, . . .)
such that F(bi ) = bi+1 for every i ∈ Z. We denote by α(b) (resp. ω(b)) the set of
limit points of b for n → −∞ (resp. n → ∞). Given two nodes M, N , we say that b
runs from M to N if α(b) ⊂ M and ω(b) ⊂ N .
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In Examples 4.3.2–4.3.6, when there is an edge from a node M to a node N , there
is a bitrajectory running from M to N . As Example 4.3.7 shows, though, this is not
true in general. Yet, next proposition shows that sometimes this is the case.

Definition 4.3.9 Let M, N be nodes of �PF with M �PF N , i.e., there is an edge
from M to N . We say M and N are adjacent if, given a node K with M �PF K and
K �PF N , either K = M or K = N .

Lemma 4.3.10 Let M, N be non-wandering nodes of F. The following holds:

1. If there is a bitrajectory running from M to N, then M �PF N .
2. When X is compact, the following inverse holds: if M, N are adjacent, then there

is a bitrajectory running from M and N.

Proof (1) Via b, one can build, for every ε > 0, a ε-αωchain from M to N . Hence,
M �PF N .

(2) Assume first that M ∩ N �= ∅ and let x ∈ M ∩ N . Then �F (x) ⊂ M ∩ N ⊂ N .
Since non-wandering nodes of F are fully F-invariant, x has a backward trajectory
inside M . Hence, there is a bitrajectory b with α(b) ⊂ M and ω(b) ⊂ N .
Assume now that M and N are disjoint. Since we are assuming that X is compact,

d(M, N ) > 0. We claim that, for every t > 0, there exist disjoint open sets U ⊃ M
and V ⊃ N such that Ft (U ) ∩ V = ∅. If it were not so, for every ε > 0 there
would be a x with d(x, M) < ε such that d(Ft (x), N ) < ε. By taking εn = 1/n,
we can build sequences xn such that d(xn, M) < εn and d(Ft (xn), N ) < εn . We can
assume without loss of generality that xn → y. Clearly y ∈ M , so that Ft (y) ∈ M .
Hence, by continuity, we should have d(Ft (y), N ) = 0, which is not possible since
d(M, N ) > 0.

An important consequence of the existence of suchU and V is that every ε-αωchain
has at least a point that does not belong to U ∪ V . Take again εn = 1/n and let Cn

be εn-αωchains from M to N . Since X is compact, the points of these chains have at
least an accumulation point z not belonging to U ∪ V . Since y is limit of a sequence
of points whose orbit passes within εn from N , by continuity �F (z) ⊂ N .

Now, denote by E the set of all accumulation points of all ε-αωchains from M to
N for all ε > 0. Then E is F-invariant. Indeed, let xi → z, with xi ∈ Ci . Then, for
each t > 0 and xi ∈ Ci , there is a predecessor yi in Ci such that Ft (yi ) = xi . We can
assume without loss of generality that yi converge to somew in E , so that Ft (w) = z.

Hence, for every z ∈ E we can build a backward trajectory of z in E and therefore a
bitrajectory b based at z. Let K be the node such that α(b) ⊂ K . By construction, each
point x ∈ K is a limit of points belonging to ε-αωchains from M to N for ε → 0.
Hence, we can break each such chain into a ε-αωchain from M to K and another
ε-αωchain from K to N , so that M �PF K and K �PF N . Since M and N are
adjacent, this means that K = M . Hence, b is a bitrajectory that runs from M to N . 
�

We conclude this subsection with the first of the main results of this work.

Definition 4.3.11 A prolongational graph �PF is connected if, whenever NWF =
C1 ∪ C2 with C1 and C2 closed and disjoint sets forward-invariant under F , there is
an edge from a node of C1 to a node of C2 or viceversa.
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Notice that, since C1 is F-forward-invariant, if a point of a node lies in C1 then the
whole node does, and similarly for C2.

Theorem 1 Let F be a semi-flow with compact dynamics. Then �PF is a connected
graph.

Proof Let Q be a compact globally attracting region for F . Then, under the theorem’s
hypotheses, NWF ⊂ Q by Proposition 4.1.13. Now, let C1,C2 be two F-forward-
invariant, closed and disjoint sets such that NWF = C1 ∪ C2. Since NWF and all of
its nodes are closed and NWF ⊂ Q, then they are also compact. Hence, by Propo-
sition 3.1.1 (and the comment underneath), B1 = UpPF

(C1) and B2 = UpPF
(C2)

are closed. Since Q is globally attracting, every x ∈ X has a non-empty limit set
�F (x) ⊂ Q. By case (5) of Proposition 4.2.5, �F (x) ⊂ NWF and therefore every
x is upstream from some non-wandering node. Hence, B1 ∪ B2 = X . Since X is
connected, there must be a point x0 ∈ B1 ∩ B2. Therefore, there exist points xi ∈ Ci ,
i = 1, 2, such that x0 �PF xi .

Denote by Ni ⊂ Ci the node containing xi , i = 1, 2 and by N0 the node containing
�F (x0). By case (3) of Proposition 4.1.5, either xi ∈ OF (x0) or �F (x0) �PF xi , i =
1, 2. In the first case, by case (1) of Proposition 4.2.5, OF (xi ) is a PF -equivalent set.
Hence OF (xi ) ⊂ �F (xi ) = �F (x0), so that xi ∈ �F (x0). In any case, therefore, we
have that �F (x0) �PF xi , i = 1, 2. Then, N0 �PF N1 ⊂ C1 and N0 �PF N2 ⊂ C2.

Since N0 belongs to either C1 or C2, this means that there is either an edge from C1
to C2 or viceversa. Hence, �PF is connected. 
�

4.4 The Prolongational Graph of T-unimodal Maps

In this final subsection we discuss in some detail the graph of some special classes of
unimodal maps. While doing so, we sharpen the main result in [14] in the context of
the prolongational relation.

Definition 4.4.1 A continuous map f : [a, b] → [a, b] is unimodal if there exists a
unique point c ∈ (a, b) such that f is monotonically increasing (resp. decreasing) in
[a, c] and monotonically decreasing (resp. increasing) in [c, b]. Point c is called the
critical point of f . We say that an attracting periodic orbit γ of f is non-topological if
c is not in the basin of attraction of γ . We say that an interval J ⊂ [a, b] is awandering
interval if f m(J ) ∩ f n(J ) = ∅ for every n > m ≥ 0 and f n(J ) does not lie in the
basin of a periodic orbit. We say that f is T-unimodal if f has no wandering intervals
and no non-topological attracting periodic orbits.

The “T” in T-unimodal alludes to the fact that the graph of all these unimodal maps
is a tower (see Definition 4.4.5). T-unimodal maps include the tent map family [22]
as well as every S-unimodal map [14, 35]. See Example 5.5 in [22] for an example of
a non-trivial T-unimodal map that is not topologically conjugate neither to a tent map
neither to a S-unimodal map.

The theorem below summarizes the most relevant well-known results on invariant
sets of unimodal maps.
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Theorem B (Gukenheimer [36], Jonker and Rand [37]) Let f be a unimodal map with
critical point c.

The repellors of f can be only of the following two types:

1. A periodic orbit;
2. A Cantor set on which f acts as a subshift of finite type with a dense orbit.

The attractors of f can be only of the following three types:

1. A periodic orbit;
2. A cycle of intervals containing c;
3. A Cantor set on which f acts as an adding machine.

The map f is transitive, i.e., has a dense orbit, in each of the repellors and attractors
types above. Attractors of type 2 and 3 contain c. If there is no attractor of type 2
or 3, then one of the attracting periodic orbits has c in its basin of attraction. When
the attractor is of type 3, and only in this case, NW f has (countably) infinitely many
nodes, whose unique accumulation point is the attractor.

For a thorough discussion and proofs of the statement above, see also Theorems 4.1
and 4.2 in [3].

Theorem B has the following two fundamental consequences.

Corollary 4.4.2 Every T-unimodal map f has a unique attractor.

Proof By definition, f has no non-topological attracting periodic orbit. Hence, by
Theorem B, c must be in the basin of attraction of the attractor, so there can be only
one attractor. 
�
Corollary 4.4.3 The spectral decomposition of NW	μ in Theorem B coincides with the
decomposition of NW	μ into nodes of the prolongational relationP	μ . In other words,
every node of P	μ is of one of the five types listed in Theorem B.

Proof Each of the invariant non-wandering sets in TheoremBhas a dense orbit. Hence,
each of them is a node of P	μ . 
�

In [14] we studied, in case of the logistic map family 	μ, the graph �	μ defined
below (see also [35] for more general statements on S-unimodal maps). We did not
give a particular name to it, so in this article we use the name given to it by Mizin.

Definition 4.4.4 (Mizin [9]; De Leo and Yorke [14]) Given a map f : X → X , the
structural graph of f is the graph � f whose nodes are the chain-recurrent nodes of
f , namely sets N of points x such that, for each ε > 0, there are ε-chains from x to
each other point of N (for more details on chain-recurrence see Sect. 6.1). There is an
edge from node M to node N if and only if there is a bi-infinite trajectory b such that
α(b) ⊂ M and ω(b) ⊂ N .

Notice that ε-αωchains are ε-chains and so each non-wandering point is also chain-
recurrent and each non-wandering node is contained in a chain-recurrent node.

Definition 4.4.5 A directed graph � is a tower if it has no loops and there is an edge
between any two nodes.
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The following is our main result on CR graphs of the logistic map.

Theorem C (De Leo and Yorke [14]) The structural graph of the logistic map 	μ is a
tower for each μ ∈ (0, 4].

In other words, chain-recurrent nodes of 	μ can be sorted in a linear order
N0, N1, . . . , Np (where p can be infinite) so that there is an edge from Ni to N j

if and only if j > i . In this ordering, node N0 is always the repelling fixed point 0 and
Np is always the attractor. Notice that the cases μ ≤ 2 and μ = 4 are trivial because,
for those values, there is a single node (the fixed point 0 for μ ≤ 2 and the whole
interval [0, 1] for μ = 4).

Below we translate these result in terms of properties of �P	μ
:

(1) Nodes. In [14], we provided the classification below of chain-recurrent nodes of
the logistic map family. Notice that by “periodic window” we indicate the maximal
range of μ for which exists a given non-wandering repelling Cantor set (see Fig. 5 for
a picture of the logistic map family’s period-3 window).

Theorem D (De Leo and Yorke [14]) Let 	μ be a logistic map. Then:

1. If μ is not an end-point of a periodic window of the logistic map family, then its
chain-recurrent nodes coincide with its non-wandering nodes.

2. If μ is the left end-point of a periodic window, then the (one-sided) attractor is a
periodic orbit belonging to a repelling Cantor set. The attracting chain-recurrent
node is equal to this Cantor set.

3. If μ is the right end-point of a periodic window, then the (one-sided) attractor is
a cycle of intervals having a non-empty intersection with a repelling Cantor set.
In this case, the chain-recurrent node contains the attractor, part of its basin of
attraction and the repelling Cantor set.

(2) Edges. As shown in next proposition, when X is compact, as is the case for the
logistic map family, there is a strict relation between the edges of the structural graph
and the edges of the prolongational graph.

Proposition 4.4.6 Let �F be the structural graph of a map F, let M, N be distinct
nodes of �F , each of which contains a single non-wandering node M̂, N̂ . Then:

1. If there is an edge in �F from M to N, then there is an edge in �PF from M̂ to N̂ .
2. Assume that X is compact and let M̂, N̂ be adjacent. Then there is an edge in �F

from M to N.

Proof (1) Under the hypotheses, there is a bitrajectory b with ω(b) ⊂ N and α(b) ⊂
M . By Proposition 4.2.5, ω(b) ⊂ N̂ and α(b) ⊂ M̂ . Via b, we can build ε-
ωαchains from M̂ to N̂ for every ε > 0. Hence M̂ �PF N̂ .

(2) This is an immediate consequence of Proposition 4.3.10.

�

In [22], we extended all main results of [14] to T-unimodal mapswhose attractor is a
cycle of intervals by showing that our proofs ultimately only rely on purely topological
properties, first and foremost the absence ofwandering intervals andof non-topological
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Fig. 5 Prolongational graphs of the logistic map for seven parameter values within the period-3 window.
The graph corresponding to each of the seven parameters marked on the bifurcation diagram is shown at
the right of the diagram. Circles represent repelling non-wandering nodes, diamonds represent saddle ones
and squares represent attractors. Each node, excepts for the repellor (the fixed point x = 0), is painted in
the same color it appears with in the bifurcation diagram. The curves c1, . . . , c6 are the first 6 iterates of
the critical point. This picture is discussed in detail at the bottom of Sect. 4.4

attracting periodic orbits. The same ideas apply to the case of the other two types of
attractors, so that Theorems C and D actually apply more generally to T-unimodal
maps. Hence, we can reformulate the results above in the following way.

Proposition 4.4.7 Let f be a T-unimodal map and let N0, . . . , Np be its non-
wandering nodes sorted according to their distance from c, so that N0 = {a} and
Np is the unique attractor. Then:
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1. Ni ∩ N j = ∅ for each i �= j with i, j < p;
2. Each Ni , i = 0, . . . , p − 2, is also a chain-recurrent node;
3. If Np−1 ∩ Np = ∅, then every non-wandering node of f is also a chain-recurrent

node and viceversa and �P f coincides with the structural graph � f (in particular,
�P f is a tower);

4. If Np−1∩Np �= ∅, then Np−1 is a repelling Cantor set and Np is either a periodic
orbit or a cycle of intervals. In this case, �P f is equal to a tower with p+ 1 nodes
with the addition of an extra edge from Np to Np−1.

4.4.1 Some Prolongational Graphs of the Logistic Map

The content of Proposition 4.4.7 is illustrated in Fig. 5, where are shown the prolon-
gational graphs of seven logistic maps within the period-3 window. The picture shows
several invariant sets for each μ. The attractor is painted in shades of gray. The red
Cantor set is the one that defines the periodic window; it arises at μ	, when a pair of
attracting/repelling period-3 periodic orbit is created, and it changes continuously up
to μr , where it collides with the attractor. This is precisely the hyperbolic subshift of
finite type described by Smale andWilliams in [38]. The attracting periodic orbit of the
pair mentioned above is shown first in gray and then, after it biforcates and becomes
repelling, in green, until it plunges in a chaotic attractor. The Cantor set painted in
blue corresponds to the logistic map’s period-9 window.

Each of the graphs corresponding to the seven parameters has one repellor (the fixed
point x = 0), one attractor and either one or two saddles. Parameters μ1, . . . , μ4 are
not end-points of a periodic window, so the prolongational graph of the corresponding
logistic map is a tower, identical to the structural graph discussed in full detail in
[14]. Parameters μ	,μr are, respectively, the left and right end-points of the period-3
window and so their graph is a tower consisting of three nodes with the addition of
an extra edge from the attractor back to the red Cantor set. Finally, parameter μ5 is
the right end-point of the period-9 window, so its prolongational graph is a tower with
four nodes with the addition of an extra edge from the attractor to the blue Cantor set.

5 Streams

The prolongational relation PF is closed and extends OF but is not, in general, a
quasi-order (see Example 4.2.7). The main goal of the present article is to show that
closed quasi-order extensions D of OF , which extend at the same time the roles of
OF (as a quasi-order) and PF (as a closed relation), play a particularly important role
in dynamics.

Definition 5.0.1 We call F-stream (or simply stream, when there is no ambiguity) on
X a closed quasi-order S that is an extension ofOF . A substream of S is an F-stream
S′ such that S′ ⊂ S.

Proposition 5.0.2 Let S be an F-stream on space X. Then LS ⊂ LF . Hence, in
particular:
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1. S ⊃ PF;
2. RS ⊃ NWF;
3. DLF is the smallest F-stream on X.

Proof Let L ∈ LS . SinceOF ⊂ S, x �F y implies x �S y which, in turn, means that
L(x) ≥ L(y). Hence, L ∈ LF . 
�

The smallest stream of a semi-flow F was introduced and studied first by Auslander
in 60s [16] and so we denote it, in the remainder of the article, by AF .

Proposition 5.0.3 Let S be an F-stream. Then:

1. DownS(x) ⊃ OF (x) ∪ DownS(�F (x));
2. DownS(x) ⊃ OF (x) ∪ DownS(y) for all y ∈ OF (x).

Proof (1) If x �F y, then x �S y because S is an extension of OF . If y ∈ �F (x),
then x �S y because y is the limit of a sequence of points on OF (x) and S is
closed. If y ∈ DownS(�F (x)), then x �S y by transitivity.

(2) This is an immediate consequence of transitivity.

�

5.1 Recurrent Points and Nodes of a Stream

Recurrent and non-wandering points are generalizations of periodic points. Similarly,
nodes of PF are a generalization of periodic orbits of F (which are the nodes ofOF ).
Streams allow to define a natural and quite general analogue of periodic orbits in the
following way.

Definition 5.1.1 Given a stream S of F , we write x
S= y, and we say that x and y are

S-equivalent, if x �S y and y �S x .

We say that x is S-recurrent if either x is fixed or there is a y �= x such that x
S= y.

We denote by RS the set of all S-recurrent points. We say that a set M ⊂ RS is
S-equivalent if all points of M are mutually S-equivalent.

The setRS comes with a natural equivalence relation, unavailable in NWF due to
the lack of transitivity of PF .

Proposition 5.1.2 The relation
S= is an equivalence relation on RS.

Proposition 5.1.3 Let S, S′ be two F-streams and assume S ⊂ S′. Then RS ⊂ RS′ .

We leave the proof to the reader.

Definition 5.1.4 Let D′ be a sub-quasi-order of D and let N and N ′ nodes of, respec-
tively, D and D′. We say that N extends N ′ if N ⊃ N ′.

Definition 5.1.5 We call nodes the equivalence classes of RS with respect to
S=. If

x ∈ RS , we denote by NodeS(x) the node containing x .
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Note that, unlike the nodes ofPF , nodes of a streamare allmutually disjoint because
they are defined via an equivalence relation.

Example 5.1.6 Every point inROF is F-periodic and the nodes ofROF are precisely
the periodic orbits of F . Not all recurrent points of F , though, are in ROF since, in
general, there are recurrent points that are not periodic. For instance, let F be a rotation
on the circle by an irrational angle. Then the orbit of any point is dense, namely every
point is recurrent for F , but no point is actually periodic.

Proposition 5.1.7 Let S be an F-stream. Then:

1. For each x, �F (x) is a S-equivalent set. In particular, there is a node N of S such
that �F (x) ⊂ N.

2. If x is F-recurrent, then OF (x) ⊂ �F (x) ⊂ NodeS(x).

Proof Since S ⊃ PF , the claim is an immediate consequence of Propositions 4.1.16
and 4.2.5. 
�
Proposition 5.1.8 Let S be a stream. Then each Lyapunov function L ∈ LS is constant
on each node of S.

Proof Let N be a node. If N is a fixed point, there is nothing to prove. Otherwise,
let x, y ∈ N with x �= y. Then x �S y and y �S x , so that, by Definition 3.1.2,
L(x) ≥ L(y) and L(y) ≥ L(x). Hence, L is constant on N . 
�
Proposition 5.1.9 Any intersection of F-streams is an F-stream.

Proof Quasi-orders and closed sets are closed under intersection. 
�
Corollary 5.1.10 Given any set R ⊂ X × X and semi-flow F, there is a smallest
F-stream containing R. In particular, AF coincides with the smallest F-stream con-
taining PF = OF .

5.2 The Graph of a Stream

The qualitative properties of a stream can be encoded in a graph as follows.

Definition 5.2.1 Let S be an F-stream. Given two sets A, B ⊂ X , we write A �S B
if and only if x �S y for each x ∈ A and y ∈ B.

Definition 5.2.2 (Graph of a stream) Given an F-stream, the graph of S, denoted by
�S , is the directed graph whose nodes are the nodes of RS and such that there is an
edge from a node N1 to a node N2 �= N1 if and only if N1 �S N2.

Notice that, due to transitivity, if there is an edge from N1 to N2, then x �S y
for every x ∈ N1 and y ∈ N2. Moreover, again by transitivity, edges are themselves
transitive, in the sense that N1 �S N2 plus N2 �S N3 implies N1 �S N3. Hence,
when we draw the graph of a stream, we usually draw it with only a minimal set of
edges, where the rest can be inferred.
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Fig. 6 Three examples of stream structures on the unit interval for the flow F of the ODE x ′ = − sin(πx).
(Left) The the smallest stream of F is the closed triangle with vertices (0, 0), (1, 0), (1, 1). This stream has
only two nodes: the fixed points 1 and 0. Both nodes are invariant under F . The graph of this stream is a
tower with two nodes (see Fig. 7a). (Center) An F-stream that is not an �-stream. In this case there is a
third node containing the point 0.5. Notice that this node is not forward-invariant under F . The graph of
this stream is a tower with three nodes (see Fig. 7b). (Right). In this stream there are just two nodes but,
unlike the smallest stream, the node containing the fixed point 0, is forward-invariant but not fully-invariant
under F . The graph of this stream is identical to the graph of the smallest stream

Proposition 5.2.3 The graph of a stream S has no cycles.

Proof If x1 �S · · · �S xn �S x1 for some integer n > 1, then all these xi are mutually
S-equivalent and so they all belong to the same node. 
�

Example 5.2.4 In Fig. 6 we show three different F-streams on X = [0, 1], where
F is a continuous-time flow that keeps 0 and 1 fixed and moves every other point
leftward so that it asymptotes to 0. For instance, this is the case of the flow of the ODE
x ′ = − sin(πx).

The stream on the left is the closure ofOF , so it is the smallest F-streamAF (which,
in this case, also coincides with PF ). Its nodes are the repelling fixed points N0 = {1}
and the attracting fixed point N1 = {1}. Indeed, for any non-fixedAF -recurrent point
x there should be a y �= x such that both (x, y) ∈ AF and (y, x) ∈ AF but in AF ,
that is entirely contained on and below the diagonal of X × X , there are no pairs with
this property. Finally, there is an edge from 1 to 0 since (x, 0) ∈ AF for all x ∈ [0, 1)
and so, since streams are closed, (1, 0) ∈ AF . Hence, �AF is a tower with two nodes.
In this case, both nodes are F-invariant.

The stream S in the center contains extra points in a neighborhood of (1/2, 1/2).
These extra points are responsible for the presence of extra S-recurrent points that
constitute a single new node N1/2, which is a segment centered at x = 1/2. By
closedness, as above, one can see that there are edges from N1 to N1/2 and from N1/2
to N0. By transitivity, this means that there is also an edge from N1 to N0. Hence, �S

is a tower with three nodes. Notice that this extra node is not F-invariant nor even just
forward-invariant under F ; in particular, it does not contain any limit set of its points
(they all converge to 0 under F).

Similarly to the case above, the extra points (with respect to AF ) of the stream S′
in the right give rise to new S′-recurrent points but these ones are all S′-equivalent to
0 and so, rather than creating a new node, they just make the node N0 thicker. Hence,
�S′ = AF . In this case, though, node N0 is not F-invariant but only forward-invariant.
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(a) (b)

c−1 c0

C

c1 . . .. . .

(c)

c−1 c0

C

c1
. . .. . .

(d)

Fig. 7 Examples of graphs of the smallest stream of a semi-flow. a A tower with two nodes. This is the
graph of the streams in Fig. 6(left, right) and of the smallest stream of the logistic map for μ ∈ (1, 3]. b
A tower with three nodes. This is the graph of the stream in Fig. 6(center) and of the smallest stream of
the logistic map for infinitely many intervals of values of μ, e.g., for μ ∈ (3, 1 + √

6] (in which case the
saddle is a repelling fixed point and the attractor a period-2 orbit) or for μ close enough from the right to
the left endpoint of the period-3 window (in which case the saddle is a repelling Cantor set and the attractor
a period-3 orbit). c, d Graphs of the smallest streams of the systems described in Examples 4.2.6 and 5.2.5

Recall that the smallest streamAF is the smallest transitive extension ofPF . Hence,
�AF canbe obtained from�PF by replacing recursively each loop in the prolongational
graph by a single AF -node.

Example 5.2.5 Consider the physical pendulum system Ft in Fig. 2(above). Every red
point (i.e., every point on a saddle or on a heteroclinic orbit) can by joined to any other
red point, for every ε > 0, by a finite sequence of ε-αωchains. Hence, every red point
is AF -equivalent to every other red point, so that the set of all red points is a single
AF -node. The graph �AF is shown in Fig. 7c. Similarly happens in case of the system
in Fig. 2(below), whose graph is shown in Fig. 7d.

Example 5.2.6 Let f be a T-unimodal map. We discussed in Sect. 4.4 the structure of
�P f . When�P f has no loops, then�A f = �P f = G f . When it does have loops, after
eliminating the only loop that can arise in those prolongational graphs, the graph gets
again back to G f , the structural graph of f . In particular, the graph of the smallest
stream of a T-unimodal map is always a tower.

Definition 5.2.7 A stream graph �S is connected if, whenever S = C1 ∪ C2, with C1
and C2 closed and disjoint sets each of which is union of nodes of S, there is an edge
from a node of C1 to a node of C2 or viceversa.

Theorem 2 Let S be a stream of a compact semi-flow F. Then �S is connected.

Proof Each F-stream S has two types of nodes: those that are an extension of non-
wandering nodes of F and those that are not. In this proof, we will refer to the first type
as “�-nodes”. Notice that S-nodes that are not �-nodes cannot be forward-invariant
under S. If they were, indeed, they would contain an F-recurrent point, since every
node is compact under the theorem’s hypotheses, and every F-recurrent point is in
some non-wandering node. Ultimately, each S-node either is an�-node or has an edge
from itself to at least one �-node.

Suppose now that S = C1 ∪C2 with C1,C2 closed and disjoint sets each of which
is a union of nodes. If either one of the two, say C1, only contains nodes that are not
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�-nodes, then there is at least an edge from C1 to C2 because the limit sets of all
points of C1 lie in C2. Suppose now that both C1 and C2 contain�-nodes. Then, since
�PF is connected, there is at least an edge between an �-node in C1 and an �-node in
C2. Otherwise, it would be possible to sort the non-wandering nodes into two disjoint
closed sets so that there would be no edge between the two sets, namely �PF would
not be connected. Hence, �S is connected. 
�

5.3 Ä Streams

An immediate consequence of stream’s transitivity is that, for all y ∈ OF (x),

DownS(x) ⊃ OF (x) ∪ DownS(y).

It turns out that streams for which the sets at the left and right hand sides above are
equal enjoy rather special properties. In this section we illustrate some of them.

Definition 5.3.1 We say that an F-stream S is a �stream if

DownS(x) = OF (x) ∪ DownS(y)

for every y ∈ OF (x).

Proposition 5.3.2 Let F be a semi-flow with compact dynamics. Then S is an F-
�stream if and only if

DownS(x) = OF (x) ∪ DownS(�F (x)).

Proof By Proposition 5.0.3, it is enough to prove that, if z ∈ DownS(x), then either
x �F z or �F (x) �S z. Let z ∈ DownS(x) and suppose that z /∈ OF (x). Then, since
S is an �stream, y �S z for all y ∈ OF (x). Since F has a compact global trapping
region, �F (x) �= ∅. Let w ∈ OF (x). Then there is a sequence yn ∈ OF (x) such that
yn → w. Since yn �S z, then w �S z as well since S is closed. Hence, �F (x) �S z.


�
Next example shows that the compactness hypothesis in the previous proposition

cannot be dropped.

Example 5.3.3 Let F be the flow of the vector field η = (2v, 1 − v2) in the (u, v)

plane. This flow is shown in Fig. 8. Notice that the function H(u, v) = (1 − v2)eu

is a first-integral for η. In this case �F (x) = ∅ for every x = (u, v) ∈ R
2 but there

are points x for which DownPF (x), and therefore DownS(x) for every F-stream S,
is strictly larger than OF (x). Indeed, notice that this flow has two special integral
trajectories s± = {v = ±1} that are inseparable in the following sense. Say that a
neighborhood U of an integral trajectory t is saturated when, if x ∈ U , the whole
integral trajectory through x is contained inU . Then every saturated neighborhood of
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Fig. 8 A semi-flow F such that DownPF
(x) � OF (x) ∪ DownPF

�F (x). Here X = R
2 and F is the

flow of the vector field η = (2v, 1− v2). We painted in black some flow lines of η and in blue the points of
DownPF

(x). The blue points are the points in DownPF
(x). The red points are the points in DownPF

(y)

s+ has non-empty intersection with every saturated neighborhood of s−. The reader
can verify that

DownPF (x) =
{
OF (x) ∪ s+, x ∈ s−
OF (x), otherwise

.

In Fig. 8 two downstream sets are shown, one for a point in s− (in blue) and one for
a point not on s− (in red). Notice that, in this case, RS = NWF = ∅. Results in [39]
show a connection between non-trivial downstream sets of a flow and the solvability
of the relative cohomological equation.

Definition 5.3.4 We say that a node N of an F-stream S is dynamical if N contains
F-recurrent points.

Next propositions shows that every dynamical node contains non-wandering points.

Proposition 5.3.5 Every forward-invariant node of a stream is dynamical.

Proof If a node is forward-invariant, it contains the limit-sets of each of its points. By
the compactness hypothesis, every limit-set is non-empty. By the Proposition 2.1.3,
each limit-set contains F-recurrent points. 
�
Corollary 5.3.6 A node N of an F-stream is dynamical if and only if it extends a node
of NWF.
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Proof This is an immediate consequence of the fact that non-wandering nodes are
forward-invariant. 
�
Proposition 5.3.7 Let S be an F-�stream. Then:

1. If x is S-recurrent, then OF (x) ⊂ NodeS(x).
2. DownS(�F (x)) ∩ RS = DownS(x) ∩ RS.
3. Every node of S is closed and forward-invariant under F.
4. Every node of S is dynamical.
5. RS is closed and forward-invariant under F.
6. S is forward-invariant under the natural action induced by F on X × X.
7. DownS(M) is forward-invariant under F for each M ⊂ X.
8. UpS(C) is forward-invariant under F for each set C ⊂ RS that is union of nodes

of S.

Proof (1) If x is F-recurrent, the claim follows immediately from Proposition 5.1.7.
Assume now that x is S-recurrent but not F-recurrent. Then there is a y �= x that
is S-equivalent to x . Now, let z ∈ OF (x). Since S is an �stream, DownS(x) =
OF (x) ∪ DownS(z). Hence, either y ∈ OF (x) or y ∈ DownS(z). When either
y ∈ OF (z) or y ∈ DownS(z), then y (and so x) is S-equivalent to z and so
z ∈ NodeS(x). When z ∈ OF (y), namely y is between x and z in the orbit of x , we
have that DownS(y) = OF (y)∪DownS(z). Since, by hypothesis, x ∈ DownS(y),
then either x ∈ OF (y) or x ∈ DownS(z). The first case cannot happen since x
would be periodic. In the second case, it follows immediately that z is S-equivalent
to x and so z ∈ NodeS(x).

(2) Since DownS(�F (x)) ⊂ DownS(x), it is enough to prove that every S-recurrent
point in DownS(x) does belong to DownS(�F (x)). Since, by Proposition 5.1.7,
�F (x) is a S-equivalent set, it is actually enough to prove that every S-recurrent
point in DownS(x) is downstream from any point y ∈ �F (x). Notice that, since
S is an �stream, either z ∈ OF (x) or z ∈ DownS(y). Since z ∈ RS , in both cases
we get that z ∈ DownS(y).

(3) We prove first that N is closed. Let xn be a sequence of points of N converging
to some x ∈ X . The case when x is fixed is trivial, so we assume it is not, namely
there exists t > 0 such that Ft (x) �= x . We can assume without loss of generality
that also none of the xn is fixed. By point (1) above, eachOF (xn) is S-equivalent,
so that Ft (xn) and xn are S-equivalent for every n ≥ 1. By continuity, therefore,
since S is closed we have that x and Ft (x) are S-equivalent, so that x ∈ RS .

Moreover, since by construction xn
S= xm for each n,m, then by continuity also

xn
S= x for all n, namely x ∈ N .

We prove now that N is forward-invariant, namely that OF (x) ⊂ N for each
x ∈ N . If x is periodic, then OF (x) = �F (x) ⊂ NodeS(x) = N and the claim
follows. Assume now that x is not periodic. Then there is a y �= x that is S-
equivalent to x . Let z ∈ OF (x). In order to prove that z ∈ N , it is sufficient
to show that either z ∈ DownS(x) or z ∈ DownS(y). Since S is an �stream,
then either y ∈ DownS(z) or y ∈ OF (x). The only non-trivial case is when y is
between x and z in OF (x). In this case z ∈ OF (y) and so, again by minimality,
we get that DownS(y) = OF (y) ∪ DownS(z). Since x ∈ DownS(y), the only
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non-trivial case is that x ∈ OF (y). But then OF (x) = OF (y), namely the orbit
is periodic, against our working assumption. Hence, OF (x) is a S-equivalent set,
namely OF (x) ⊂ N .

(4) This is a corollary of Proposition 5.3.5.
(5) That RS is closed follows from the same argument used in (3). Moreover, RS is

forward-invariant because it is the union of forward-invariant sets.
(6) We need to show that Ft (S) ⊂ S, namely that, if (x, y) ∈ S, then (Ft x, Ft y) ∈ S

for each t ≥ 0. So, let (x, y) ∈ S. By minimality, there are two cases: either
y ∈ OF (x), in which case the result is true by transitivity, or y is downstream
from OF (x). In the latter case, by continuity,

Ft x �S �(x) �S y �S Ft y.

(7) This amounts just to the observation that OF (x) ⊂ DownS(x).
(8) Let x ∈ UpS(C), i.e., x �S C . Then, there exists y ∈ C such that x �S y. Since

S is forward-invariant, then, for every t ≥ 0, Ft (x) �S Ft (y). Since y ∈ RS ,

Ft (y)
S= y. Hence, Ft (x) �S y, so that Ft (x) ∈ UpS(C).


�
Proposition 5.3.8 Let Sα be a collection of F-�streams. Then:

1. S∩ = ⋂
α Sα is an F-�stream.

2. RS∩ = ⋂
α RSα .

3. For every node N of RS∩ , denote by Nα the node of RSα that extends N. Then
N = ⋂

α Nα .

Proof (1) S∩ is a stream by Proposition 5.1.9. Moreover, for every y ∈ OF (x),

DownS∩(x) =
⋂

α

DownSα (x) = OF (x) ∪
⋂

α

DownSα (y) = OF (x) ∪ DownS∩(y),

so S∩ is an �stream.
(2) This is an immediate consequence of the fact that, by Proposition 5.3.7, the whole

orbit of a point x ∈ RS is S-recurrent and points of the orbit are all mutually
S-equivalent. In particular, this means that

x ∈ RSα ⇐⇒ OF (x) ⊂ NodeSα (x) ⇐⇒ OF (x) ⊂ NodeS∩(x) ⇐⇒ x ∈ RS∩ .

(3) Left to the reader.

�

5.4 Subgraphs and Towers

Graphs of streams can be highly complicated. Even in case of the logistic map, one
of the simplest possible non-trivial dynamical system, for certain parameters the non-
wandering set has infinitely many nodes, although its phase space X = [0, 1] is
compact. Moreover, as shown in the example below, one can easily modify locally
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Fig. 9 A unimodal map and the graph of its smallest stream. (left) Graph of a unimodal map f . This
unimodal map coincides with the logistic map 	μ, with μ = 3.5, in some neighborhood of the trapping
region [c2, c1], where c1 = 	μ(0.5) and c2 = 	μ(c1). (right, top) Graph of the smallest stream of f ,
namely the chains stream (see Sect. 6.5). Notice that the top node of the graph is the repelling fixed point
φ corresponding to the internal intersection with the diagonal of the red portion of the graph of 	μ. The
attracting node in green is the left endpoint x = 0. (right, bottom) By repeating the trick, one can create any
number of non-topological periodic orbits, resulting in the graph shown in the bottom of the right column.
In the two stream graphs are shown only the basic edges. Every non-displayed edge can be inferred by
transitivity

the logistic map so to obtain a unimodal map without wandering intervals and with
an arbitrary (at most countable number) of attractors (all but one consisting of non-
topological attracting orbits), saddles and repellors.

Example 5.4.1 Recall that the prolongational graph of a logistic map 	μ, μ ∈ (2, 4),
with μ not at the boundary of a periodic window, is a tower. In this case, it coincides
with the graph of the smallest stream of 	μ (see the bottom of Sect. 6.5). Now, set
ck = 	kμ(1/2). Notice that the dynamics of 	μ in the interval J = [0, c2) is trivial:
0 is fixed and every other point enters the trapping region Q = [c2, c1] in finite
time. All non-trivial dynamics takes place inside Q. Hence, by modifying 	μ in J ,
one obtains a smooth unimodal function f whose graph contains, as a subgraph (see
Definition 5.4.2), the graph of 	μ. In Fig. 9 we show an example of such unimodal
maps. The map f whose graph is shown in the picture has a single non topological
attracting fixed point, obtained by modifying a logistic map 	μ in a neighborhood
of 0. In this particular case μ = 3.5, so that 	μ has three nodes: the fixed node 0
(repelling), the other fixed node p (saddle) and a period-2 periodic orbit (attracting).
The blue part of the graph of f coincides with the graph of 	μ. Close to zero, we
choose f so that 0 < f ′(0) < 1 and that f increases strictly monotonically until
it meets the blue branch. This way, 0 is attracting while the other intersection φ of
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the red branch of the graph is repelling. Hence, NW f (and therefore A f ) has four
nodes: the fixed point 0 (attracting, non-topological), φ (repelling), p (saddle) and the
period-2 orbit (attracting). With the same trick, one can get unimodal maps g with
infinitely many non-topological attracting periodic orbits. Assume that one starts with
a logistic map 	μ has infinitely many nodes. Then the graph ofAg has infinitely many
repelling nodes, infinitely many attracting nodes and infinitely many saddle nodes. An
example of such graph (with a single saddle but potentially infinitely many repelling
and attracting nodes) is shown in Fig. 9(right, bottom).

The situation gets much more complicated in dimension larger than one. Indeed,
while unimodal maps with infinitely many nodes are non-generic, Sheldon Newhouse
showed [40] that, on any compact manifold of dimension larger than one and for any
r ≥ 2, there are open setsU ⊂ Diffr (M) such that aCr -genericmap ofU has infinitely
many attractors.

Hence, it is particularly important to identify important building blocks of stream
graphs. Towers, first introduced in Sect. 4.4, are perhaps the most important one. In
this section, we present a general result about them.

Definition 5.4.2 Given a directed graph �, the directed graph �′ is a subgraph of �

if the set of nodes of �′ is a subset of the set of nodes of � and, if there is an edge
from node N to node M in �′, there is an edge from node N to node M in �. Given
a directed graph �, we call tower any acyclic subgraph �′ ⊂ � such that there is an
edge between each M, N ∈ �′. A tower is maximal if it is not a subgraph of a larger
tower.

Definition 5.4.3 A node N of a stream S is a top node if there are no S-nodes upstream
of it and is a bottom node if there are no S-nodes downstream of it.

While it is tempting thinking of bottom nodes as attractors, the following example
shows that this is not always the case.

Example 5.4.4 Consider the scalar ordinary differential equation

dx

dt
= −x2 sin

π

x

where the right-hand side is defined to be 0 at x = 0. For integers n �= 0, the points
x = ± 1

n are fixed points and are attracting for n odd and repelling for n even. Notice
that all trajectories with x(0) > 1 are attracted to the point x = 1 while those with
x(0) < −1 are attracted to the point x = −1. Hence there are countably many nodes,
and there is an edge between adjacent nodes, one of which is an attractor and a top
node and the other is a repellor and a bottom node. The graph is a connected curve that
includes the node x = 0. However, there are no edges to or from that node. Hence it is
both a top and a bottom node. This graph is plotted as a saw tooth plot with top nodes
higher than the bottom nodes they connect to. An infinite number of nodes converge
to the node at x = 0.

Theorem 3 Let S be an F-stream and assume that either X is compact or that S is an
�stream. Then each node N of S is contained in a maximal tower of �S.
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Proof We can assume without loss of generality that X is compact. We prove below
that there is a top node T �S N and we leave the analogous proof for a bottom node
to the reader.

By Zorn’s Lemma, there is a maximal tower T of nodes such that N ∈ T . For each
node M ∈ T , let T (M) = {A ∈ T : A �S M}. Then T (M) is an ordered chain. The

set U (M)
def== ∪A∈T (M)A is compact and the collection of all U (A) for A ∈ T is a

nested set of compact sets. Let V
def== ∩A∈T (M)U (A). V is non-empty and compact

and consists of points that are mutually S-equivalent. Hence, V is contained in a node

T
def== Node(V ) ∈ T and all points of T are in V . If there were a node B �S T , with

B �= T , then it would not be in the chain and so the chain would not be maximal, a
contradiction. Hence, T is a top node. 
�

5.5 Trapping Regions of Streams

Recall that a trapping region for F is a closed set Q such that Ft (Q) ⊂ Q for all
t ≥ 0. By analogy, we provide the following definition in case of streams.

Definition 5.5.1 Given a stream S, we say that a closed set Q is a trapping region for
S if DownS(Q) ⊂ Q.

Notice that, sinceOF ⊂ S, each trapping region for an F-stream S is also a trapping
region for F .

Lemma 5.5.2 Let S be an F-stream on X and let Q be a trapping region for S. The
following hold:

1. If S′ is a substream of S, then Q is a trapping region for S′;
2. If a node N of S has some point in Q, then N ⊂ Q;
3. There is no edge in �S from any node in Q to any node outside Q;
4. If S is an �stream, then x �S y, with x, y /∈ Q, if and only if x �F y;
5. If S is an �stream,RS ⊂ Q.

Proposition 5.5.3 Let SS be the set of substreams of an �stream S and let Q be a
trapping region for S. Then S1, S2 ∈ SS coincide if and only if their restriction to Q
coincide.

Proof By hypothesis, S1∩(Q×Q) = S2∩(Q×Q).We need to prove that (x, y) ∈ S1
if and only if (x, y) ∈ S2 when either x /∈ Q or y /∈ Q (or both).

Suppose that (x, y) ∈ S1. By the lemma above (point 4), when both x, y are outside
of Q, (x, y) belongs to all substreams of S. If x ∈ Q, since Q is a trapping region for
S, then we must have that y ∈ Q. The last case is when x /∈ Q and y ∈ Q. In this case,
since S is an �stream, either (x, y) ∈ OF , in which case it belongs to all streams, or
y ∈ DownS1(�F (x)). Since S1 and S2 coincide inside Q, then (x, y) ∈ S2. 
�

6 Streams of Chains

The most important generalizations of recurrent points in literature are all based on
chains: generalized recurrence, first considered by Auslander [16], is based on ε-
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αωchains; chain-recurrence, introduced by Conley in 1972 [18, 41], is based on ε-
chains; strong chain-recurrence, introduced in 1977 by Easton [19], is based on ε-
�chains (see [42] for several examples and recent results on these three recurrence
generalizations). In this section we show that each of those generalizations are the set
of recurrent points of suitable streams.

6.1 The Chains Streams

Definition 6.1.1 Given a discrete-time semi-flow F on X and a metric d compatible
with the topology of X , we call (F, d, ε)-chains stream the relation

CF,d,ε = {(x, y) : there is a(F, d, ε)-chain fromx to y}.

We call (F, d)-infinitesimal chains stream (or simply chains stream) the relation

CF,d =
⋂

ε>0

CF,d,ε.

Next two propositions grant that the relations defined above are indeed streams.

Proposition 6.1.2 CF,d,ε is a stream for every ε > 0.

Proof CF,d,ε is a quasi-order. By definition CF,d,ε contains the diagonal of X × X .
Moreover, CF,d,ε is transitive because the concatenation of two F-ε-chain is an F-ε-
chain.
CF,d,εis closed. Assume that (xn, yn) → (x, y) for some sequence of pairs belonging
to CF,d,ε. For each n > 0, denote by Cn any ε-chain from xn to yn . Then, for n
large enough, we can assume that d(x, xn) < ε and d(y, yn) < ε and so the chain
{x} + Cn + {y} is an ε-chain from x to y. In particular, (x, y) ∈ Cε,F .
OF ⊂ CF,d,ε. Each y ∈ OF (x) can be joined to x by a 0-chain (orbit segment). 
�
Lemma 6.1.3 For every x and y ∈ OF (x),

OF (x) ∪ DownCF,d (y) ⊃ DownCF,d (x).

Proof Let z ∈ DownCF,d (x). By Lemma 6.2.2, given y ∈ OF (x), if there is an ε-chain
from x to z for every ε > 0, then for every ε > 0 there is δ > 0 such that every
δ-chain starting at x passes within ε from F(y). Hence, we can use this chain to build
an ε-chain from y to z. 
�
Proposition 6.1.4 CF,d is an �stream.

Proof CF,d is a stream because streams are closed under intersections (Proposi-
tion 5.1.9). It is an �stream as an immediate consequence of Proposition 5.0.3(2)
and the lemma above. 
�

The streams CF,d,ε depend, in general, on the particular metric d used on X . Nev-
ertheless, as proved below, in case of compact dynamics CF,d is purely topological.
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Proposition 6.1.5 Let F be a semi-flow with compact dynamics and let d1, d2 be any
two equivalent metrics on X. Then CF,d1 = CF,d2 .

Proof Suppose that CF,d1 �= CF,d2 . Then, without loss of generality, we can find
x, y ∈ X such that y is CF,d1 -downstream but not CF,d2 -downstream from x .

Let Ci be a sequence of (d1, εi )-chains from x to y, with εi → 0. Since y is not
CF,d2 -downstream from x , there is a δ > 0 such that, for each i , there is a point xki on
Ci such that d2( f (xki−1), xki ) > δ.

Since Q is compact, we can assumewithout loss of generality that these xi converge
to a point z. Since d1 and d2 are equivalent, xki → z for both d1 and d2. This means
that, for every η > 0, we can find an i such that

d1( f (xki−1), xki ) < η, d1(z, xki ) < η, d1(z, f (xki−1)) < η.

In particular, also f (xki−1) → z with respect to the d1 distance, and so it does with
respect to d2 as well. This means that, for every η > 0, we can find an i large enough
such that:

d2(z, xki ) < η, d2(z, f (xki−1)) < η.

On the other side, we also have (see above) that d2( f (xki−1), xki ) > δ. These three
inequalities are incompatible with the triangular inequality for η small enough. Hence,
we must have that CF,d1 = CF,d2 . 
�

When CF,d is the same for all d, we just write CF .
Notice that, in general, the CF,d,ε are not �streams, as the example below shows.

Example 6.1.6 Let F(x) = x2 on X = [0, 1]. This is a discrete version of the case
discussed in Example 5.2.4: the end-points are fixed while every other point moves
leftward, asymptoting to 0. Since X is compact, CF,d,ε does not depend on d and
we denote it by CF,ε. For every ε > 0, every point close enough to 0 (resp. to 1) is
CF,ε-equivalent to 0 (resp. to 1). For ε ≥ 1, every finite sequence of points in X is
a ε-chain and so CF,ε = X × X . For ε > 0 small enough, points close enough to
1/2 are further away than ε from their image, so that the node containing 0 is disjoint
form the node containing 1. In this case, CF,ε has two nodes (N0, containing 0, and
N1, containing 1) and its graph is equal to the one of CF , namely a tower with two
nodes. Nevertheless, for x ∈ N1 with x �= 1, we have that 1 ∈ DownCF,ε

(x) although
1 /∈ OF (x) ∪ DownCF,ε

(0). Hence, by Proposition 5.3.2, CF,ε cannot be a �stream.

Proposition 6.1.7 Let F have a compact global trapping region Q. Then Q is a trap-
ping region for CF .

Proof Suppose that (x, y) ∈ CF with x ∈ Q and y /∈ Q. Since Q is invariant, x ��F y.
Set Qε = {x : d(x, Q) ≤ ε}. Since Q is asymptotically stable, for every ε > 0 there
is N > 0 such that FN (Qε) ⊂ Qε/2. Let η > 0 such that Nη < ε/2. Then every
η-chain starting from a point in Q lies entirely inside Nε(Q). Hence, for each y /∈ Q,
we can find an η so small that no η-chain starting in Q can reach y. 
�
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The following proposition generalizes an analogue result of Douglas Norton in
[43], stated for X compact.

Proposition 6.1.8 Let F be a semi-flow with compact dynamics. Then each node of
CF is F-invariant.

Proof By Proposition 6.1.7 and Lemma 5.5.2, RCF ⊂ Q. Hence, we can assume
without loss of generality that X is compact. Then, by Norton’s Proposition 3.8 in
[43], the claim follows. 
�

6.2 Continuous-Time Chains Streams

So far, we only considered the case of discrete-time chains. Here, we prove that this can
be done without loss of generality because the time-1 map f = F1 of a continuous-
time semi-flow Ft completely determines the nodes and edges of the graph of Ft . Our
results extend, within a compact dynamics context, the following important result by
Mike Hurley:

Theorem E (Hurley [21]) Let F be a continuous-time semi-flow on a compact metric
space X and let f = F1 be the corresponding time-1 discrete-time semi-flow. Then
RCF,d = RC f ,d .

Notice that the result above is not stated explicitly in [21] but is rather a corollary
of a more general result (Theorem 5 in [21]) that holds, in general metric spaces, for
a stronger version of chain-recurrence, where the “ε” of an ε-chain is not a constant
but rather a strictly positive function. In case of a compact metric space, this general
result reduces to Theorem E.

We start with the following definitions.

Definition 6.2.1 Given a continuous-time semi-flow F on X and ametric d compatible
with the topology of X , given ε > 0 and T > 0, a (F, d, ε, T )-chain of length n + 1
from x to y is a sequence of n + 1 points c0, . . . , cn together with a finite sequence of
positive real numbers t0, . . . , tn−1 such that:

1. c0 = x , cn = y;
2. d(Fti (ci ), ci+1) ≤ ε for all i = 0, . . . , n − 1;
3. ti ≥ T for all i = 0, . . . , n − 1.

We call (F, d, ε, T )-chains stream the relation

CF,d,ε,T = OF ∪ {(x, y) : there is a (F, d, ε, T )-chain from x to y}.

We call (F, d, T )-infinitesimal chains stream the relation

CF,d,T =
⋂

ε>0

CF,d,ε,T .
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We call (F, d)-infinitesimal chains stream (or simply chains stream) the relation

CF,d =
⋂

T>0

CF,d,T .

By analogy, given a discrete-time semi-flow f , we call ( f , d, ε, N )-chain of length
n+1 from x to y a sequence of n+1 points c0, . . . , cn together with a finite sequence
of positive integers k0, . . . , kk−1 such that:

1. c0 = x , cn = y;
2. d( f ki (ci ), ci+1) ≤ ε for all i = 0, . . . , n − 1;
3. ki ≥ N for all i = 0, . . . , n − 1.

We call ( f , d, ε, N )-chains stream the relation

C f ,d,ε,N = O f ∪ {(x, y) : there is a( f , d, ε, N )-chain fromx to y}

and ( f , d, N )-infinitesimal chains stream the relation

C f ,d,N =
⋂

ε>0

C f ,d,ε,N .

The reader can verify that all the relations above are indeed streams.
We present first some important elementary consequences of uniform continuity.

In both of the two lemmas below, case (1) is an immediate consequence of uniform
continuity and case (2) was proven by Hurley. In the discrete-time case, the claim is
proven in Lemma 1.2 of [44]. In the continuous-time case, the claim is a corollary of
Lemma 7 in [21].

Lemma 6.2.2 Let f be a discrete-time semi-flow on X. Then, for any ε > 0 and p > 0,
there exists a δ > 0 such that:

1. d(x, y) < δ �⇒ d( f k(x), f k(y)) < ε for every k = 0, . . . , p;
2. For every ( f , d, δ)-chain C with p + 1 points c0, . . . , cp, the chain C ′ consisting

in the pair of points c0, cp is a ( f p, d, ε)-chain. Equivalently,

d( f p(c0), cp) < ε.

Lemma 6.2.3 Let F be a continuous-time semi-flow on X. Then, for any ε > 0, T > 0
and p > 0, there exists a δ > 0 such that:

1. d(x, y) < δ �⇒ d(Ft (x), Ft (y)) < ε for every t ∈ [0, T ];
2. For every (F, d, δ, T )-chainC with p+1 points c0, . . . , cp and times t0, . . . , tp−1,

the chain C ′ with points c0, cp and time τ = ∑p−1
i=1 ti is a (F, d, ε, τ )-chain.

Equivalently,

d(Fτ (c0), cp) < ε.
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Next two lemmas shows that, for all that concerns infinitesimal chains, it is enough
to consider the time-1 map f = F1.

Lemma 6.2.4 For any ε > 0 and x ∈ RCF,d,T , there are (F, d, ε, T )-chains of arbi-
trarily large length from x to itself.

Proof By hypothesis, there is at least a (F, d, ε, T )-chain C from x to itself. By
concatenating C with itself k times and the result is a (F, d, ε, T )-chain 
�
Lemma 6.2.5 Let F be a continuous-time semi-flow with compact dynamics and let
f = F1. Assume that x and y are CF,d,T -equivalent and set N = �T �. Then x and y
are C f ,d,N -equivalent.

Proof Let Q be a compact global trapping region for F and notice first of all that,
by Proposition 6.1.7, Q is also a trapping region for both streams CF,d,T and C f ,d,N .
Hence, their recurrent points are entirely contained in Q and so it is enough to consider
the analogue problem for the restriction of F to Q. Hence, in the reminder of the proof
we assume, without loss of generality, that X is compact.

We will prove that, for every ε > 0, there is a ( f , d, ε, N )-chain from x to y. The
same argument then can be used to show that there is a ( f , d, ε, N )-chain from y to
x .

Fix an ε > 0 and let δ > 0 satisfy point (1) of Lemma 6.2.3 and point (2) of
Lemma 6.2.2 with p = N . Let C be a (F, d, δ, T )-chain with points c0, . . . , cr and
times t0, . . . , tr such that c0 = cr = x and ci = y for some 0 < i < r . Following
Hurley [21], we build a ( f , d, ε, N )-chain C ′ in the following way.

For every j , set s j = ∑ j
i=0 t j . The s j are precisely the times at which, on the chain

C , there are jumps—precisely, a jump from Ft j (c j ) to c j+1. We start C ′ by setting
c′
0 = c0. Then, after Hurley, for each k, we follow the rule below:

1. If there is no jump in C in the interval (kN , (k + 1)N ], then we set c′
k+1 =

f N (c′
k) = FN (c′

k);
2. If there is a jump in C at s j ∈ (kN , (k + 1)N ], then we set

c′
k+1 = F (k+1)N−s j (c j+1).

The two cases above cover all possible cases because, since in C jumps take place
at least T ≥ N time units apart, there can be at most one jump in each interval
(kN , (k + 1)N ].

We claim that the chain C ′ with points c′
0, c

′
1, . . . is an ( f , d, ε, N )-chain. Indeed,

either the jump is null (case 1 above) or (case 2 above) the jump happens from
f N (c′

k) = F (k+1)N−s j (Ft j (c j )) to F (k+1)N−s j (c j+1). In the latter case, therefore,
d(F (k+1)N−s j (c j ), f N (c′

k)) < ε because (k+1)N − s j < N and d(Ft j (c j ), c j+1) <

δ.
Hence, the procedure above allows to build a ( f , d, ε, N )-chain C ′ of arbitrary

length based at c′
0 = x in such a way that each of the points of C ′ lies on one of the

segments F [0,t j )(c j ), j = 0, . . . , r−1. The union of all these (finitelymany) segments
is a (piece-wise continuous) periodic orbit γ with period S = sr−1 based at x and
passing through each points c j . The sequence c′

0, c
′
1, . . . on γ is such that the distance

in time between two consecutive elements is constant (and equal to N ). If S/N is
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irrational, then the c′
i get eventually arbitrarily close to every point on γ . Hence, there

is some length 	 large enough that c′
0, . . . , c

′
	 are the points of a ( f , d, ε, N )-chain

from x to y. If S/N is rational, we can make anyway the (infinite) sequence of the
c′
j dense in γ by modifying by some small η > 0 each jump (while also keeping the

jump smaller than ε) so that the time distance between each jump becomes N + η.
We can always choose η so that S/(N + η) is irrational, bring us back to the previous
case. 
�
Corollary 6.2.6 Let F be a continuous-time semi-flow with compact dynamics and let
f = F1. Let T > 0 and N = �T �. ThenRCF,d,T = RC f ,d,N and each node ofRCF,d,T

is a node of RC f ,d,N and viceversa.

Lemma 6.2.7 Let F be a continuous-time semi-flow with compact dynamics and let
f = F1. Assume that x is CF,d,T -upstream of y ∈ RCF,d,T and set N = �T �. Then x
is upstream of y in C f ,d,N .

Proof Let C be a (F, d, δ, T )-chain from x to y and let D be a (F, d, δ, T )-chain
loop from y to itself. Let Dn be the concatenation of D with itself n times. Then by
concatenating C with Dn we can get a chain from x to y of arbitrary length. Hence,
by using the very same procedure of the previous lemma, we can prove that, for every
ε > 0, there is a ( f , d, ε, N )-chain from x to y. 
�
Corollary 6.2.8 Let F be a continuous-time semi-flow with compact dynamics and let
f = F1. Let T > 0 and N = �T �. Then �CF,d,T = �C f ,d,N .

The results above show already that all that the qualitative description of the dynam-
ics of a continuous-time semi-flow F with compact dynamics is all encoded in the
powers of its time-1 map. Below we show that, in fact, the first power of the time-1
map is enough.

Theorem 4 Let f be a discrete-time semi-flow with compact dynamics. Then, for any
integer N > 0, O f ∪ C f ,d,N = C f ,d . If f = F1 for some continuous-time semi-flow
F, then we have also that CF,d = OF ∪ C f ,d .

Proof As in the proof of Lemma 6.2.5, we can assume without loss of generality that
X is compact.

First notice that, for any N > 0, C f ,d ⊂ O f ∪ C f ,d,N because every ( f , d, ε, N )-
chain C can be seen as a ( f , d, ε)-chain—just break each jumpless segment in pieces
of length 1. To complete the proof, we need to prove that, given any N > 0 and ε > 0,
if x can be joined to y by a ( f , d, η)-chain for every η > 0, then we can join x to y
with a ( f , d, ε, N )-chain.

So, let ε > 0, set p = 2N and let δ > 0 be the δ whose existence is granted
by Lemma 6.2.2(2) and C a ( f , d, δ)-chain from x to y. Recall that, by possibly
concatenating C with some ( f , d, δ)-chain from y to itself, we can assume that C has
at least N points. Let c0, . . . , cr , r ≥ N , be the points ofC . Then, by Lemma 6.2.2(2),
each pair ckN , c(k+1)N is a ( f , d, ε, N )-chain. If r = qN for some integer q > 0, then
c0, cN , . . . , cqN is a ( f , d, ε, N )-chain from x to y. Otherwise, qN < r < (q + 1)N
for some q > 0. In this case, we use as the final segment of the new chain the pair
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c(q−1)N , cr . Since 2N > r − (q − 1)N > N , even this pair is a ( f , d, ε, N )-chain.
Hence, the chain c0, cN , . . . , c(q−1)N , cr is, in any case, a ( f , d, ε, N )-chain from x
to y. This proves that O f ∪ C f ,d,N = C f ,d .

The second claim of the theorem comes from the fact that CF,d,T = OF ∪ C f ,d,�T �
(Corollary 6.2.6) and thatOF ∪ C f ,d,N = OF ∪ C( f , d) for every integer N > 0 (by
the first claim of this theorem). 
�

6.3 The 6chains Streams

This subsection is based on Easton’s definition of �chains given in Definition 2.2.1.

Definition 6.3.1 Given a metric d compatible with the topology of X , we call (F, d)-
�chains stream the relation

�F,d = {(x, y) : for everyε > 0, there is a(F, d, ε) − �chain from x to y}.

Proposition 6.3.2 �F,d is an �stream.

Proof �F,d is a quasi-order.By definition�F,d contains the diagonal of X × X . Now,
suppose that (x, y), (y, z) ∈ �F,d and fix an ε > 0. By choosing an ε/2-�chain from
x to y and another one from y to z, their concatenation is an ε-�chain from x to y.
Hence, �F,d is transitive.
�F,d is closed. Assume that (xn, yn) → (x, y) for some sequence of pairs belonging
to �F,d . For each n > 0, denote by Cn any ε/2-�chain from xn to yn . Then, for n
large enough, we can assume that d(x, xn) < ε/4 and d(y, yn) < ε/4 and so the chain
{x} + Cn + {y} is an ε-�chain from x to y. In particular, (x, y) ∈ �F,d .
OF ⊂ �F,d . Each y ∈ OF (x) can be joined to x by a 0-chain (orbit segment).
�F,d is an�stream. The same argument used to prove that CF is an�stream applies to
this case, since every (F, d, ε)-�chain from x to y is also a (F, d, ε)-chain between
the same points. 
�

Notice that, unlike chains streams, �chains streams do depend on the distance d
used in their definition.

Example 6.3.3 Let F be the flow of an ODE x ′ = g(x) on X = [0, 1], where g is a
non-positive Lipschitz function on X whose set of zeros coincidewith themiddle-third
Cantor set C . Since the measure of C with respect to the Euclidean distance e on X is
zero, there are (F, e, ε)-�chains from 0 to 1 for every ε > 0, so that all points of X
are �F,e-equivalent to each other. Now, let d be a distance topologically equivalent
to e but for which the measure of C is strictly positive. Then, for ε small enough,
no (F, d, ε)-�chain can join 0 to 1, so that �F,e �= �F,d (see [42] for several other
examples).

6.4 The Smallest Stream

By Proposition 5.0.2, we know that each semi-flow F has a smallest stream, namely
the smallest closed quasi-order containing OF (and, therefore, containing PF ). This
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relation, that we denote by AF , has been first introduced and studied by Auslander
in [16]. In that article, under the assumption that X is separable and locally compact,
Auslander introduced AF as the set of all pairs (x, y) such that L(x) ≥ L(y) for all
Lyapunov functions L ∈ LF . Hence, AF = DLF . In the proposition below, we show
that AF can also be seen as a stream of chains, in particular a �chains stream. We
also drop Auslander’s assumptions on X and we rather transfer them to F .

Proposition 6.4.1 Assume that F has a separable and locally compact global trapping
region Q. Denote by MX the set of all distances on X compatible with its topology.
Then the following holds:

1. AF =
⋂

d∈MX

�F,d;

2. RAF =
⋂

d∈MX

R�F,d ;

3. AF is an �stream.
4. AF = �F,d for some d ∈ MX .

Proof (1) Fix a metric d on X compatible with its topology. It is enough to prove that,
for each h ∈ LF , there exists a metric dh compatible with d such that h(x) ≥ h(y)
for each (x, y) ∈ �F,dh . Indeed, let L�F,d be the set of all Lyapunov function for
�F,d . Then ∩d�F,d = D∪dL�F,d

. Hence, if such dh exists, then h ∈ L�F,dh
and

so ∪dL�F,d = LF . Therefore, ultimately, ∩d�F,d = DLF = AF .

We claim that dh(x, y)
def== d(x, y) + |h(y) − h(x)| does the job. Indeed, suppose

that (x, y) ∈ �F,dh . Then, for every ε > 0, there exists a chain x0, . . . , xk , with
x0 = x and xk = y, such that

dh( f (x0), x1) + · · · + dh( f (xk−1), xk) < ε.

This means that

d( f (x0), x1) + · · · + d( f (xk−1), xk)

+|h( f (x0)) − h(x1)| + · · · + |h( f (xk−1)) − h(xk)| < ε.

Hence, for every ε > 0, we have that

h(y) = h(xk) ≤ h(xk)

non−negative since h∈LF
︷ ︸︸ ︷
−h( f (xk−1)) + h(xk−1)

− · · ·
non-negative since h∈LF
︷ ︸︸ ︷
−h( f (x0)) + h(x0)

≤ |h(xk) − h( f (xk−1))| + · · · + |h(x1) − h( f (x0))| + h(x0)

≤ ε + h(x),

so that

h(y) ≤ h(x).
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(2) It follows immediately from point (1) above and Proposition 5.3.8(2).
(3) It follows immediately from point (2) above and Proposition 5.3.8(1).
(4) By Theorem 2 in [16], there is a function L ∈ LF such that AF = D{L}. In other

words, (x, y) ∈ AF if and only if L(x) ≥ L(y) and x ∈ RAF if and only if L is
constant on the orbit of x . Now, let d be any distance compatible with the topology
of X and define

dL(x, y) = d(x, y) + |L(x) − L(y)|.

Then the same argument used in point (1) of this proposition shows that (x, y) ∈
�F,dL implies that L(x) ≥ L(y) which, in turn, implies that (x, y) ∈ AF . Since
AF is contained in every stream, it follows that AF = �F,dL .


�

6.5 Chains Streams with Countably Many Nodes

Definition 6.5.1 Assume N1, N2 are distinct nodes of a stream S. We say they are
adjacent if N1 �S N2 and, whenever N1 �S N �S N2, then either N = N1 or
N = N2.

The following lemma generalizes to streams the content of Lemma 4.3.10 and it is
proved using the very same argument.

Lemma 6.5.2 Let F be a semi-flow with compact dynamics and let S be a substream
of CF . Then, there is a bitrajectory between every pair of adjacent nodes of S.

The following is the last of our main results and shows that, when the smallest
stream has only countably many nodes, it coincides with the chains stream, that is
usually easier to deal with.

Theorem 5 Let F be a semi-flow with compact dynamics. Then, if AF has countably
many nodes, AF = CF . In particular, �F,d = CF for every metric d compatible with
the topology of X.

Proof Recall that AF = DLF . Hence, it is enough to show that CF = DLF , namely
that there is an ε-chain from x to y for every ε > 0 if and only if L(x) ≥ L(y) for
each Lyapunov function L of F . Since DLF is the smallest stream of F , we already
know that CF ⊃ DLF and so it is enough to prove the inverse inclusion. In turn, this
amounts to show that L(x) ≥ L(y) for every (x, y) ∈ CF . If y ∈ OF (x) the claim
is trivially true, so let us assume that y /∈ OF (x). Since F has a compact globally
attracting trapping region, �F (x) is not empty and is contained in a node T of CF .
Similarly, since y ∈ DownCF (�F (x)), there is at least a node B, possibly equal to
T , such that y ∈ DownCF (B). By Zorn’s Lemma, there is at least a tower T of �CF

having T as a top node and B as a bottom node.
Notice that, by hypothesis, T has at most countably many nodes. Denote by T ′

the set of all nodes of T that are not isolated. These nodes subdivide the set of all
isolated nodes of T into at most countably many sequences Ti ordered with respect
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to CF . In each Ti , every pair of consecutive nodes is a pair of adjacent nodes. Hence,
any L ∈ LF is non-decreasing on each Ti .

Now, consider the set T ∗ of all nodes of T minus all nodes contained in the Ti .
This set is at most countable and we can repeat the same argument above as follows.
Denote by (T ∗)′ the set of all nodes of T ∗ that are not isolated. These nodes subdivide
the set of all isolated nodes of T ∗ into at most countably many sequences T ∗

i ordered
with respect to CF . In each T ∗

i , between every pair N1 and N2 of consecutive nodes is
either no node, in which case N1 and N2 are a pair of adjacent nodes, or there is one
of the Ti sets of nodes. In either case, by continuity, L(N1) ≥ L(N2) and so, more
generally, any L ∈ LF is non-decreasing on each T ∗

i and so, by continuity, on the
union of the nodes in all Ti and T ∗

i .
Now, recall that a closed set is countable if and only if its Cantor-Bendixson rank is

finite, namely if there is an ordinal α0 such that there is a finite number of accumulation
points of order α. Repeating the argument above, we can prove that, at every order
α, any L is non-decreasing on the set of isolated limit points of T of order α. Since
there is a finite number of limit points of order α0, the argument stops at that point.
Hence, ultimately, L is non-decreasing on the whole T . By continuity, this means that
L(x) ≥ L(y). 
�

6.6 The Chains Graph of T-unimodal Maps

We conclude this section bymentioning an immediate consequence of our TheoremC,
namely that the structural graph �	μ of the logistic map 	μ is a tower (see Sect. 4.4).
By definition, the nodes of the structural graph of a T-unimodal map f are the nodes of
C f . There is an edge from M to N in � f if there is a bitrajectory b with α(b) ⊂ M and
ω(b) ⊂ N . In turn, this immediately implies that M is C f -upstream from N . Hence,
we have the following:

Proposition 6.6.1 For each T-unimodal map f , A f = C f and �C f = � f . Hence, the
smallest stream of f is the chains stream and its graph is a tower.

7 Final Comments

An interpretation of streams in terms of modeling.Nomodel of a natural phenomenon
can be able to reproduce exactly its dynamics. In other words, we can safely assume
that, given a semi-flow F , the dynamics of F represents the real behavior only within
some ε > 0, depending on the degree of accuracy of the model. The smaller ε, the
more accurate the model is, but we can safely assume that ε > 0. This means that what
gives us the most reliable information on the dynamics of the system we are modeling
is, more than the qualitative dynamics of F (that would be described by the graph of
the prolongational relation), the graph of some F-stream.

For instance, suppose we are modeling some phenomenon using a discrete-time
model and that we do not have precise information on the amount of the error of our
model at every step, except perhaps that the error is “not too large”. Then the graph
of the chains stream CF is one of the most suitable graphs to describe the qualitative
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behavior of the system. Indeed, by its very definition, the nodes and edges of the
chains graph describes the behaviour of a point under F in presence of arbitrarily
small perturbations. Recall that, when the number of nodes is countable, as happens in
most applied cases, the chains streamactually coincideswith theAuslander streamAF .
In case some quantitative information on the error is available, then streams such as
CF,d,ε might be more suitable to describe the actual dynamics of the system described
by F . For instance, if we model a motion in the [0, 1] segment as in Fig. 6(left) and we
know that the model suffers by some “large” error for x close to 0.5, then, depending
on the amount of the error, it could happen that the corresponding stream looks like
the one in Fig. 6(center), where the new node means that, due do the large errors, the
true dynamics of the natural system is compatible with the presence of a third node
about 0.5. Possibly a more accurate model could tell whether such a node exists or
not.
An interpretation of streams in terms of controlled systems. Given an F-stream S, our
interpretation of x �S y is that, under possibly some kind of control, it is possible to
start at x and end up at y.

The relation OF is the one that represents the system in absence of controls: it is
possible to end up in finite time in y when starting at x if and only if y is in the orbit of
x . Any stream, including AF , describes the behavior of the system under some kind
of control.

For instance, consider the three streams shown in Fig. 6. The first (left) describes
what happens in the systemwhen arbitrarily small controls can be applied at any point.
There are two effects. The first is that it is possible to leave from the fixed point 1 and
reach any other point of the interval—this is why 1 �S x for every x ∈ [0, 1]. The
second is that it is possible to jump on the fixed point 0 in finite time from the orbit of
any point x < 1.

The second (center) describes what happens in the system when, besides the
“infinitesimal control” above, one applies some finite control in a region in the middle.
Although the flow tends to move all points towards 0, with this finite control one can
keep indefinitely a trajectory within the intermediate node and can reach any point
within it.

The third describeswhat happenswhen one applies somefinite control close enough
to a pre-existing node. In this case, rather than having a new node, a previously existing
node “extends” into a larger node. Notice that this node is forward-invariant but not
invariant.

In this context, also the prolongational relation plays a role. Its graph shows from
which node to which node it is possible to get by using only two controls, a first
(arbitrarily small) “push” at the very beginning of the motion and a second (arbitrarily
small) “push” at its very end.
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