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STICAP: Spatio-temporal Interactive Attention for Citywide
Crowd Activity Prediction
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Connecticut, USA

Accurate citywide crowd activity prediction (CAP) can enable proactive crowd mobility management and
timely responses to urban events, which has become increasingly important for a myriad of smart city
planning and management purposes. However, complex correlations across the crowd activities, spatial
and temporal urban environment features and their interactive dependencies, and relevant external factors
(e.g., weather conditions) make it highly challenging to predict crowd activities accurately in terms of dif-
ferent venue categories (for instance, venues related to dining, services, and residence) and varying degrees
(e.g., daytime and nighttime).

To address the above concerns, we propose STICAP, a citywide spatio-temporal interactive crowd activity
prediction approach. In particular, STICAP takes in the location-based social network check-in data (e.g., from
Foursquare/Gowalla) as the model inputs and forecasts the crowd activity within each time step for each
venue category. Furthermore, we have integrated multiple levels of temporal discretization to interactively
capture the relations with historical data. Then, three parallel Residual Spatial Attention Networks (RSAN) in
the Spatial Attention Component exploit the hourly, daily, and weekly spatial features of crowd activities,
which are further fused and processed by the Temporal Attention Component for interactive CAP. Along with
other external factors such as weather conditions and holidays, STICAP adaptively and accurately forecasts
the final crowd activities per venue category, enabling potential activity recommendation and other smart
city applications. Extensive experimental studies based on three different real-world crowd activity datasets
have demonstrated that our proposed STICAP outperforms the baseline and state-of-the-art algorithms in
CAP accuracy, with an average error reduction of 35.02%.
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1 INTRODUCTION

The proliferation of mobile devices and emergence of location-based social network services have
provided unprecedented opportunities of characterizing and understanding the citywide crowd
mobility patterns. Further prediction of the crowd participation levels with respect to different venue
categories (say, education, dining, or public transportation), namely, crowd activity prediction
(CAP), has started to gain much attention recently due to the significant values for smart city
management and planning. Through the monitored and forecasted crowd activity participation
within different venue categories, the city planners can proactively determine the allocation of
essential civil infrastructures and mobility-related resources.

Despite a few prior efforts [13, 14, 18, 28, 29, 33-35], there remain the following major chal-
lenges in realizing accurate CAP. The spatial distributions of crowd activities of the same category
in different regions are highly correlated with complex interactions, while those of different cate-
gories might interact with each other in varying spatial and temporal degrees. As illustrated in
Figure 1, the dining (food) activities of crowds in New York City (NYC) during 04/02/2012-
08/22/2012 demonstrated the similar frequencies among the surrounding regions, while the crowd
activities of shop & service categories may be shown to be largely concentrated in the Manhat-
tan area. Furthermore, crowd activities of different venue categories may often demonstrate the
short-/long-term patterns, while the crowd routines might vary across hours, days, and weeks.
For instance, we can see the daily routines (05/14/2012-05/16/2012) and weekly trend (04/02/2012—
08/22/2012) of crowd activities in Figure 2.

To address the above challenges, we proposed STICAP, a novel Spatio-Temporal Interactive
Crowd Activity Prediction approach. As illustrated in Figure 3, we aim to leverage the time-
and location-tagged location-based social network check-in data from Foursquare/Gowalla [9] to
model people’s activity status in different venue categories. To predict crowd activity, we select
several key features through extensive analysis upon the real-world check-in, weather, and other
context-related datasets. We have designed a spatio-temporal residual attention-based model for
CAP. The proposed model interactively differentiates the spatial and temporal characteristics of
the check-in data and accounts for the impacts of external factors of temperature, wind speed,
weather context, weekdays, and holidays on the CAP performance.

To summarize, we have made the following three major contributions:

(1) Comprehensive Interaction Analysis with Crowd Activity Data. We have con-
ducted extensive and comprehensive crowd activity data analysis based on real-world
Foursquare [2] and Gowalla [1] check-in data with more than 500k records in three metro-
politan cities (New York City, Los Angeles, and Tokyo) and identified the important spatial
and temporal characteristics and interactions of the crowd activities with respect to different
venue categories and the correlations with the external factors such as the weather condi-
tions and their impacts. These important insights will serve as the foundation of our core
STICAP designs.

(2) Spatio-temporal Interactive Residual Attention Module for Crowd Activity Predic-
tion. To further capture the spatio-temporal interactions, we have designed the Spatial At-
tention Component, Temporal Attention Component, and External Component within our pro-
posed STICAP. We have designed a novel Residual Spatial Attention Network (RSAN)
in the Spatial Attention Component, along with interactive integration of the Temporal At-
tention Component to capture and differentiate the spatio-temporal characteristics of crowd
activities, resulting in high accuracy in CAP problem. With the RSAN, the Spatial Attention
Component accounts for and differentiates the spatial interactions of the crowd activities
from different regions within the short- and long-term range. This way, STICAP captures the
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(a) Dining (Food). (b) Shops & Services.

Fig. 1. llustration of crowd activity heatmaps of food and shop & service categories of NYC in 04/12/2012.
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(a) Daily trend. (b) Weekly trend.

Fig. 2. (a) Transportation-related crowd activities in NYC (05/14/2012-05/16/2012); (b) food-related weekly
crowd activities in NYC at 5pm on every Friday (04/02/2012-08/22/2012).
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Fig. 3. lllustration of the citywide crowd activity participation monitoring and prediction.

dynamically varying contributions of different regions at different time steps. Specifically,
for the RSAN, we have designed a trunk branch and a mask branch to, respectively, process
and select the most important spatial features across different regions and time steps. The
Temporal Attention Component further captures the varying temporal interactions of crowd
activities from different time steps. With the complex spatio-temporal interactions captured
by the spatio-temporal attention, STICAP adapts to the complex crowd activity, leading to

accurate CAP results.
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(3) Extensive Experimental Evaluations with Real-world Datasets. We have conducted
extensive experimental evaluations of STICAP based on crowd activity datasets from three
metropolitan cities (two in North America and one in East Asia). Specifically, we have evalu-
ated our STICAP and other CAP approaches with two Foursquare datasets, including 153,610
check-in records in New York City (NYC) and 330,208 check-in records in Tokyo, Japan, as
well as a Gowalla dataset with 51,305 check-in records in Los Angeles (LA). Compared
to the baselines and the state-of-the-arts (such as CHAT [15], ST-Norm [10], FDW [6], and
DeepST [38]), our results show that STICAP demonstrates, on average, 35.02% improvements
in the CAP accuracy.

The rest of the article is organized as follows: We first review the related work in Section 2,
followed by data analysis, important concepts, and problem formulation in Section 3. The details
of our STICAP framework will be introduced in Section 4, followed by the experimental evaluation
in Section 5. We finally discuss the deployment of STICAP in Section 6 and conclude our work in
Section 7.

2 RELATED WORK

We briefly overview the related work as follows:

—Urban Mobility Applications. With massive urban mobility data generated by ubiquitous
devices [5], crowd mobility analytics have attracted extensive attention due to its significant social
and business values in global market. On location-based social network platforms, it is viable to
leverage users’ historical activity data and provide personalized recommendation services, such
as recommendation of points-of-interest (POIs), group-oriented advertisement [36], activity for
certain individuals or social groups [17, 23, 25, 39], and trip recommendation [31]. However, the
crowd flow prediction has received wide attention, and the existing studies largely focus on ap-
plications such as the urban crowd momentum monitoring [4, 8, 11, 30], human trajectory predic-
tion [12, 37], and abnormal event detection/prediction [16, 26].

However, forecasting crowd participation levels in different activity venue categories, i.e., crowd
activity prediction or CAP, remains largely unexplored. To fill this gap towards a key enabler of
predictive crowd distribution planning, our work focuses on designing a novel data-driven and
spatio-temporal interactive residual attention learning-based approach to realize accurate CAP.

—Crowd Mobility Learning. The large-scale crowd activity data makes it highly challenging
for applying the conventional statistical methods on crowd activity prediction. Therefore, many
deep learning approaches have been widely adopted to unleash their computing power [20, 21].

The prior arts such as DeepST [38] consider the crowd flow in a city as image-like data with
three different timeframes by partitioning the city map into grids and provide the deep learning
model to capture the spatial and temporal features of such image-like data. However, the design of
DeepST does not consider differentiating the dynamic contributions of different time steps, thus
yielding low accuracy in the dynamic crowd activity prediction. Zhou et al. [40] employed an
encoder-decoder framework, which excels in short-term prediction for multi-step citywide pas-
senger demand prediction problem. Huang et al. [16] proposed the multi-head spatio-temporal
attention mechanism to predict the occurrence of citywide abnormal events by considering the
correlations among the historical citywide crowd flow movement and the occurrence of abnormal
events.

Different from the above studies, we propose the interactive attention mechanism in citywide
crowd activity prediction problem. With spatial-temporal attention mechanism, we consider the
spatial dependencies in three levels of time ranges, temporal dependency of the check-in data, and
the impacts of external factors in each time step, to capture the semantic information within the
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Table 1. Overview of Various Datasets Adopted in STICAP’s Designs

City Check-ins Weather

NYC User ID, 153,610 check-ins, [40.55085247°N, Temperature, | 3,432 records, temperature:
venue ID, 40.98833172°N], [73.6838252° W, wind speed, [12, 100] °F, wind speed: [3,
venue 74.27476645° W . and weather 56] mph.

Tokyo | category ID, 330,208 check-ins, [35.51018469°N, condition. 3,432 records, temperature:
venue 35.86715042°N], [139.4708776°E, [28, 93] °F, wind speed: [1,
category, 139.9125931°F] 61] mph.

LA latitude, 51,305 check-ins, [33.6099916°N, 3,624 records, temperature:
longitude, and 34.1813999°N, [117.5323391°F, (33, 109] °F, wind speed: [3,
timestamp. 118.4984708°E] 32] mph.

check-in data. We note that our STICAP differs from the prior studies [38] in the following two
important aspects: (a) We have designed the trunk branch structure to capture the deep spatial
features across different regions and time steps and leverage the mask branch structure to quantify
their weights. This way, STICAP enables more interactive and flexible characterization of the spatio-
temporal crowd activities. (b) We have designed temporal attention to measure and characterize
the pair-wise correlations across different time steps, which overcome the limits to certain time
periods defined in fixed time spans [38]. Our experimental studies further validate the importance
of the aforementioned designs.

The attention mechanisms have been widely studied for time-series prediction [24], video pro-
cessing [7], sequence classification [22], geo-sensory time series prediction [19], and passenger de-
mand prediction [40]. Compared with the recent attention-based works for spatio-temporal data
like GeoMAN [19], we note that our work focuses on modeling the interactions through tempo-
ral attention weights, integrating the close, medium, and distant historical records to differentiate
their impact upon the predictions. Furthermore, while GeoMAN considers attention upon the geo-
sensory time series prediction for individual sensors, our work takes into account more comprehen-
sive spatial interaction knowledge, i.e., the spatial attentions upon the input grid-based heatmaps.
Addressing the prior studies’ limitations of prediction effective only for short-term periods, our
proposed adaptive method in STICAP integrates multi-level spatial and temporal information with
spatial-temporal attention modules with high accuracy.

3 DATASETS, CONCEPTS, & PROBLEM FORMULATION

This section outlines the various datasets studied in Section 3.1, introduces the important concepts
and problem definitions of this study in Section 3.2, followed by the spatio-temporal data analysis
in Section 3.3.

3.1 Datasets Studied

In this study, we use three types of datasets (summarized in Table 1) to model the crowd activities
of NYC, Tokyo, and LA. The details of each dataset are introduced as follows

— Crowd Activity Data. In this study, Foursquare check-in data [2] during04/02/2012-
08/22/2012 in NYC and Tokyo, and Gowalla check-in data [1] during 12/01/2009-04/30/2010 in LA
are collected and utilized to represent the crowd activities. The crowd activity data of NYC include
153,610 check-in records from 1,083 distinct users. The data of Tokyo include 330,208 check-in
records from 2,293 distinct users, while the data of LA include 51,305 check-in records. Each check-
in record is composed of the user ID, venue category, latitude, longitude, and check-in timestamp.
An example of Foursquare check-in record is shown in Table 2.

The venue category of the crowd activities can reflect the type of crowd activities relevant to the
urban venue functions. This study divides the crowd activities into nine categories for NYC and
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Table 2. A Location-based Social Network Check-in Example
User Id | Venue Category Latitude Longitude UTC Timestamp
1541 Cosmetics Shop | 35.70510109°N | 139.61959°E | Tue, Apr 03, 18:17:18 +0000, 2012
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Fig. 4. Interactive crowd activity distribution heatmaps of (a) NYC, (b) Tokyo, and (c) LA.

Tokyo, and 10 categories for LA based on the venue functions in the Foursquare/Gowalla check-in
datasets.

—External Factors. To analyze the influence of weather on crowd activity participation, we col-
lect hourly weather temperature, wind speed, and weather contexts from the open-source weather
data API [3] for NYC, Tokyo, and LA. Weather contexts are given by the phrases/words used for
describing the weather status, such as windy, cloudy, and so on. The data are collected during
04/02/2012-08/22/2012 for NYC and Tokyo, and collected during 12/01/2009-04/30/2010 for LA.

To further study the interactive impact of the weekends and holidays on the occurrences of
crowd activities, we categorize the crowd activity based on whether it is on weekdays/weekends
and on holidays/non-holidays. Specifically, we use an indicator to denote weekdays as 1 and week-
end as 0, and we use another indicator to denote holidays as 1 and non-holiday periods as 0.

3.2

We present the important concepts in this study as follows:

—City Region. In this study, we first build the smallest quadrilateral for NYC, Tokyo, and LA
using all the distinct locations of the check-in data of each city, respectively. The details of the
data are shown in Table 1. The quadrilateral is then partitioned into a I X J grid map based on the
longitudes and latitudes. Every grid in the grid map is considered as a distinct region. The check-in
heat maps using all the check-in data of NYC, Tokyo, and LA are shown in Figures 4(a), 4(b), and
4(c), respectively.

—Problem Definition. We present the problem statement of STICAP as follows: Let T be the
number of time steps discretized within a day, V be the number of crowd activity categories. Given:

Important Concepts & Problem Definition

(1) Near History Records: which represent the L time steps of near history crowd activity
heatmaps G, € RP*™/ during the time period {t — L,...,t — 1};

(2) Historical Daily Records: which represent the L time steps of historical daily crowd activity
heatmaps G, € REXIXJ during the time period {t — LT,...,t - T};

(3) Historical Weekly Records: the L time steps of historical weekly crowd activity heatmaps
Gt € RE*PJ during the time period {t — 7LT,...,t — 7T}; and

(4) External Factors: which represent the d time steps of external factor vector, denoted as E €
R during the time period {t — L, ...,t — 1},
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Fig. 5. Crowd activities of categories of (a) arts & entertainment, (b) education, (c) food, (d) nightlife spot,
(e) outdoor, (f) professional, (g) residential, (h) shop & service, and (i) transportation in the areas around the
Imperial Palace and Meiji Jingu of Tokyo during 04/02/2012-08/22/2012.

the goal of STICAP is to forecast the occurrences of the total V categories of crowd activities,
denoted as X; € RY, in the future time step t. The problem of STICAP can be formally written
as

~ 7:(GCZ(}p§Gtr;E)- (1)

3.3 Data Analysis on Spatio-temporal Interaction

—Spatial Interaction Analysis. We note that different function zones within a city may shed
an impact upon the spatial distributions and participation levels of various crowd activities.
Figures 4(a), 4(b), and 4(c) first overview all the crowd activity heatmaps of NYC, Tokyo, and LA,
respectively. The warmer color in the maps represents more check-ins. In Figure 4(a), we can ob-
serve that the major crowd activities come from Manhattan, NYC. while in Figures 4(b) and 4(c),
we have observed that the crowds mainly distribute in the downtown areas of Tokyo and LA. The
dense crowd activity distributions within or around the center of the cities with multiple different
city functions imply the spatial interaction of the crowds with these complex city function zones,
which need to be comprehensively captured for accurate CAP.

Furthermore, we can also observe the spatial heterogeneous interactions of crowd activities with
the complex city function zones. Taking Tokyo as an example, in Figure 5, we can observe that the
crowd activities of nine categories of Tokyo during 04/02/2012-08/22/2012 in the areas around the
Imperial Palace and Meiji Jingu (as highlighted in Figure 4(b)) demonstrated a noticeable disparity
in terms of measured levels, even if these two areas are both in downtown Tokyo. How to capture
these heterogeneous interactions is challenging for accurate CAP.

—Interactive Crowd Activities during Weekdays/Weekends/Holidays. To further analyze
the correlations between the occurrences of crowd activities on weekdays and weekends, we cal-
culate the average occurrences of crowd activities in each hour of a day using both the crowd
activities during weekdays and weekends. Specifically, the average occurrences of crowd activi-
ties in the [th hour of the weekday, denoted as AVG{M 4 € R, and that of the weekend, denoted as

AVGIW « € R, are given by

Dya wk 1
AVG! _ Zaci P Zua AVG! | Z” Zik
Dwd ' Dwk

, @)
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Fig. 6. The average levels and standard deviations of hourly crowd activities during weekdays/weekends of
NYC and Tokyo.

where D,,4 and D, denote the total days of check-ins during weekdays and weekends, respec-
tively, Zflwli denotes the total crowd activities on the I/th hour of day h in D,, 4, and Zﬁ) Ilc denotes the
total check-ins on the /th hour of day hin Dk, [ € {0, ..., 23}. Similarly, we also find the standard
deviations (STD) of the occurrences of the crowd activities during the weekends and weekdays,
respectively.

As shown in Figure 6(a) and Figure 6(c), there are generally three peaks of crowd activity on
a weekday for NYC and Tokyo. The peaks are around the periods of 6am-9am, 11am-1pm, and
4pm-8pm for NYC and Tokyo. Crowd activities of NYC and Tokyo on weekends share the similar
patterns, i.e., the occurrences of crowd activities mostly increase from around 5am-1pm and de-
crease from around 1pm to around mid-night. Extracting the short/long-term temporal patterns
of crowd activities and differentiating the temporal interactions of crowd activities from different
time steps may enhance the accuracy of the CAP. Furthermore, we can observe larger variations
during late afternoon and early evening, particularly for the weekend (Figures 6(b) and 6(d)), which
imply the potentially interactive behaviors likely due to the various life-related or recreational
activities.

We also show the influence of the holiday events upon the crowd activities. As shown in
Figures 7(a) and 7(b), we, respectively, show the levels of crowd activities related to transporta-
tion category in NYC in terms of historical hourly average (blue) and the ones (orange) with the
impacts of Independence Day (07/04/2012, Wednesday) and Thanksgiving Day (11/22/2012, Thurs-
day), which are public holidays in the U.S.. This motivates us to take into account these holiday
events for our CAP.

—Impacts of Weather Conditions upon Crowd Activities. We further show the impacts of
the weather conditions upon the crowd activities by analyzing the difference of crowd activities
given different weather conditions. In Figures 8(a) and 8(b), we, respectively, demonstrate the levels
of crowd activities related to transportation category in terms of historical hourly average (blue)

ACM Transactions on Spatial Algorithms and Systems, Vol. 10, No. 1, Article 3. Publication date: January 2024.



STICAP: Spatio-Temporal Interactive Attention for Citywide Crowd Activity Prediction 3:9

S 20 mDijfference S20 mDifference
b “Hourly Avg T “Hourly Avg
‘g ~+Independence Day ‘g +Thanksgiving Day
210 710
e c
g g
[ [

0 0

5 10 15 20 5 10 15 20
Hour Indices of A Day Hour Indices of A Day
(a) (b)

Fig. 7. The citywide crowd activity of transportation category in NYC on (a) Independence Day (07/04/2012,
Wednesday) and (b) Thanksgiving Day (11/22/2012, Thursday).
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Fig. 8. The citywide crowd activity of transportation category on (a) the arrival day of Hurricane Sandy
(10/29/2012, Monday); and (b) the crowd activities of transportation category. We also show (c) the hourly
wind speed of NYC on the day of Hurricane Sandy; and (d) the hourly temperature of NYC on the arrival
day of code wave (02/04/2013, Monday).

and the ones with the impacts of Hurricane Sandy' (10/29/2012, Monday) and cold wave (orange)
(02/04/2013, Monday) in NYC. We also show in Figures 8(c) and 8(d) the resulting wind speeds and
temperature that differed from the historical average. From the differences (highlighted in red),
we can observe that the citywide crowd activities of transportation category of NYC went beyond
the normal temporal patterns on weekdays and declined with the increased wind speeds and the
decreased temperature.

4 SPATIO-TEMPORAL INTERACTIVE RESIDUAL ATTENTION FRAMEWORK
FOR CAP

We first overview the structure of STICAP in Section 4.1 and introduce the spatial attention com-
ponent of STICAP (processing near history, daily, and weekly spatial feature maps) in Section 4.2,

https://en.wikipedia.org/wiki/Hurricane_Sandy
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Fig. 9. llustration of the proposed framework of STICAP.

followed by the structure of temporal attention component in Section 4.3. Finally, we present the
structure of external factor component in Section 4.4.

4.1 Model Overview

As presented in Section 3.2, the goal of STICAP is to leverage the historical crowd activity heatmaps
and external factors (e.g., weather and holidays) to predict the future occurrences of crowd activ-
ities of different categories in one following time step. Figure 9 overviews the architecture of our
proposed model STICAP, which contains three major components: Spatial Attention Component,
Temporal Attention Component, and External Factor Component.

We first design the Spatial Attention Component to capture the spatial distribution and inter-
action features of the overall crowd activities and the spatial interaction of crowd activities from
different regions. In addition, the spatial distributions of the overall crowd activities tend to vary
in different time periods. Specifically, the occurrences of the overall crowd activities show explicit
hourly, daily, and weekly trends. To leverage this fact, we capture the near history, daily, and
weekly spatial features and interactions of the overall crowd activities in the Spatial Attention
Component in parallel to gain the general historical spatial distribution patterns and interactions
of the overall crowd activities. Within the spatial component, we have designed the trunk branch,
which functions as the spatial feature processing layer, and the mask branch, which works as a
spatial feature selection layer to quantify the weights of different regions at different time steps.

In addition, we have designed the Temporal Attention Component to capture the temporal fea-
tures of crowd activities of different categories and differentiate the temporal interactions of crowd
activities from different time steps. We also take into account the impacts of external factors on
the crowd activities of different categories in the External Factor Component.

4.2 Spatial Attention Component

We first utilize the historical heatmaps of all the crowd activities to capture the spatial distribu-
tion features of the crowd activities in different time steps. The historical overall crowd activity
observations in different regions may have varying impacts on the occurrence of crowd activities
of each category at different time periods. To capture such impacts, we propose the Residual Spa-
tial Attention Network (RSAN) to capture the pairwise spatial interactions of the overall crowd
activities of all the regions in various historical periods.

In particular, we utilize three parallel RSANs in the Spatial Attention Component to capture the
near history, daily, and weekly spatial distribution features of the overall crowd activities in dif-
ferent time steps. After having the above three types of spatial distribution features, we fuse these
features by the Parametric-matrix-based Fusion to have our final spatial distribution features of the
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Fig. 10. Residual spatial attention network (RSAN).

overall crowd activities at different time steps. Note that we first apply the Min-Max Normaliza-
tion to all the crowd activity inputs before further operations. Since the three parallel RSANs in the
Spatial Component share the same structures, we will take the learning of the near history spatial
distribution features as the example to introduce the design details of the RSAN as follows:

Figure 10 summarizes the main operations inside the RSAN. As shown in Figure 10, given d
time steps of near history overall crowd activity heatmaps G, = {G¢¢-L,...,Gc -1} € RIXIXJ
during the time period {t — L,...,t — 1}, the RSAN first captures the preliminary spatial fea-
tures of the overall crowd activities by a convolution operation Conv2D. However, due to the
skewness of the crowd activities, crowd activities only co-occur frequently in some of the city
regions. To focus on the important spatial features rather that the overall crowd activities, we
utilize a MaxPool12D layer to further extract the preliminary spatial distribution feature heatmaps
G.=1{Gci-L,...,G c1-1} € RIXI™J" where I’ and J' are the height and width of the extracted
feature heatmaps. Then, we process the extracted features with m consecutive combinations of
Residual Units and Attention Modules to further extract the deep spatial distribution features and
the spatial interaction of crowd activities from different regions.

Finally, we feed the extracted features into n consecutive Residual Units to have the final spatial
distributions and features of the RSAN. We overview each components of the RSAN as follows:

(1) Residual Unit: The Residual Unit in the RSAN consists of three consecutive identical blocks to
capture the preliminary spatial features and interactions of crowd activities. Each identical
block includes the batch normalization (BN), the ReLU activation, and the convolution
operation (Conv2D) as follows:

G’..1 = Conv2D(ReLU(BN(G'..1))), (3)

where G’ ; represents the spatial feature heatmap of the overall crowd activities in time
steplef{t—L,...,t —1}.

(2) Attention Layer: The Attention Layers (as illustrated in Figure 10) in the RSAN are first going
through ¢; consecutive Residual Units, followed by two branches, i.e., Trunk Branch and
Mask Branch. The trunk branch functions as the spatial feature processing layer and the
mask branch works as a spatial feature selection layer. We note that the conventional deep
convolutional network of attention layer may result in value degradation [32]. To mitigate
the degradation problem, the outputs of the Trunk Branch and Mask Branch are fused by
an Attention Residual Learning module. We utilize the Attention Residual Learning design
to weigh the spatial interactions of the overall crowd activities from different regions in
each time step, followed by g, consecutive Residual Units to achieve the final spatial feature
extraction of the Attention Layer.

Details of the two branches in the attention layer and the Attention Residual Learning module
are further described below.
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— Trunk Branch. Taking the preliminary spatial distribution feature heatmap of the overall
crowd activities, G', = {G’¢s—1,..., G ¢.t-1} € RLXI%J" of time steps {t — L,...,t — 1} as input,
the Trunk Branch further extracts the deep spatial distribution features Y = {Y;_r,...,Y;—1} €
RIXI™XJ" of the overall crowd activities. The structure of the Trunk Branch is a sequence of p con-
secutive Residual Units. The operation of the Trunk Branch on the preliminary spatial distribution
heatmap G,c,l e R/ in time steple{t—L,...,t—1}isdenotedas Y, = TrunkBranCh(G’c’l).

—Mask Branch. With the preliminary spatial distribution heatmap of the overall crowd ac-
tivities G’, = {G’¢.;—1,...,G'ci—1} € RLXIT" of time steps {t — L, ...,t — 1}, the Mask Branch
further generates masks M = {M,_p,...,M;_;} € RLXIXT ¢ represent and quantify the weights
of the spatial distribution features of the overall crowd activities from different regions in each of
the time steps during{t — L, ..., t — 1}. Specifically, the structure of the Mask Branch is composed
of the following two important sub-components, i.e., the Down-Sampling and the Up-Sampling
operations:

(1) Down-Sampling: Since the crowd activities are concentrated in some of the city regions, the
Down-Sampling sub-component is designed to capture the narrow representative spatial
distribution features of the overall crowd activities. In the Down-Sampling sub-component,
we first use the MaxPool2D operation to reduce the spatial impact of the sparse crowd ac-
tivities areas. Then, we utilize m consecutive operation combinations to further capture the
spatial distribution features. In each operation combination, we perform r consecutive times
of Residual Units, which are followed by a MaxPool2D operation. After the m consecutive
operation combinations, we utilize 2 X r Residual Units to achieve the Down-Sampling op-
eration.

Up-Sampling: The Up-Sampling sub-component is proposed to restore the shape of the
spatial distribution feature heatmap from the Down-Sampling sub-component and weigh
the spatial distribution features of the overall crowd activities from different regions. An
UpSampling2D operation is used to first recover the preliminary spatial distribution features
of the crowd activities in each time step. Another m consecutive operation combinations
are further utilized to generate the total spatial distribution features of the crowd activ-
ity in each time step. Different from the m consecutive operation combinations from the
Down-Sampling sub-component, we perform r consecutive times of Residual Units and one
UpSampling2D in each operation combinations in the Up-Sampling sub-component. Finally,
we utilize the Conv2D and the Softmax activation function to generate the weight scores
M={M;,....M;_1} € RIXI')J" for the overall crowd activities from each region in time
steps {t — L,...,t — 1}. Specifically, the operation of the Mask Branch on the preliminary
spatial distribution feature heatmap in the time step [ is given by M; = MaskBranch(G’_ ).

—~
>SS
~

—Attention Residual Learning. The Attention Residual Learning after the Trunk Branch and
Mask Branch in the Attention Layer of RSAN is used to differentiate the spatial interactions of
the overall crowd activities from different regions in each time step and mitigate the degradation
problem. With the Attention Residual Learning, the output A € RI™J" of the Attention Layer in
time step [ is given by

Al =Y XM, (4)
where M;i’j ) ranges from 0 to 1. We note that the more M;i’j ) approaches 1, the more A _ ; approx-
imates the original spatial distribution features of G’ ;.

After the Attention Residual Learning operation, g, consecutive Residual Units are applied to
A, and STICAP generates the final spatial distribution feature heatmap A’ _; € RI™J" of the RSAN
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Fig. 11. Designs of temporal components: (a) filter ensemble with the attention weights for the crowd ac-
tivities in the same region but from different time steps; (b) integration of predictions of crowd activities of
category v in time step t.

in time step I. Following the same method, we obtain A’ N and A’,, ; as the daily and weekly
spatial feature heatmap, respectively.

—Parametric-matrix-based Fusion. After having the near history spatial feature heatmap
A’ € R daily spatial feature heatmap Ayl € R/’ and weekly spatial feature heatmap
Al € RI™J" of the overall crowd activities in time step I, a Parametric-matrix-based Fusion
method is used to fuse the three feature heatmaps as the final spatial feature heatmap in time step
I by

Xpused,1 = A'cioUc + A’y 10Uy + Ay 0 Uy, (5)

where Xfysed,; € R"*J"| o is Hadamard product, and U, Uy, and Uy, € R are, respectively,
the learnable parameters that measure the interactions of the spatial features of the overall crowd
activities from the near history, daily, and weekly spatial feature heatmaps of the same region. The
fused feature heatmaps in time steps {t — L,...,t — 1} are denoted as

Xfused = {Xfused, t—Ls« > Xfused, t—l} € RLXI xJ . (6)

4.3 Temporal Attention Component

The occurrences of crowd activities show multiple temporal patterns, as illustrated in Figure 6(c).
We can further infer that crowd activities under the close temporal context tend to have similar
occurrence frequencies. To further extract the temporal interactions among crowd activities, the
Temporal Attention Component is proposed to differentiate the impacts of the historical crowd
activities from different time steps on the crowd activity predictions of V categories. Figure 11
illustrates the structure of the Temporal Component in predicting the occurrence of crowd activity
of category v in time step t.

There are two operations in the Temporal Attention Component, which are Filter Ensemble

and Scale Reweight. Having the spatial feature heatmaps of the overall crowd activities X, _; =
used

{(Xtused.t—Lo - - - » Xeused.r—1) € R during time steps {t —L, . .., t — 1} from the Spatial Attention
Component, the Temporal Attention Component treats the spatial distribution feature heatmaps
in different time steps as different temporal layers and weights the importance of each layer.

Let X, ., be the spatial feature heatmap in temporal layer [ € {t — L, ..., t — 1}. The details of
the Filter Ensemble and Scale Reweight are presented as follows:

—Filter Ensemble. The overall crowd activities of a specific region in different time steps are
viewed as the descriptors, where the overall crowd activities Xg;’sje)d’l
descriptor of this region in temporal layer [, where i € [1,...,I'] and j € [1,...,]’]. We denote all
the descriptors of the same region in different temporal layers as s>/, as shown in Figure 11(a).

(i,j) — (i, /) (i,/)
s = [Xfused,t—L’ T Xfused, t—l] : (7)

in region (i, j) denotes the
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Fig. 12. External factor component.

—Scale Re-weighting. We obtain the attention weights A(%/) of region (i, j) in all temporal lay-
ers by feeding the L descriptors into a multi-layer perceptron (MLP) layer followed by a Softmax
operation as shown as follows:

Al = Softmax(MLP(s-7))),  AGD = [A%D AT )

The attention value Xizrjr;:)’l of region (i, ) at time step [ € {t — L,...,t — 1} is the product of the

attention weight A;i’j ) of region (i, j) at temporal layer [ and the corresponding indicator sgi’j ) as:

(CV) BN ) (i)
Xtemp,l =3 x Al : (9)
Given above, the final attention value of region (i, j) is generated by

t—1

(&) — (i.))
ther]np_att - Z theép, t (10)
t'=t-L

To generate the non-regional preliminary prediction of V categories of crowd activities in time
step ¢, a linear operation is applied in X € R/ as shown in Figure 11(b) and we have

temp_att
I/,],
- (8,1) 3¢ (0:J)
Xt,v - Z (WU Xtemp_att) ’ (11)
i=1,j=1
where Wzgi’j ) € Ris the weight measuring the importance of the overall crowd activities Xﬁ;i;_att
of region (i, j) on the crowd activity prediction of category v € {1,...,V} in time step ¢. Thus, the
preliminary crowd activity predictions of V categories X, € RY in time step t are formed as
X; = {Xe1,- - Xy v) (12)

4.4 External Factor Component

The occurrence of crowd activity can also be affected by multiple related external factors, such
as weather, weekday, holiday, events, and so on. Therefore, in this study, we design the External
Factor Component to further account for the external influence of weather data of temperature,
wind speed, and weekdays and holidays on the occurrences of crowd activities. The design of the
External Factor Component is illustrated in Figure 12.

Since the weather context is a text description of the observed condition of the weather, we
utilize the one-hot encoding method to transfer the weather context into feature vectors. In addi-
tion, the temperature and wind speed of the weather data are min-max normalized before being
fed into the external factor component. We leverage two separate vectors to represent the week-
day/weekend and holiday information, respectively. In the weekday/weekend vector, the vector
values are set to be 1 to represent the time step on weekday and 0 for weekend. Similarly in the
holiday vector, we set the vector value to be 1 if the time step is on holidays and 0 otherwise. Let
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E € R? be the external factor vector in time step [ € {t—L,...,t—1}, and p is the number of exter-
nal factors. E, contains the min-max normalized wind speed, temperature, the one-hot encoding
vector of weather context, and the indicators of weekdays/weekends and holidays at time step .
The external factors during time steps {t — L,...,t — 1} are formed as E € RXP,

Our External Factor Component is formed by a two-layer fully connected neural network. It is
used for weighting the predicted crowd activities of all V' categories from the Temporal Attention
Component. It takes E, as input, followed by a dense layer for embedding sub-factors, a ReLU
activation function, a second dense layer for mapping the low dimension data to high dimension
data, and a second ReLU activation function, i.e.,

Xext,r = ReLU((ReLU(E - W + By)) - W3 + By), (13)

where Xyt € RY is the crowd activities predictions in time step ¢ from the external factors, W1,
W, By, and B, are weight matrices and bias vectors in the two dense layers, and ReLU represents
the activation function, respectively.

With the crowd activity prediction X, from the Temporal Attention Component and Xext, ; from
the External Factor Component, we obtain the final crowd activity predictions X € RY in time step
t by feeding the merged result (denoted as operator P) of X and X, into a ReLU activation
operator, i.e.,

ext, t

X; = RelU (Xer,, EP X,) - (14)

5 EXPERIMENTAL STUDIES

We first present the baselines and experimental settings in Section 5.1, followed by the experimen-
tal results in Section 5.2.

5.1 Baselines & Experimental Settings

—Baseline Approaches. In this study, we compare our proposed method STICAP with the follow-
ing nine baselines and state-of-art algorithms:

(1) CNN: Convolutional Neural Network (CNN) extracts the grid-based check-in features in
the input heatmap for the prediction.

(2) RNN/GRU/LSTM: We flatten the grid-based check-in data in each time unit into a 1D vector be-
fore feeding them, respectively, into Recurrent Neural Networks (RNN), Gated Recurrent
Unit (GRU), and Long Short-Term Memory (LSTM) neural network.

(3) CNN+RNN: This baseline combines the CNN with RNN. It leverages the historical grid-based data
to predict the future category-based data.

(4) CNN+GRU: CNN is followed by GRU to predict the category-based data.

(5) CNN+LSTM: CNN and LSTM are combined to predict the category-based data.

(6) ConvLSTM: The historical grid-based check-in data are fed into the ConvLSTM [27], followed
by a Flatten layer and Dense layer to generate final prediction.

(7) Temporal Attention Component (TempAtten): We replace the RSAN in the Spatial Atten-
tion Component with three identical residual units in Reference [38]. The fused output X, .
from the Spatial Attention Component is followed by the Temporal Attention Component.

(8) Residual Unit & Temporal Attention Component (ResUnit+TempAtten): We replace
the RSAN with a Residual Unit in Section 4.2. The Temporal Attention Component is added
after the fused output X, _, from the above modified Spatial Component.

(9) DeepST: The proposed model of DeepST in Reference [38] is adapted as a baseline in this
study. In particular, the parameters /., lp, and lq inDeepST are setas |, € {3,4,5}, lp € {1,2,3},
and lq € {1, 2, 3}, respectively.
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(10) CHAT: which leverages the Cross-Interaction Hierarchical Attention (CHAT) network [15]
for CAP. The input of CHAT are the near history crowd activity heatmaps G. € RL*>/ during
the time period {t = L,...,t — 1}.

(11) ST-Norm: which implements the Spatial and Temporal Normalization-based frame-
work (ST-Norm) [10] for CAP.

(12) FDW: which leverages the multi-variate time series forecasting algorithm Forecast Distance
Weighting (FDW) [6] to take in the historical citywide crowd activities and predict the crowd
activities in time step t.

—Experimental Settings. In this study, we evaluate our proposed method and the baselines us-
ing the Foursquare check-in data of NYC and Tokyo, and the Gowalla check-in data of LA. The
Foursquare check-in data are both during the period of 04/02/2012-08/22/2012. The Gowalla check-
in data are during the period of 12/01/2009-04/30/2010. The data of last 20 days of each dataset
are utilized for testing, the previous 10 days for validation and the others are used for training. We
predict 9 categories of crowd activities for NYC and Tokyo and 10 categories for LA.

For the crowd activity heatmaps, all the crowd activities of NYC, Tokyo, and LA are partitioned
into 32 X 16 grid maps. The city maps of NYC, Tokyo, and LA are all approximately squares. We
select these grid shapes so the partition granularity of latitude is finer than that of longitude. This
is because the activities are concentrated longitudinally, as shown in Figure 4(a). To compare the
model performance across different cities, we partition the city maps of the three cities into the
same grid shapes. The length of one time step of NYC and Tokyo are set as one hour, while due to
the reasons for data sparseness of LA, the length of time unit of LA is set as three hours. L, m, n,
Q1> 92, I, J, I’, ], and p are set as 3, 3, 4, 1, 1, 32, 16, 16, 8, and 5, respectively. The learning rate is
set as 0.0003, batch size is 128, the data are trained with 500 iterations.

Mean Absolute Error (MAE), Mean Squared Error (MSE), and Error Rate (ER) are utilized
to evaluate the performance of the algorithms, i.e.,

v oo
X 2 LIX, =X,
% (Xv»f _Xv,t) , and ER = =2 1 Vv»f 0,
ZZ1=1 X‘U,t

v=1

s

(15)
where )A(v’t denotes the predicted value of crowd activity category v in time step t. X, , denotes
the ground truth value of a crowd activity category v in time step ¢. The models are trained based
on the loss of MSE. All the experiments are conducted upon a desktop server with Intel i7-9700,
NVIDIA GeForce RTX 2060 SUPER, 16.0 GB RAM, and Windows 10.

\4
1 .
MAE = = x ;p(v,, -X,,l, MSE =

<=

5.2 Evaluation Results

— General Performance. As demonstrated in Table 3, our proposed STICAP has achieved the
overall better performance than the other baselines, with an average error reduction of 35.02%.
The results show the effectiveness of STICAP designs on handling the non-regional crowd activity
prediction problem with check-in data.

We briefly review and compare other baseline approaches. CNN extracts the shallow spatial dis-
tribution features of crowd activities, and ConvLSTM captures the preliminary temporal patterns.
Therefore, neither CNN nor ConvLSTM performs well in the CAP. CHAT considers the general pair-
wise spatial, temporal, and categorical relationship among crowd activities for CAP. However, we
note that crowd activities are often impacted by the external factors (e.g., the extreme weathers
and special holidays) and their activity levels may fluctuate beyond the general patterns. RNN, GRU,
LSTM, and TempAtten focus only on the temporal patterns and therefore cannot fully capture the
spatial features within the crowd activities. Despite the designs of learning both the spatial and

ACM Transactions on Spatial Algorithms and Systems, Vol. 10, No. 1, Article 3. Publication date: January 2024.



STICAP: Spatio-Temporal Interactive Attention for Citywide Crowd Activity Prediction 3:17

Table 3. Prediction Results and Performance Comparison on NYC, Tokyo, and LA

Scheme NYC (9) Tokyo (9) LA (10)
MAE| MSE [ ER ||MAE[ MSE | ER |[MAE | MSE [ ER
CNN 1.691 | 8.851 [ 0.725 || 4.276 | 116.765 | 0.694 || 0.944 [ 3.673 | 0.773
RNN 1.636 | 11.157 [ 0.701 |[ 3.822 | 77.015 | 0.620 | 1.116 [ 4.922 | 0.914
GRU 1.769 | 11.256 [ 0.758 || 3.153 | 78.260 | 0.512 [[ 0.995 [ 3.761 | 0.815
LSTM 1.542 | 8.910 [ 0.661 |[ 3.636 | 77.507 | 0.773 [ 0.977 [ 4.08 | 0.800
ConvLSTM 1.549 | 8.122 [ 0.630 || 3.838 | 120.751 | 0.591 || 1.250 [ 5.626 | 0.909
CNN+RNN 1.757 | 9.838 | 0.753 || 3.185 | 74.480 | 0.517 || 0.971 | 3.382 | 0.789
CNN+GRU 1.742 | 8.871 | 0.746 || 2.998 | 60.113 | 0.672 || 0.955 | 3.436 | 0.776
CNN+LSTM 1.727 | 9.523 [ 0.740 [[ 2.899 [ 60.326 [ 0.470 [[ 0.981 [ 3.632 [ 0.797
TempAtten 1.307 | 5337 [0.601 |[ 3.139 | 29.980 | 0.483 || 0.858 [ 2.879 | 0.624
ResUnit+TempAtten || 1.447 | 5.155 | 0.589 || 2.288 [ 28.340 | 0.352 [| 0.847 | 2.952 [ 0.615
DeepST 1.662 | 8.002 [ 0.676 || 3.902 | 67.440 | 0.601 [ 1.110 [ 5.116 | 0.807
CHAT 1.679 | 10.118 [ 0.683 || 3.406 | 107.766 | 0.593 || 1.174 [ 5.404 | 0.854
ST-Norm 1.533 | 7.464 [ 0.624 |[ 3363 | 63.458 | 0.518 [ 0.903 [ 3.152 | 0.682
FDW 1.354 | 5.633 [ 0.545 || 2.342 | 29.034 | 0373 ][ 0.923 [ 3,532 | 0.702

[ STICAP [ 1192 ] 5.460 | 0.484 ]| 1.856 | 21.480 | 0.286 | 0.865 | 2.706 | 0.629 |

temporal crowd mobility, we observe that DeepST may not necessarily capture the large-scale spa-
tial features with different spatial focuses and with different granularity levels. With the spatial and
temporal attention mechanisms, our proposed STICAP can capture the most relevant interactions
from spatial and temporal dimensions based on the context of the prediction, thus outperform-
ing other approaches. ST-Norm considers factorizing the crowd activities but does not account for
the geospatial distributions among regions. FDW focuses on the small subset of variables available
within the time series and does not account for learning the spatial interactions among the time-
series variables and hence may not adapt to the complex crowd activities. Different from these
approaches, our STICAP not only accounts for multiple temporal patterns among crowd activities,
but also captures the spatial interactive distribution of crowd activities, thus yielding the better
accuracy in CAP.

Comparing the prediction results on the NYC and Tokyo datasets in Table 3, we can also see
that prediction errors of Tokyo are relatively higher than those of NYC and LA. It is likely because
the check-in data of NYC and LA are much sparser than the data of Tokyo. Specifically, the overall
hourly frequencies of crowd activity of Tokyo are much greater than those of NYC and LA. The
range of hourly crowd activity of each venue category of Tokyo is from 0 to 194, while that of
NYC is between 0 and 38, and that of LA is between 0 and 26. While the settings of TempAtten
and ResUnit+TempAtten marginally outperform STICAP for the LA dataset (likely due to easier
learning on the sparse data for simple attention designs), STICAP still substantially outperforms
many other state-of-the-art approaches.

— Ablation Studies. We have conducted ablation studies to evaluate the importance for the
occurrence of crowd activities by evaluating each component of STICAP using the data of Tokyo
as follows (by comparing the complete STICAP that is labeled as (a)):

(b) Spatial Attention Component: To apply the spatial Attention Component as introduced in
Section 4.2 alone for crowd activities prediction, the spatial attention output of Xfseq in
Equation (5) is modified as category format by being fed into a dense layer with the output
sequence of V.
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Fig. 13. Model ablation results of Tokyo predicting nine categories of crowd activities using (a) STICAP; (b)
spatial attention module; (c) spatial attention module+external factor module; and (d) replacing the temporal
attention module in STICAP as multiple GRU layers.
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Fig. 14. Multi-step prediction results of Tokyo predicting the crowd activities of V categories in time step t,
t+1,t+2,and t + 3, respectively.

(c) Spatial Attention Component & External Factor Component: The Spatial Attention Compo-
nent and the External Factor Component are combined to predict crowd activities of each
category.

(d) GRU Instead of Temporal Attention Module: We replaced the Temporal Attention Module in
STICAP by multiple GRU layers.

As shown in Figure 13, by using all the components of STICAP, the MAE and ER prediction
results greatly improve in the prediction of nine categories of crowd activities. In STICAP, the Spa-
tial Attention Module captures the hourly, daily, and weekly deep spatio-temporal distribution
features of crowd activities. Therefore, the Spatial Attention Module works well alone in CAP. By
further accounting for the impacts from the external factors on crowd activities, STICAP improves
the prediction accuracy when the crowd activities fluctuate. GRU performs well in capturing the
short-term temporal correlations. However, it may not fully capture the data with long-term de-
pendencies. The prediction result demonstrates the effectiveness of STICAP in urban CAP.

—Sensitivity Analysis. To further verify our proposed method STICAP on multi-step predic-
tion, we predict the crowd activities of V' categories in time step ¢, t + 1, t + 2, and t + 3, respectively.
The prediction results are shown in Figure 14. We can see that the error increases as the STICAP
is predicting the longer horizon of the crowd activities. However, STICAP achieves overall robust
performance in the CAP. We further examine the influence of parameter setting in RSAN on predic-
tion results. We note that in Figure 10 the Attention Layer in RSAN consists of m consecutive pairs
of combined Residual Units and Attention Layers and n consecutive Residual Units after the com-
binations. To analyze the influence of the values of m and n on the CAP, we have conducted the
experiments based on the Tokyo dataset to verify different value combinations of m (ranges from 1
to 6) and n (ranges from 1 to 5). Figure 15 shows the prediction results of the experiments. We can
observe that the darker colors imply the smaller prediction errors. We can learn from the figures
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Fig. 15. Sensitivity studies on the m (numbers of residual units and attention layers) and n (numbers of
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@ o » 20 ~Ground Truth ~Prediction]
Q@ 75] @157 ]
S 50 1210}
< 25§ 2 sl M
07 5 4 X 4 : AW % 9 5 b 0 0 ! b i3 W B 2l |
1 2 3 4 5 6 7 i 2 3 4 5 6 7
Day Indices Day Indices
(b) Food.

(a) Shop & service.

Fig. 16. Hourly crowd activity prediction results and ground truth of (a) shop & service of Tokyo from
08/03/2012-08/09/2012, and (b) food of LA from 04/11/2010-04/17/2010.

that STICAP achieves the overall better performance with the combinations around (m, n) = (4, 3).
Therefore, we set (m, n) = (4,3) by default.

RSAN is designed to capture the deep spatial distribution features of the crowd activities. Dif-
ferent layers of the Residual Unit and Attention Layer can capture the deep spatial distribution
features with focuses on different locations and with various levels of details. However, the over-
complicated model and the over-sampled spatial features will as a return decrease the model effec-
tiveness due to the problem of over-fitting.

—Visualization. Figure 16 shows the predictions and ground-truths of crowd activities of shop
& service of Tokyo and crowd activities of food of LA running with STICAP. The predictions and
ground-truths of Tokyo are from 08/03/2012-08/09/2012, and the data from LA are from 04/11/2010
-04/17/2010. We can learn from the figures that the overall gaps between predictions and the cor-
responding ground truths are very small, which demonstrates the high accuracy of STICAP in the
prediction.

Figure 17 further shows the prediction results during weekdays, weekends, and rush hours in
Tokyo by comparing ResUnit+TempAtten, TempAtten with STICAP. As shown in Figure 17, STICAP
performs the best in all cases of weekdays, weekends, and rush hours crowd activity predictions.
These figures demonstrate the high accuracy of STICAP and its significant improvement from the
state-of-the-arts.

To illustrate the effectiveness of the spatial feature extraction and spatial interaction character-
ization of RSAN, we visualize three scoring matrices generated from the Mask Branches of three
RSANSs of the Spatial Attention Component when predicting one selected time step of Tokyo testing
data, as shown in Figure 18. The scoring matrices heatmaps represent the spatial features of the
overall crowd activities of the hourly, daily, and weekly trends. Note that the sum of one scoring
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Fig. 17. The MAE, MSE, and ER in weekdays, weekends, and holidays of Tokyo, with STICAP, Re-
sUnit+TempAtten, and TempAtten.
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Fig. 18. The selected scoring matrices generated from the Mask Branches of three RSANs of the Spatial At-
tention Component when predicting one selected time step of Tokyo testing data. The scoring matrices
heatmaps represent the spatial features and the interaction levels of the overall crowd activities of the hourly,
daily, and weekly trends.

matrix is 1. We can see from the figures that the RSAN can capture the important regions of the
overall crowd activities with different temporal trends.

6 DISCUSSION

We briefly discuss the deployment of STICAP in the following aspects:

—Potential Extensions to Other Applications: In this work, we aim at crowd activity participation
prediction by leveraging the city-wide spatial and temporal characteristics of the location-based
social network check-in data and external factors such as weather and weekends/holidays. Based
on the prediction of crowd activity participation in a specific time step, our proposed STICAP can
be further utilized to detect the citywide abnormal user activities and the corresponding locations.

—Location Privacy Discussion: Location-and-timestamp-tagged user activity data are very useful
sources to understand the movement and the activity status of crowds. The availability of the
crowd activity data enables many research directions, including crowd mobility prediction, crowd
flow prediction, and so on. However, privacy issue arises for crowds with the utilization of crowd
activity data. We note all user IDs in this study have been hashed into global identifiers by the
Foursquare data provider and Gowalla data provider.

7 CONCLUSION

We propose STICAP with spatio-temporal attention mechanism to predict the occurrences of city-
wide crowd activities. We have conducted extensive and comprehensive analysis on the check-
in data of New York City, Tokyo, and LA. The data analysis also shows weather, weekdays, and
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holidays have multi-level impacts on the occurrence of crowd activities. We take into account the
impacts of near history, daily, and weekly occurrences of crowd activities on future occurrences
of crowd activities. We have designed the Residual Spatial Attention Module RSAN in the Spatial
Component to capture and differentiate the spatial interactions of the crowd activities. The Tem-
poral Attention Component is also proposed to differentiate the contributions of the historical
crowd activities from different time steps and their interactions with the prediction results. The
results have demonstrated that STICAP outperforms other baselines with 35.02% improvement, on
average, for NYC, Tokyo, and LA.
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