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Abstract—The occurrence of special contexts or events (e.g.,
extreme weather conditions, festival events, other urban anoma-
lies) can significantly influence the movement patterns of urban
mobility (e.g., human crowds, transportation systems). Accurate
mobility modeling and prediction under the occurrences of such
anomaly events is therefore imperative for city management and
urban resource allocation. In this study, we propose EALGAP,
a novel Extreme-Aware Local-Global Attention urban mobil-
ity Prediction model. Specifically, EALGAP models the spatio-
temporal global and local impacts of mobility in different regions
and time steps for mobility prediction at various city regions.
EALGAP takes into account the global impacts by extracting the
overall or regular spatial dependencies and temporal patterns
of mobility systems for different regions. We have designed a
temporally-varying normalization and data-driven technique to
quantify the extreme degrees, i.e., how significantly the extreme
events have impacted the local mobility trend, of the patterns
within different regions and time steps. We have conducted ex-
tensive experimental studies upon four different mobility datasets
(over 13 million trips in total) harvested from two metropolitan
cities in U.S. with anomalous natural or social events (e.g.,
hurricane events, other extreme weather conditions, and the
Federal holidays). Our results have demonstrated the accuracy,
effectiveness, and extreme-awareness of our proposed EALGAP
with more than 44.12% error reduction on average compared
with other state-of-the-art approaches.

Index Terms—Extreme-aware prediction, local-global impact
modeling, extreme degree quantification, urban anomaly, mobil-
ity prediction.

I. INTRODUCTION

Urban mobility prediction, e.g., forecasting the arrivals and
departures of human crowd mobility or transportation systems,
has attracted much attention recently due to the important
social and business values [1], [2], [3], [4], [5], [6]. The
relevant stakeholders such as the city emergency planners can
benefit from the proactive and predictive mobility modeling
and enhance their preparedness in essential responsive re-
source allocations.

Despite the prior studies on conventional deep learning (DL)
based mobility prediction [1], [2], [7], [8], [9], [10] thanks to
big mobility data, how to cope with and quantify the impacts
of various anomaly and extreme events upon the predicted
mobility patterns that are rarely observed within the historical
data remain to be challenging and largely under-explored.
In particular, our studies here will focus on approaching the
following two important technical challenges:

∗corresponding author

• Local and Global Impacts on Mobility Patterns. As
illustrated in Fig. 1, one may observe the occurrences
of anomaly events, such as extreme weathers, abnormal
traffic conditions, and other urban special events (say,
a holiday parade), impact the urban mobility patterns.
These events might significantly impact not only the
short-term mobility patterns in the local neighborhood
at certain city regions, but also pose long-range influence
on other city regions’ mobility trends in the subsequent
time steps. Furthermore, via our further mobility data
analytics with the anomaly events, we have observed the
local impacts, i.e., the instantaneous and extreme scales
of mobility patterns of different regions incurred by the
occurrences of the anomaly events. On the other hand, the
overall trend dynamics of mobility patterns, as the global
impacts, may demonstrate spatio-temporally variations
across the city regions, due to the interactions of the
events with different specific urban function zones (say,
points-of-interest or POIs), time of the day, and day of the
week. Given the resulting complex mobility patterns (e.g.,
bike sharing, taxi trips), how to further factorize, quantify,
and forecast these mixed impacts with both local and
global scales remains challenging and under-explored.

• Under-modeling of Heavy-Tailed Mobility Distributions.
Furthermore, the extreme degrees of the impacts from
the extreme weather conditions and special urban events,
i.e., how the mobility surges or drops deviate from
the past, sheds the light upon the under-modeling of
extreme mobility patterns in the existing DL-based ap-
proaches [1], [2], [7], [8], [9], [10]. We note that the
incurred extreme surges or sudden drops of mobility
patterns (e.g., the extreme high and low values shown
in Fig. 1) can significantly deviate from the historical
patterns in various scales, generating the heavy-tailed
distributions [11] of the extreme mobility patterns. Many
existing DL-based models [7], [8], [9], [10] that often rely
on fitting upon the historical major patterns (e.g., major
repetitive patterns) might be affected severely, leading
to the degraded mobility prediction performance and
incorrect decision-making process of subsequent mobile
and urban computing applications.

To address the aforementioned challenges, we propose
EALGAP, a novel Extreme-Aware Local-Global Attention mo-
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Fig. 1: Research motivations and potential applications of EALGAP.

bility Prediction approach. As illustrated in Fig. 1, taking in
the historical mobility system data (such as bike sharing rides
or taxi trips) of different regions of a city, our EALGAP models
the “local” and “global” impacts within the spatio-temporal
dynamics of mobility data, and further quantifies the extreme
degree of mobility patterns at each region in the target time
step and predicts the corresponding mobility patterns. The
resulting prediction results can be further utilized by the city
emergency management departments and other stakeholders
for extreme mobility alerts, emergency resource allocation, and
many other city planning applications.

We have made the following three major contributions
towards EALGAP:

1) Integrating Local-Global Impacts within Urban Mo-
bility Modeling: We have augmented the adaptivity of
EALGAP through local and global impact modeling.
Specifically, we have modeled the global impacts across
the city regions in different time steps by modeling
the statistical distributions (say, exponential distributions
in this study) of the mobility patterns of city regions
within the recent historical data, and then derive the
overall spatio-temporal mobility patterns of each region.
In addition, we have taken into account the temporally
varying attention parameters for different regions to cap-
ture the corresponding temporal patterns for each region.
We further model the local impacts of the mobility
patterns, i.e., the local fluctuation or turbulence due to
the anomaly events (e.g., extreme weather conditions
and festival events), of each region in different time
steps. The global and local impacts are jointly modeled
towards the final mobility pattern prediction of different
city regions.

2) Extreme-Aware Mobility Degree Formulation: To fur-
ther address the heavy-tailed distribution issue and quan-
tify the local impacts of anomaly events, we have
provided a data-driven formulation based on the Ex-
treme Degree and Local Impact Modeling Module. In
particular, our EALGAP first models the extreme degree
of the mobility patterns (e.g., the pick-up volumes of
bike sharing) of each city region, i.e., the statistical

deviations from the historical time periods. Via capturing
the characteristics of the extreme degrees, EALGAP fur-
ther predicts the impacted mobility patterns by adapting
them with the predicted extreme degrees, realizing the
extreme-aware mobility prediction.

3) Extensive Data-driven Experimental Studies and Eval-
uations: We have conducted extensive data analytics and
experimental studies on four metropolitan-scale mobility
datasets (13,721,726 trips in total from more than 26
months), i.e., the Citi bike sharing and Yellow Taxi
datasets in New York City (NYC), NY, and the Divvy
bike sharing trips and taxi trips in Chicago, IL, to evalu-
ate the effectiveness of our proposed model in predicting
the citywide urban mobility under the occurrences of
anomaly events. The experimental results demonstrate
that our EALGAP achieves higher accuracy (by more
than 44.12% on average) than the other baselines or
state-of-the-art approaches (including ST-Norm [7], ST-
ResNet [8], EVL [9], and CHAT [10]).

The rest of the paper is organized as follows. We first review
the related works in Sec. II, followed by the data analysis,
important concepts and motivations, and problem formulation
in Sec. III. Afterwards, we present the details of EALGAP’s
core framework in Sec. V. We demonstrate the experimental
results in Sec. VI, and finally conclude in Sec. VII.

II. RELATED WORKS

We review our related works in the following two categories.
• Spatio-Temporal Mobility Learning. Thanks to the big

mobility and advances in DL, various spatio-temporal mobility
learning approaches have been proposed [12], [13], [14], [15],
[16], [17], [18], [19], [20], [21]. Jiang et al. [1] designed a
multi-task ConvLSTM encoder-decoder framework to capture
the deep trend of the crowd density in different regions. Yan
et al. [22] utilized a 3D convolutional neural network as the
core building block to capture spatial temporal dynamics of the
mobility. These prior approaches largely consider the temporal
dynamics of the data in different regions with the same set of
the parameters for all the regions, while the situations that
the temporal patterns of mobility at different city regions may
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vary differently even in the same time step remain largely
overlooked or under-characterized.

Cirstea et al. [17] considered the traffic dynamics by mod-
eling the regular distribution of the traffic in different regions.
Chen et al. [23] utilized the meta learning to generate the
parameters of the task network for sequence modeling. Li
et al. [12] designed the dynamic spatial graph convolution
network to model the dynamic spatial correlation to reflect
the dynamic change correlation of the road. Zheng et al. [24]
proposed both the spatial and temporal embeddings to en-
code the spatial correlation in each time step into a vector.
However, despite the incorporation of spatial and temporal
dependencies for accurate mobility or traffic prediction, the
above studies have not carefully taken into account the distinct
overall spatio-temporal patterns, such as the global impacts, of
different regions.

Different from these studies, we have further designed a
spatio-temporally varying attention mechanism in the Global
Impact Modeling Module. Our designs capture the distinct
global impacts for different regions using a data-driven ap-
proach, i.e., leveraging the distinct parameters generated from
the estimated mobility data distribution (say, the exponential
distribution in this study) of the mobility of each region within
near history. The experimental studies have demonstrated that
our approach outperforms the state-of-the-art approaches [7],
[8], [9], [10].

• Extreme Value Distribution Modeling. Irregular spatial
and temporal dynamics due to the exogenous factors (such as
extreme weather conditions and festival events) often generate
the extremely high/low values, leading to the imbalanced dis-
tribution issue. How to detect the happening of extreme events
has attracted much attention given the growing applications
in geography, internet of things, and many other fields [25],
[26], [27]. Recent studies have considered setting dynamic
thresholds [25], utilizing the spectral residual algorithm [26],
and stochastic recurrent neural network [27] to detect the
extreme events. However, these studies have not thoroughly
considered predicting the spatio-temporal mobility patterns
ahead of time given the complex event impacts.

In order to model the distributions of the extreme values
and alleviate their impacts on the prediction models, Ding
et al. [9] categorized the data into high, normal, and low
categories based on the predefined thresholds and proposed
a loss function design based on the extreme value theory [28].
Deng et al. [7] further modeled the high-frequency and low-
frequency components within the time-series data to under-
stand the distributions of normal and long-tailed samples.
Huang et al. [10] studied a multilayer perceptron-based tem-
poral attention module to capture the relevance of human
mobility in different time steps for urban anomaly prediction.
Li et al. [29] predicted the bike sharing pick-ups/drop-offs
from the clustered regions under the anomalous periods by
quantifying the weather and time similarity among near history
and the target time step, and considering the transition and trip
duration among clusters.

Different from the above studies, we have proposed the

extreme degree and local impact modeling designs to quantify
the extreme dynamics of the mobility incurred by the anomaly
events. Specifically, instead of considering the extreme data by
simply dividing the data into categories (e.g., high, normal,
and low) by predefined thresholds (say, with extreme value
theory [9]) or measuring the similarity with the extreme
impacts from the historical event/weather data, our EALGAP
provides a novel method to quantify the extreme degrees
of the mobility in different regions and time steps based
on the deviations from the historical data. This way, our
EALGAP incorporates the quantified impacts of the extreme
events within the deep learning formulation. Furthermore, our
EALGAP adaptively parameterizes the spatio-temporal pattern
of each region, providing more resilience and flexibility that is
essential in characterizing the extreme events (such as extreme
weather conditions).

III. OVERVIEW OF EXTREME MOBILITY PATTERNS

In this section, we motivate our extreme mobility modeling
based on the local-global impact data analysis in Sec. III-A and
extreme mobility patterns in Sec. III-B, respectively. In this
research study, we leverage the Citi bike sharing and Yellow
Taxi datasets in NYC and the Divvy bike sharing trips and
taxi trips in Chicago for experimental evaluations (details of
the datasets and the processing can be referred to Sec. VI).

A. Local and Global Impacts on Mobility Patterns

Taking the bike sharing trips in NYC before and during
the Hurricane Isaias1 (the Category 1 hurricane in 2020) as
an example, we first illustrate the Citi bike sharing usage on
08/03/2020 (Monday) in NYC right before the tropical storm
(Fig. 2a) and during its arrival (Fig. 2b). We can observe
that the overall spatio-temporal patterns of the bike pick-
up distributions declined with the advent of the hurricane
(Fig. 2b), demonstrating the instantaneous impacts of the
events upon the overall spatio-temporal patterns of the bike
sharing usage.

Furthermore, when we further partition the bike stations
(similar to the prior efforts in [30], [29], [31]) into multiple
regions (based on k-means clustering and their geographic
closeness), we can also see that the bike mobility (pick-ups)
from Region A (highlighted in Figs. 3a and 3b) demonstrated
more noticeable drop from 10am to 9pm in the face of the
Hurricane Isaias, implying different local impacts.

B. Impact of Extreme Mobility Patterns

With the partitioned regions (Sec. VI), Fig. 4 further
compares the hourly bike pick-ups in the historical average
records and during the arrival of the Hurricane Isaias in NYC.
Specifically, we find the historical hourly average pick-ups of
the region during all weekdays of the previous three months
before the hurricane arrived. As illustrated in Fig. 4, there
are clearly two bike pick-up peaks within a day in each
region due to the commutes of the morning and evening rush
hours. However, these peaks might vary across regions in

1https://storymaps.arcgis.com/stories/38f75a3c66e44e758a6b094f6b39e1b3
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(b) Pick-ups on 08/04/2020.

Fig. 2: Illustration of impacts due to the hurricane. Bike
sharing pick-ups at all the stations on (a) 08/03/2020 and (b)
08/04/2020 (with the hurricane event).
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Fig. 3: Illustration of local impacts due to the hurricane. Bike
sharing pick-ups at all the regions on (a) historical weekday
average; and (b) 08/04/2020 (with the hurricane event).

terms of start time, duration, and scale. For instance, the bike
pick-ups around W 57th St, Manhattan (Region 1, Fig. 4a),
West End Ave, Manhattan (Region 6, Fig. 4b), and 30th Ave,
Astoria (Region 11, Fig. 4c) demonstrate dominant ride surge
at 9am on regular weekdays. On the other hand, the morning
surge in the Empire State Building, Manhattan (Region 20,
Fig. 4d) may happen and last from 7am to 10am, likely due
to the complex traffic flow and commutes in this business and
tourism-intensive area.

Despite the regular patterns during the morning and evening
rush hours, one may observe from Fig. 4 that all the regions
experience significant drops of bike usage between the two
regular peak hours. We also note that the different regions may
have different start and end timestamps for the bike sharing
trip drop periods, likely due to their different closeness to
the hurricane impacts. In terms of all regions studied, Fig. 5
compares the pick-ups of all regions during the hurricane and
those historical daily average records during all weekdays of
the three months prior to the tropical storm. We can observe
the mobility drops of each region relative to the historical daily
average can vary from 19% to 34%.

IV. CONCEPTS AND PROBLEM DEFINITIONS

Table I summarizes the important symbols and their defini-
tions presented in this work. We first summarize the important
concepts and motivations in Sec. IV-A, followed by the global
and local impacts in Sec. IV-B.

A. Problem Formulation

In this study, we divide each day into T time steps, and
hence the length of each time step is 24/T hours (T = 24

Start  Hour

End Hour

(a) W 57th St, Manhattan (Re-
gion 1).

Start Hour

End Hour

(b) West End Ave, Manhattan
(Region 6).

Start Hour

End Hour

(c) 30th Ave, Astoria (Region
11).

Start Hour

End Hour

(d) Empire State Building, Man-
hattan (Region 20).

Fig. 4: Comparison of historical average hourly bike pick-ups
and that during the Hurricane Isaias of four regions (illustrated
in Fig. 10).
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Fig. 5: Comparison of historical daily average and those dur-
ing the Hurricane Isaias of all regions (illustrated in Fig. 10).

in our current studies). We further parse the mobility system
time series data (e.g., bike sharing pick-ups and taxi pick-ups)
based on the discretized time steps. Specifically, in each time
step t at a region n, we find that the total volume of mobility
system (bike sharing or taxi pick-ups) usage as X[n, t]. Then

TABLE I: Important symbols and their definitions.

Symbols Definitions Symbols Definitions
T Number of the time

steps within a day.
L Length of the time

steps of the near
history citywide
mobility data.

N Number of the regions. M Number of the
windows.

X[n, l] The mobility of region
n in time step l.

F Window of the
citywide mobility data.

Xg [n, l] Global impacts of the
mobility of region n

in time step l.

λn Rate parameter of the
fitted exponential

distribution from the
region n.

Z Probability densities of
the near history

citywide mobility data.

D[n, l] Extreme degree of the
mobility of region n

in time step l.
X̂[n, t+1] Mobility prediction of

region n in time step
(t+ 1).
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we have X[n, t−L+1 : t] ∈ RL, which represent the mobility
patterns of a region n ∈ {1, 2, . . . , N} during time periods
{t− L+ 1, t − L+ 2, . . . , t}. In addition, for each of the N
regions, we will find a total of M sliding time windows (which
slide with one time step), each of which consists of a total of
L consecutive time steps. We will leverage the time windows
to derive the statistical distributions of the extreme mobility
patterns. Specifically, each time window m ∈ {1, 2, . . . ,M}
is given by Fm ∈ RN×L = X[:, t − T (M − m) − L + 1 :
t−T (M −m)], i.e., the mobility patterns from all N regions
during the time periods of {t−T (M−m)−L+1, t−T (M−
m) − L + 2, . . . , t − T (M − m)}. Based on the above, we
can then form a multi-window mobility pattern tensor, F =
[F1,F2, . . . ,FM ] ∈ RM×N×L of M sliding time steps, for
our extreme mobility pattern analysis.

The goal of EALGAP is to take in the mobility patterns (e.g.,
bike sharing pick-ups, taxi pick-ups) from the most recent L
time steps, X[:, t − L+ 1 : t] ∈ RN×L, as well as the multi-
window mobility pattern tensor from the historical M time
windows, denoted as F, and forecast the mobility X̂[:, t+1] ∈
RN of each region in the incoming time step (t+ 1).

B. Preliminaries of Local and Global Impacts

Towards local-global impact modeling, we take into account
the mixture of the spatio-temporally varying global and local
impacts that can reveal the mobility momentum of a city [7].
Given the mobility pattern X[n, l] ∈ R of region n ∈ R in
time step l ∈ R, we first consider decomposing it into two
major aspects:

X[n, l] = Xg[n, l] +Xλ[n, l]

= Xg[n, l] +Xg[n, l]×D[n, l],
(1)

where Xg[n, l] ∈ R measures the global impacts of the
mobility of region n in time step l, D[n, l] represents the
extreme degrees, i.e., how the mobility patterns of a region
in a specific time step deviate from the overall trends, and
Xλ[n, l] = Xg[n, l]×D[n, l] ∈ R quantifies the local impacts,
i.e., given either positive or negative effect from the extreme
events (compared to the regular mobility of this region in
the same time step of a day). Towards the prediction of
X̂[:, t+1], our EALGAP needs to jointly characterize Xg[n, l]
and Xλ[n, l].

V. CORE FRAMEWORK OF EALGAP

In this section, we introduce the detailed designs of our
proposed model EALGAP as shown in Fig. 6. We first model
the global impacts of the near historical mobility from different
regions in the Global Impact Modeling Module (Sec. V-A).
Then, EALGAP models the extreme degrees of the historical
mobility, predicts the extreme degree of each region, and
generates the final citywide mobility prediction in the Extreme
Degree and Local Impact Modeling Module (Sec. V-B).

A. Global Impact Modeling Module

A-1) Global Dominant Spatial Dependencies Generation.
We first discuss how to derive the global impacts Xg[n, l]

Near History Citywide 
Mobility

A-1) Dominant Spatial
Dependencies Generation

A-2) Global Impact
Modeling

B-1) Extreme Degree
Modeling

B-2) Extreme Degree
Prediction

Windows Citywide 
Mobility

𝐗𝐗[: , 𝑡𝑡 − 𝐿𝐿 + 1: 𝑡𝑡] 𝐅𝐅 = {𝐅𝐅1,𝐅𝐅2, … ,𝐅𝐅𝑀𝑀}

𝐖𝐖𝑄𝑄,𝐖𝐖𝐾𝐾,𝐖𝐖𝑉𝑉 𝐄𝐄 = {𝐄𝐄1,𝐄𝐄2, … ,𝐄𝐄𝑀𝑀}

�𝐃𝐃[: , 𝑡𝑡 + 1]�𝐗𝐗𝑔𝑔[: , 𝑡𝑡 + 1]

Linear Operation

�𝐗𝐗[: , 𝑡𝑡 + 1]
Citywide Mobility Prediction

Global Impact Modeling Module

Extreme Degree and Local Impact Modeling Module

Fig. 6: Architecture overview of EALGAP.

based on the Global Impact Modeling Module in Fig. 8.
We have designed a novel data-driven approach with self-
attention to generate the adaptive temporally-varying spatial
dependencies from the mobility pattern distribution from the
recent time steps for each city region.

Specifically, given the mobility data X[:, t − L + 1 : t] ∈
RN×L from N regions of L time steps during time periods
{t−L+1, t−L+2, . . . , t}, we first design the self-attention
mechanism to transform the mobility patterns into the matrices
of query Q ∈ RN×L×J , key K ∈ RN×L×J , and value V ∈
RN×L×J , respectively, i.e.,

Q = X[:, t− L+ 1 : t] ·WQ,

K = X[:, t− L+ 1 : t] ·WK ,

V = X[:, t− L+ 1 : t] ·WV ,

(2)

where WQ ∈ RN×I×J , WK ∈ RN×I×J , and WV ∈
RN×I×J are the learnable parameter matrices for the query,
key, and value matrices in the self-attention mechanism. The
basic idea of self-attention is to capture the inter-dependencies
across the mobility patterns with themselves, yielding learn-
ability in the complex mobility data.

Conventional attention designs [32] often consider static
dependencies that characterized by WQ, WK , and WV

across all the time steps once the model is trained. However,
in the complex urban mobility prediction, the global impacts
upon the mobility patterns may change over time across all the
regions. The parameter matrices in the self-attention design
may not necessarily hold in the spatio-temporal settings, and
require a dynamic and adaptive mechanism to provide flexible
mobility prediction.
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To overcome such a restriction, we design a data-driven
approach within EALGAP to learn the temporally-varying
spatial dependencies WQ, WK , and WV of each region
during these L time steps based on the probability density
function (PDF) of fitted exponential distributions.

Fig. 7: Actual bike sharing pick-up probability density and
the fitted exponential distribution (red curve).

First, we fit the mobility data during time periods {t −
L + 1, t − L + 2, . . . , t} of each region into the exponential
distribution. We have conducted empirical studies, and Fig. 7
shows the count distribution and the fitted probability density
function (PDF) of the hourly bike sharing pick-ups in NYC
of all regions. We can observe that the hourly bike sharing
pick-ups reflect the exponential distribution. We have also
studied other probability distributions (e.g., normal distribu-
tion), and we select the exponential distribution based on our
empirical analysis. Then EALGAP returns the rate parameters
λ = {λ1, λ2, . . . , λN} ∈ RN for each region based on the
maximum likelihood estimations E(·), i.e., the reciprocal of
the average mobility records (say, taxi pick-ups) of each region
n ∈ {1, 2, . . . , N} during {t− L+ 1, t− L+ 2, . . . , t},

λ = E(X[:, t− L+ 1 : t]). (3)

Second, having obtained the rate parameters λ of each
region, we then calculate all the probability densities Z ∈
RN×L of mobility X[:, t − L + 1 : t] during time periods
{t−L+1, t−L+2, . . . , t} based on the PDF of the exponential
distribution, denoted as F(·; ·), by

Z ∼ F(X[:, t− L+ 1 : t];λ). (4)

Based on the nature of the learned PDF, the output Z repre-
sents the mobility dynamics of each region over time. We then
utilize three dense or fully-connected layers (FC) interleaved
with the Softmax activation functions as a decoder to process
Z into the spatial dependencies of mobility patterns of N
regions during {t− L+ 1, t− L+ 2, . . . , t} by[

WQ,WK ,WV
]
= FC(FC(FC(Z))). (5)

This way, we do not need to fix the parameter matrices WQ,
WK , and WV for the query, key, and value matrices over all
the time steps, and then the output global impact of a region
in a specific time step represents the weighted sum of the
mobility of the same region in all the recent historical time
steps (say, in the most recent L time steps).

A-2) Modeling Global Impacts via Self-Attention. We have
further designed the self-attention mechanism to model the
global impacts. We have the spatial dependencies WQ, WK ,
and WV over the time periods of {t−L+1, t−L+2, . . . , t}.
Here we utilize the self-attention to model the global impacts
Xg[:, t− L+ 1 : t] ∈ RN×L of the mobility patterns of each
region over L historical time steps, i.e.,

Xg[:, t− L+ 1 : t] = Softmax

(
QK⊤
√
J

)
V, (6)

where the query, key, and value are given by Eq. (2). The
basic idea is to leverage the dot product between the query Q
and key K to (both are given by the parameterized mobility
patterns in Eq. (2)) to capture the matching and interactions
between them, and the resulting importance is further used
to weigh the value V (also parameterized in Eq. (2) based
on mobility patterns). We note that Eq. (6) represents the
attention score matrix which learns the pairwise similarities
of the mobility between any two time steps within the same
region. Then the Softmax activation function is applied on
the last dimension of the attention score matrix, quantifying
the different importance of the mobility in each historical
time step of a region, and the importance of all regions
sums up to 1. Having the entire score matrix of each region
from Softmax

(
QK⊤
√
J

)
, we will then re-scale the historical

mobility of each region by Eq. (6). We set I = 1 and J = 1
in this study.

Afterwards, we use three fully-connected layers interleaved
with the ReLU activation to predict the global impacts X̂g[:
, t + 1] ∈ RN of N regions in time step (t + 1) from the
historical global impacts X̂g[:, t− L+ 1 : t] by

X̂g[:, t+ 1] = FC(FC(FC(Xg[:, t− L+ 1 : t]))). (7)

B. Extreme Degree and Local Impact Modeling Module

We further present the Extreme Degree and Local Impact
Modeling Module for prediction of the extreme degree D[n, l]
for Xλ[n, l] in Eq. (1), whose designs are illustrated in Fig. 9.

B-1) Extreme Degree Modeling Based on Historical Same
Time Periods. Normalization is an useful way to ensure
that data with very diverse ranges will proportionally impact
the model performance, without ignoring the impacts of any
long-tailed data [7]. In this study, inspired by the instance
normalization proposed by Ulyanov et al. [33], we consider
the instance normalization and evaluate the degree that the
mobility of a region in a specific time step varies from the
historical data of this region. Given the historical mobility data
X[n, t− L+ 1 : t] ∈ RL of region n ∈ {1, 2, . . . , N} during
time periods {t− L+ 1, t− L+ 2, . . . , t}, one may consider
normalizing the data directly by the mean µn ∈ R and the
standard deviation σn ∈ R [7] of all the historical data of
region n during L time steps, and obtain the extreme degree
D[n, l] ∈ R:

D[n, l] =
X[n, l]− µn√

σ2
n + εn

, (8)
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where εn ∈ R is set as a learnable constant for a region n.
Eq. (8) measures the extreme degree based on the mobility of
all the input time steps of the same region, which is applicable
to the time series data whose extreme degree does not vary
in time. However, for the mobility data, this may cause, for
instance, the regular mobility patterns during rush hours of a
day to be considered as an extreme value if they are compared
to the low ones during late night. To overcome such a temporal
variation problem, we adapt Eq. (8) by quantifying the extreme
degree of mobility of a region based on the same historical
time period of each region.

Specifically, to evaluate the extreme degree of mobility
X[n, l] of region n in a time step l, we calculate the mean
µ[n, l] ∈ R and standard deviation σ[n, l] ∈ R from X[n, l]
and previous M mobility records of region n, which are in
the same time step of day in weekday/weekend as the target
time step l. Then, the means and the standard deviations used
to quantify the extreme degrees of mobility X[n, t−L+1 : t]
vary across different time steps {t−L+ 1, t−L+ 2, . . . , t}.
We then rewrite the Eq. (8) into

D[n, l] =
X[n, l]− µ[n, l]√

σ2[n, l] + εn
γn, (9)

where γn ∈ R is a learnable parameter used to adjust the scales
of the extreme degrees of the mobility patterns in each region
n. Since we focus on the urban mobility patterns (e.g., bike
sharing pick-ups, taxi trips) in this study, X[n, l] is considered
non-negative, and the resulting range of D[n, l] lies in [−1, 1].
Therefore, different D[n, l] will be considered to introduce

varying effects upon the actual trends of mobility patterns
within the mobility patterns. After modeling the extreme
degree of the mobility patterns X[n, t−L+1 : t], we apply a
tanh activation function to bound the extreme degree of each
region into the range of [−1, 1].

B-2) Extreme Degree Prediction. Recall in Sec. IV-A we
have defined the multi-window mobility pattern tensor F. To
predict the extreme degree D̂[:, t + 1] ∈ RN of N regions
in time step (t + 1), we first construct M ∈ R windows of
mobility data F = {F1,F2, . . . ,FM} ∈ RM×N×L from N
regions. The length of the time steps of each window is also
L time steps. We note that Fm = X[:, t− T (M −m)− L+
1 : t − T (M − m)] ∈ RN×L represents the mobility data
of window m ∈ {1, 2, . . . ,M} from the N regions during
time periods {t− T (M −m)− L+ 1, t− T (M −m)− L+
2, . . . , t − T (M − m)}. For instance, if we set T = 24 (24
hours backward) and L = M = 2 for prediction of 8:00–
9:00am, Thursday (a weekday), our F1 and F2 respectively
correspond the mobility patterns of all regions on the Tuesday
and Wednesday right before the target date.

Then, we evaluate the extreme degrees for M windows of
mobility data F by Eq. (9) and a tanh activation after it, and
represent the extreme degrees as E = {E1,E2, . . . ,EM} ∈
RM×N×L, where Em = D[:, t − T (M − m) − L + 1 : t −
T (M −m)] ∈ RN×L. We then apply a Gated Recurrent Units
(GRU) module [34] to embed each window of extreme degree
into the feature space, and predict the extreme degree of N
regions in the one following time step of each window. In each
GRU module, we use a tanh activation function. The output
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states from GRU of a window are utilized as the initial states
of the GRU when operating the data of the next window. The
embedding and the subsequent prediction are then formulated
as

[D[:, t− T (M −m) + 1],Sm] = GRU(Em, Sm−1), (10)

where D[:, t − T (M − m) + 1] ∈ RN and Sm ∈ RN are
respectively the predicted extreme degrees and hidden states
when operating the extreme degree data Em ∈ RN×L of a
window m. Sm−1 ∈ RN represents the hidden states of GRU
from the (m− 1)

th window. After embedding all windows
of extreme degree data, we denote the final extreme degrees
prediction of N regions at the time step (t+1) as D̂[:, t+1] ∈
RN .

• Final Mobility Prediction Output. Finally, given the
global impact prediction X̂g[:, t + 1] ∈ RN , and the extreme
degree prediction D̂[:, t+1] ∈ RN , we consider both the global
impacts and extreme degrees with Eq. (1) to predict the final
mobility pattern of N regions in time step t, X̂[:, t+ 1] =

ReLU(X̂g[:, t+ 1] + X̂g[:, t+ 1]× D̂[:, t+ 1]). (11)

VI. EXPERIMENTAL STUDIES

In this section, we first present the details of the datasets
in Sec. VI-A, followed by the baseline models and the ex-
perimental settings in Sec. VI-B. After that, we present the
experimental results of this study in Sec. VI-C.

A. Details of Mobility Data Studied

• Bike Mobility Data: We consider the Citi bike sharing
data in NYC, NY (10,064,558 trips in total from 347 bike
stations are studied)2 during the selected time periods (about
7.5 months) in 2020. In addition, we have also included the
Divvy bike sharing in Chicago (1,281,745 trips in total from
799 bike stations are studied)3 during selected time periods
(about 7 months) in 2021.

• Taxi Mobility Data: We also utilize the NYC Yellow
Taxi data (2,359,903 trips in total) during selected time periods
(about 5 months) in 2016 and the Chicago taxi data (15,520
trips in total)4 during selected time periods (about 7 months)
in 2021. It also serves as another angle to look at the regional
connectivity and the impact of the events.

B. Baselines & Experimental Settings

• Baseline Models: In this study, we implement the fol-
lowing models as the baselines for comparison.

1) Auto-Regressive Integrated Moving Average (ARIMA):
We utilize ARIMA to predict the urban mobility of N
regions in the time step (t+ 1). We implement ARIMA
to model the nonseasonal patterns within the time series
of mobility.

2https://ride.citibikenyc.com/system-data
3https://ride.divvybikes.com/system-data
4https://data.cityofchicago.org/Transportation/Taxi-Trips-2021/9kgb-ykyt

2) GRU/LSTM/RNN: We utilize the Gated Recurrent Unit
(GRU), Long Short-Term Memory (LSTM) neural net-
work, and Recurrent Neural Networks (RNN) to predict
the mobility patterns of N regions in time step(t+ 1)
from the near history mobility data X[:, t−L+1 : t] ∈
RN×L.

3) ST-Norm [7]: which implements the Spatial and
Temporal Normalization-based (ST-Norm) framework.
Here ST-Norm models the high- and low-frequency
components within the mobility patterns.

4) ST-ResNet [8]: ST-ResNet is adapted to take in
the historical citywide mobility data in terms of short-
term (close), mid-term (period), and long-term (trend)
sequences to predict the mobility in time step(t+ 1).

5) EVL [9]: which implements the Extreme Value Loss
(EVL). Here EVL categorizes the mobility patterns into
high/normal/low categories based on the predefined
thresholds and utilizes an extreme value theory based
loss function for multi-region mobility prediction.

6) CHAT [10]: which leverages the Cross-Interaction Hier-
archical Attention (CHAT) network for extreme mobility
prediction. CHAT takes in the spatial, temporal, and
contextual information, and retrieves the joint represen-
tations of anomaly or extreme patterns from the mobility
data across these three aspects.

• Evaluation Metrics: In this study, we use theError
Rate (ER), Mean Squared Logarithmic Error (MSLE), and
R-squared (R2) as evaluation metrics. Taking the mobility
prediction of N regions in time step (t + 1) as an example,
the evaluation metrics are formally given by

ER =

∑N
n=1

∣∣∣Xn,t+1 − X̂[n, t+ 1]
∣∣∣∑N

n=1 X[n, t+ 1]
,

MSLE =
1

N
×

N∑
n=1

| log2
(
X̂[n, t+ 1] + 1

)
− log2 (X[n, t+ 1] + 1) |,

and

R2 = 1−

∑N
n=1

(
X[n, t+ 1]− X̂[n, t+ 1]

)2

∑N
n=1

(
X[n, t+ 1]− X̄

)2 ,

where X̂[n, t + 1] and X[n, t + 1] denote the predicted and
ground-truth mobility of region n in time step (t+1), and X̄
denotes the mean value of all the ground-truth values in the
predicted time steps.

• Details of Mobility Data and Events Studied:Given
the trained models from the preceding time periods, we will
further test our model by the following time periods:

(a) For Citi bike sharing in NYC, the time periods studied
include: 1) 09/18/2020–09/27/2020 without the occurrence
of anomaly/extreme events, 2) 07/31/2020–08/09/2020 when
NYC was affected by the Hurricane Isaias on 08/04/2020,
and 3) 12/22/2020–12/31/2020 with the public holidays of
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NYC for Christmas holidays on 12/24/2020–12/25/2020. (b)
For the Yellow Taxi trip data in NYC, we studied the fol-
lowing three time periods: 1) 04/21/2016–04/30/2016 without
the occurrence of anomaly/extreme events, 2) 04/01/2016–
04/10/2016 when the city was significantly under influence
by wind gust and freezing rain during the 04/03/2016–
04/04/2016, and 3) 05/05/2016–06/04/2016 with the Memorial
Day on 05/30/2016. (c) For the Divvy bike sharing and taxi
trip data in Chicago, we studied the following three time
periods: 1) 06/01/2021–06/10/2021 without the occurrence of
anomaly/extreme events, 2) 10/22/2021–10/31/2021 when the
city was significantly influenced by heavy rainstorm during the
10/24/2021–10/25/2021, and 3) 11/21/2021–11/30/2021 with
the Thanksgiving Holidays.

Including each of the ten days of the predicted time periods
as mentioned above, from each mobility dataset, we retrieve
three months to predict the mobility of each region during the
occurrence of each selected situation. In each experiment, the
last 15 days of data are used as validation and testing data,
i.e., 5 days for validation and 10 for testing, and the periods
prior to them are used as training data.

13
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Fig. 10: Region indices of bike sharing trips in NYC (2020).

We process each dataset as follows. For the NYC Citi bike
sharing Data (2020) and the Chicago Divvy bike sharing Data
(2021), we remove 1) the bike stations who do not exist in
the whole year of 2020 and 2021, respectively, 2) the bike
stations whose average hourly bike pick-ups are less than 1,
3) the trips with errors in the timestamps, and 4) the trips with
duration less than 1 minute. For the NYC yellow taxi trip data
(2016) and the Chicago taxi trip Data (2021), we remove the
trips 1) with incorrect timestamps, and 2) with duration of less
than 1 minute.

Parameter Settings: Following the practices of improving
bike distributions for analysis [29], [35], We partition NYC
into 20 regions and Chicago into 18 regions by the K-
means [36] algorithm using both the geographical locations of
the bike stations and the pick-up/drop-off locations of all the
taxi trips of each city. We illustrate the clustered and generated
regions of NYC in Fig. 10. For each region n at time step t,
we aggregate the bike sharing usage (pick-ups) of all the bike
stations in region n and form X[n, t]. We aggregate the taxi
trips and find X[n, t] in the same manner. For Citi bike sharing
and the Yellow Taxi trips in NYC, the number of the training
epochs is set to 500 with a learning rate of 0.0002 and a batch
size of 128. Also, we set L and M to 5 and 3 respectively.

TABLE II: Prediction results and performance comparison on
the Citi bike sharing data in NYC (2020).

Scheme Normal Hurricane Christmas
ER MSLE R2 ER MSLE R2 ER MSLE R2

ARIMA 0.611 3.583 0.374 0.640 3.344 0.335 0.947 5.682 -0.042
GRU 0.263 3.916 0.797 0.390 7.024 0.387 0.392 4.921 0.777
LSTM 0.284 3.856 0.845 0.569 13.589 0.332 0.632 9.712 0.335
RNN 0.312 6.200 0.731 0.348 6.789 0.669 0.373 4.546 0.785
ST-Norm 0.295 1.146 0.837 0.339 1.381 0.773 0.318 1.465 0.858
ST-ResNet 0.320 6.728 0.773 0.682 20.122 0.202 0.715 12.274 0.030
EVL 0.247 5.001 0.719 0.417 9.275 0.421 0.306 3.345 0.733
CHAT 0.276 1.283 0.838 0.349 2.502 0.745 0.546 2.641 0.470

EALGAP 0.205 0.661 0.920 0.256 0.932 0.833 0.282 1.194 0.879

TABLE III: Prediction results and performance comparison
on the Divvy bike sharing data in Chicago (2021).

Scheme Normal Rainstorm Thanksgiving
ER MSLE R2 ER MSLE R2 ER MSLE R2

ARIMA 0.605 1.569 0.517 1.025 2.978 0.193 0.736 1.434 0.373
GRU 0.327 3.855 0.900 0.665 4.812 0.593 0.483 2.053 0.790
LSTM 0.313 2.670 0.896 0.545 1.604 0.715 0.474 1.244 0.802
RNN 0.326 2.801 0.894 0.481 2.084 0.736 0.673 1.435 0.344
ST-Norm 0.315 1.119 0.840 0.474 1.834 0.780 0.552 2.016 0.795
ST-ResNet 0.543 9.151 0.739 0.542 4.661 0.817 0.606 4.368 0.798
EVL 0.327 2.702 0.869 0.504 2.422 0.217 0.428 1.441 0.756
CHAT 0.414 1.122 0.825 0.622 0.872 0.469 0.516 0.842 0.656

EALGAP 0.284 0.871 0.907 0.404 0.866 0.817 0.414 0.786 0.826

For Divvy bike sharing and taxi trips in Chicago, we set the
number of the training epochs to 1000 with a learning rate of
0.0002 and a batch size of 128. Also, we set the values of L
and M to 2.

In this study, all the experiments are conducted upon a desk-
top server with Intel i7-9700 CPU, NVIDIA GeForce RTX
2060 SUPER GPU, 16.0 GB RAM, and Windows 10. The
proposed model is implemented in Python with Tensorflow-
GPU-2.3.0. For all the baselines, the batch size, the number of
regions N , the length of time steps of the near history mobility
data L, and the number of windows M are the same as
EALGAP when predicting the same mobility data. The average
training time of each deep learning method per time step and
epoch (on our desktop server) are: 0.023ms for GRU, 0.024ms
for LSTM, 0.011ms for RNN, 0.574ms for ST-Norm, 0.119ms
for ST-ResNet, 1.028ms for EVL, 0.135ms for CHAT, and
0.307ms for EALGAP, respectively.

C. Evaluation Results

• Overall Performance: We illustrate the results of all the
experiments in Tables II, III, IV, and V. The prediction results
show that our proposed model EALGAP outperforms all other
selected baseline models in urban mobility prediction even
with the existence of strong turbulence in the mobility data.
Furthermore, our results show that accounting for the extreme
degree of mobility due to the occurrence of anomaly events can
significantly enhance the model’s urban mobility prediction
accuracy. In particular, with respect to each of the four
datasets, i.e., Citi in NYC, Divvy in Chicago, Yellow Taxi in
NYC, and taxi trips in Chicago, EALGAP can achieve 61.61%,
40.65%, 30.93%, and 43.29% lower errors (on average for all
metrics) than the other state-of-the-art approaches.

Compared with ARIMA, GRU, LSTM, RNN, ST-ResNet,
and CHAT, our EALGAP can model the dynamics of mobility
patterns in different regions during anomaly events, thereof
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TABLE IV: Prediction results and performance comparison
on the yellow taxi trip data in NYC (2016).

Scheme Normal Wind Gust Memorial Day
ER MSLE R2 ER MSLE R2 ER MSLE R2

ARIMA 0.485 1.849 0.499 0.499 1.857 0.498 0.504 1.818 0.473
GRU 0.354 3.029 0.600 0.334 3.147 0.719 0.349 2.971 0.696
LSTM 0.343 3.092 0.750 0.342 3.146 0.745 0.345 2.174 0.745
RNN 0.305 2.829 0.807 0.330 3.266 0.696 0.331 2.984 0.752
ST-Norm 0.286 0.949 0.802 0.269 0.830 0.844 0.335 1.734 0.806
ST-ResNet 0.288 1.633 0.825 0.281 1.675 0.836 0.308 2.333 0.804
EVL 0.289 1.635 0.763 0.262 1.388 0.796 0.292 1.501 0.773
CHAT 0.293 1.027 0.814 0.301 1.067 0.801 0.306 1.136 0.795

EALGAP 0.275 0.890 0.840 0.263 0.732 0.854 0.286 0.786 0.822

TABLE V: Prediction results and performance comparison on
the taxi trip data in Chicago (2021).

Scheme Normal Rainstorm Thanksgiving
ER MSLE R2 ER MSLE R2 ER MSLE R2

ARIMA 0.404 0.731 0.766 0.514 1.153 0.674 0.653 1.969 0.577
GRU 0.318 1.796 0.916 0.336 3.999 0.931 0.368 4.559 0.881
LSTM 0.332 1.954 0.891 0.276 3.233 0.956 0.371 4.741 0.920
RNN 0.305 2.007 0.918 0.330 4.251 0.933 0.296 3.632 0.944
ST-Norm 0.258 0.631 0.944 0.246 0.889 0.947 0.301 0.937 0.874
ST-ResNet 0.596 2.182 0.199 0.514 3.368 0.670 0.564 2.684 0.528
EVL 0.350 2.979 0.856 0.300 3.998 0.944 0.338 4.145 0.914
CHAT 0.584 1.688 0.626 0.484 1.508 0.762 0.556 2.219 0.692

EALGAP 0.247 0.598 0.948 0.226 0.777 0.962 0.251 0.769 0.953

improving the prediction accuracy and corroborating the effec-
tiveness of the Extreme Degree Modeling Module. ST-Norm
considers that the global impacts of the data in different
regions is constant over a period of time, which nevertheless
may not hold well in dynamic spatio-temporal mobility data. It
is mainly because the overall temporal patterns of mobility in
different time periods are different. In contrast, our EALGAP
considers the temporally-varying global impacts, and captures
the overall spatial dependencies and the regular temporal
patterns for the mobility of different regions for different
time steps, which validates our design of the Global Impact
Modeling Module. Furthermore, EVL captures both the regular
temporal patterns and the extreme degrees of the data in each
region. However, it does not account for the spatial correlations
among the region for more accurate urban mobility prediction.

• Ablation Studies: To validate the designs of each compo-
nent of our proposed model, taking NYC Citi bike sharing data
during the Hurricane Isaias, we have carried out the following
experiments: (i) complete EALGAP; (ii) EALGAP with only
the Global Impact Modeling Module; (iii) EALGAP with only
the Extreme Degree and Local Impact Modeling Module; (iv)
replacing the exponential distribution in the Global Impact
Modeling Module with the normal distribution; (v) region
partitioning with Density-Based Spatial Clustering of Applica-
tions with Noise (DBSCAN) [37]; and (vi) region partitioning
with Ordering Points To Identify the Clustering Structure
(OPTICS) [38] based on the geological distance. We note
that in (iii) we use two Dense layers with ReLU activation
function to predict the global impacts Xg[:, t + 1] ∈ RN of
the mobility patterns in time step (t + 1). The parameters in
each experiment are the same as EALGAP.

As shown in Fig. 11, both of the Global Impact Modeling
Module and the Extreme Degree and Local Impact Modeling
Module can model the dynamic of mobility from different

regions. Especially, since the Extreme Degree and Local
Impact Modeling Module can capture the extreme degree of
the mobility of each region under the occurrence of anomaly
events, its results are better than the models solely using
the Global Impact Modeling Module. Combing both of the
components can achieve the best modeling of the mobility of
different regions in various time steps. In addition, compared
with the normal distribution, the exponential distribution can
better represent the dynamics of the mobility in different
regions and help more accurate urban mobility predictions.
We can also observe that using our default region partitioning
method EALGAP suffices to achieve good mobility prediction
accuracy.
• Sensitivity Studies: We have conducted sensitivity studies

for our proposed model on two parameters, the length of near
history mobility data, L, and the number of windows, M .
In particular, both L and M are set from 2 to 6. L and
M represent the length of time steps of the most relevant
near history instantaneous mobility dynamic and the regular
dynamic of the mobility when predicting the mobility of a
region in the next time step, respectively. Leveraging the
mobility during these most relevant time steps will greatly
reduce the computational cost and improve the prediction
accuracy of the model.

As shown in Fig. 12, our proposed model EALGAP is
consistent in accurately predicting the mobility of each region
in the city during the occurrence of anomaly events. However,
we can still find that setting L as 5 and M as 3 can achieve
the best prediction results. Therefore, to predict the urban
mobility of a future time step, the mobility data belonging to
the previous 3 time steps along with the mobility of the same
time step for the previous 5 days contain the most relevant
information for bike sharing trips in NYC. In the experiments,
we also find that using L and M greater than 6 or more
may cause the prediction accuracy to significantly drop. We
speculate the reason as, considering the local instantaneous
mobility dynamics incurred by the anomaly events only last for
a short time period and the regular dynamic of urban mobility
is also influenced by time, using large L and M may impact
the characterization of both the local and global impacts.
• Result Visualization: We visualize the predictions (Pre)

and ground-truths (Gro) of the Citi bike sharing pick-ups of
NYC in 2020 during the normal situations (a) and two anomaly
events (b and c) in Fig. 13. We can see that EALGAP achieves
high accuracy in capturing the instantaneous temporal dynam-
ics of mobility patterns under both normal and anomalous
periods. We can also observe that the urban mobility deviated
from the overall global trends due to the Hurricane Isaias
on 08/04/2020 and the Christmas holidays during 12/24/020–
12/25/2020. Our EALGAP can still capture the instantaneous
dynamics of the mobility of each region by capturing the
extreme degree.

In addition, we illustrate the ground-truth and prediction
heatmaps of the urban bike sharing pick-ups of NYC for one
of the predicted time steps during the occurrences of hurricane
and the public holidays (Christmas) in Figs. 14 and 15. For
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Fig. 11: Ablation studies with (a) ER; (b) MSLE; and (c) R2 of predicting the bike pick-ups of 20 regions of NYC during
the hurricane on 08/04/2020.
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Fig. 12: Sensitivity studies on EALGAP. (a) and (b): ER and MSLE of EALGAP on L; (c) and (d): ER and MSLE of EALGAP
on M . We studied the bike sharing pick-up prediction in NYC during 08/04/2020.

each region, we show the aggregate bike usage of the stations
within that region with the same colors, and the warmer colors
imply more bike sharing pick-ups for a region. By incorporat-
ing the overall global trend and the instantaneous local changes
of the mobility, this demonstrates the effectiveness of EALGAP
to address the data imbalance issue of the mobility prediction,
which can benefit the applications in city management, related
resource allocation, and emergency managements.

VII. CONCLUSION

We propose EALGAP, a novel extreme-aware local-global
attention urban mobility prediction model, which takes in
the spatio-temporal local and global impacts of mobility in
different regions and time steps for prediction at various city
regions. In particular, we have taken into account the global
impacts by extracting the overall spatial dependencies and
the regular temporal patterns of mobility systems (e.g., bike
sharing, taxicab) for different city regions. We have designed a
normalization-based technique to retrieve the extreme degrees
of mobility patterns locally within different regions and time
steps given the occurrences of anomaly events. We have
conducted extensive experimental studies upon four mobility
datasets harvested from two metropolitan cities in U.S. with
anomaly natural/social events (e.g., hurricane events, Federal
holidays). Our results have demonstrated the accuracy and
extreme-awareness of our proposed EALGAP compared with
other state-of-the-art approaches.
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occurrence of the hurricane.
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