
Toward Resilient Modern Power Systems: From
Single Domain to Cross-Domain Resilience

Enhancement
Hao Huang, Member, IEEE, H. Vincent Poor, Fellow, IEEE, Katherine R. Davis, Senior Member, IEEE,

Thomas J. Overbye, Fellow, IEEE, Astrid Layton, Member, IEEE, Ana Goulart, Member, IEEE,
Saman Zonouz, Member, IEEE

Abstract—Modern power systems are the backbone of our
society, supplying electric energy for daily activities. With the
integration of communication networks and high penetration of
renewable energy sources, modern power systems have evolved
into a cross-domain multi-layer complex system of systems with
improved efficiency, controllability, and sustainability. However,
increasing numbers of unexpected events, including natural
disasters, extreme weather, and cyber attacks, are compromis-
ing the functionality of modern power systems and causing
tremendous societal and economic losses. Resilience, a desirable
property, is needed in modern power systems to ensure their
capability to withstand all kinds of hazards while maintaining
their functions. This article presents a systematic review of recent
power system resilience enhancement techniques and proposes
new directions for enhancing modern power systems’ resilience
considering their cross-domain multi-layer features. We first
answer the question, “what is power system resilience?” from the
perspectives of its definition, constituents, and categorization. It
is important to recognize that power system resilience depends on
two interdependent factors: network design and system operation.
Following that, we present a review of articles published since
2016 that have developed innovative methodologies to improve
power system resilience and categorize them into infrastructural
resilience enhancement and operational resilience enhancement.
We discuss their problem formulations and proposed quantifiable
resilience measures, as well as point out their merits and
limitations. Finally, we argue that it is paramount to leverage
higher-order subgraph studies and scientific machine learning
for modern power systems to capture the interdependence and
interactions across heterogeneous networks and data for holisti-
cally enhancing their infrastructural and operational resilience.

Index Terms—Modern Power Systems, Power System Re-
silience, Enhancing Resilience, Higher-Order Subgraph Analyses,
Scientific Machine Learning

I. INTRODUCTION

Power systems are the backbone of modern society as they
generate, transfer, and deliver electric energy from different
energy resources to end users. With more than a century
of development, modern power systems are evolving into a
wide-area weather-dependent cyber-physical complex system
of systems. Their modern configurations are more efficient,
flexible, and have better economic allocation of energy re-
sources than their predecessors. Their interactions exist among
different sectors of generation, transmission, distribution, and
customers. The increasing penetration of renewable energy
sources (RES), including solar and wind energy, is changing
traditional grid configurations in the quest to reduce the

emission of greenhouse gases and create a cleaner and more
sustainable environment [1], [2]. Leveraging these benefits,
power systems, including the distribution networks and mi-
crogrids (MGs), have been increasingly integrated with other
energy infrastructures, including thermal and gas networks.
This integration turns power systems into multi-energy sys-
tems that help better manage energy sources, contributing
to the development of de-carbonized and sustainable energy
ecosystems [3]. All these benefits are owed in part to the
digitalization of power systems with the integration of commu-
nication networks. Operational power system data can be more
efficiently transferred over wide areas, improving operators’
understanding and control for security and economics. It also
gives end users the ability to schedule their energy con-
sumption according to weather and price. This data has also
enabled recent advancements in distributed automatic control
algorithms and machine learning techniques that control local
devices more efficiently and reliably. As a result, modern
power systems have evolved into a cross-domain multi-layer
complex system of systems with heterogeneous networks and
data from physical, cyber, weather, and societal domains.

New threats come with the new technologies and develop-
ment. As a cyber-physical system, the resilience and security
of power systems are threatened by natural disasters [4], cyber
attacks [5], mis-operations [6], geomagnetic disturbances [7],
and even high altitude electromagnetic pulses (HEMPs) [8],
[9]. The widespread presence of power networks exposes
them to natural disasters, such as hurricanes, earthquakes, and
floods. The increasing frequency of extreme weather events is
disrupting the energy supply, thereby jeopardizing the econ-
omy and putting public health and safety in danger, which can
devastate affected communities [10]. Furthermore, the power
grid is aging, becoming increasingly susceptible to threats
that lead to infrastructure damage and blackouts for end-
users [4], [11]. The integration of renewable energy sources
can impact the grid’s voltage and frequency stability, causing
power quality issues [12]. Meanwhile, the intermittency of
renewable energy sources introduces further uncertainties to
power system operation [13], [14]. The increasing reliance on
communication networks also introduces cyber threats to the
security and reliability of power system operations. Examples
can be found from [15]–[17], demonstrating that adversaries
can exploit the vulnerabilities in communication networks to
obtain the control of power systems and create disturbances.
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Other threats, including energy theft [18] and false data
injections [5], can compromise the situational awareness and
reliability of the system. Overall, there is a pressing need to
enhance power systems’ resilience to ensure their security,
reliability, and functionality of consistently supplying electric
energy, particularly in light of the increasing prevalence of
unexpected disturbances across different domains.

This paper presents a systematic review of power system
resilience enhancement techniques that aim to harden the
infrastructure and proactively defend against threats. Unlike
existing works that primarily review resilience enhancements
in the physical domain, namely the functionality and resilience
of transmission, distribution, and generation systems, our aim
is to broaden the perspective on modern power systems,
considering their interconnected cross-domain multi-layered
architecture encompassing physical, cyber, weather, and hu-
man networks. We select articles published since 2016 that
have developed innovative methodologies to provide a timely
review, and we discuss their merits and limitations regarding
problem formulation and quantifiable resilience measures. As
modern power systems have evolved into a cross-domain
multi-layer complex system of systems, it is essential to con-
sider the interdependence and interactions across heteroge-
neous networks and data to holistically enhance the system’s
inherent resilience. Doing so lets operators and stakeholders
holistically design and operate modern power systems with
improved resilience against increasing unexpected events from
physical, cyber, weather, and societal domains. However, there
is a lack of consensus on how to holistically analyze these
interconnected heterogeneous networks, characterize their in-
terdependence and interactions regarding their network struc-
tures and data, and enhance modern power systems’ inher-
ent resilience. In order to address these issues, we propose
new directions of using higher-order subgraph analyses and
scientific machine learning (SciML) for enhancing modern
power system resilience. The main contributions of this paper
include:

‚ We present data on U.S. electric disturbance events from
2011 to 2022, including the annual number of events, loss
of load, and affected customers. By categorizing these
events into natural disasters, physical attacks, system is-
sues, and cyber/suspicious events, we observe that natural
disasters are the most disastrous factors compromising
power grids while cyber attacks are emerging threats that
directly affect customers. These facts call for a holistic
approach to enhancing the resilience and security of
modern power systems, considering the interdependence
and interactions across different networks from cyber,
physical, weather, and societal domains.

‚ By answering the question, “what is power system re-
silience?”, from the perspectives of its definition, con-
stituents, and enhancement categorization, we argue that
it is important to recognize that infrastructural resilience
lays the foundation for operational resilience, and oper-
ational resilience guides the hardening of infrastructural
resilience. These two aspects of power system resilience
are interdependent and mutually promote development

and enhancement on each other. Particularly, it is essential
to value the compounded impact across interconnected
heterogeneous networks from physical, cyber, weather,
and human domains to enhance both infrastructural and
operational resilience for modern power systems.

‚ We present a comprehensive review of articles that have
developed innovative methodologies to enhance power
system resilience. We categorize the reviewed articles into
infrastructural resilience enhancements and operational
resilience enhancements and classify their contribution
to resilience enhancement at different phases. We also
discuss their merits regarding their problem formulations
and proposed quantifiable resilience measures as well as
the gap between research and realization.

‚ In order to enhance modern power systems’ inherent
resilience, it is essential to consider their cross-domain
multi-layered architectures. We believe that it is signif-
icant to incorporate heterogeneous networks and data
across physical, cyber, weather, and human domains to
develop holistic criterion and approaches. It is necessary
to emphasize the value of heterogeneity in physical,
cyber, and social networks along with granular modeling
to derive new standards and requirements for designing
and operating modern power systems.

‚ We propose two new research directions: higher-order
subgraph analyses and SciML, to understand the interde-
pendence and interactions across different networks and
data, facilitating trustworthy decision-making to enhance
the inherent resilience of modern power systems. This
paper includes preliminary case studies using higher-
order subgraph analyses to disclose key local structures
contributing to power networks’ resilience as well as
to identify critical connections in cyber-physical power
networks. Additionally, we also propose a SciML-based
framework to process large amounts of heterogeneous
data across different networks and provide explainable
and trustworthy decision-making for system operations.

This paper is organized as follows: Section II analyzes
12-year data of U.S. power grid disturbances. Section III
discusses the definition, constituents, and enhancement cat-
egorization of power system resilience. Sections IV and V
review enhancement techniques on infrastructural resilience
and operational resilience at different phases regarding the
development of disturbances on power systems, respectively.
Section VI discusses the merits and limitations of reviewed
approaches regarding their problem formulation and proposed
quantifiable resilience measures. Section VII presents new
opportunities to enhance modern power systems resilience
considering heterogeneous networks and data. Section VIII
concludes the paper.

II. 2011-2022 U.S. POWER GRIDS EVENTS

The data on U.S. electric disturbance events (Form DOE-
417)1 is available at [19], which provides valuable insights into
the reliability and resilience of the country’s power systems.

1The Electric Emergency Incident and Disturbance Report (Form DOE-417)
collects information on electric incidents and emergencies.
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With a 12-year dataset spanning 2011 to 2022, Figure 1 shows
the annual statistics of grid events, loss of load, and affected
customers in the U.S. power systems. Notably, from 2011-
2018, there was a decreasing trend of reported grid events
and associated loss of load, although the number of affected
customers fluctuated. However, from 2019 to 2020, there was
a dramatic increase in grid events, loss of load, and affected
customers, due to several unexpected extreme events, includ-
ing hurricane, floods, and wildfire [20], [21]. Stakeholders and
operators learned valuable lessons from these events, resulting
in improvements in the system’s performance in the past two
years. Nevertheless, despite these improvements, the overall
condition of the U.S. power grid appears to be worse than in
the earlier years of this decade.

Fig. 1: Annual U.S. power grid events, loss of load, and
affected customers (2011-2022) [19].

We have categorized the events into four groups: natural
disasters, physical attacks, system issues, and cyber/suspicious
events based on the events’ description. Natural disasters
include all events such as severe weather, flood, storm, ex-
treme temperature, and earthquake; physical attacks include
all vandalism, sabotage and attacks on physical network;
system issues include all disturbances on physical systems,
such as physical faults, energy deficiency, equipment failure,
relay mis-configuration, mis-operations, etc.; cyber/suspicious
events include all suspicious activities on communication
networks and unidentified activities. Figure 2 provides the
percentages of each type of disturbance with respect to all grid
events and the breakdowns of all grid events based on these
categories for number of events, number of affected customers,
and the amount of loss of load, respectively.

It can be seen that natural disasters have happened the
most, accounting for 38.7% of all events, followed by physical
attacks (29.4%) and system issues (24.5%). Cyber/Suspicious
events only account for 7.5% of all events. Natural disasters

and physical attacks are responsible for most power grid dis-
turbances and outages because they directly compromise the
system’s functionality and are easy to be caught and reported.
System issues are mainly because of insufficient situational
awareness for system planning, operation, and protective relay
configuration. Cyber/Suspicious events are less frequent than
other types of disturbances due to the following reasons. On
one hand, cyber attacks do not directly compromise physical
system operations, and cyber threats can remain dormant until
triggered and inflict whatever the physical impact to the system
might be. On the other hand, communication networks have
the mechanism to detect and defend cyber threats to avoid
compromise of the physical system, and only the sophisticated
threats that bypass intrusion detection systems have the capa-
bility of interrupting the system’s operation and compromising
power systems’ security and resilience. However, the annual
statistics for each category exhibit an urgent need to protect
power systems against cyber attacks. The annual number of
cyber/suspicious events has increased from 5 to 66 since 2017.
Meanwhile, these events have been reported as the cause for
compromising power systems’ operation and resulting in loss
of load from 2020-2022, but were not reported or identified
as the cause before those dates. At the same time, the number
of system issues has also increased. It is plausible that more
cyber attacks happened in power systems recently, and they
compromised the system with insufficient situational aware-
ness, leading to system issues, such as mis-operations and mis-
configurations on industry controllers. While discovering the
true cause of system issues is not the objective of this work,
we emphasize the importance of identifying the real cause of
system disturbances and the need for designing resilient cyber
and physical networks for secure and resilient modern power
systems. It is of great interest to understand the underlying re-
lationship of interdependence and interactions across different
domains in modern power systems for sustainable and resilient
electricity service [22].

In addition to the U.S. power outages, the studies in [23]–
[26] also document historical worldwide major blackouts and
analyze their sources and impacts. Overall, there are increasing
contingencies in both cyber and physical domains that threaten
the security and resilience of power systems.

The U.S. National Academies’ grid resilience report specif-
ically calls for enhanced power system abilities to prepare for,
endure, and recover from severe hazards [27]. Such abilities
are recognized as the nature of resilience [28]. Even though
there are various procedures and guidelines for power systems
operation [29], the abruptness of unexpected contingencies is
hard to predict, especially considering cyber events and cas-
cading failures [30]. Additionally, modern power and energy
systems have integrated more RES to address the increasingly
severe climate crisis. This integration of RES necessitates the
incorporation of climate, weather, and energy system models
to support infrastructure planning, real-time operation, and
recovery towards climate-resilient power systems [31]. It is
important to acknowledge that there is no way to make
power systems completely invulnerable to physical or cyber
disruptions and to the effects of extreme weather events [22].
In order to ensure the security and resilience of power systems,
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Fig. 2: U.S. power grid events distribution (2011-2022) [19].

it is crucial to minimize (if not eliminate) the feasibility and
impact of threats [32].

III. WHAT IS POWER SYSTEM RESILIENCE?

A. Definition of Power System Resilience

The word resilience originates from the Latin word “re-
siliere,” which means to “bounce back.” In the scientific arena,
this meaning of resilience can date back to the 1970s, where
C.S. Holling defines resilience in ecology as a measure of
the ability to absorb changes of variables and parameters in

systems [33]. The common use of resilience is to imply the
ability of an entity or system to return to normal condition
after the occurrence of an event that disrupts its state. It is a
general concept that has multiple dimensions and definitions
in different specialized fields such as psychology, economics,
biology, and engineering [34].

For power systems, different authorities have provided their
definitions of resilience. Both the National Infrastructure Ad-
visory Council (NIAC) and North America Electric Reliability
Corporation (NERC) view power system resilience as prepar-
ing and planning, absorbing, recovering and adapting to ad-
verse events [35], [36]. The United Kingdom Energy Research
Center (UKERC) has defined resilience as “the capability of
an energy system to tolerate disturbance and to continue to
deliver affordable energy service to consumers” [37]. The
U.S. Power Systems Engineering Research Center (PSERC)
has recognized resilience as a system’s capability to gradually
deteriorate under increasing exertion and rapidly recover to its
previous secure status [7], [38]. The Electric Power Research
Institute (EPRI) has defined power system resilience with three
elements: prevention, recovery, and survivability with respect
to the development of disruptions [39]. The U.S. National
Association of Regulatory Utility Commissioners (NARUC)
has described resilience in terms of robustness and recovery
characteristics of the power system during and after disasters
[39]. The U.S. Presidential Policy Directives-21(PPD-21) has
defined resilience as “the ability to prepare for and adapt
to changing conditions and withstand and recover rapidly
from disruptions” [40]. As a cyber-physical system, the U.S.
Department of Energy (DOE) has defined power system cyber-
physical resilience as the ability to avoid or withstand grid
stress events without suffering operational compromise or to
adapt to and compensate for the resultant strains so as to
minimize compromise via graceful degradation [41].

Based on the above definitions, it is evident that the key
characteristic that describes power system resilience is its abil-
ity to anticipate, absorb, and recover from external disruptions,
especially with respect to the high-impact low-frequent (HILF)
events in power systems. To be more specific, the anticipation
refers to the system’s ability to avert any deterioration from the
disturbances; the absorption is the system’s ability to tolerate
the disturbances and minimize deterioration; the recovery is
the system’s ability to restore the compromised system. As
power systems evolve into smart grids, another essential ability
that should also be included is learning from past lessons. The
system should have the adaptability of enhancing its resilience
from previous events with improved capabilities.

B. Quantifying Power System Resilience

Conventionally, power systems are evaluated by four main
reliability measures, including system average interruption
duration index (SAIDI), system average interruption frequency
index (SAIFI), customer average interruption duration index
(CAIDI), and momentary average interruption frequency in-
dex (MAIFI), based on historical data and report. They can
generally represent how reliable the system is, and provide
instructive guidance for investment on strengthening power
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systems architectures. While reliability is one quantifiable
aspect of power system resilience using the above measures,
resilience is different from reliability. Reliability is evaluated
under low impact high probability events, which have limited
impact to the whole system in a short period. Resilience is
investigated with HILF events, which have large and long-
term consequences [42]. Quantifying power system resilience
necessitates the consideration of power system’s cross-domain
multi-layer architectures surrounding cyber, physical, weather,
and human factors. As a spatial-temporal property of the
system, it is necessary to evaluate how HILF events could
impact the status of power systems and the response or
countermeasures that stakeholders take against those events,
especially under unexpected events such as cyber attacks
and extreme weather. It is of great significance to quantify
power system resilience through a cross-domain multi-layer
perspective with the consideration of compounded impacts
from other external influences to system functionality either
qualitatively or quantitatively.

Fig. 3: Power system trapezoid resilience curve with a disrup-
tive event.

The resilience trapezoid is widely used in existing articles to
describe, quantify, and demonstrate resilience for power sys-
tems [43]–[49]. This graphical representation can effectively
associate the spatio-temporal development of hazards with
power systems’ performance against corresponding hazards
regardless of the disturbances’ sources or causes. Figure 3
shows a time-variant power system resilience transition when
a disruptive event compromises the system. As an inherent
property, the initial resilience level (Rinitial) is assumed to be
the optimal resilience level, which depends on the network
structure and operation schemes. Once the disruptive event
happens at te, the infrastructure is compromised. Adaptive
actions are taken to maximally maintain the system’s integrity.
The adverse impact will deteriorate the resilience level to
Rdeteriorative until the system reaches equilibrium at td. As
to how much the reduction of the resilience level is, it
depends on the system’s inherent ability to absorb disturbances
and function securely. Such ability comes from the system’s
structure and adaptive actions. When the system is stable at
Rdeteriorative and enough information is collected, operators can
start restoring the system at tr. Once the restorative process
is done, the system is in a more resilient state (Rrestored) at
tpr. If the infrastructure is not damaged by the event, Rrestored

should be the Rinitial. Otherwise, the network structure will be
evaluated and operators need to decide how to reconstruct the
infrastructure. Extra time (from trc to tprc) will be spent on the
recovery process to strengthen the system’s resilience level to
Rinitial or even a more resilient state.

At different phases of resilience transition depicted in
Figure 3, five characteristics dominate the property of re-
silience in power systems, which are robustness/resistance,
resourcefulness, response, redundancy, and recovery. Robust-
ness/resistance represents power systems’ inherent ability to
absorb disturbances and function securely without human in-
tervention, referring to the ability of a power system to absorb
a shock and continue to operate. It relies on the system’s
infrastructure and operation schemes on physical networks.
Resourcefulness is the ability of power systems to skillfully
manage a crisis as it occurs, showing how fast the information
and data of the system can be transferred to operators and
stakeholders for decision-making. It relies on the infrastructure
and operation on cyber networks. How the cyber resources are
allocated and how the information and data are managed are
critical. Response is how the operators and/or energy manage-
ment systems (EMS) decide the remedial actions to relieve
the system’s stress in a timely manner. It heavily depends on
the information collected and the knowledge of the physical
system. Redundancy depends on the design of the system.
For instance, when contingencies happen, the extra generation
reserve can ensure the energy supply and the redundant
branches can provide back-up pathways for supplying electric
energy. With more investment on redundancy, the system can
be more resilient. Recovery is to completely recover the system
from the damage to initial state. It involves the activities on
infrastructure construction and system operation.

From the above discussion, we can say that power system
resilience consists of infrastructural resilience and operational
resilience, both of which depend on how the infrastructure
is designed and how the system is operated [50]. These
two aspects overlap in the contexts of robustness/resistance,
resourcefulness, redundancy, and recovery. Such characteris-
tics determine the level of resilience at each stage as they
depend on both the infrastructural architectures and operation
schemes. Even though response mainly falls within operational
resilience as it involves remedial operation, the decisions made
by operators are based on the information collected through
cyber networks and the understanding of physical networks.
Thus, there is underlying influence of infrastructural resilience
on response.

Generally speaking, power system resilience is a spatial-
temporal measure that depends on its infrastructure, operation
schemes, and surrounding environment (normal and adversar-
ial). Infrastructural resilience represents the power system’s
inherent ability of absorbing and tolerating disturbances, while
operational resilience represents how human-made decisions
can ensure the system’s resilience during normal situations
and efficiently and effectively defend and restore the system
back to the original resilient state during and after adversarial
situations. There is a mutual influence between infrastructure
resilience and operational resilience.
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C. Power System Resilience Enhancements

As presented in Figure 3, there are different phases of
power system resilience that correspond to the progression of
an event. Thus, different resilience enhancement techniques
can be applied to specific stages, to improve the system’s
robustness, ensure that the system does not degrade too much
or at all when disruptive events happen, or accelerate the
response so that the system can more efficiently and securely
restore the energy supply. Infrastructure resilience, namely the
cyber and physical network design, lays the foundation for
normal and contingency operations. Operational resilience can
identify weaknesses in infrastructure resilience and provide
guidance for enhancement, such as adding redundancy or
improving security on components. Figure 4 presents a guide-
line for power system resilience enhancements at different
phases, from perspectives of network construction and proac-
tive actions [51], corresponding to infrastructural resilience
and operational resilience.

Fig. 4: Power system resilience enhancement at different
stages, adopted from [51].

The proactive actions are short-term operations to enhance
power systems’ reliability and security against events. Mean-
while, the network construction refers to long-term planning
approaches that improve power systems’ inherent ability to
absorb disturbances and maintain functionality securely. Prior
to an event, the detection of a system’s vulnerability and the
assessment of the event’s impact can help operators better
allocate resources to prevent the system from experiencing
unexpected contingencies or minimize their adverse impact.
When threats interrupt power systems’ normal operations,
operators must take countermeasures based on their observ-
ability of the system. In this way, operators need to make
an optimal decision with available information to ensure the
system’s overall reliability and security during the event.
After an event, restoration should be carried out reliably
and efficiently with the given information. Once the system
is recovered from the event, system planners, operators and
stakeholders should learn from the experience and harden the
system with new construction and operation plans, with the
purpose to enhance the systems’ robustness, redundancy and
resourcefulness. When similar events happen in the future, the
system is able to maintain its secure and reliable operation
with improved resilience. Apart from lessons learned from past
events, new insights and knowledge of resilience could also
provide guidance of resilient network designs.

From a holistic perspective, the resilience enhancement
techniques can be further classified into assessment, reinforce-
ment, and reaction, which together comprise the modern power
system resilience enhancement life cycle, as shown in Fig. 5:

‚ Assessment refers to techniques that perform ahead-of-
time analyses of threats, leveraging their properties and
impacts on power systems’ security and functionality.
The goal of assessment is to provide enough situational
awareness for operators and stakeholders to better prepare
for potential contingencies prior to their occurrence.

‚ Reinforcement refers to techniques that can strengthen
power systems’ ability to tolerate disturbances and main-
tain reliable and secure functionality through resilient
network design and operations. The goal of reinforcement
is to improve the system’s capability to anticipate threats
and fortify its security against them.

‚ Reaction refers to techniques of automatic response and
human-made control commands against threats using
real-time data and information. The goal of reaction is
to ensure the secure and reliable functionality of power
systems during hazards, and to maximally and securely
maintain a continuous supply of energy.

This modern power system resilience enhancement life
cycle also relates to infrastructural resilience and opera-
tional resilience. Infrastructural resilience depends on how
the network is designed and operated during normal and
adversarial scenarios, and thus, reinforcement falls entirely
within it while assessment and reaction are partially within
it. Operational resilience mostly consists of assessment and
reaction, but all of their techniques rely on information and
data of the system. Moreover, as a life cycle, these elements
mutually influence each other. For example, techniques in
assessment can identify vulnerable parts that reinforcement
needs to strengthen with better protection and provide situ-
ational awareness that reaction can leverage to better prepare
countermeasures. Meanwhile, techniques in reinforcement can
increase the resourcefulness and redundancy in both cyber
and physical networks. In this way, reaction techniques can
leverage more flexibility in the system, and assessment tech-
niques can obtain and deliver information more accurately
and efficiently. Techniques in reaction heavily depend on
data and information from assessment and resource allocation
determined by reinforcement. To operate more securely under
disturbances with enhanced resilience, the system needs to
harden its network and improve its prediction and assessment
techniques.

In this paper, we have selected and reviewed articles since
2016 that developed resilience enhancement techniques to
improve power systems’ resilience against unexpected events,
including natural disasters, extreme weathers, and cyber at-
tacks, from a specific perspective or at a specific phase in
the power system resilience trapezoid. Table I presents the
classification of all reviewed articles from three perspectives
of resilience, including Resilience Characteristics: Robust-
ness/Resistance, Resourcefulness, Response, Redundancy, and
Recovery; Resilience Categorization: Infrastructure Resilience
and Operational Resilience; and Resilience Enhancement Life
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Fig. 5: Power system resilience enhancement life cycle.

Cycle: Assessment, Reinforcement, and Reaction. It is impor-
tant to mention that some techniques belong to more than
one element within these categorizations, as all these elements
are interdependent and mutually promote the development and
enhancement of each other. The following sections analyze and
discuss these techniques.

IV. INFRASTRUCTURAL RESILIENCE ENHANCEMENT

Modern power systems include transmission networks, dis-
tribution networks, generation units (traditional generators
and distributed energy resources (DERs)), and communication
networks. As a cyber-physical system, the communication
networks collect and deliver the information of the entire
system to operators for decision-making and operations. The
resilience of the communication networks is paramount for the
whole grid. Thus, the infrastructural resilience relies on the
design and construction of all of the above networks, as well
as their risk assessment and preparation. The following sub-
sections present the review of representative works in resilient
network design and construction for transmission, distribution,
and communication networks, as well as techniques regarding
threat assessment and ahead-of-time planning, respectively.

A. Resilient Transmission Network Design

Transmission is critical to addressing the climate crisis
through the decarbonization of the power sector, increasing
transportation electrification, and enabling the clean energy
transition. The design and operation of transmission net-
works always follows N-1 reliability [156]. However, with
the increasing abruptness of threats from cyber and physical
domains, there is a need to expand transmission capacity with
stronger and more numerous energy delivery pathways for
its reliability and resilience against unexpected multi-hazard
scenarios. Modernizing, hardening, and expanding the grid

will enhance the resilience of the entire electric system while
ensuring energy is available to customers where and when it
is needed most. A successful transmission network requires
deliberate planning, and innovative approaches from multiple
perspectives.

In [52], Nagarajan et al. developed a two-stage mixed-
inter stochastic optimization model that aims to upgrade a
transmission network’s capacity against damages with mini-
mum investment, considering options from building new lines,
hardening existing lines, adding flexible alternating current
transmission system (FACTS) devices, and allocating DERs.
In [53], Nezamoddini et al. developed a mixed integer lin-
ear optimization model to determine the optimal investment
of protection systems for resilient transmission networks to
ensure the load supply against physical attacks. In [54], Shao
et al. proposed a two-stage optimization model to integrate
the planning of the transmission network and natural gas
transportation system to improve power grid resilience with
less load curtailment in extreme conditions. In [55], Lagos et
al. proposed a Monte Carlo simulation-based framework con-
sidering four phases of power systems under natural hazards to
identify the optimal network investments for the highest level
of hedge. In [56], Panyam et al. proposed a biological food
webs based approach to optimize the design of power systems
for improved inherent resilience against N-x contingencies.
In [57], Huang et al. proposed a deep transfer learning ap-
proach using bi-directional long short-term memory to identify
resilient transmission network structures against short-term
voltage stability issues caused by hazards. In [58], Garifi et al.
formulated a mixed-integer resilience investment optimization
problem for transmission network to minimize unserved load
over a multi-time period restoration horizon, which determines
the enhancement of power grid components considering recov-
ery strategies of unit commitment, transmission line switching,
and generator dispatch. In [59], Moradi-Sepahvand et al.
built a mixed-integer optimization model for a multistage
expansion co-planning model of transmission lines, battery
energy storage, and wind farms against extreme weather events
for enhanced resilience. This model leverages fragility curve,
a chronological time-period clustering algorithm, and a deep
learning approach to consider the adversarial impact from
extreme event and the projection of load growth. In [60],
Huang et al. utilized the long-term resilient food web based
approach again as benchmark to expand power transmission
networks through a mixed-integer optimization model to im-
prove the system’s inherent resilience with enhanced capability
of anticipating unexpected adversaries with fewer operational
violations. In [61], Stürmer et al. combined a probabilistic line
failure model with a power grid model to simulate the spatio-
temporal co-evolution of wind-induced cascading failures on
power systems. This approach can serve as an effective tool
in identifying and hardening critical lines, thereby improving
the grid’s resilience against tropical cyclones.

B. Distribution Network with Microgrids Applications

Distribution networks are the last step of supplying electrical
energy for consumers. Traditional distribution networks are
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TABLE I: Summary of power system resilience enhancement techniques.

Refs Attributes Resilience Characteristic Resilience Categorization Resilience Enhancement Life
Cycle

[52]–[61] Transmission Network Hardening and Design Robustness/Resistance &
Redundancy Infrastructure Resilience Reinforcement

[62]–[68] Distribution Networks with MG and DER Robustness/Resistance &
Redundancy Infrastructure Resilience Reinforcement

[69]–[79] Resilient Communication Networks and Data
Delivery Against Adversaries Resourcefulness & Redundancy Infrastructure Resilience Reinforcement

[80]–[93] Risk Assessment Robustness/Resistance Infrastructure Resilience Assessment

[94]–[98] Security-Constrained Optimal Power Flow Robustness/Resistance Infrastructure Resilience &
Operational Resilience Assessment & Reinforcement

[99]–[106] Advanced Operational Scheduling and Planning
Optimization Robustness/Resistance Infrastructure Resilience &

Operational Resilience Assessment & Reinforcement

[107]–[119] Proactive Operations Against Natural Disasters Response Operational Resilience Assessment & Reaction

[120]–[133] Defense Mechanisms Against Cyber Attacks Response Operational Resilience Assessment & Reaction

[134]–[139] Remedial Actions Response & Recovery Operational Resilience Reaction

[140]–[155] Restoration Operations Response & Recovery Operational Resilience Reaction

highly dependent on the main grid to receive energy. Any
adverse events, such as cyber attacks, wildfires, and storms,
occurring in any sector of power systems could cause outages
in distribution system and for customers. However, with the
advancement of solar photovoltaics (PV), battery storage, and
MGs, resilient distribution systems can leverage their resource-
fulness and flexibility to withstand and rapidly recover from
disturbances, thereby enhancing the entire system’s resilience.

In [62], Yuan et al. proposed a two-stage robust optimization
model to design resilient distribution networks with the consid-
eration of hardening the grid and allocating DERs to minimize
the system damage against natural disasters for improved
resilience. In [63], Manshadi and Khodayar proposed a bi-
level optimization model to transform the active distribution
network with DERs into multiple autonomous MGs to ensure
the reliability of energy supply against disruption and thus
enhance the system’s resilience. In [64], He et al. presented
a tri-level robust optimization-based network hardening model
for integrated electricity and natural gas distribution systems to
improve power system resilience with minimum load shedding
against natural disasters. In [65], Tan et al. formulated a
two-stage stochastic optimization model to holistically harden
the distribution system and schedule post-disaster repairs,
aiming to improve the efficiency of the restoration process
against natural disasters with enhanced resilience. In [66],
Barnes et al. proposed a two-stage stochastic optimization
model to strengthen the resilience of distribution systems by
leveraging networked MGs to ensure the energy supply under
storms. In [67], Nazemi et al. proposed a linear optimization
model to determine the capacity and location of the battery
energy storage systems for hardening distribution network in
order to more reliably supply customers energy with better
resilience against earthquakes. In [68], Huang et al. proposed
a resilience-oriented planning method to determine the optimal
configuration of distribution level multi-energy systems against
HILF events.

C. Resilient Communication Network and Data Delivery
Against Adversaries

In modern power systems, communication networks allow
the exchange of information, such as measurements and con-

trol commands, between field devices and operators. Sev-
eral industrial communication protocols and standards, such
as DNP3, Modbus, IEEE C37.118, and IEC 61850, have
been applied to power systems for better observability and
controllability. However, cyber networks have uncertainties
and vulnerabilities that can be exploited and compromise the
system [157]–[159]. They have posed threats to power system
operation. Thus, ensuring the resilience of cyber networks
and the delivery of trustworthy information is even more
critical in light of increasing cyber attacks that could exploit
vulnerabilities and compromise power system operations.

In [69], Lin et al. proposed a self-healing phasor measure-
ment unit (PMU) network that utilizes the software-defined
networking (SDN) infrastructure to mitigate the impact of
cyber-attacks on PMU data. The proposed solution isolates
compromised components and reconnects recovered compo-
nents for enhanced cyber and data resilience. In [70], Al-
Rubaye et al. proposed a SDN platform using industrial
Internet of Things (IIoT) technology to support power systems’
resilience. This platform dynamically updates communication
networks against adversaries to ensure reliable and flexible
operations with real-time system monitoring data. In [71],
Jin et al. presented a SDN-based communication network
architecture for MG operations with multiple functionalities,
including self-healing communication network management,
real-time and uncertainty-aware communication network ver-
ification, and specification-based intrusion detection, against
cyber attacks for the whole systems’ security and resilience.
In [72], Sargolzaei et al. proposed a cryptography-free time
delay switch recovery communication protocol enhancement
that leverages adaptive channel redundancy techniques and
a state estimator to detect and recover from time delay
switch attacks for power systems’ stability and resilience. In
[73], Mylrea et al. explored the application of blockchain
technology and smart contracts to increase the fidelity and
security of communications between customer-end to system-
end for enhanced cyber resilience against vulnerabilities. In
[74], Liang et al. proposed a distributed blockchain-based data
protection framework that utilizes the consensus mechanism
to enhance the self-defensive capability of power systems
against cyber-attacks, thus enhancing their inherent cyber
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resilience. In [75], Xu et al. formulated a mixed-integer
optimization model to determine the optimal routing policy
for cyber-physical power systems considering the information
and energy flow, as well as the interdependence between cyber
and physical components. The optimal routing policy ensured
the robustness and resilience of cyber-physical power systems
through reliable remedial control actions. In [76], Tariq et al.
proposed a graphics-processing-unit-enabled adaptive robust
state estimation. This approach consists of deep learning,
long short-term memory and a nonlinear extended Kalman
filter, taking advantage of advancements in next-generation
wireless communication and networking technologies. With a
two-level online parametric state estimation, it can enhance
the security of data transmission against cyber attacks for
load management. In [77], Jiang et al. developed a quantum
direct communication network for power grids to enhance the
cyber resilience for power system operations by providing
more secure data transmission against cyber attacks. In [78],
Tang et al. built a quantum network-based power grid testbed
(Fig. 6) to explore the benefits of quantum communication
in power systems, with more flexible, secure, and resilient
communication and operations. In [79], Wang et al. proposed a
blockchain-based vehicle-to-vehicle RES trading model. This
model features a novel block alliance consensus mechanism
with security, decentralization, and infinite scalability to im-
prove the stability and reliability towards resilient power grid.

Fig. 6: Quantum network-based power grid architecture [78]
©2023 IEEE.

D. Threat Prediction and Impact Assessment

The bulk electric power grid is subject to vulnerabili-
ties from natural disasters, cyber attacks, and human-made
mistakes, which might lead to cascading outages and large-
scale blackout. Thus, identifying vulnerabilities and assessing
their impact in cyber-physical power systems are of great
importance and can provide useful insights for enhancing
security and resilience against extreme and unexpected events.

In [80], Vu and Turitsyn constructed a robust assessment
toolbox using quadratic Lyapunov functions approaches to
provide a real-time transient stability certificate and assess-
ment for power systems under different fault scenarios. In
[81], Espinoza et al. proposed a time-dependent multi-phase
resilience assessment framework to evaluate how can systems
withstand major disruptions with limited degradation and
recover rapidly, considering the stochastic and spatio-temporal

properties of events. In [82], Kwasinski presented a framework
for characterizing resilience using an analogous measure of
availability as a quantitative metric to evaluate power sys-
tem resilience from the customers’ perspective, considering
the human factors and cyber and physical components. In
[83], Bajpai et al. proposed an algorithm using a graph-
theoretic approach and a Choquet integral to quantify power
system resilience and maintain the energy supply to critical
loads during extreme contingencies. In [84], Ciapessoni et
al. presented a probabilistic, risk-based security assessment
that ranks risks in both cyber and physical networks in order
to help operators improve power system resilience. In [85],
Zhang et al proposed a reliability assessment framework
using Bayesian attack graph models for wind farm energy
management systems against coordinated cyber attacks, which
operators can use to better prepare defense and remedial strate-
gies for enhanced system resilience. In [86], Clark and Zonouz
proposed a cyber-physical resilience metric that considered
the cyber attacks from the cyber network and its impact
to the physical components through a competitive Markov
decision process, aiding operators in better defending cyber
and physical incidents. In [87], Lopez et al. proposed an
architecture for smart grids that leverages cloud computing
resources, along with collaborative decisions algorithms and
graph theory, to predict load consumption and safeguard
the power grid against communication losses and intrusions
attacks, thereby enhancing the safety, security, and resilience
of power systems. In [88], Dehghanian et al. introduced
a weather-driven, probabilistic-based risk metric that uses
meteorological information to predict weather hazards, analyze
grid vulnerabilities, and quantify financial consequences for
corrective operation for enhanced resilience of electric power
systems. Specifically, this metric models weather and envi-
ronmental events in a stochastic process and considers their
spatial-temporal correlation on grid components’ reliability
and functionality. In [89], Watson and Etemadi developed a
series of models for hurricane exposure, fragility curve-based
component damage, and restoration cost using Monte-Carlo
Simulation to predict power systems’ resilience factors, which
are the power generation capacity lost and the restoration cost,
for electrical transmission grid and power generation system
damages. In [90], Tushar et al. proposed a compound metric to
evaluate the resilience of cyber-physical transmission systems
considering the topological properties and functionalities of
cyber and physical networks to assist operators with better
situational awareness in order to enhance power system re-
silience against cyber and natural hazards. In [91], Overbye
et al. presented a number of techniques that can be used
to enhance electric grid situational awareness including the
use of geographic data views [160] for operators to make
better decisions regarding enhancing system resilience. In
[92], Zhou and Zhang devised a high expressibility, low-depth
quantum circuit to realize quantum-based transient stability
assessment for bulk power systems with a quantum natural
gradient algorithm. It enables efficient data-driven transient
stability prediction for resilient and secure decision-making
in real-world power systems. In [93], Kelly-Gorham et al.
built a platform that captures the interdependence of various
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systems with power systems and their impacts on power
system resilience. This platform uses stratified sampling from
historical data to provide a more accurate description of the
risks associated with low-probability events, which is essential
for evaluating resilience. The results also suggest that the
interaction models between different systems could be more
meaningful with more detailed physics models or observations
from historical data.

E. Scheduling and Operating Ahead Against Contingencies
for Security and Resilience

Avoiding the first few failures near the beginning of a cas-
cade or blackout is supreme for power systems. The security-
constrained optimal power flow (SCOPF) is a common ap-
proach to ensure power systems’ secure operation against
planned N-1 contingencies. It ensures a secure operating state
where demand is met without reliability violations in either
the base case or under a set of postulated contingencies. The
formulation is as follows [161]:

min
u0,uk

f0px0, u0q (1)

subject to:
g0px0, u0q “ 0 (2)

h0px0, u0q ď 0 (3)

gkpxk, ukq “ 0 @k P K (4)

hkpxk, ukq ď 0 @k P K (5)

|uk ´ u0| ď ∆uk @k P K (6)

where subscripts 0 and k denote the pre-contingency state and
post contingency state respectively; K is the set of postulated
contingencies; x0 and xk are the vectors of state variables;
u0 is the vector of preventive actions; uk is the vector of
corrective actions; ∆uk is the vector of maximal allowed
variation of corrective actions, reflecting the ramping rate
of controls; function f0 is the objective, which usually is
modeled as the operation cost; g is the power flow equations;
h is the operational limit. The corrective actions, uk, are
constrained under each predefined contingency, which are
integrated through discrete variables. Therefore, the SCOPF
problem is generally a mixed-integer nonlinear optimization
problem considering a set of postulated contingencies [162].

Even though the SCOPF has been proposed over decades
and applied in the field, there still remain a lot of devel-
opment and advancement opportunities to improve its effi-
ciency and effectiveness to ensure power systems’ security
and resilience. In [94], Xiang et al. extended the traditional
SCOPF to consider cyber attacks in power systems, thereby
enhancing system robustness and ensuring the energy supply
under malicious attacks. In [95], Madathil et al. developed
an optimization model and an algorithm for capacity planning
and operations of MGs in a distribution system, respectively,

to include N-1 contingency security to improve the resilience
in remote communities. In [96], Karangelos and Wehenkel
extended the SCOPF model with probabilities of contin-
gency events and potential failures in post-contingency correc-
tive controls to achieve probabilistic reliability management.
In [97], Avramidis et al. included post-contingency behaviors
for voltage and frequency control with an SCOPF model using
an approximation technique on generator response to improve
the potential degradation of solution quality. In [98], Weinhold
and Mieth proposed an algorithm to identify the minimal set
of constraints for SCOPF problems with the exact space of
feasible nodal injections for a given network and contingency
scenarios, which greatly improves the efficiency of solving this
high dimensional problem.

Apart from SCOPF, other approaches have also been inves-
tigated for power systems to ensure their capability to handle
scheduled and unexpected contingencies. For example, in [99],
Yang et al. proposed a centralized MG EMS framework
with a flexible time frame DER schedule to improve power
systems’ resilience and efficiency, leveraging the forecasts
of DER and load, as well as economic factors. In [100],
Shaker et al. proposed a two-stage stochastic model to plan
reactive power using networked MGs against extreme events,
with reduced load shedding for better resilience. In [101],
Kamruzzaman et al. partitioned power systems into different
regions based on geographic information and proposed a
multi-agent framework using a deep reinforcement learning
algorithm to plan the deployment of shunts, which enhances
power system resilience against extreme events and improves
voltage stability. In [102], Zhao et al. proposed a two-stage
distributionally robust optimization problem to to enhance the
resilience of multi-energy systems against cyber attacks in
both the day-ahead scheduling and real-time operations. In
[103], Zakernezhad et al. presented a three-level optimization
framework for multi-energy systems for improving the op-
erational resilience of multi-energy systems. This framework
offers operators optimal scheduling and corrective control of
distributed energy sources before and after external shocks. In
[104], Huang et al. utilized a graph and information theory-
oriented metric, ecological robustness (RECO), to formulate
an ecological robustness-oriented optimal power flow (RECO
OPF) to improve power systems’ survivability agnostic against
the source of disturbances. In [105], Tobajas et al. proposed a
resilience-oriented optimization problem for MGs’ day-ahead
scheduling with the consideration of hybrid energy storage
systems. It aims to maximize the energy support during main
grid blackouts and ensure a continuous energy supply for
critical loads, thereby enhancing the system’s resilience. In
[106], Lv et al. proposed a resilience-oriented scheduling for
integrated power distribution networks and natural gas systems
with multi-level decentralized reserves, including electricity
and natural gas systems, thermal storage devices, and building
air thermal storage, to mitigate the operational risks.

It is important to point out that all techniques within
this subsection lie at the intersection of infrastructural and
operational resilience enhancements as classified in Table I.
They rely on infrastructure design and risk assessment and
can be controlled and operated to enhance a system’s inherent
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resilience in advance.

V. OPERATIONAL RESILIENCE ENHANCEMENT

In addition to the inherent resilience residing in networks,
researchers have studied various techniques and algorithms
to defend against threats, including emergency power supply,
network reconfiguration, failed component replacement, self-
healing mechanisms, and mitigation strategies. The following
subsections review preventative measures against natural dis-
asters, defense mechanisms against cyber attacks, and remedial
actions and restoration strategies after contingencies have
occurred, respectively.

A. Resilience-Oriented Preventative Operations Against Nat-
ural Hazards

Natural disasters have caused the most disturbances in
power systems due to their abruptness and intensity, resulting
in tremendous societal and economic losses. To maintain the
system’s resilience, it is necessary to take preemptive actions
to counteract the adverse impact from different extreme natural
events just ahead time.

In [107], Wang et al. leveraged the Markov process to model
the uncertain sequential transition of system states under
extreme weather, and formulated a recursive value function
at each state to determine the optimal proactive operation
strategy for enhancing system resilience. In [108], Gholami
et al. presented a two-stage stochastic programming approach
for the optimal scheduling of MG, considering uncertainties
from renewable energy resources, electrical vehicles (EVs),
and market price, against natural disasters to improve the
system resilience. In [109], Trakas and Hatziargyriou proposed
a stochastic programming approach that leveraged a model
of dynamic line ratings and the uncertainty of solar and
wind, as well as their impact on DER output during wildfire
progression, to improve the resilience of a distribution system.
In [110], the authors also formulated a tri-level optimization
problem for resilient constrained day-ahead unit commitment.
The goal was to minimize unit commitment and operational
cost while accounting for the worst outcome from extreme
weather. In [111], Wang et al. proposed a resilience-oriented
hourly unit commitment problem through a sequential and
Monte Carlo-based framework to seek a tradeoff among op-
eration cost, the homogeneity of flow distributions in power
networks, and the loading rates of local lines affected by
extreme weather. In [112], Ciapessoni et al. proposed a
security-constrained re-dispatching approach to predict poten-
tial critical scenarios, satisfy additional N-1 security criteria,
and increase the system resilience against wet snowstorms.
In [113], Wang et al. proposed a resilience index to capture
systems’ reliability and risk impact using Monte Carlo simu-
lation. Based on that, they formulated a resilience-constrained
economic dispatch against extreme weather events to improve
power system resilience. In [114], Yang et al. proposed a two-
stage robust optimization model for the optimal coordination
of power system schedule with the pre-positioning and routing
of mobile DC de-icing devices against ice storms for power
transmission system resilience enhancement. In [115], Zhao et

al. proposed a resilient unit commitment problem using a two-
stage distributionally robust and robust optimization model.
Their aim was to mitigate the adverse impact of the worst load
forecasting and line failure scenario from hurricanes for day-
ahead market. In [116], Pandey et al. proposed a resilience-
driven pre-event distribution reconfiguration approach with
intentional islanding. They leveraged a maximum likelihood
estimation ensemble model with distribution synchrophasor
data to identify the load at risk, and then reconfigure the
topology between load and distribution system to minimize the
impact of unexpected natural events to critical loads. In [117],
Gutierrez-Rojas et al. introduced a predictive weather-based
control policy for battery energy storage systems to manage
MGs under interruptions for better resilience. It is a multi-
objective optimization problem integrated with a decision-tree-
based learning algorithm in order to better predict the load de-
mand, solar production, and upstream interruptions. In [118],
Zhang et al. utilized Poisson process theory to estimate the
time interval between successive failures, and then proposed
systematic preventive control framework against successive
failures to enhance security, stability and resilience. In [119],
Kadir et al. modeled the proactive control problem against
wildfire events as a Markov decision process to minimize load
outages and solved the problem using a deep reinforcement
learning-based power generation coordination approach, which
provides decision support for grid operators.

B. Resilience-Oriented Defense Mechanism Against Cyber
Attacks

Delicate cyber attacks, such as denial of service attacks
(DoS) and false data injection (FDI), can directly compromise
information delivery and decision-making for power systems,
leading to reduced resilience level. Therefore, it is essential
to take timely and effective control actions to ensure power
systems remain resilient in the face of those attacks.

In [120], Liu et al. proposed an attack-resilient coopera-
tive control strategy for distributed generators, incorporating
properly design observation networks to ensure the function-
ality and resilience of the entire distribution network against
communication failure and cyber attacks (e.g. DoS attack and
deceptive attack). In [121], Farraj et al. proposed a paramet-
ric feedback linearization-based framework for delay-resilient
cyber-physical control of smart grid systems, enhancing their
time-delay tolerance for transient stability against DoS attack
and communication latency. In [122], Ashok et al. proposed an
end-to-end attack-resilient cyber-physical security framework
with defense-in-depth architecture for wide-area monitoring,
protection, and control applications to achieve attack resilience
at both the infrastructure layer and the application layer for
power systems. In [123], Musleh et al. proposed a multi-
sensor temporal prediction-based wide-area control scheme to
accurately address FDI attacks and control the smart grid’s
voltage profile for system’s stability and resilience. In [124],
Habib et al. proposed an adaptive protection scheme with
an autonomous control algorithm for the super-capacitor’s
AC/DC converter, leveraging its capacitive energy storage
to enhance system resilience against communication outages
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caused by communication link failures and DoS attacks. In
[125], Huang et al. proposed an online framework using
dynamic watermarking techniques to detect cyber attacks
(e.g. replay attack, noise injection attack, and destablization
attack) on automatic generation control (AGC) to ensure their
validity and the systems’ resilience. In [126], Davarikia and
Barati proposed a tri-level interdiction optimization model
considering the actions from defender, attacker, and operator
to improve power grid resilience with hardening strategies for
vulnerable components against hazards. In [127], Lai et al.
proposed both deterministic and stochastic coupling strategies
for asymmetric cyber-physical power systems to improve its
robustness against both random and intentional cyber attacks.
In [128], Chen et al. presented a distributed dynamic filtering
(state estimation) scheme taking advantage of two Riccati-like
difference equations and a recursive algorithm to minimize the
error against DoS attacks and gain perturbations to ensure the
observability and controllability of power systems. In [129],
Lai et al. proposed robustness-oriented economic dispatch
model with a battery storage sizing algorithm for MGs to
improve energy supply against attacks. In [130], Abbaspour
proposed a resilient control design for load frequency control
system leveraging the Luenberger observer, Kalman filter, and
artificial neural networks for online detection of FDI attacks
and compensate their adverse effects for system stability and
resilience. In [131], Lai et al. proposed a tri-level optimization
model considering a coordinated attack scenario with short-
circuiting transmission line and cyber-induced disabled pro-
tective relay to identify the optimal defending resource allo-
cation to hedge against the coordinated attacks, enhance the
system’s security and energy supply, and save the system from
cascading failures. In [132], Wang and Govindarasu presented
a multi-agent-based attack-resilient system integrity protection
design to enhance the cyber resilience with a support vector
machine embedded layered decision tree algorithm to detect
multi-class anomalies, and an adaptive load rejection strategy
to mitigate the load shedding against DoS attacks. In [133],
Elimam et al. presented two deep learning-based models to
detect PMU data manipulation attacks and to recover the cor-
rupted measurements for power systems steady- and transient-
state operations with improved security and resilience.

C. Resilience-Oriented Remedial Actions and Restoration
Strategies

Once a contingency has caused the power system to operate
under stresses, it is paramount to take remedial actions to
relieve the system stress and ensure maximum energy supply
for customers. While blackouts are rare, it is still important
to study and prepare the restoration schemes that prioritize
speed and effectiveness while taking economic factors into
consideration.

In [134], Huang et al. presented an integrated resilience
response framework with a two-stage robust mixed-integer
optimization model that linked the situation awareness with
resilience enhancement for effective and efficient responses
against natural disasters in preventive and emergency states.
In [135], Amraee and Saberi proposed a controlled splitting

strategy with a mixed-integer optimization model considering
the slow coherency of synchronous generators and system
stability to determine the splitting points of an interconnected
power system to maintain its security and resilience against
contingencies. In [136], Teymouri et al. developed a controlled
network partitioning model through a mixed-integer linear
programming formulation to improve power grid resilience
considering frequency stability and minimizing load shedding
against catastrophic events. In [137], Hossain-McKenzie et al.
proposed online remedial action schemes utilizing clustering
and factorization mechanisms to find the most effective control
against cyber attacks and extreme events that could effectively
relieve system stress for better resilience. In [138], Yan et al.
proposed a tri-level two-stage robust model for an integrated
energy system, leveraging the energy hub architecture with
power and gas network constraints (regional model), and the
energy hub architecture for multiple district (district model) to
determine preventive and corrective responses against natural
disasters for enhancing the integrated system’s inherent re-
silience. In [139], Hussain et al. proposed a fast and efficient
linear sensitivity-based transmission switch algorithm, leverag-
ing line outage distribution factors to reduce the loss of load
under extreme events for boosting power system resilience.

In [140], Gao et al. formulated a two-objective chance-
constrained optimization model considering the uncertainties
in renewable energy resources and load demand in distri-
bution system to leverage MGs for assisting critical load
restoration with maximum energy supply and minimum load
voltage variations after extreme events. In [141], Sedzro et al.
developed a mixed-integer optimization model of the post-
disaster MG formation to maximize critical load pick-up
while satisfy the operational constraints for power system
restoration considering fixed and mobile distributed generator
units and DERs. In [142], Qiu and Li presented a mixed-
integer optimization model to integrate the sectionalization
and the generator startup sequencing into a unified model
for an effective and executable restoration plan satisfying
operational constraints. In [143], Chen et al. presented a
distribution system restoration decision support tool leveraging
the techniques of distribution automation and advanced me-
tering infrastructure to maintain grid resilience with improved
situational awareness of system damage status and customer
survivability against extreme weather events. In [144], Poudel
and Dubey formulated a mixed-integer linear model for distri-
bution systems to obtain a robust restoration plan leveraging
DERs after natural disaster that maximizes the amount of
restored critical load and optimizes the restoration time con-
sidering the potential failures during the restoration process. In
[145], Dehghanian et al. proposed a resilience-based corrective
topology control optimization with Direct Current Optimal
Power Flow to provide agile restoration strategy with both
generator dispatch and transmission line switch against the
anticipated HILF events for improving the system’s resilience.
In [146], Li et al. proposed an integrated restoration strategy
using linearized optimal power flow dispatch and reinforce-
ment learning-based optimal link restoration to maximumly
supply energy after events. In [147], Bedoya et al. proposed
a deep learning model with Monte Carlo Tree Search to
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efficiently restore a distribution system for enhanced resilience,
considering asynchronous and partial information scenarios.
In [148], Zhao et al. proposed a fast robust load restoration
strategy for bulk system with high penetration of wind power.
They leveraged deep neural network and deep convolutional
neural network to obtain the optimal load pickup decision
and ensure the system security considering the uncertainties
during the process. In [149], Hosseini and Parvania developed
an intelligent resilience controller using deep reinforcement
learning to achieve fast real-time operation decision after
outages in order to restore energy supply. In [150], Birch-
field proposed a computationally efficient blackstart restora-
tion algorithm that leverages directed graph decomposition
to sectionalize a large-scale system into multiple islands and
correctly prioritizes restoring loads and cranking generators
in each island, with the objective of minimizing the total
cost of load outages while maintaining system’s stability. In
[151], Li et al. introduced a load restoration strategy after
extreme natural events based on an optimal multi-energy flow
model to improve multi-energy systems’ resilience, accounting
the integrated power, heat and gas networks. In [152], Edib
et al. proposed a concept of cyber restoration for cyber-
physical power systems considering their observability and
information recovery in communication networks after black-
outs, and formulated a mixed-integer linear programming to
determine an optimal cyber restoration scheme to efficiently
recover power systems’ observability for physical networks’
operations. In [153], Zhang et al. proposed a Bayesian Deep
Reinforcement Learning-based real-time control for multi-
energy MGs. This approach captures uncertainties associated
with RES output to provide energy management and control to
improve the system’s resilience after extreme events. In [154],
Wang et al. introduced a decentralized operating paradigm
to coordinate local multi-energy MGs for system-wise bulk
power system load restoration with a topology-aware multi-
task reinforcement learning. In [155], Fu et al. proposed
a hybrid quantum-classical approach to coordinate multiple
energy resources for post-disaster restoration in distribution
systems. This approach decomposes the original mixed-integer
linear programming for coordinated post-disaster restoration
problems into subproblems, and the mixed binary problem can
be solved using a quantum approach.

VI. DISCUSSION OF RESILIENCE ENHANCEMENT
TECHNIQUES

In this section, we present a more in-depth discussion of
the reviewed articles, focusing on their modeling and problem
formulations, and their quantification of resilience with various
considerations. Additionally, we explore the gaps between
these studies and their applications in the field, while also
highlighting the importance of stakeholders’ participation.

A. Modeling and Problem Formulation

The modeling and problem formulation of resilience en-
hancement techniques can be categorized into Optimization
Modeling, Statistical Methods, Machine Learning Techniques,
and Advanced Technologies for enhancing infrastructural and

operational resilience. Based on the reviewed articles and
their main contributions to enhancing power system resilience,
we select three primary approaches under each category and
match them with specific applications in power systems, as
illustrated in Figure 7. It is important to note that some
approaches overlap as they work collectively.

1) Optimization Modeling: Among all approaches, Opti-
mization Modeling has been used the most at different stages
to enhance power system resilience. As presented in previous
sections, various optimization models have been proposed with
a particular objective to harden power grids with more resilient
network design and/or system operation schemes in the face
of HILF events, especially the mixed-integer optimization
model and the stochastic optimization model. The mixed-
integer optimization model is capable to explicitly include
power system constraints and conditions with specific scenario
or application that needs discrete variables to represent on/off
status of particular elements. In [52], [53], [58]–[60], the
mixed-integer optimization model is used to model options of
hardening the network design. In [94]–[98], the SCOPF prob-
lem is formulated as a mixed-integer optimization problem to
explicitly consider the postulated set of contingencies so that
the optimized operation scheme is both economic and secure in
anticipation of those contingencies. In [75], the mixed-integer
optimization model is to link different domains, namely energy
and information flows, to optimize the network routing policy
against adversaries. In [134]–[136], the impact of different
adversaries in power systems is integrated to obtain the optimal
remedial actions. In [141], [142], [144], the operation of MGs
and DERs are integrated through mixed-integer optimization
model to determine the optimal restoration schemes. With
the integration of other energy infrastructures, mixed-integer
optimization has also been used for multi-energy systems to
link constraints and objectives in different systems for their
resilience-oriented load restoration [151], [155]. In [152], the
mixed-integer optimization model aggregates each physical
component’s observability through discrete variables to de-
termine the optimal cyber restoration scheme for the entire
system’s observability. The stochastic optimization model is
used to optimize the expected aggregated benefits considering
the stochastic nature of adversarial events and DERs. In [52],
[65], [66], [68], the stochastic optimization model are used to
strengthen distribution systems’ design, accounting the impact
of extreme natural events. In [100], [108], [109], the optimal
operational schemes are obtained considering the uncertainties
from DERs against unexpected events by solving a stochastic
optimization problem. In [127], the stochastic nature of cyber
attacks is considered for coupling strategies in cyber-physical
power systems. Besides the problems mentioned above, two-
stage or tri-level robust optimization models have been used
to incorporate more properties of modern power systems,
including the interdependence and uncertainties raised from
cyber and physical infrastructures and operations. In [52], a
two-stage mixed-integer stochastic optimization is employed
to strengthen the inherent resilience of power networks by
considering various hardening strategies. Bi- and tri-level
optimization models have also been used in interdependent
power and gas network optimization for transmission [54]
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Fig. 7: Categorization of power system resilience enhancement approaches together with their applications.

and distribution systems [64], respectively. When considering
DERs, [62], [63], [65], [66] have formulated different bi-
level optimization models to design distribution networks with
improved resilience. Additionally, [100], [108], [110] have
formulated bi- and tri-level optimization models to operate
DERs and MGs to ensure energy supply under contingencies.
Considering the impacts of natural disasters, [114], [115]
use two-stage optimization models to determine preventative
actions. In the case of defending cyber attacks, [126], [131]
utilize tri-level optimization models to determine defense oper-
ations considering multiple roles in power system operations,
including operators, attackers, and defenders. For multi-energy
systems, [102], [106], [138] present multi-stage optimization
models to incorporate different resources and enhance the
resilience of power systems under various contingencies. It
is worth noting that there is some overlap among mixed-
integer optimization, stochastic optimization, and bi/tri-level
optimization. Integer variables are used to connect external
constraints, scenarios, and objectives for some stochastic and
bi/tri-level optimization problems. In this discussion, we only
consider each article and its methodology based on its primary
contributions.

Undoubtedly, optimization models have great capability to
formulate design and operation problems from various per-
spectives for enhancing power system resilience. However, it
is necessary to mention that different levels of relaxations and

approximations have been applied to solve those complicated
nonlinear optimization problems under the context of power
system constraints. Although optimization models can be used
almost at each phase of power system resilience, it is hard to
ensure real-time or online agile response against threats solely
based on state-of-art optimization solvers, not to mention
processing the large amount of heterogeneous data across
different domains and the increasing number of variables and
complexities in optimization problems.

2) Stochastic-based Approaches: Stochastic-based ap-
proaches are becoming more prevalent in modern power
systems, given the increasing uncertainties raised by the
integration of renewable energy sources and communication
networks. Monte Carlo Simulation has been widely used
to quantify power systems’ reliability by leveraging random
sampling to obtain numerical results [163]. For resilience
enhancement, Monte Carlo Simulation can provide numerical
analyses of adversarial events to guide the network design and
system operation by considering the probabilistic characteris-
tics of investigated hazards [55], [89], [111], [113]. Different
probability and vulnerability models have been implemented
based on historical data and observations. Markov Process,
a stochastic model describing a sequence of possible events,
has been used to account for power systems’ state transition
during an unfolding natural or cyber event and thus provide
assessment of events’ impact, where the transition probability
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is calculated with vulnerability and/or frangibility models of
investigated contingencies or simulated data of investigated
cases [86], [107], [119]. Bayesian Attack Graph has also been
used to represent the procedures of cyber attacks in power sys-
tems for reliability assessment [85]. Poisson Process Theory
has been utilized to model the successive failure propagation
of power system components under extreme weather [118].
Other probability-based frameworks leveraging components’
fragility curve, failure rate, and vulnerability with historical
observations and data assess the risk and impact of adversarial
events on power systems [61], [84], [88], [89], [96], [164].

Stochastic-based methods certainly provide more situational
awareness regarding threats from extreme weather events and
cyber attacks, which enable operators and stakeholders to
better prepare the system with better resilience. However, the
gap between risk assessment or situational awareness and the
design and operation of modern power systems lies in how to
seamlessly integrate cross-domain information associated with
power systems, including data of system status, cyber, weather,
and customer. This could be even more complicated than the
optimization modeling.

3) Machine Learning: Machine learning techniques and
data analytic have been used in various domains leverag-
ing their high efficiency and accuracy in dealing with large
amount of data for different problems. In power systems,
these techniques have been widely used in different areas
[165]. In this paper, we narrow down their applications that
particularly enhance power system resilience. Artificial Neural
Networks (ANNs) [130] and deep learning [76] have been
used with Kalman Filter to perform online false data detection
and estimation. The decision tree algorithm has been used
for prediction of load and solar [117], and to detect and
classify cyber and physical anomalies in smart grid [132].
The clustering and factorization mechanisms have been used
together to reduce the searching space for determining online
remedial actions against cyber attacks and extreme events
[137]. Deep learning algorithms have been used at differ-
ent phases to enhance resilience, including network design
[57], [59], preventative operations [101], proactive operations
[119], [133], and restoration [146]–[148], [153], [154]. These
problems leverage deep learning algorithms to improve the
efficiency of the solving process with heterogeneous data and
models.

Machine learning techniques provide additional approaches
to enhance power system resilience with better efficiency
through delicate modeling or mapping between machine learn-
ing algorithms and modern power systems. Their great ca-
pability to deal with large amount of heterogeneous data
is leveraged for online decision-making, which prompts the
efficiency of solving complex system problems. However,
the aleatory and epistemic uncertainties that reside in data,
models, and machine learning algorithms could compromise
the accuracy or confidence of the output, which limits the
application of machine learning for critical infrastructures.
Therefore, it is of great interests to develop machine learning
algorithms leveraging power system properties for improving
resilience with guaranteed confidence and interoperability.

4) Advanced Technologies: Merging technologies are being
explored and applied to improve the cyber resilience of modern
power systems. SDN has been used in communication net-
works to enhance the resilience of power systems by providing
more reliable and trustworthy data for monitoring and con-
trol [69]–[71]. Blockchain technology enhances the security
of information transactions between customers and system
operators with efficient secure decentralized paradigms. This
protects data against cyber threats [73], boosts power systems’
self-defensive capability [74], and facilitates peer-to-peer com-
munication among EVs for system’s stability and reliability
[79]. Quantum communication has demonstrated its ability to
enhance both cyber and physical resilience with more secure
and robust data exchange and fast computation for system
operations in adversarial scenarios [77], [78]. Furthermore,
quantum computing can be applied to solve the power system
problems more efficiently, including transient stability analy-
ses [92] and the optimal decision-making process [155].

The demand for secure and resilient modern power systems
drives the development of innovative technologies, and these
advanced technologies have demonstrated their advantages
and benefits in securing modern power systems. However,
revolutionizing a wide-area complex system with new tech-
nologies is a costly and time-consuming process. Justifying
the investment and benefits of new technologies in the field,
as well as reducing costs through commercialization, are
important considerations.

B. Quantifiable Resilience Metrics

Regardless of the approach used to enhance power system
resilience, it is essential to determine the objective of that
approach, with the aim of guiding network design or system
operation. As there is no standardized measure of power
system resilience capturing its spatial-temporal characteristic,
most existing works use functional objectives, such as invest-
ment, operational cost, and expected energy supply, to design
and operate system with preferred resilience.

However, power system resilience can be conceptually
quantified as a time-dependent metric of the difference be-
tween ideal and real system performance from the beginning of
the adverse event until the end of system restoration, referred
to the resilience trapezoid as follow [45]:

R “

ż T

t0

pPi ´ Prqdt (7)

where R is the system resilience, Pi is the ideal performance
level of the system, Pr is the real performance level of the
system, and [t0, T ] is period of power system anticipating
the event till resuming to normal. The system performance
is conventionally measured as how many households can
get electricity supply under contingencies and how fast the
restoration can be after the contingencies [166]. In order to
enhance power system resilience, it is either making Pr as
close as Pi or reducing the period of event.

The Pi can be a constant value to represent the ideal situa-
tion of power systems. However, mathematically formulating
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the Pr for the entire period can be cumbersome due to the
time-dependent function that is influenced by system infras-
tructure, operators’ decision-making, and valid information of
systems and events. Instead of integrating the comprehensive
resilience measure in Equation (7), most of existing measures
focus on particular stage or phase in the resilience trapezoid
(Fig 3) to enhance modern power systems’ resilience by
leveraging power systems’ functional, infrastructural, and/or
operational properties. Various metrics have been proposed
from different perspectives, such as energy supply, economic
benefits, and structural properties. Here are some examples.

In [140], an energy-based operational resilience metric is
developed as follow:

R “

ż tr`T0

tr

ÿ

cPC

Wc ¨ Pcptq dt (8)

where C is the set of critical loads restored by MGs, Wc is the
weight of a critical load c, Pcptq is the active power of load c
at time t, and rtr, tr`T0s is the period of restoration process.
This resilience metric represents the total energy supplied to
the critical loads weighted by their priority. Thus, it can guide
the restoration of distribution system to achieve the maximum
energy supply to critical loads for the system’s resilience.

In [54], a deterministic resilience metric is proposed consid-
ering the minimal cost of load curtailment after the occurrence
of the most severe event:

R “ min
z

max
p,g

ÿ

i,b,t

fippdi,b,tq (9)

where z is the set of uncertain events, p,g is the vector of
system operation variables, fipq is the load loss cost function,
pdi,b,t is the load curtailment, and i, b, t is the index of bus,
load block, and expansion period, respectively. This resilience
metric considers the economic factors of load curtailment
under a series of adverse events. It is used as an upper bound
constraint for system planning to ensure system’s resilience
with minimum investment.

In [116], a topology-based resilience metric is formulated
to guide the reconfiguration of distribution network:

R “
w1 ¨ bcn

w2 ¨
lg,n
lmax

ˆ
Pc

Pn
, (10)

where w1 and w2 are system-specific weights determined
through analytical hierarchical processes, bcn is the between-
ness centrality of the node being assessed for its resilience,
lg,n represents the geodesic path of between a node and a
generator, lmax is the maximum of all path lengths in a given
network, while Pc and Pn are the real power demands of the
critical and all loads respectively, at and downstream of the
assessed node. This resilience metric leverages the functional
importance of critical loads and topological importance of each
node respect to their downstream nodes. Thus, it is used to
guide the restoration of critical loads considering the network
topology.

In [56], [60], an ecosystem-inspired fitness metric, RECO
(Equation (11)-(15)), is used to guide the design of physical
power networks for resilience, improving the ability of the grid
to tolerate disturbances and maintain functionality securely.
Through an analogy between biological food webs and power
systems, this metric considers the network topology and power
flow magnitudes to quantify the balance between functional
redundancy and efficiency in power systems. The unique
balance of functional redundancy and efficiency in food webs,
known as the ecological “Window of Vitality” serves as the
inspiration due to its association with the resilience of long
established ecological food webs [167].

RECO “ ´

ˆ

ASC
DC

˙

ln

ˆ

ASC
DC

˙

(11)
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TSTp “

N`3
ÿ

i“1

N`3
ÿ

j“1

Tij (13)

ASC “ ´TSTp
N`3
ÿ

i“1

N`3
ÿ

j“1

˜

Tij

TSTp
log2

˜

TijTSTp
TiTj

¸¸

(14)

DC “ ´TSTp
N`3
ÿ

i“1

N`3
ÿ

j“1

˜

Tij

TSTp
log2

´ Tij

TSTp

¯

¸

(15)

where [T] is a square matrix containing power flow magni-
tudes transferred among generators and buses, TSTp is the
sum of all flows, ASC is a dimensional evaluation of system
uncertainty, and DC is the dimensional aggregated impacts
(uncertainty) from all events (surprisals). Thus, RECO has the
ability to account for the presence of unknown events, or
interruptions, that can happen in the system and maintain
system’s safety. Optimization over RECO, which results in
a ecologically-similar performance captured by a range of
ASC/DC values known as the ecological “Window of Vitality”
[167], [168], can enhance the system’s ability to tolerate distur-
bances and maintain its functionality securely. This ecological
range has been found to be beneficial for the resilience of not
only physical power grids but also water distribution networks
[169] and more generic systems of systems [170], [171].

The examples above demonstrate various power system
resilience measures that consider different aspects of power
system properties, such as network topologies, power flow
distribution, energy supply, or load importance. However, it
is worth noting that there are also various resilience mea-
sures focusing on the assessment or prediction of risk with
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external information. Through risk assessment and evaluation
of countermeasures, operators can better prepare hardening
strategies, preventative and remedial actions against HILF
events, thereby enhancing power systems’ resilience. [46], [47]
have summarized those resilience related metrics in detail
and systematically analyzed their features and application
scenarios within the context of the resilience trapezoid.

Regardless of the inputs and methodologies used for power
system resilience quantification, these measures have to be
integrated with power system constraints, thereby guiding the
design and operation of modern power systems as well as the
development and application of advanced technologies for in-
herently resilient power grids. As Kirchhoff’s Law-dominated
power systems become increasingly dependent on weather and
human factors (e.g. system operators situational awareness and
customer-based demand response), it is paramount to leverage
features across different domains, including cyber, weather,
and societal systems, to study their interactions and interde-
pendencies that can impact system performance. Accounting
for modern power system resilience cannot be done otherwise.

C. Gaps between Research and Realization

Research is conventionally ahead of field applications with a
new technology or a new perspective. It could prompt actions
such as the adoption of EVs, construction of transmission
lines, and deployment of advanced technologies. Their out-
comes may challenge existing norms and potentially neces-
sitate substantial investments to renovate the system. For a
wide spread critical infrastructure, whether or how stakehold-
ers adopt unconventional recommendations or methodologies
depend on various factors.

As discussed earlier, new technologies, such as blockchain
technologies and quantum computing, have the potential to
enhance power systems’ resilience and security. Blockchain
technologies can facilitate more secure and efficient communi-
cation among different sectors within power systems. The de-
centralized paradigm of blockchain technology can contribute
more redundancy and resilience for power systems against
system failures and cyber attacks, in contrast to the centralized
paradigm. Many existing applications and investigations of
blockchain technology in power systems focus on realizing
peer-to-peer trading, securing energy management of EV and
DERs, and implementing demand response [172]. Moving
beyond these applications, [73], [74], [79] have demonstrated
the benefits of enhancing resilience in power systems us-
ing blockchain technology, considering various adversaries
scenarios. Quantum computing introduces a new mechanism
for modeling and solving entangled states and intractable
problems with improved efficiency and scalability, which
can enhance the resilience of power systems through power
system analytic, decision-making, and device control. Sev-
eral companies now offer quantum computing services with
noisy-intermediate-scale quantum computers [173], bringing
quantum technology closer to practical applications. [77], [78],
[92], [155] have utilized quantum computing services to devise
their quantum circuits, testbeds, and algorithms, showcasing
the effectiveness of quantum computing to enhance power

systems’ resilience with faster and more efficient computation
and analytic capabilities. However, it is important to note
that the existing applications and demonstration are limited
in small-scale virtual or laboratory environments due to the
cost and the complexity of modeling power systems under
the new mechanism. When deployed in a real system with
customers, operators, and potential cyber and physical attacks,
the complexity of the system, the volume of data, and the noise
in the system could discount their benefits. Stakeholders may
raise concerns about the effectiveness or cost-effectiveness
of implementing these new technologies, as it would require
significant financial investments from both customers and
utility owners. [172]–[177] have summarized the applications,
development, limitations, and directions of quantum comput-
ing and blockchain technologies in power systems. It should
be recognized that further development and advancement of
quantum computing and blockchain technologies are still
needed for their everyday applications. We are optimistic that
these advanced technologies will soon be extensively applied
to power systems, leveraging their significant computing and
security capabilities to enhance the resilience of modern power
systems.

The modeling of power systems relies on existing bench-
mark models [178], [179] or synthetic models based on geo-
graphic and demographic information [180]–[183] that capture
the physics and topological characteristics of real power grid.
However, these models do not include the realistic consid-
eration of customer-side resources. In theory, customers now
have the ability to take proactive actions to ensure and enhance
power systems’ resilience with their own EVs and DERs [62],
[63], [79], [108], [141], [144]. These resources and customers’
response are simplified as additional inputs to existing models.
However, there is a gap between this hypothetical model
and real situation during hazards or disruptions. There is a
need to investigate and validate the penetration of EVs and
DERs in households, the controllability of individual assets
during hazards, and the customers’ wiliness and benefits to
participate in power system operation and regulation. The in-
creasing penetration of RES has made modern power systems
increasingly reliant on weather information for predicting both
RES output, end-users’ consumption, and network status. It
is essential to include weather, geographic, and demographic
information into power system models to better account for
external influences on power systems operation. The impacts
of temperature on power networks can be captured through
heat balance equation [184], which can be integrated with
power flow equations [185]–[187] to analyze the power flow
distribution under extreme and unexpected environment. In
[188], [189], the authors present methodologies for including
more weather information, such as ambient temperature, wind
speed, wind angle, and solar radiance. In [190], Zhang et
al. presented an open-access data hub that integrates external
data of weather, human, health with electricity load data
with mobile device location and satellite imaging data for a
comprehensive analysis. Last but not least, cyber networks are
the carrier of information and data for operators to monitor
and control power systems. As introduced in [157]–[159],
a successful high-impact cyber attack involves several steps,
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from planning to execution, which requires knowledge from
both cyber and physical domains. Traditional cybersecurity
studies on power systems only consider execution, such as
false data injection and false command injection, on physical
networks. Nevertheless, there are some signatures in the cyber
data can help operators identify the threat in an early stage, and
thus ensure the system’s security and resilience. It is crucial to
create a granular model of the cyber network, considering its
functionality and topology, to fully comprehend cyber attack’s
impact on power systems. By emulating the entire multi-stage
cyber attacks, we can obtain realistic cyber-physical datasets
for different researches. The functionality of communication
systems can be emulated with various software [191]–[193].
However, their topological characteristics are often simplified
by equating them to the connected physical network or using
models of scale-free, random, or small-world networks, which
overlook cyber networks’ distinct features. In [194], Sahu et
al. have presented a hierarchical model of communication
network that captures all detailed interactions among differ-
ent stakeholders and participators in power grids considering
various communication and intelligent electronic devices. A
detailed and realistic cyber model allows the investigation
of cybersecurity at different phases of cyber intrusion [195],
[196]. This level of granularity should be incorporated into
future cyber-physical power systems’ modeling and studies to
enhance modern power systems’ inherent resilience against
cyber disturbances.

Existing operational and design standards are not easily
modified. For example, power system operation utilizes OPF
or SCOPF to ensure their security and resilience with min-
imum operational cost. These concepts and models are well
established and implemented, guaranteeing the most economic
operations. An innovative RECO OPF is proposed in [104] and
exhibit its superiority over OPF and SCOPF regarding the
systems’ survivability under N-x contingencies. Nonetheless,
the operational cost of the more resilient RECO OPF is higher
than OPF and SCOPF. Other reviewed resilience metrics and
methodologies [60], [100], [101], [111], [116], [140] also
take non-economic factors into consideration. Although the
analyses demonstrate economic benefits in long term, there are
still uncertainties regarding whether or when the investigated
contingency scenarios will happen. This raises a question for
stakeholders: whether they are willing to bear the increased
cost of designing and operating power systems for enhanced
resilience or choose to take the risk of operating the system
at its economic margin and implement actions only after
contingencies occur to restore the system back.

Balancing the trade-offs among resilience, cost, and effi-
ciency is a critical task when considering various strategies to
enhance the resilience of modern power systems. Moreover,
the integration of RES and EVs underscores the necessity
of including and validating the environmental benefits when
researchers advocate their work in the context of enhancing
the resilience of modern power systems. Deriving a series
quantifiable metrics of resilience regarding modern power
systems’ infrastructure and functionalities will enable the anal-
ysis to trade off resilience enhancements, economic benefits,
and environmental benefits. Nevertheless, determining these

trade-offs among resilience, cost, and efficiency for different
resilience enhancement strategies in modern power systems is
complex. Considering modern power systems’ cross-domain
multilayered architecture, the design and operation of modern
power systems depends on various factors. Consequently,
one resilience enhancement strategy may entail compounded
benefits, require additional investment, or face constraints
from other domains. Furthermore, as critical infrastructure, the
development of modern power systems is influenced by pol-
icymakers’ prioritization of objectives across various issues.
Overall, identifying the right balance among resilience, cost,
and efficiency of different resilience enhancement strategies
is decided by the stakeholders, including grid operators, mar-
ket participators, customers, and policymakers, and based on
subject matter expertise.

There needs to be a transition period during which utilities,
operators, and customers should participate with the field
testing of new technologies, models, and standards under
normal and adversarial conditions. It is also essential to assess
how stakeholders in different domains react to new schemes,
technologies, and environments toward more resilient modern
power systems. Holistically modeling and analyzing modern
power systems with cross-domain information, along with
evaluation of resilience, cost, efficiency, and other benefits,
can assist all stakeholders in understanding how to prioritize
different resilience enhancement strategies.

VII. NEW OPPORTUNITIES IN MODERN POWER SYSTEM
RESILIENCE ENHANCEMENTS

Based on all reviewed articles, we believe that infrastruc-
tural resilience lays the foundation for the entire system’s in-
herent resilience against all potential hazards, and operational
resilience determines how resilient the system can be during
and after hazards with available resources. However, modern
power systems consist of heterogeneous networks and data,
forming a complex system of systems. Physical networks are
the backbone structure of entire systems for energy deliver,
cyber networks are collecting and delivering data, and hu-
man networks are making decisions. Data from the weather,
physical, cyber, and human domains together determine the
resilience of modern power systems. The modeling, data an-
alytic, and resilience metrics are interrelated for ensuring and
enhancing the resilience of energy infrastructure and services
[197]. There are some inconsistencies and disconnects on mod-
eling modern power systems considering their heterogeneous
network and data across different domains [198]. However, it
is significant to characterize interdependencies across different
domains as well as explicitly incorporate them for holistically
enhancing modern power systems’ resilience [199].

As suggested by [93], it is essential to include more detailed
physical interaction models to capture the impact from other
domains to power systems’ resilience. An example of this
focused on the direct inclusion of weather information in the
power flow is presented in [189]. It improves the accuracy
of power flow studies considering the integration of RES
through the direct inclusion of weather data. The fusion
of cyber and physical data also benefits the detection and
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defense against cyber and physical attacks for the security of
modern power systems. In [200], Sahu et al. utilize several
machine learning techniques to fuse the cross-domain cyber
and physical data to prevent cyber attacks with more accurate
identification of cyber attacks. In [201], Huang et al. propose
a series of programmable logic controllers logic to detect
and defend cyber attacks using the IEC 61131-3 engine with
the cyber information and physical measurements in indus-
trial controllers. With the cross-domain cyber and physical
information, the proposed cyber-physical alert and control
logic can more accurately detect and determine the source
of contingencies whether they are from the cyber or physical
domain. These examples demonstrate the necessity to leverage
modern power systems’ heterogeneous networks and data
from different domains to holistically enhance their inherent
resilience. It is essential to develop a granular model of modern
power systems that considers the interconnected cross-domain
networks and encapsulates heterogeneous information and
external factors. Such a model can facilitate comprehensive
studies on resilience enhancements against various threats.

Toward resilient modern power systems, there is a need
to holistically enhance or optimize both infrastructural re-
silience and operational resilience considering their cross-
domain multi-layer data and infrastructures. Therefore, two
challenges must be overcame to achieve the goal: (1) derive
a benchmark to determine the level of resilience and guide
the design of modern power systems’ architecture considering
the interdependence among heterogeneous networks across
different domains; (2) develop an intelligent agent to inform
and control the system for its optimal resilience considering
heterogeneous data across different domains.

The following subsections present potential directions to
address above challenges using higher-order subgraph analy-
ses and scientific machine learning (SciML), respectively. As
new perspectives on analyzing modern power systems, we
also discuss the requirements necessary to implement them
for future research and applications.

A. Higher-order Subgraph Analyses to Determine the Bench-
mark of Infrastructural Resilience

Topological analyses of power networks play an important
role in understanding their infrastructural resilience and can
provide guidance for operational resilience. Metrics, such as
node degree, betweenness centrality, and shortest path, have
been integrated with power systems’ properties to assess
node and edge importance for resilience-oriented design and
operation [204]. One of the most important developments
in this field has been in the the creation of high quality,
geographically-based synthetic electric grids [181], [205],
[206], with validation of these grids presented in [182].
However, there is an urgent need is to understand the inter-
dependence among heterogeneous networks, including cyber,
physical, and human networks, for modern power systems.
Node- or edge-based studies cannot capture the underlying
relationship, while the higher-order subgraphs associated with
intra- or inter- nodes and edges may reveal more information
regarding the interdependence and interactions among het-
erogeneous networks [207]. For example, Bodin and Tengö

Fig. 8: Seven different Social-Ecological Systems motif fam-
ilies [202].

Fig. 9: All connected 4-node motifs.

utilized the 4-node motifs (as shown in Fig. 8) where two
nodes are from social systems (social actors) and two nodes are
from ecological systems (ecological resources) to understand
the social-ecological interdependencies for interconnected so-
cial and ecological networks [202]. Both social-ecological
systems and cyber-physical systems are multilayered networks.
Intuitively, the patterns of interdependence between social and
ecological systems could also be employed to understand the
interdependence between cyber and physical networks at their
boundaries.

Higher-order subgraph analyses are emerging tools for
understanding the properties of complex networks. Network
motifs are defined as patterns of interconnections or sub-
graphs occurring in complex networks at numbers that are
significantly higher than those in randomized networks [208].
They have been used to analyze the structural properties
of ecological food webs and neuron networks, which have
turned out can be useful for complex networks. In [209],
Benson et al. used a network motifs-based framework for
network partitioning and revealed new organizational patterns
and modules in complex systems. In [210], Stone et al.
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(a) Original Network Topology

(b) RECO Oriented Network Topology 1
(Added 5 Branches)

(c) RECO Oriented Network Topology 2
(Added 15 Branches)

(d) RECO Oriented Network Topology 3
(Added 26 Branches)

(e) RECO Oriented Network Topology 4
(Added 31 Branches)

Fig. 10: RECO-Oriented ACTIVSg200 Network Structures, the case information is available at [203].

demonstrated that identifying network motifs embedded in
a larger network could indicate the presence of evolutionary
design principles or an overly influential role in system-wide
dynamics. In power networks, network motifs have been used
to assess power grids’ reliability and risks [211], [212].

1) Higher-order motifs with Ecological Robustness: As
mentioned earlier, resilience originated from ecosystems and
various metrics have been derived to quantify the features of
long-term resilient ecosystems. RECO (Equation (11)-(15)) is
one of metrics that has been related to features in ecosystems
that support their resilience and has been used to translate the
resilient properties of food webs to power systems through
redistributing power flows [104] and redesigning power net-
works [56], [60]. An extended model has been proposed to
analyze power systems’ resilience with reactive and apparent
power flows considering structural impacts from generators
and shunt capacitors [213], [214]. This metric has been applied
to other human networks, such as water distribution networks
[169], supply chains [215], and more generic systems of
systems [171], and shown great enhancements on system’s
resilience. Since both RECO (resilience property) and network
motifs (higher-order subgraph analyses) are originated from
ecosystems, the motif analyses of the RECO-oriented power
networks may reveal new suggestions on resilient power
network design. Here is a preliminary study.

Fig. 9 shows all connected undirected 4-node motifs, which
are six types of induced subgraphs. In [211], Dey et al.
demonstrated that the 4-node motifs’ motif characteristics,
motif concentration (Ci), can be used as an indispensable
tool for understanding local network structure that contributes
to power grid resilience. Ci is the ratio of the number of
occurrences of the type i motif (Ni) to the total number of
all n-node motifs in the network:

Ci “
Ni

ř

i Ni
(16)

where
ř

i Ni is the total occurrence of all n-node motifs in
the network.

Fig. 10 shows four RECO-oriented ACTIVSg200 networks
[60], and Fig. 11 shows analyses of RECO, Ni, Ci, and
survivability for each case. The survivability is evaluated under
N-x contingencies, where different number of power system
components (branches, generators, and buses) are removed
from the system, and it is quantified as the number of
violations and unsolved contingencies.

With more branches added to the original network, the sys-
tem’s inherent ability to tolerate disturbances (corresponding
to the reduction on the violations and unsolved contingencies)
is improved and shows an increase in RECO. Through a
comparison of different RECO-oriented power networks, M3

and M5 may be favored by ecosystems’ resilient traits. From
Fig. 11, M1 and M2 dominate the power networks with the
most occurrences in the graph and highest motif concentration.
However, the trend of Ci shows that the increments of M3 and
M5 are more noticeable. Since RECO favors redundancy over
efficiency for food webs [168], we can deduce that both M3

and M5 highlights this feature. Thus, it could be beneficial
to intentionally increase M3 and M5 when we design power
networks for better inherent infrastructural resilience. It is im-
portant to further validate this claim under dynamic adversarial
events and analyze motif patterns, which will be a future work.

2) Higher-order motifs in Cyber-Physical Power Grid:
As we mentioned earlier, higher-order motifs have been used
to disentangle the interdependence between ecosystems and
social systems, which are essentially heterogeneous networks
regarding their topology and functionality. There is great po-
tential to apply higher-order motifs-based analyses into cross-
domain multilayered power systems with a granular graphic
representation to identify the critical local structure connecting
cyber and physical networks that are essential for systems’
inherent resilience and security.
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Fig. 11: Motif-based structural, RECO, and resilience analyses
for all variations of ACTIVSg200 cases.

In [216], Huang et al. utilized the 4-node all-connected
motifs to characterize the interdependence between cyber and
physical networks considering three cyber attack scenarios
on an augmented cyber-physical WSCC 9-bus system [217].
Unlike previous work, this augmented cyber-physical WSCC
9-bus system considered a more realistic and detailed cyber
topology with various components, including protective relay,
network switch, router, and control center computers as shown
in Fig 12. Protective relays connect cyber and physical net-
works with capabilities of control and monitoring the physical
network and transferring data and information over the cyber
network.

Cyber Networks

Power Networks

Fig. 12: An Augmented Cyber-Physical Representation for
WSCC System [217]

Fig 13 shows the preliminary study on the motif patterns at
the cyber-physical connection under different attack scenarios.
The investigated cyber attack scenarios consider cascading
failures from communication networks to physical networks,
which is connected through protective relays. Based on the
topological importance of cyber nodes, the adversary targets
the most important cyber node and removes it along with
all connected edges. The importance of cyber nodes is mea-
sured by their topological properties, including node degree,
closeness centrality, and betweenness centrality, respectively.
Once the cyber attack reaches protective relays, which con-
trols and monitors physical networks, the connected physical
component is removed from the physical network. This action
can result in a physical disturbance affecting the operation of
the power system. With the simulation, there is a remark of
“Physical Network Breakdown”, specified by the black dash
lines in figures, showing the period from the initial physical
disturbance triggered by cyber attacks until all loads are not
supplied by the system or the system is blackout (whichever
comes first).

Under all attack scenarios, we can observe that the Physical
Network Breakdown is triggered by the decrease of M2,
M3 and M4. The M2 is I.C in Fig. 8, wherein two cyber
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nodes are connected and each one controls a physical device.
Since protective relays bridge the cyber and physical network,
the reduction of above motifs can indicate the potential risk
of cascading failures and disturbances on power systems’
functionalities. Based on the results, we observe that the 4-
node motifs, particularly M2, M3 and M4, can represent
the resilience and reliability of the cyber-physical power grid
against cyber attacks at cyber-physical connections. A higher
percentage of M2 and M3 in the system indicates that the
cyber-physical network possesses greater resistance to prevent
cyber attacks from disrupting physical network and thus main-
tain the functionality of power systems. Inspecting M2, M3

and M4 at the boundary of the cyber and physical networks
can provide valuable information about potential risks within
the system.

From the above preliminary study, it can be observed that
higher-order subgraph analyses can provide new insights into
resilient network design and system risk analyses, especially
for small networks with nodes from different domains. Further
investigation and development of high-order subgraph analyses
on modern power systems could enhance situational awareness
of cascading failures across different networks by examining
variations of motifs. Additionally, [218] has also investigated
the resilience of cyber-physical power systems, leveraging
higher-order motifs to account the impact of cyber networks
on power delivery against various hazards. For modern power
systems, it is paramount to consider heterogeneous networks
of cyber, physical, and social domains. Even though the
topologies of these networks are geographically overlapped,
there are many distinctions within local networks, where the
higher-order subgraph analyses at the level of small network
patterns will be more useful. The interactions and interdepen-
dence among different networks also involve with different
patterns of subgraphs. The risks and uncertainties associated
with nodes may impact the higher-order subgraph patterns by
taking out of suspected nodes from the network. Higher-order
subgraph analyses can be a useful tool to dissect the underlying
relationships for more stringent design with better resilience
against propagated adversarial events.

Through a granular graphical representation of multilayered
power systems, higher-order subgraph analyses can disclose
the key local structure within the network as well as identify
critical connections across different networks, especially for
the interconnected cyber and physical networks. The cyber
network serves as the carrier of information and data that are
critical for the physical network to reliably deliver energy.
Existing standards and requirements for network design and
system operation emphasize reliability and resilience within
each network or domain but often overlook the compounded
effects stemming from interactions with other systems [156].
Additionally, there is an increasing integration of RES at both
large scale power plants and residential level DERs. This rising
penetration of RES has introduced more uncertainties into
operating power systems, considering the stochastic nature of
weather information and human decision-making. Given the
reliance on communication networks for monitoring and con-
trolling RES, cybersecurity becomes crucial for the security
and safety of both RES and the entire power grid. Higher-

(a) Node Degree-based Attack

(b) Closeness Centrality-based Attack

(c) Betweenness Centrality-based Attack

Fig. 13: Motif Concentration on the WSCC 9-Bus Cyber-
Physical Connections Under Different Cyber Attacks [216].
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order subgraph analyses can contribute valuable insights to
the network design of interconnected cyber-physical systems,
bridging the information technology (IT) and operational tech-
nology (OT) to ensure and enhance the resiliency and security
of modern power systems. The interconnected human/social
networks with power grid can also be analyzed through
network motifs to dissect their interdependence, especially
considering the impact from RES, for a resilient multilayered
network design. New benchmarks could be developed for
designing resilient modern power networks, considering their
heterogeneous architecture using network motifs.

B. Scientific Machine Learning for the Optimal Operational
Resilience

Machine learning and data analytic are important tools for
modern power systems considering the need to process large
amount of data across different domains. Various machine
learning algorithms have been applied to power systems for
secure and resilient operations. They can provide suggestions
or recommendations to operators to ride through contingen-
cies if similar pattern has been included in historical or
they are predictable. However, increasing unexpected hazards,
whose patterns are not included or predictable, could com-
promise the trustworthiness of machine learning algorithms.
It is important to consider distinct governing mechanisms
in different systems across different domains and devices
to make optimal decisions, but this can lead to intractable
problems. With the introduction of more external influences,
particularly the highly stochastic human and weather factors,
into power system design and operation, numerous intractable
tasks need to be addressed in power system operations. Unlike
the optimization models, where all power system constraints
are explicitly listed, machine learning techniques are limited
for their applications in power systems, considering the need
of high quality and quantity of training data, their infeasible or
inconsistent solutions for practical implementation, and their
low generalizability and interpretability. In order to prompt the
development and application of artificial intelligence in critical
infrastructures with direct control and operation, it is of great
importance to validate and verify aleatory uncertainties from
heterogeneous data and epistemic uncertainties from machine
learning algorithms.

SciML is an emerging field that combines machine learning
and scientific computation to provide interpretable models
with improved verification and validation in applications [219].
It becomes crucial for efficient, explainable, and trustwor-
thy decision-making and problem-solving leveraging machine
learning and scientific computation to ensure system reliability,
security, and resilience. Physics-informed neural networks
(PINNs) is one type of SciML, which have encoded model
equations, such as partial differential equations and physics
constraints, as components of deep neural networks. These
features allow PINNs to address problems that are described
by few data or noisy experiment observations. PINNs can be
viewed as an unsupervised learning when they are trained
solely using physical equations and boundary conditions for
forward problems. For inverse problems or dealing with noisy

data, PINNs are considered as supervised learning with labeled
data sets [220]. For power systems, the core paradigm of
PINNs includes physics-informed loss function, initialization,
design of architecture, and hybrid physics-deep learning, has
been used for various applications, such as state estimation,
dynamic analysis, power flow calculation, optimal power flow,
anomaly detection and location, and model and data synthesis.
The improved accuracy, efficiency, and generalizability have
demonstrated benefits of PINNs in power system problems
[221]. However, existing applications focus on the physical
networks, while modern power systems are cyber-physical
systems with RES, associated with more uncertainties. It is
essential to consider heterogeneous architectures and data from
different domains to account for external influences on power
system problems. Meanwhile, the spatial-temporal property
of resilience should be considered during the development of
SciML for its application in power systems problems, lever-
aging its scientific computing capabilities to provide feasible
and trustworthy solutions for resilience enhancement.

Modern power power systems are generally graphs with
different attributes across different domains. The associated
data and features can be represented using the graph-structured
data as G=(V, E), where V is the set of nodes and E is
the set of edges. There are generally a nodal feature matrix
Xnode and a edge feature matrix Xedge associating with V
and E, respectively [222]. For the spatial-temporal graph, the
data can be represented as Gptq=(Vptq, Eptq, Xptq) considering
the variation of topology and attributes along with time t
[223]. As modern power systems are increasingly dependent
on weather and end-user behaviors, which depend on the
geographic and demographic information, such information
may play an important role in influencing power system opera-
tions. The geometric correlation of data across power systems,
weather, and human factors is necessary for inferring modern
power systems’ status. In addition, cyber networks carry all
information for operators and stakeholders. The topological
attributes and data of cyber networks are essential for cyber
resilience. Graph data of cyber networks should consider cyber
features, such as re-transmissions, round trip time, number of
packets, frame length, and etc. These factors can determine the
security of cyber networks, as well as the physical data carried
by cyber network, which can determine the status of power
systems. The information on external factors, such as weather
conditions and human behaviors, can also be transmitted to
improve the assessment of the operation of weather-dependent
and human-dependent RES.

Graph neural networks (GNNs) are a popular machine
learning and data mining approach for graph data. GNNs
have demonstrated great capability in handling graph data in
different fields such as computer vision, forecasting, recom-
mendation systems, and event detection, leveraging topological
attributes [224]. GNNs have also been integrated with different
power system problems, including load forecasting, anomaly
detection, and contingency prediction, through encoding power
system data in graphs [225]–[227]. Considering the interaction
and interdependence across different domains, particularly
their heterogeneous networks and data, there is a great interest
in further developing GNNs to process graph data from various
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domains in modern power systems. Simplicial neural networks
(SNNs) have recently emerged as a way to deal with multi-
dimensional graphs with higher-order interactions between
vertices [228]. In [229], Chen et al. proposed a block simplicial
complex neural networks (BScNets) to integrate knowledge
on interactions among multiple higher-order graph structures
for link prediction. In [230], Chen et al. utilized persistent
homology and SNNs to construct a higher-order topological
neural networks to efficiently learn outages in distribution
networks. SNNs could potentially be applied to interpolate
data and their interactions across heterogeneous networks in
modern power systems, leveraging the topological features
(both geographic and geometric information) and attributes
across different domains.
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Fig. 14: Power system state transitions considering distur-
bances and control actions.

Fig. 14 categorizes the states of modern power system into
normal secure, normal insecure, emergency, and restoration
based on operational conditions, as well as demonstrates the
transition among these states to capture the temporal property
of resilience under adversarial events:

‚ Normal Secure: all equipment is operating within limits
and no critical contingency will cause real-time opera-
tional limit violations.

‚ Normal Insecure: all equipment is operating within real-
time operating limits, but one or more contingencies will
cause operational limit violations.

‚ Emergency: some equipment is operating outside of real-
time operational limits.

‚ Restoration: there has been a major outage.

Disturbances from natural disasters, device failures, cyber
attacks, or human mis-operations can cause a modern power
system to transition from Normal Secure to other states,
depending on the severity of the disturbance and the system’s
level of its inherent resilience. Different control actions are
taken to return the system back to normal secure. It is worth
noting that some emergency state situations have to shed loads
for system-wide resilience and security. Thus, the emergency
control first brings the system into restoration state with
regional outage and then moves to normal state for the entire
system through restorative control. This state transition can be

explicitly expressed through physical models and constraints
of power systems, and disturbances from other domains (e.g.
extreme weather, cyber threats, human factors) could be esti-
mated through machine learning techniques. Additionally, this
state classification with the consideration of external influences
can assist human operators and machine learning techniques
more efficiently identify the optimal solution for modern power
systems’ resilience by eliminating inappropriate actions and
state transitions.

By leveraging PINNs’ capability to interpolate physical
models with encoded equations, GNNs’ capability to handle
graph data, deep learning’s capability to process heterogeneous
data, and the physics-guided state transition, we propose a gen-
eralized SciML-based framework for modern power systems,
as shown in Fig. 15. The proposed SciML-based framework
aims to provide trustworthy analyses, recommendation, and
control for modern power systems considering their heteroge-
neous networks and data across different domains.

From our perspective, in modern power systems, heteroge-
neous networks, including operator networks, communication
networks, and physical networks, can be abstracted from
the entire system, along with their interconnections. These
networks can be represented with different graphs and graph-
structure data as multi-attribute nodes and edges. These in-
terconnected graphs capture the system’s status, incorporating
physical measurements and cyber features, geographic infor-
mation along with associated weather data, and demographic
information for inferring energy consumption and local flex-
ibility with households’ DERs and EVs. With the physical
models and constraints of power systems, SciML has the
potential to harness these data for efficient and trustworthy
decision-making processes, thereby enhancing modern power
systems’ operational resilience against unexpected contingen-
cies. The proposed generalized SciML framework will take in
this graph-structured data as input and handle the inter- and
intra-graphs, heterogeneous data, and mathematical models
that describes the state of modern power systems, guiding
operations for optimal resilience. Particularly, the integration
of RES and EVs into power grids has increased the com-
plexity of control problems, affecting the system’s stability
and security. Stochastic influences from weather condition,
human decision, and cybersecurity need to be estimated for
their compounded impacts on system operations. The goal
of this generalized SciML-based framework is to holistically
analyze modern power systems, considering the heterogeneous
networks and data for theoretically explainable situational
awareness of foreseeing disturbances. This framework aims
to offer trustworthy recommendations for operators to defend
against contingencies and directly control the system or de-
vices to prevent or ride through cascading failures, utilizing
all available resources connected to modern power systems.

C. Implications and Implementations
As we emphasized earlier, constructing a granular model

of modern power systems that considers interconnected cross-
domain networks and encapsulates heterogeneous information
and external factors is crucial. Based on the above discus-
sion, we believe that higher-order subgraph analyses and
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Fig. 15: A generalized SciML-based framework to handle heterogeneous networks and data of modern power systems for
verifiable and trustworthy analyses, recommendation, and control with the enhanced entire system’s resilience.

SciML have the potential to generate new knowledge and
advance techniques for enhancing the inherent resilience of
modern power systems, considering their interconnected het-
erogeneous networks and data. While both techniques exhibit
great potential for improving the resilience of modern power
systems, given their cross-domain multi-layer architectures,
there remains a need for additional research and development
to facilitate their integration into real power systems.

1) Implications: Higher-order subgraph analyses enable a
comprehensive view and analyses of multilayered heteroge-
neous networks in power systems. The preliminary studies in
this paper show that specific motif patterns are essential local
structures for the security and inherent resilience of modern
power systems regarding their physical networks as well as
interconnections between cyber and physical networks. As
modern power systems closely interconnect with other critical
infrastructures, such as transportation networks, gas networks,
and thermal networks, higher-order subgraph analyses can
also be applied to discover the key connections among those
networks for an overall resilience enhancement. Higher-order
subgraph analyses offer a pathway to contribute new knowl-
edge and set standards for the resilient system design in both
single- and cross-domain networks, enhancing the inherent
resilience and security of modern power systems and other
interconnected infrastructures.

SciML will be an indispensable tool for future power sys-
tems and other critical infrastructures to provide trustworthy
solutions for various complicated and intractable tasks. As in
Fig 15, the proposed generalized SciML-based framework has
the capability of processing large amounts of heterogeneous
data across different domains and networks and to provide
explainable and trustworthy decision-making for system op-
erations with guaranteed resilience, leveraging features from
PINNs, GNNs, reinforcement learning, and deep learning.
Integrating SciML with industrial control and monitoring

devices and energy management systems can enable agile and
trustworthy operations in power systems against unexpected
events raised from different domains, and thus enhance the
system’s operational resilience. It is important to note here that
the proposed framework is a general direction for developing
SciML algorithms for their applications in modern power
systems. This generalized SciML-based framework aims to
bridge recent advancements of SciML and broader artificial
intelligence (AI) with their applications to modern power
systems considering their cross-domain multilayered architec-
tures. With specified tasks, constraints, features, and data,
the developed SciML-based applications should be compatible
with any power grid in different regions for various situations.

With the electrification of other critical infrastructures, such
as transportation systems, water systems, manufacturing sys-
tems, etc., it is essential to consider the interdependence and
interactions of interconnected heterogeneous networks in their
design and operation. Further investigation and development of
higher-order subgraph analyses and SciML can advance their
applications to other critical infrastructures, enhancing their
resilience and security.

2) Implementations: First of all, synthetic cyber-physical
power system models are essential for studying modern power
systems, considering their cross-domain multi-layer archi-
tectures. These models can enable comprehensive analyses
of how disturbances from different domains, such as cyber,
weather, and human factors, can impact system performance.
This is necessary for the investigation and development of
higher-order subgraph analyses and SciML on modern power
systems. As mentioned earlier, synthetic power grids of phys-
ical networks [180]–[183] have been created based on geo-
graphic and demographic information, providing significant
values for power system studies. However, these models lack
a corresponding cyber model that captures the interactions and
data transactions among utilities, operators, and customers.
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The core structure of cyber network is characterized in [194],
which can be utilized to create synthetic cyber models. By
mapping cyber and physical networks, it becomes possible
to establish connections between power system simulation
and communication emulation through communication proto-
cols, which can provide a more comprehensive power system
model. This approach offers a comprehensive view of modern
power systems and allows researchers to replicate various
hazard scenarios with more detailed data across different
domains.

Secondly, real or realistic data of modern power systems
is crucial for the development and application of SciML.
The increasing integration of EVs and RES on the customer-
side has highlighted the importance in human factors to
the system’s operation, which are highly stochastic. Human
factors and customer-side decisions are influenced by various
factors, including weather and economic considerations (e.g.,
electricity prices, incentive mechanisms, etc.). It is essential
to recognize that the data for modern power systems should
encompass measurements of physical networks, such as energy
consumption, power flows, voltage, and currents, as well as
external influences, like weather information, cybersecurity
data, and economic information. Furthermore, this data should
be linked with the power system model, both topologically or
geographically, to better capture their underlying correlations.
A systematic dataset can facilitate the development and vali-
dation of SciML-based data-driven approaches.

Last but not least, computing power is needed for both
higher-order subgraph analyses and SciML for their appli-
cations in large-scale power systems. The number of motifs
increases exponentially with the increase of nodes in the
system, which can take a long time to finish the subgraph anal-
yses for cross-domain multi-layer power systems. Particularly,
the real cyber network has more components than physical
networks to facilitate a comprehensive analysis, and the social
network involving DERs and EVs requires different levels of
abstraction to effectively aggregate and estimate their impacts
on power grids. As for SciML, there are millions of variables
and data in the system. Training a model with such a large
dataset also takes a significant amount of time. Leveraging
graphics processing unit (GPU) or cloud computing to perform
these tasks is necessary. It is also possible to utilize quan-
tum computing to address the intractable problems associated
with SciML, given the promise of its large-scale commercial
utilization. Additionally, the transmission of a large amount
of data over a wide area also warrants the development
of communication networks. However, the investment and
allocation of computing resources to support various analyses
and applications that enhance the resilience and security of
critical infrastructures depends on stakeholders’ decisions.

Overall, the adoption of higher-order subgraph analyses
and SciML in modern power systems should consider the
following three key aspects:

(a) It is necessary to create or obtain comprehensive realistic
cyber-physical power system models that respect the
heterogeneity in cyber and physical networks regarding
their topology as well as their interconnected and inter-
dependent functionalities.

(b) It is essential to obtain real or realistic power system
data across different domains, including physical mea-
surement, cyber features, weather data, and geographic
and demographic information.

(c) More computational capability is needed for the imple-
mentation of higher-order subgraph analyses and SciML
in large-scale power systems considering their networks’
complexity and large amounts of variables in different
domains.

VIII. CONCLUSION

Modern power systems are cross-domain multi-layer com-
plex systems of systems with the integration of cyber and
physical networks, and an increasing penetration of RES at
both transmission and distribution levels. As the frequency
of unexpected disturbances increases, resilience becomes an
essential and desirable property for modern power systems
to maintain their functionality under any circumstance. In
this paper, we have provided a comprehensive review and
discussion of power system resilience and its enhancement
techniques from different perspectives. Considering the com-
plexity of modern power systems, existing power system
resilience enhancement techniques have focused on certain
domains: cyber or physical; specific levels: generation, trans-
mission, or distribution; or particular stages: construction or
operation. However, it is important to recognize that there
are mutual influences among different resilience enhancement
techniques. Enhancing cyber resilience ensures data integrity
for monitoring and control power systems, thereby improving
the operational resilience. Enhancing infrastructural resilience
provides additional flexibility and resources to enhance opera-
tional resilience. Enhancing operational resilience necessitates
strengthening and investing in both cyber and physical in-
frastructures. These techniques from different categories could
prompt the development of each other for the entire system’s
resilience. The interdependence and interactions across differ-
ent networks play a critical role to determine and enhance the
resilience of modern power systems against unexpected events.

As a cross-domain multi-layer complex system of systems,
it is paramount to holistically design and operate modern
power systems considering heterogeneous networks and data
for optimal resilience. This requires an understanding of the
interdependence among different networks structurally and
functionally, as well as the ability to deal with mixed data
from different domains in modern power systems. As a critical
infrastructure for modern society, it is necessary to provide
explainable, interpretable, and verifiable models and tools
for trustworthy decisions on constructions and operations.
Leveraging the rapid development and application of artificial
intelligence, we propose two directions for future studies of
resilient modern power systems: higher-order subgraph analy-
ses and SciML. Higher-order subgraph analyses can disclose
more underlying relationships of network resilience for intra-
and inter- domain network design. SciML can be developed to
deal with heterogeneous data and network structures for agile
system operations with ensured resilience against unexpected
hazards raised from different domains. With a comprehensive
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cross-domain multi-layer modern power system model and
its data from different domains, the new knowledge and
techniques from higher-order subgraph analyses and SciML
can contribute to new standards and requirements for resilient
modern power system design, operation, and management.
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