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Abstract—Electric vehicles (EVs) are expected to revolutionize
the global transportation sector by promoting sustainability and
eco-friendliness. The continuous proliferation of EVs requires
an expansion of the existing charging infrastructure to meet the
corresponding increase in electricity demand. Such an expansion
requires an accurate forecasting of charging demand in both
space and time domains for a well-planned allocation of charging
stations (CSs). This paper proposes a Graph Convolutional
Neural Networks (GCNN) based approach combined with a Long
Short-Term Memory (LSTM) to predict the future charging
demands of EVs. The proposed architecture fuses the benefits of
both GCNN and LSTM to extract the underlying spatio-temporal
features from the collected dataset. The training dataset reflects
the coupling between the power and transportation systems,
and thereby it helps the proposed deep learning architecture
to capture the spatio-temporal patterns of the inter-connected
environment. A comparative analysis is conducted with other
state-of-the-art EV charging load prediction models to assess the
prediction performance of the proposed load forecasting strategy.

Index Terms—Electric vehicles, Charging demand, forecasting,
deep learning, and graph neural networks.

I. INTRODUCTION

THE rapid increase in the world population is accompanied

by a significant increase in fossil energy consumption.

This raises major socio-economic concerns, such as increase in

greenhouse gas emissions, as well as congestion and services

shortage in critical infrastructures [1]. The use of electric

vehicles (EVs) and the integration of renewable energy sources

represent a promising solution to address the concerns related

to the extensive use of fossil fuels [2]. Despite the zero-

emission characteristic of EVs, a number of challenges still

need to be tackled to facilitate their wide penetration in the

EV market. One of these challenges is devising an effective

planning strategy for satisfying EVs charging requests.

Efficient planning, expansion, and placement of CSs require

accurate forecasting of EVs traffic demand. Such a forecasting

model should consider the volatility and the stochastic nature

of EVs charging load to establish a reliable and accurate

allocation of CSs and also to prevent under-utilization and

overloading of the CSs. In addition, accurate forecasting

of EVs charging demand allows for a better and optimum

utilization of the available planning budget and resources.

A. Literature Review

Multiple load forecasting schemes were proposed in earlier

literature. In [2], the authors used a Monte Carlo approach to

generate experimental scenarios by analyzing occupant travel

behavior. The Monte Carlo simulations were also implemented

on a large-scale system to predict the EV charging load in [3].

Other works implemented the Auto-Regressive Moving Aver-

age (ARIMA) model to predict the individual buses’ charging

demand [1] and the aggregated charging demand [4]. The

work in [5] employed a Markov-chain-based traffic strategy

to design a spatio-temporal EV charging demand prediction

model, where real-time CCTV data were analyzed to predict

the charging power demand in an urban road network. As

an improvement to the Markov-chain-based implementation

in [5], the authors in [6] proposed a more realistic hidden

Markov model to predict the future charging demands. Al-

though the aforementioned approaches predicted the future EV

charging loads, in a realistic system setting, they fail to capture

the inherent uncertainties (i.e., CSs capacity or driving habits)

associated with EV charging demand patterns.

Considering the uncertainties in predicting EV charging

load, computational intelligence-based approaches have gained

popularity in prediction due to their strong generalization

abilities [7]. In [8], the authors implemented artificial neural

networks (ANN), rough ANN (RANN), and recurrent RANN

(RRANN) to predict future EV charging loads. Results re-

vealed that the RRANN model produced the most accurate

forecast compared to the other models. As the RANNs are sus-

ceptible to vanishing and exploding gradient problems, another

work overcame this limitation by implementing a long short-

term memory (LSTM) based approach [9]. Other implemen-

tations in this direction have explored diverse adaptations of

LSTM that include LSTM with an attention mechanism [10],

Gaussian process regression [11], or with convolutional neural

network (CNN) [12]. All of these modifications to the LSTM

model contribute to the refinement and optimization of the

overall model. Unfortunately, all these aforementioned works

fail to capture the long-term dependencies of charging data.

The accuracy of the charging load prediction strategy



depends on the non-linearity and generalization ability of

the deep learning model. In this direction, a CNN-based

approach with an attention mechanism was proposed in [13].

The CNN-based approach can extract more complex cou-

pling relationships and minimize the computation time. An

autoencoder-based model was proposed in [14] to generate the

EVs load profiles. With the evaluation of deep learning-based

load prediction models, some studies advance the proposal

of hybrid strategy where two or more models are combined

together to predict the future charging demand. For instance,

the authors in [15] combine a stacked autoencoder with an

LSTM-based model. Autoencoder was also combined with

Restricted Boltzmann Machines (RBM) with the aim of better

feature extraction [16]. However, these works failed to capture

the inherent temporal dependencies present in dataset.

The later developments in this domain have harnessed vari-

ous innovations and progressions such as employing Bayesian

deep learning [17] to capture uncertainties in forecasting

and probabilistic queuing models with CNN to capture the

driver behaviors and charging service limitations [18]. With

the significant increase in computing power, deep learning

algorithms such as gated recurrent units [19] and recurrent

neural networks [20] further enhanced the precision of load

forecasting accuracy. However, the aforementioned algorithms

often struggle to effectively capture the complex relationships

and dependencies present in power systems data.

B. Problem Formulation

In practice, the power system and the transportation network

are tightly coupled. Failing to integrate such a coupling in

the model results in poor prediction performance. Next we

summarize the main limitations of literature.

• First, existing deep neural networks (DNNs) strategies

are topology-unaware, and thus, they fail to capture the

spatial features.

• Second, existing works show a high degree of redundancy

for geographically scattered data, and ignore the power-

transportation systems dependencies.

• Third, the literature fails in handling heterogeneous data

that comes from multiple sources including the power

flow and traffic density.

Thus, graph-based detection techniques represent a more

suitable solution that is more powerful and computationally

more efficient than standard DNNs. Some works that proposed

graph neural networks (GNNs)-based approaches are i) [21],

which implemented a spatiotemporal GNN to predict the

operating status of a CS, and ii) [22], which used a graph

reinforcement learning method for a CSs recommendation

system. Therefore, this paper uses a graph convolutional

neural network (GCNN)-based approach for predicting fu-

ture EV charging demand. The GCNN captures the spatial

characteristics of the power and the transportation systems

simultaneously. Moreover, the LSTM cell is combined with

GCNN to capture the long-term temporal dependencies in the

load data. By fusing LSTM with GCNN, the model can capture

both the spatial and temporal patterns in the charging load data.

C. Major Findings

The major contributions of this research are summarized

as follows. First, a GCNN-LSTM fusion model is proposed

in this paper, where GCNN captures the graph-structured

feature information, and LSTM models the temporal corre-

lations of the charging load data. The trained dataset captures

the coupling between the power and transportation systems,

leading to an accurate charging demand prediction. Then, we

compare our proposed approach with the existing benchmark

strategies in terms of different accuracy metrics. Our results

have revealed that the fusion of GCNN and LSTM models

produces an average error of 4.55 % only over the considered

time period. This confirms the model’s ability to capture

complex patterns in both the transportation and power data.

II. POWER-TRANSPORTATION SYSTEM MODELING

This section presents the system model of the coupled power

and transportation systems. The power-transportation system

is modeled as a heterogeneous graph, G = (NP, EP), where

NP = {1, 2, .., B} with B denoting the total number of buses

and EP indicates the set of all nodes and edges in the network.

The load or generator substations are considered as power

nodes, and each of the power nodes has its own active/reactive

power and voltage profile. The power flows in the transmission

lines are determined by the associated line impedances.

We use the geographical coordinates of power substations

and CSs in a given geographical region to integrate existing

CSs within the power system. We define a circular boundary

of a particular radius for all load substations and assign all CSs

that remain inside the radius to the respective load substations.

If a single CS is located inside the boundaries of multiple load

substations, we determine the Haversine distances between

power substations and CSs and allocate those CSs to load

substations based on the shortest Haversine distance.

III. EV CHARGING DEMAND PREDICTION MODEL

In this section, we outline the procedure of dataset genera-

tion, and describe the proposed deep-learning architecture. The

efficacy of the proposed model relies heavily on the effective

extraction of the multi-dimensional features from the coupled

power and transportation systems data. In this regard, a GCNN

architecture combined with LSTM is proposed to improve the

prediction accuracy of EV charging demand by leveraging the

spatio-temporal dependencies present in the coupled dataset.

A. Dataset Generation

Future planning and operation of the EV charging in-

frastructure require accurate prediction of the EV charging

demand. Therefore, generating a dataset over a wide temporal

horizon is crucial. Consequently, we generate the temporal

features of the constructed graph in the form of time-series

data that simulate the power flow within the system. To execute

the power flow analysis, we employ Newton’s method to

determine the active and reactive power flows on MATLAB’s

MATPOWER platform [23]. The first step involves normaliz-

ing the load data obtained from the Electric Reliability Council



of Texas (ERCOT) [24] into a scalar vector, F . The active

and reactive power values from the previous timestamp are

then multiplied by a scaling factor obtained from a normal

distribution with a mean of 1 + 0.025 ∗ F and a standard

deviation of 0.01. This process introduces dynamic variations

in the time-series data, contributing to the dynamic range of

charging load values.

Specifically, the transportation data contains information on

hourly traffic density at each CS, based on which, the hourly

demand is estimated. The active and reactive power required

by the CSs at a power substation is calculated by aggregating

the total power demand of the CSs connected to that specific

substation. Such a comprehensive dataset, containing the traf-

fic flow information and the EV charging demand data, enables

accurate training of the proposed GCNN-LSTM model.

B. Graph Data Representation and Spectral Graph Filtering

As the coupled power and transportation systems can be

represented as a graph, they can be effectively analyzed using

GCNN. The GCNN can predict the future charging demand by

fusing the temporal features from the power and transportation

systems (e.g., power injections, traffic flow rate, etc.) and the

topological features (i.e., the spatial distribution of the power

substations and CSs and their connectivity).

In the context of EV charging demand forecasting, the

power system can be represented as an undirected graph,

G = (N , E ,W), where each node corresponds to a power

substation; N denotes the set of B nodes; the edge set E
identifies the power lines; and W ∈ R

N×N is the adjacency

matrix. The adjacency matrix entry Wi,j between nodes i
and j can be determined using the k-nearest neighbor (k-

NN) algorithm. Thus, each node is connected to its k nearest

neighbors using the Gaussian kernel as a distance function:

Ai,j =

⎧⎨
⎩ e

(
− ||xi−xj ||2

2σ2

)
, ||xi − xj ||2 � ω

0, otherwise,
(1)

where xi and xj denote the feature vectors of nodes i and j,

respectively; σ stands for the width of the Gaussian kernel;

and ω represents the distance threshold.

The graph data needs to be represented in the spectral

domain to apply the spectral graph filtering technique and

GCNN-based feature extraction approach. In this regard, the

process begins with obtaining the graph Laplacian matrix

which contains the feature information of the graph structure.

The unnormalized Laplacian matrix Δu of graph G is defined

as Δu = L − W, where L ∈ R
B×B denotes the diagonal

matrix with entries Li,i =
∑

j Wij . The normalized graph

Laplacian matrix is defined as follows:

Δ = L−1/2ΔuL
−1/2 = I− L−1/2WL−1/2, (2)

where I indicates the identity matrix. Next, the time-series data

is represented in the frequency domain by performing a graph

Fourier transform (GFT). This representation decomposes the

data into a set of orthogonal basis functions that constitute the

eigenvectors of the Laplacian matrix. The GFT takes the signal

f ∈ R
n as an input, where n indicates the number of features.

If ψ collects the orthonormal eigenvectors and Λ identifies the

associated set of ordered non-negative eigenvalues μn ≥ ... ≥
μ2 ≥ μ1 = 0, then the singular value decomposition (SVD)

of Δ is given by Δ = ψΛψ�. The inverse GFT of signal f
is expressed as f = ψf̂ . Let g be the filter response signal,

then the spectral convolution is performed over f as [25]:

g ∗ f = ψ
((
ψ�g

)� (
ψ�f

))
= ψ diag (ĝ1, . . . , ĝn)ψ

�f,
(3)

where � denotes the Hadamard product. Thereafter, the sig-

nal f is filtered by the spectral filter and is expressed as

ψHψf . However, this type of filter only extracts features

from a certain spatial region which makes the process less

effective. Therefore, to tackle this problem, the Kth-order

Chebyshev polynomials Ck(Λ̃) was adopted in this study [26].

The Chebyshev polynomials can be recursively generated as

follows: C0 = 1, C1 = x, and Ck(x) = 2xCk−1(x)−Ck−2(x)
and the filtering process is formulated as:

ψH(Λ)ψ�f = H(Λ)f =

K∑
k=0

αkCk(Δ̃)f, (4)

where Δ̃ = 2Δ/μn −E. Concretely, pk = 2Δ̃pk−1 − pk−2

is calculated recursively starting with p0 = f and p1 = Δ̃f .

Considering the sparsity of Δ, the computational complexity

of the filtering operation H(Λ)f is O(K|E|). The aforemen-

tioned formulation of the spectral convolution on the graph is

thereafter used to implement GCNN, which is discussed next.

C. GCNN Architecture

The proposed GCNN architecture for EVs charging load

prediction is depicted in Fig. 1. The input X is passed through

the graph convolution layers L, then to the fully connected

layer, Lf , where a softmax activation function is applied to

the input X . Particularly, the jth feature map is obtained as:

yj =

Hin∑
i=1

H(Δ)di, (5)

where di ∈ R
n signifies the ith feature map; Hin and Hout

denote the number of input and output filters, respectively; and

HinHoutK denotes the trainable parameters in the current fil-

ter. After being transformed into a one-dimensional array, the

output of the final layer is passed to the fully-connected layers.

Then the lowest Kn value is measured from each row of D
so as to get D̃ ∈ R

n×Kn , and thereafter σD =
∑

i D̃iKn/n.

Then, W̃ ∈ R
n×Kn is formed as W̃ = e−D̃2

ij/σ
2
D .

D. LSTM Cells Fusion

The prediction model takes the historical sequence of

the GCNN features as input. In particular, the time-series

prediction model performs a nonlinear mapping to ana-

lyze the history-driven time-series sequence features X =
(X1, X2, ..., XT ) and their target values y = (y1, y2, ..., yT−1)
to obtain the predicted value ỹT , where ỹT = f (X, y). The

objective is to learn the nonlinear mapping function f (·).
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Fig. 1. Architecture of the GCNN-LSTM prediction model.

In this context, we use LSTM cells to capture the long-

term dependencies in data. The main component of LSTM is

the memory cell that is capable of memorizing information

over an extended period of time. Specifically, LSTM assumes

a gated architecture consisting of an input gate, a forget gate,

and an output gate. The input gate takes the current input

and the prior hidden state as inputs and passes them through

a sigmoid activation function to produce a vector of values

ranging between 0 and 1. As for the output gate, it determines

which components of the cell state should be given as output to

the next layer based on the current input and hidden states. On

the other hand, the forget gate plays a key role in determining

which data from the previous time period should be discarded

using a sigmoid activation function. Once the output from the

GCNN layer is fed into the LSTM, the nonlinear mapping

function can be learned by the gated structure of LSTM as:

it = σ (Wi · [ht−1, yt] + bi) (6)

f t = σ (Wf · [ht−1, yt] + bf ) (7)

ot = σ (Wo · [ht−1, yt] + bo) , (8)

where σ (·) denotes the activation function; mt−1 and ht−1

indicate the state and output of the LSTM cell at t − 1,

respectively; and bi, bf , bo stand for the biases for the input

gate, the forget gate, and the output gate, respectively. The

cell’s current memory states, m̃t can be calculated as m̃t =
σ (Wc · [ht−1, yt] + bc). Moreover, the cell state mt and cell

output ht are: f t�mt−1+ it� m̃t, and ht = ot� tanh (mt).

E. Loss Function

The loss function of the GCNN-LSTM model is defined as:

LGCNN-LSTM = CE (p, l) + α‖Ω‖2, (9)

where p is the predicted value of the model; l denotes the

label; Ω represents all of the model’s parameters; α is the

regularization coefficient; and CE (p, l) is the cross-entropy

function that determines the difference between the actual and

predicted label. The last term, α‖Ω‖2, reduces the overfitting

of the model’s learning parameters. Next, we define the update

rule of the graph convolution parameters in each iteration as:

β∗ = β∗ + γ
∂LGCNN-LSTM

∂β∗ , (10)

where γ denotes the learning rate and β∗ ∈ R
K×T is the

Chebyshev polynomial coefficient of GCNN.

IV. EXPERIMENTAL RESULTS

In this section, the results of the EV charging demand

prediction are evaluated. First, the efficacy of the prediction

model is assessed in terms of different performance metrics.

Second, the performance of the proposed model is compared

with the state-of-the-art deep learning models.

A. Model Evaluation

In this paper, we present and evaluate three different pre-

diction schemes based on the type of data used: 1) prediction

using power system data only, 2) transportation data only, and

3) combined power and transportation data.

• Power system data: The original load data obtained from

ERCOT [24], contains a year-long load data. Monte Carlo

simulations are employed to extend the existing power

data to a five-year period.

• Transportation system data: The transportation data is

obtained from [27], which contains the traffic flow infor-

mation of 720 CSs located at Texas from the year 2016

to 2020. In the transportation data, a significant growth in

the traffic volume is observed. Analyzing this growth is

important for making accurate charging load predictions.

• Combined power-transportation system data: To achieve

a comprehensive view on the power and transportation

network, the growth in the traffic volume over the years is

scaled to the power data. Such scaling provides a mean-

ingful integration of both systems, providing a holistic

view of the coupled system.

Given a dataset over five years, the proposed GCNN-LSTM

model is trained on the first three-year data and tested on the

last two-year data using the three approaches mentioned above.

The model performance is evaluated in terms of normalized

root mean square error (NRMSE), and normalized mean abso-

lute error (NMAE). The performance metrics are formulated

as:

NRMSE =

√
1
n

∑n
i=1 (xa(i)− xb(i))

2

max (xb)−min (xb)
× 100 (11)

NMAE =
1
n

∑n
i=1 |xa(i)− xb(i)|

max (xb)−min (xb)
× 100%, (12)

where n stands for the number of samples; xb(i) indicates

the ith predicted data; and xa(i) denotes the ith ground truth

data. The maximum and minimum values of ground truth data



are represented by max (xb) and min (xb), respectively. The

prediction model is implemented using 150 iterations. Our

investigations reveal that the model achieved on average a

4.29% NMAE and a 5.82% NRMSE, which fall in the range

of expectation and indicate a good prediction performance.

The prediction results for the three different schemes over

the two-year period are depicted in Fig. 3. The figure shows

that the model performs better for the combined power and

transportation data. This is explained by the fact that by inte-

grating the information from both the power and transportation

systems, the model can capture the dependencies between

power utilization and traffic patterns. Thus, the coupled system

has the potential to provide more accurate and reliable deci-

sions than the other two schemes. In case of using the power

data only, the model relies on the historical power consumption

only and overlooks the influence of the transportation-related

features such as the traffic flow density. On the other hand,

using the transportation data only, the model fails to capture

the direct relationships between the power system and the EV

charging system, which leads to a less accurate prediction.

Overall, fusing the data from both the power and transportation

systems enables capturing more complex relationships, which

in turn helps to achieve robust prediction performance.

Fig. 2. The graph structure of the synthetic 2000-bus power

system of the State of Texas.

V. PERFORMANCE COMPARISON

A. Benchmark Detectors

This section compares the EV charging load prediction per-

formance of the proposed GCNN-LSTM model with bench-

mark models. In Table I, the prediction performances of differ-

ent benchmark strategies are presented for three different time

periods in terms of NMAE and NRMSE. The prediction model

assessed in the table includes CNN, FNN, SVM, and ARIMA

models. The adopted benchmark models represent diverse

attributes, encompassing structure (shallow/deep/graph) and

training methodology (unsupervised/supervised).

B. Hyperparameter Optimization

For hyparameter optimization, we use a grid-search hy-

perparameter selection strategy, where each hyperparameter
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Fig. 3. Predictions of EV charging load over a 2-year period.

is chosen within a specific stage [24]. For instance, in the

case of ARIMA, the parameters for differencing and moving

averages are fixed at 1 and 0, respectively. On the other hand,

SVM utilizes the scale and sigmoid kernels for the kernel

and gamma parameters. CNN’s design incorporates four layers

with 32 units, a neighborhood order of 5, Rmsprop optimizer,

and a ReLU activation function. Notably, for the proposed

model there were 4 layers in each stage with 32 units, 3

neighborhood orders, Adam optimizer, and ReLU activation.

C. Comparison Results

The Table I illustrates that the GCNN-LSTM model exhibits

the best forecasting performance over all the considered time

periods. Moreover, Table I shows that for all the models,

the errors increase with an increase in the time horizon.

The ARIMA model shows the lowest accuracy as it lacks

adaptability with the change in data patterns or trends. The

support vector machine (SVM) and the feed-forward neu-

ral network (FNN) models perform better than the ARIMA

model; however, their performances are not in line with the

expectations as they still show more than 20% error. The CNN

model outperforms the ARIMA, SVM, and FNN models but

still underachieves the proposed model. That is because CNN-

based model primarily focuses on extracting local features and

may not be as effective in capturing temporal dependencies in

the data. The proposed model reduces the errors by 15-20%

over the compared models. The aforementioned comparison

highlights the superiority of the proposed model in capturing

the complex patterns and dependencies in the coupled data,

resulting in more precise and accurate prediction performance.

VI. CONCLUSIONS

In this paper, we have presented a combined GCNN-LSTM-

based model for forecasting future EV charging demand. The

performance of the proposed model was tested using three

different datasets: one using power system data only, one

using transportation system data only, and one combining data

from both systems. Our investigations have revealed that the

proposed model exhibits less than 6% error for all considered

time periods. Moreover, we have compared the proposed

model with benchmarks, and we showed that the proposed

model provides 8% performance improvement over the CNN



and 15% improvement over the ARIMA, SVM, and FNN

models. Forecasting EV charging demand accurately enables

better budget allocation, charging infrastructure development,

and power grid management. This, in turn, improves the user

satisfaction rate as well as optimizes the allocation of available

resources. Thus, our approach can be effectively used as

a powerful tool for the strategic planning of EVs charging

infrastructure. As directions for the future, we will focus on

refining the model to explore the impact of other aspects, such

as socio-economic factors, on the charging demand.

TABLE I. Performance comparison between GCNN-LSTM

and other models.

Forecasting 
model Time stage NMAE [%] NRMSE [%] 

ARIMA 
4 29.12 33.41 

12 31.86 34.79 
24 34.56 36.01 

SVM 
4 19.53 20.33 

12 20.19 21.43 
24 21.08 22.97 

FNN 
4 18.65 20.65 

12 19.21 20.99 
24 19.93 21.56 

CNN 
4 12.33 11.00 

12 12.94 11.61 
24 13.84 13.74 

GCNN-
LSTM 

4 4.41 6.27 
12 4.50 6.31 
24 4.69 6.97 
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