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1. Introduction
We consider the Riemannian optimization problem

min f(x), xeM, 1)

where M is a complete embedded submanifold of R” and f : R" — R is a proper lower semicontinuous function
and possibly non-Lipschitz. It is worth mentioning that the results developed in this paper also work for matrix-
variable problems, that is, f : R™" — R. Such problems arise in a variety of applications in signal processing,
computer vision, and data mining (Adler et al. [3], Bacak et al. [7], Jiang et al. [36], Sun et al. [50]).

Many classical algorithms for unconstrained and smooth optimization have been extended from Euclidean
space to Riemannian manifolds, such as the gradient descent algorithm, the conjugate gradient algorithm, the
quasi-Newton algorithm, and the trust region method (Absil and Gallivan [1], Absil et al. [2], Boumal [12],
Huang et al. [35]). Recently, Riemannian optimization with a nonsmooth but locally Lipschitz continuous objec-
tive function was considered in the literature. Here the smoothness and locally Lipschitz continuity are inter-
preted when the function in question is considered in the ambient Euclidean space. The Riemannian Clarke
subdifferential of functions over manifolds has been defined, and its properties have been discussed in Hosseini
and Pouryayevali [31]. Several algorithms have been proposed based on the notion of Riemannian Clarke subdif-
ferential. For example, Hosseini and Uschmajew [32] proposed the Riemannian gradient sampling algorithm.
This algorithm approximates the subdifferential using the convex hull of transported gradients from tangent
spaces of randomly generated nearby points to the tangent space of the current space. The e-subgradient
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algorithm (Grohs and Hosseini [30]) is a steepest descent method where the descent directions are obtained by a
computable approximation of the e-subdifferential. The line search algorithms (Hosseini et al. [33]) include the
nonsmooth Riemannian BFGS algorithm as a special case. For both the e-subgradient algorithm and the line
search algorithms, either the algorithms terminate after a finite number of iterations with the e-subgradient-ori-
ented descent direction being zero, or any accumulation point is a Riemannian Clarke stationary point. Other
methods for nonsmooth optimization over Riemannian manifolds include the Riemannian subgradient method
(Li et al. [42]), the Riemannian ADMM (Kovnatsky et al. [37], Lai and Osher [38], Li et al. [41]), the manifold prox-
imal gradient method (Chen et al. [17, 18], Huang and Wei [34], Wang et al. [52]), the manifold proximal point
method (Chen et al. [15]), the manifold proximal linear method (Wang et al. [53]), the manifold augmented
Lagrangian method (Chen et al. [19], Zhou et al. [60], Zhu et al. [61]), and zeroth-order algorithms over Riemann-
ian manifolds (Li et al. [40]).

The Riemannian generalized subdifferentials have been studied in Azagra et al. [4] and Ledyaev and Zhu [39]
and are expected to be useful for analyzing non-Lipschitz optimization. To the best of our knowledge, how-
ever, there do not exist optimization algorithms for solving Riemannian non-Lipschitz optimization problems
with rigorous convergence results. Consequently, the Riemannian generalized subdifferentials developed in
Azagra et al. [4] and Ledyaev and Zhu [39] have not yet been used to show the convergence results for non-
Lipschitz optimization. Non-Lipschitz optimization in Euclidean space finds many important applications,
including, but not limited to, finding sparse solutions in signal processing and data mining (Chen et al. [24, 26],
Liu et al. [43, 44], Shang et al. [48]) and neat edges in image restoration (Bian and Chen [9], Chen et al. [22], Zeng
et al. [57]). Smoothing methods with a proper updating scheme for the smoothing parameter are efficient for
solving large-scale nonsmooth optimization in Euclidean space (Chen [20], Chen and Zhou [21], Chen et al. [22,
23], Zhang and Chen [58, 59]). With a fixed smoothing parameter, one solves the smoothed problem to update
the iterate. Certain strategy is then applied to decide whether and how the smoothing parameter needs to be
changed. Under the so-called gradient consistency property, it can be shown that any accumulation point of the
smoothing method is a limiting stationary point of the original nonsmooth optimization problem; see, for exam-
ple, the definition in Zhang and Chen [59, p. 14]. The gradient consistency naturally holds for smoothing func-
tions arising in various real applications with nonsmooth and locally Lipschitz objective functions (Burke and
Hobheisel [13], Burke et al. [14], Chen [20], Xu et al. [55], Zhang and Chen [58]). Smoothing methods have been
widely used to solve unconstrained non-Lipschitz optimization problems (Chen et al. [23]) and constrained
non-Lipschitz optimization problems with convex feasible sets (Zhang and Chen [59]). However, minimizing a
non-Lipschitz function on a nonconvex set has not been widely considered in the literature. In Chen et al. [26], an
augmented Lagrangian method for non-Lipschitz nonconvex programming was proposed where the constraint
set is nonconvex.

In Zhang and Chen [58], a smoothing projected gradient method for minimizing a nonsmooth but locally
Lipschitz function on a convex feasible set in R" was proposed (Zhang and Chen [58, algorithm 3.1]). In Zhang
and Chen [59], a smoothing active set method for linearly constrained non-Lipschitz nonconvex optimization in
R" (Zhang and Chen [59, algorithm 3.1]) was proposed. As mentioned in remark 3.2 of Zhang and Chen [59], a
unified framework of smoothing methods can be obtained by slightly modifying algorithm 3.1 of Zhang and
Chen [59] with the same convergence result developed in Zhang and Chen [59], including the smoothing steepest
descent method if the feasible set is R". In this paper, the objective function is not necessarily locally Lipschitz.
The Riemannian smoothing steepest descent (RSSD) method as well as the convergence analysis that will be
developed in this paper extend those from Zhang and Chen [59]. The RSSD method can be considered as an
extension of the smoothing steepest descent method on R" from Zhang and Chen [59] to embedded submani-
folds of R"; see Remark 4 for details.

1.1. Main Contributions
Our contributions of this paper are as follows:

i. We characterize the Riemannian generalized subdifferentials for proper lower semicontinuous functions. We
define the notion of limiting stationary point of (1) whose objective function is allowed to be not locally Lipschitz.
When the objective function of (1) is locally Lipschitz, a limiting stationary point is a Clarke stationary point, but a
Clarke stationary point is not necessarily a limiting stationary point of (1). Compared with the results in Ledyaev
and Zhu [39], Proposition 2 in this paper has not been considered, and Example 2 of this paper has not been given
there.

ii. We define the Riemannian subdifferential of f associated with a smoothing function f. We define a stationary
point x* of (1) associated with f and show that x* being a stationary point of (1) associated with f is a necessary opti-
mality condition for x* being a local minimizer of (1).
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ifi. To build the relationship between the above two notions of stationary points of (1), associated with or with-
out f, we define the Riemannian gradient subconsistency of f at x on M. Under the Riemannian gradient subcon-
sistency of f, any stationary point of (1) associated with f is a limiting stationary point of (1). These concepts and
results in ii and iii are extensions of the corresponding counterparts from Zhang and Chen [59] for optimization in
R" to Riemannian optimization on M. We show that the Riemannian gradient subconsistency holds if the gradient
subconsistency of f holds at x on R", provided that f is locally Lipschitz near x on R". We also show that for a class
of non-Lipschitz functions on R", the Riemannian gradient subconsistency of their smoothing functions holds on
M. These two results have not been considered in the existing literature before.

iv. We design a Riemannian smoothing steepest descent method for solving (1). It is an extension of the smooth-
ing steepest descent method in R" from Zhang and Chen [59] to embedded submanifolds of R"; see Remark 4 for
details. The proposed RSSD method is easy to implement and converges to a stationary point x* of (1) associated
with f where the objective function is nonsmooth, possibly not even locally Lipschitz. Under Riemannian gradient
subconsistency of f, x* is also a limiting stationary point of (1).

v. When the objective function is locally Lipschitz, the convergence result of our RSSD method is stronger than
that of the aforementioned existing methods for Riemannian nonsmooth optimization with locally Lipschitz objec-
tive functions. This is because these existing methods can guarantee only that any accumulation point of the
sequence is a Clarke stationary point, but our result guarantees that any accumulation point of the sequence is a
limiting stationary point.

The rest of this paper is organized as follows. In Section 2, we give a brief review on some basic concepts and
properties related to Riemannian manifolds, the generalized subdifferentials and smoothing functions. We define
the generalized subdifferentials for non-Lipschitz functions on embedded submanifolds of R” that are motivated
by Azagra et al. [5] and Ledyaev and Zhu [39]. In Section 3, we discuss the properties of the generalized subdif-
ferentials for non-Lipschitz functions on embedded submanifolds of R". We also define and discuss the Rie-
mannian gradient subconsistency that is essential to the convergence analysis of our method. In Section 4, we
propose our RSSD method and analyze its convergence behavior. In Section 5, we conduct numerical experi-
ments on two important applications: finding the sparsest vectors in a subspace, and the sparsely used orthogo-
nal complete dictionary learning (ODL). Finally, we draw some concluding remarks in Section 6.

2. Preliminaries

We define some notation first. Throughout this paper, without specification, M denotes a complete embedded
submanifold of R". Let x € M and Ty M be the tangent space of M at x. The cotangent space at x via the Rie-
mannian metric is denoted by T, M. We use TM to denote the tangent bundle, that is, the disjoint union of the
tangent spaces of M: TM :={(x,v)|x € M and v € T, M}. We consider the Riemannian metric on M that is
induced from the Euclidean inner product; that is, for any &,n € T, M, we have (&, 1), = ETT] if £ and 7 are two
column vectors of the same dimension, and (&,1), = Tr(& 1) if & and 1 are two matrices of the same dimension,
where Tr(Z) denotes the trace of matrix Z. We use ||x|| to denote the Euclidean norm when x is a vector, and the
Frobenius norm when x is a matrix. We use B, s = {y||ly — x|| < 6} to represent a neighborhood of x with radius
6> 0. For a subset D C R" with nonempty interior, a function / € C'(D) means that & is smooth, that is, continu-
ously differentiable on D. For each x € M, the Riemannian metric induces an isomorphism between T, M and
T, M through the mapping T,M, Sv - v* = (v, - ), € T, M. We define the norm on T; M by ||v*||§ = ||v||i =(v,0),.
The subscript xin (-, - ), and || - ||, may be omitted when there is no ambiguity.

We now give the definition of the retraction operation.

Definition 1 (Retraction; Absil et al. [2]). A retraction on a manifold M is a smooth mapping R : TM — M with
the following two properties, where R, denotes the restriction of R to the tangent space T, M:

i. Ry(0y) = x, where 0, denotes the zero element of T, M;

ii. it holds that

AR (0y) = idt M,

where dR, is the differential of R,, and idt ¢ denotes the identity map on T, M.
By the inverse function theorem, we know that R, is a local diffeomorphism (see, e.g., Hosseini et al. [33]).

2.1. Locally Lipschitz Functions on M
We adopt the definition of locally Lipschitz functlons on M in Hosseini and Uschmajew [32]. Let r: [0, 1] - M
be a C' curve. The length of 7 is defined as I(r) = f0||r (s)||ds. Let x,iy € M. Denote the collection of C' curves
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joining x and y by C(x, y). Then the Riemannian distance between x and y is defined by dist(x,y) := inf{l(r) :
reClx,y)}-

Let M be an embedded submanifold of R"” with the Riemannian distance, and let U be an open subset of M.
According to Hosseini and Uschmajew [32], f : M — R is said to satisfy a Lipschitz condition of constant | on U
if for any x,y € U it holds that

If () =f ()| <] dist(x,y).

A function f is said to be Lipschitz near x € M if it satisfies the Lipschitz condition of some constant on an open
neighborhood of x. A function fis said to be locally Lipschitz on M if f is Lipschitz near x for every x € M.

2.2. Generalized Subdifferentials on R"
In the case that f is nonsmooth but locally Lipschitz continuous near x, the Clarke subdifferential 9°f(x) of fat x €
R" is often used. Let

Qf := {x e R"|fis differentiable at x}.

According to Clarke [27, theorem 2.5.1, p. 63], for nonsmooth but locally Lipschitz continuous function f, we
have

If(x) = co{ Vh_IEo VF(xy)|x, — x, x, € Qf}, )

where “co” denotes the convex hull.

We now review some important concepts and properties related to generalized subdifferentials of non-
Lipschitz functions in Euclidean space R" that are often used in nonsmooth analysis (Bolte et al. [11], Rockafellar
and Wets [47]).

Definition 2 (Subdifferentials). We consider a lower semicontinuous function f : R" — R. Then,
i. the regular (or Fréchet) subdifferential of fat x € R" is defined as

If (x) = {0l f(y) 2 F(x) + (v, — x) +o(lly — *II)};

ii. the limiting subdifferential of f at x is defined as
O ) = { 1im 0,13 (@, f(x,)) = (x,f(2)), 0, € f(x,) .

For a lower semicontinuous function f : R” — R, according to Rockafellar and Wets [47, definition 8.3, p. 301],
the horizontal subdifferential of f at x is defined as

°f )= { lim K0, 13 (6, f(60) = (0.f (), 1, L 0, 0, € 9f ()}, 3)

and according to Bolte et al. [11, definition 1], the Clarke subdifferential of a non-Lipschitz function f at x is
defined as

I°f(x) := co{of (x) + I™f(x)}, )

where “co” denotes the closure of convex hull.
It is known that

of(%) € of %) € If(@). (5)
We have the equivalent characterization for the regular subdifferential in the following lemma from Rockafellar

and Wets [47, proposition 8.5, p. 302].

Lemma 1. A vector v € R" belongs to of (%) if and only if in some neighborhood of X, there is a function h < f with h(%) =
f(X) such that h is differentiable at X with Vh(xX) = v. Moreover, h can be smooth with h(x) < f(x) for all x # X near X.

2.3. Generalized Subdifferentials on M
Let h € C(M). According to Boumal [12, definition 3.34, p. 35], the differential of & at x, dh(x) € T; M, is a linear
operator defined by

Aol = Thiett)] ©
t=0
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where ¢ is a smooth curve on M passing through x at t = 0 with velocity v. By Boumal [12, definition 3.58, p. 42],
the Riemannian gradient of / is the vector field gradh on M uniquely defined by these identities:

Y(x,v) €eTM,  dh(x)[v] = (v, gradh(x)). (7)

In the case that f : M — R is a nonsmooth but locally Lipschitz continuous function, the Riemannian Clarke sub-
differential has been studied and used in analyzing the convergence of algorithms (Grohs and Hosseini [30],
Hosseini and Pouryayevali [31], Hosseini and Uschmajew [32], Hosseini et al. [33], Yang et al. [56]). Let

Qy r := {x € M|fis differentiable at x}.
The Riemannian Clarke subdifferential, denoted by d%f(x), is defined as (Hosseini and Uschmajew [32])

Ipf(x) = co{ Vh_r)?o grad f(x,)|x, = x, x, € Qf,R}. (8)

Recall that lim, ,.grad f(x,) in (8) can be explained as follows (see Hosseini and Uschmajew [32]). Let
{(xy,&,)} € TM, where &, € T,, M. We say &, converges to &, denoted by lim,_,o&, = &, if x, — x and if for any
smooth vector field C on M, it holds that (&,,((x,)),, — (& C(x)),. An equivalent definition of df(x) (Hosseini
and Uschmajew [32]) relying on the definition of the Clarke subdifferential on linear spaces is

Inf(x) = 9°(f o Ry)(0x) ©)

for any retraction R.

The Riemannian regular (or Fréchet) subdifferential for lower semicontinuous functions on Riemannian mani-
folds was developed in Azagra et al. [5]. Later, the Riemannian regular, limiting, and horizontal subdifferentials
were well studied in Ledyaev and Zhu [39]. The Riemannian generalized subdifferentials (Azagra et al. [5],
Ledyaev and Zhu [39]) can be considered as natural extensions of the generalized subdifferentials of lower semi-
continuous functions on R". We will use the following definition for Riemannian subdifferentials throughout
this paper.

Definition 3 (Riemannian Subdifferentials). Let f : R" — R be a lower semicontinuous function. Then,
i. the Riemannian regular (or Fréchet) subdifferential of f at x € M is defined as

drf(x) := {grad h(x)| 36 = 5(h) > Osuch that & € C'(B,s)
and f — h attains a local minimum at x on M}; (10)

ii. the Riemannian limiting subdifferential of fat x € M is defined as

Irf(x) = { lim 0,13 (5, f(x,)) = (5, (0), 0, € Inf(x,)}. a1

Remark 1. The Riemannian regular (or Fréchet) subdifferential of f at x € M in definition 3.1 of Ledyaev and Zhu
[39] is defined as

Irf (x) := {dh(x)|h € C'(M)and f — h attains a local minimum at x}. (12)

The Riemannian regular subdifferential énf (x) in this paper is essentially related only to the local property of h.
By Whitney’s [54] extension theorem, any smooth function on By s N M can be extended to the whole Euclidean
space R". Therefore,

or f(x) ={grad h(x)| h € C'(M)and f — h attains local minimum at x}
= {grad h(x)| dh(x) € Irf (x)}.

Hence, drf(x) in (12) and éRf (%) in (10) are essentially the same, through the one-to-one correspondence between
gradh(x) in tangent space and dh(x) in cotangent space.

In the next section, we will show that a vector in the Riemannian regular subdifferential 873 f(x) can be com-
puted via the projection of an arbitrary vector of the regular subdifferential 8f (x) onto Ty M, if M is a Riemann-
ian submamfold We thus prefer to express the condition for & in (10), because such h € C!(B,,s) is also suitable
for defining df(x). When M =R" and f : M — R is a nonsmooth but locally Lipschitz continuous function, the
Riemannian Clarke subdifferential coincides with the Clarke subdifferential in R". When M =R", the Riemann-
ian regular and limiting subdifferentials coincide with the usual regular and limiting subdifferentials in R".

In this paper, we consider Riemannian optimization with non-Lipschitz objective function f. We will explain
later that f may not be locally Lipschitz at some points on M. For this purpose, we give the characterizations of

(13)
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locally Lipschitz functions on M that are easily checkable in Ledyaev and Zhu [39], which need the concept of
convexity on M. According to definition 2.5 of Azagra et al. [4], a subset U of M is convex if for any given two
points x,y € U, there exists a unique geodesic in U joining x and y such that the length of the geodesic is dist(x, y).
According to theorem 2.6 in Azagra et al. [4], we know that for every x € M, there exists an open convex set U of
M such that x € U. Then, according to theorem 5.3 in Ledyaev and Zhu [39] and the relations in (7) and (13), we
have the following characterizations for a function on M to be locally Lipschitz.

Lemma 2. Let M be an embedded submanifold of R" with the Riemannian distance. Let f : R" — R be a lower semicontin-
uous function. Then the following statements are equivalent:

i. fis locally Lipschitz near x on M;

ii. drf is bounded in a neighborhood of x on M.

2.4. Smoothing Function
We use the following definition of a smoothing function on R” as in Zhang and Chen [59].

Definition 4 (Smoothing Function). A functlonf( ) :R" x R. — R is called a smoothing function of f : R” — R if
f(, ) is continuously differentiable in R" for any p € R,

lim f(z,p) =f(x), (14)
z—x, 110
and there exist a constant ¥ > 0 and a function w : R,; — R, such that

[Flxp) =)l < xwl) with limo() =0. (15)

In order to emphasize that y is a smoothing parameter, we sometimes also write f(-, 1) as f H(-) in this paper.

Example 1. We use the absolute value function |¢|,t € R as an example to illustrate the smoothing function. We
can use the so-called uniform smoothing function

It i || z%

su() =14 (16)
ErE <t
u 4 2

with x =1/4 and w(u) = p in (15).
We refer to Chen [20] for more examples of smoothing functions. For the non-Lipschitz term |¢|” where
0 < p <1, its smoothing function can be defined as (s,(t))’, with x = (1/4)" and w(u) = p in (15).

3. Riemannian Generalized Subdifferentials and Riemannian Gradient Subconsistency
In this section, we first discuss properties of several generalized subdifferentials. We then define and discuss
properties of Riemannian gradient subconsistency of proper lower semicontinuous functions and related station-
ary points of (1). These concepts and properties play important roles in the convergence analysis of our RSSD
method in the next section. They also provide some basics for minimizing a non-Lipschitz function on an embed-
ded submanifold of R".

3.1. Riemannian Generalized Subdifferentials

Proposition 1. Let M be an embedded submanifold of R", x e M, and f : R" — R be a lower semicontinuous function.
Suppose R : TM — M is a retraction defined in Definition 1. Then

i. Irf(x) = I(f 0 Ro)(0y) and I f(x) = I(f 0 R)(0:);

ii. vedrf(x)ifand only if v € T, M and the following holds:

foR:(n,) 2f o Re(0x) + (v, n,) +o(llnl),  Vn, € TeM. (17)

Proof. Statement i for dx f(x) holds, according to theorem 4.3 of Azagra et al. [5], corollary 4.2 of Ledyaev and
Zhu [39], Definition 1 for retraction R: TM — M, and Remark 1 that dz f(x) in Definition 3 of this paper and
dr(x) given in definition 3.1 of Ledyaev and Zhu [39] are essentially the same. The equivalent characterization of
dr f(x) in statement ii can be easily obtained from statementi. O
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Now we give the following proposition about Riemannian regular subdifferential that is useful for computa-
tion and theoretical analysis; see the employment of Proposition 2 in Equation (37) of Example 4, in Equation
(39) of Remark 3, and in Equations (34) and (52) in the proofs of Theorem 2 and 3, respectively.

Proposition 2. Let M be an embedded submanifold of R", x € M, and let f : R" — R be a lower semicontinuous function.
Then

{Projy, ,,v]0 € If(x)} C I f(x). (18)
Proof. Using (10) in Definition 3 and that M is a submanifold embedded in R"” and / € C!(By,5), we have
grad h(x) = Proj;_,,Vh(x),
where Proj; i denotes the projection of y € R" onto Ty M. Consequently,
Irf(x) = {Proj;_,Vh(x)| 36 > Osuch that h € C'(By,5) and
f — hattains a local minimum at x on M}. (19)
Note that for any v € éf (x), according to Lemma 1, there exists h € C!, such that f - I attains a local minimum at x

on R", which is sure to attain a local minimum at x on M CR". This, combining with (19), indicates that (18)
holds. O

Definition 5. A point x € M is called a limiting stationary point of (1) if 0 € dz f(x).

According to Proposition 1ii, we know that if X is a local minimizer of f on M, then 0 € dr f(%). By Definition 3,
we have dr f(¥) C 9 f(¥). Hence, ¥ being a limiting stationary point of (1) is a necessary condition of f achieving
a local minimum at x on M.

For a locally Lipschitz function f, x € M is a Clarke stationary point of (1) if 0 € d5f(x). The Clarke stationary
point of (1) is widely used in the nonsmooth but locally Lipschitz Riemannian optimization literature (Grohs and
Hosseini [30], Hosseini and Pouryayevali [31], Hosseini and Uschmajew [32], Hosseini et al. [33]). We show in
the next proposition that a limiting stationary point is a Clarke stationary point.

Proposition 3. Let M be an embedded submanifold of R", and let f : R" — R be a locally Lipschitz function near x € M.
Then dg f(x) C g f(x).
Proof. The inclusion holds because

I f(x) = 9°(f o Re)(0x) 2 I(f 0 Re)(0x) = Ir f(x).

The first equality is due to (9), which transforms the Riemannian Clarke subdifferential of f at x to be the Clarke
subdifferential of f o R, at 0, on the Euclidean space TyM. The inclusion comes from (5). The last equality is
obtained from Proposition 1i. O

We use the following example to show that for f being a locally Lipschitz function on R" and M being an
embedded submanifold of R”, a Clarke stationary point is not necessarily a limiting stationary point.

Example 2. Let us consider the Riemannian optimization problem

1
min f(x1,x) == Ex% —x1— x|, xeM, (20)

where M =S":={xeR*|x"x=1} is the unit circle, and f is locally Lipschitz in R? Let ¥ =(1,0)"
Xe = (V1 —e€2,e)". It is clear that X. — X when € — 0, ||¥|| = |[X|| = 1, and for any € € (0, 1),

fE) =51 Vi e
<%—(V1—e2+e)

1

<§—1=—%:f(f).

Hence, ¥ is not a local minimizer of fon S'.
For M = S!, we know from Absil et al. [2] that

Projy &= (- xx")E, TeM={z|x"z=0}, (21)
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and for any x; € O z,
gradf(x,) = ProjTX{ wmVf(xe) = (I —xex, 2 )VF(xe).
By (8), we can calculate that
0€dpf(®)={0n"] Vte[-1,1]},

which indicates that X is a Clarke stationary point of (20).
Using Proposition 1ii, we know that dz f(¥) = 0. Using Definition 3, and noting that there exists a neighbor-
hood Bs s for some 6 > 0, such that f is continuously differentiable at any X, # X in Bz s N S!, we have

0¢drf(x):={0,1)7,0 -1)"}.

Hence, ¥ is not a limiting stationary point of (20).

The algorithm proposed in this paper is related to the smoothing function f that is employed. It is natural that
the convergence result also relates to f. According to (3.7) of Zhang and Chen [59], given x € R", the subdifferen-
tial of f associated with f at x on R" is

GJ;(x) ={ueR”" Ifo(zk, ) — ufor some z — x, 1, | 0}. (22)
We give the following definition for the Riemannian subdifferential of f associated with f at x on M.
Definition 6. Given x € M, the Riemannian subdifferential of f associated with f at x on M is
Gf/R(x) ={veT M | gradf(zk,yk) — vfor some zx € M, zx — x, u, | 0}. (23)
Remark 2. We require here that 1 € G;(x) and v € G; 5 (x) are vectors in the Euclidean space that f is defined on,

and their entries are finite, that is, they are not co or —oo. It is clear that if M is the Euclidean space that f is
defined on, then G 2(X) =G5 (x)

Example 3. For the smoothing function f (t) = (su(t)) of f(t)=|t|" with 0 <p <1, where s,(t) is the uniform
smoothing function of |¢| defined in (16), we have

N[=

sign(t) if [¢] >

S;i(t) =9\ 2t and [(S‘u(t))p]l = p(s;t(t))pils:i(t)-

if [t <%,

N[=

Here, sign(t) =1 if t > 0, sign(t) = —1 if t < 0, and sign(t) = 0 otherwise. For an arbitrary real number v € R and an
arbitrarily chosen sequence g, | 0, let f; = ap, 27 with a = 410 /(2p). It is easy to see that

lim|(s,, (#))") = 2p4' Pa=o.
0o

Hence, Gf(O) = (—00,00). For any point t # 0, we know that Gj;(t) =p |t|pflsign(t).
Definition 7. A point x € M is called a stationary point of (1) associated with f ifO0e GJ;,R(x), that is,
lim 1nf ||gradf(z wll = (24)

z—Xx, ZEM, 1
The following result is an extension of proposition 3.4 of Zhang and Chen [59] from R" to an embedded subma-

nifold of R". The key ingredient for the generalization to Riemannian manifold is to show that the sequence of
the Riemannian gradients for the smoothing function has zero as one of its accumulation points.

Theorem 1. Let M be an embedded submanifold of R". For any smoothing function f of f as defined in Definition 4, if x* €
M is a local minimizer of fon M, then x* is a stationary point of (1) associated with f .

Proof. Because x* € M is a local minimizer of f on M, minima are preserved by composition with diffeomorph-
isms (see, e.g., the proof of (2) = (1) in proposition 2.2 of Azagra et al. [6]), we then know that 0, is a local mini-

mizer of f =f o R, on the tangent space T.- M. Hence, there exists a neighborhood B.. s of 0, such that for any
1€ T M N By, 5, it holds that £ (0x) < f(n).
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Let us denote f p =f i © Ry for any fixed u > 0. We have
Ful00) =F&', ) () + ()
=£(0.) + xaw(u)
<f(n)+ xkw(u) for any 1€ By,.,s
= f()+ k@) for x = Re(n)
<f(x, 1) +2xw(w)
= £, () + 2K (u).
Thus, . .
f (04) <fp(17) + 2xw(u), for any n € By,.s. (25)

For any 1, € T M N By,.,5, we define 1, = 0x + /w(u)n, € T M N By, for all u sufficiently small, and 1, — 0.
as i | 0. Because f is continuously differentiable on T.-M, by Taylor’s expansion, we have

£400) =, 0,0+ (grad £, (n,). — \Jeo(@n.),. + o wlind). (26)
Substituting (26) into the left-hand side of (25), and replacing 1 by 1), with y that is sufficiently small, we get

Vetlgradf, m,), = n.), +o( /o) < 2.

Dividing both sides of the above inequality by +/w(u) and taking the limit as p | 0, we get

lim sup (grad f W) =1 <
wlo
which implies that

qﬁox},‘ffe‘ﬁf‘ﬂ, B (grad f (1), = n.)» <0. 27)

Note that n, € T,-M N By,. 5 can be chosen arbitrarily. Let M be a d- chmensmnal embedded submanifold of R".
We can choose E : R" — T, M to be a linear bijection such that {E(e,)}l ; is an orthonormal basis of T,-M, where
e; is the ith unit vector (see, e.g., Yang et al. [56, section 2]). Then

d
gradf () =Y Al'E(e), (28)
i=1
for some A} € R. Let us choose
r](' D = eE(ey), 77(’ 2 = —¢iE(e;), fori=1,2,...,d,

where €; > 0 is a sufficiently small constant such that "V, n("? € By . 5. Substituting grad f (n) in (27) by (28),
and substituting 7, in (27) by n"? and n{?, respectively, we obtain

lim inf —ei)\f» >0 and lim inf eiAﬁl >0.
©lo ulo

The above two inequalities indicate
lim Af = 0.
[y

Becausei=1,2,...,d can be chosen arbitrarily, the above equality holds for each i. Hence, we get
d

> AE(e)

i=1

lim 1nf 0 ||gradfy(1])|| = lﬁg =0. (29)

N—0y, N€T» M

According to Absil et al. [2, lemma 7.4.9, p. 153], we know that for any constant 7 > 1, there exist constants 6 > 0
and d > 0 such that for all || <d and x =R (n) € B. 5 " M,

llgrad 7(x, )l = llgrad f (R ()] < Tligrad £ ,(n)|
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Here 6 and d relate only to 7 and the definitions of the retraction R and the Riemannian metric ¢ of M, which
can be deduced from the proof of lemma 7.4.9 of Absil et al. [2]. Taking the limit 7 — Oy, € T M, | 0 to both
sides of the above inequality and using (29), we get

lim inf ||gradf(x, wll=0,

x—x*, XEM, u
and hence x" is a stationary point of (1) associated with f as desired. [

We will show in Section 4 that any accumulation point of the proposed RSSD method is a stationary point of
(1) associated with f. We will also show in Section 4 that any accumulation point of the proposed RSSD method
is also a limiting stationary point of (1), provided f satisfies the Riemannian gradient subconsistency (to be
defined in the next subsection) at the accumulation point.

3.2. Riemannian Gradient Subconsistency

Now we define the Riemannian gradient subconsistency of f at x € M, which makes a connection between the
Riemannian subdifferential G; »(x) associated with f and the Riemannian limiting subdifferential dr f(x). The
Riemannian gradient subcon51stency is essential to show that any accumulation point of the RSSD method is a
limiting stationary point of (1). Hence, when minimizing a nonsmooth but locally Lipschitz function on M, the
RSSD method has stronger convergence result than the existing methods that guarantee any accumulation point
is a Clarke stationary point of (1), for example, the e-subgradient algorithm (Grohs and Hosseini [30]), line search
algorithms (Hosseini et al. [33]), the Riemannian gradient sampling algorithm (Hosseini and Uschmajew [32]),
and Riemannian proximal gradient methods (Huang and Wei [34]).

Definition 8. Given x € R", a smoothing function f of the function f is said to satisfy the gradient subconsistency
atx on R" if

Gy (x) CIf(x). (30)
Given x € M, f is said to satisfy the Riemannian gradient subconsistency at x on M if
G]?/R(X) Corf(x). (31)

We say that f satisfies the gradient subconsistency on R" if (30) holds for any x € R", and that f satisfies the Rie-
mannian gradient subconsistency on M if (31) holds for any x € M.

Later we will show that if f is nonsmooth but locally Lipschitz near x on R" ,f is a smoothing function of f, and
the gradient subconsistency of the smoothing function f at x on R" holds, then the Riemannian gradient subcon-
sistency of f on M holds. Furthermore, we also provide in (35) a Riemannian optimization problem that mini-
mizes a non-Lipschitz function f on M. We show that its smoothing function f defined in (42) satisfies the
Riemannian gradient subconsistency on M. It is worth mentioning that in numerical experiments of Section 5,
both the problem (59) of finding the sparsest vectors in a subspace and the problem in (65) for sparsely used
orthogonal complete dictionary learning using ¢, (0 < p < 1) regularization are examples of the model (35).

If the inclusion is substituted by the equality in (30), then we say f satisfies the gradient consistency at x on R".
If the inclusion is substituted by the equality in (31), then we say f satisfies the Riemannian gradient consistency
at x on M. Clearly, the gradient consistency indicates the gradient subconsistency. The gradient consistency of f
on R" has been well studied in smoothing methods for nonsmooth optimization. For nonsmooth but locally
Lipschitz function f, it has been shown that the gradient consistency property on R" holds for various smoothing
functions in many real applications (Burke and Hoheisel [13], Burke et al. [14], Chen [20], Xu et al. [55], Zhang
and Chen [58]).

The following theorem demonstrates that given an embedded submanifold M of R", x € M, if the gradient
subconsistency of f at x on R" holds, then the Riemannian gradient subconsistency of f holds at x on M, pro-
vided that fis locally Lipschitz near x on R".

Theorem 2. Given an embedded submanifold M of R" and a vector x € M, let f be a locally Lipschitz function near x on
R", with f being a smoothing function of f. If the gradient subconsistency of f at x on R" holds, then the Riemannian gradi-
ent subconsistency of f at x on M holds.

Proof. Let v e GJ;,R(x). Note that Gf (x) Cdf(x) is bounded if f is a locally Lipschitz function near x on R". Then
there exist subsequences {x, } ¢ M, x, — x, and {y}, 4 | 0 as k — oo, and a vector u € G/; (x) such that

U= lim ,V F e, i) (32)

Xy =%, xpkeM, el



Zhang, Chen, and Ma: RSSD Method for Riemannian Non-Lipschitz Optimization
Mathematics of Operations Research, Articles in Advance, pp. 1-24, © 2023 INFORMS 11

and

v= lim gradj?(xyk, )

Xy =%, Xy €M, 1,10

= lim Proj V. f(x )
oy =%, ¥ M, 5,10 Ir,, M of (e thy),

Projy_yu. (33)
The last equality holds because
“PrOij“kax]? (ur i) — Projp pqull
< ||P1‘0]'TWMVXJ?(’CW ) — PrOjT,“kMuH + ”PrO]'TWM” — Projy ull
< IIfo(x“k, 1) — ull + ||ProjTX#kMu — Projp_,ull
—0,
as x,, — X, xu, € M, ;. | 0. Here the second inequality comes from the fact that Proijpk v is nonexpansive. More-

over, ||fo(xyk,yk) —u|| — 0 by (32), and ||Proj; ,,u — Proj; ,,ull = 0 because Proj: x — Proj_,, is continuously
Xy x X

differentiable according to Boumal [12, exercise 3.66, p. 59].
Because the gradient subconsistency at x on R"” holds, that is, Gj (x) € df(x), we know that u € Jf (x). By the defi-
nition of limiting subdifferential of f on R”,

Ju, e éf(Xg), (x¢,f(xg) = (x,f(x)) such that }im Ur = U.
By the characterization of Riemannian regular subdifferential in (18), we have
U = Proij[Mug € éRf(X[), (34)

and using the same arguments proving (33), we have

lim v, = lim Proj up = Projp u = 0.
{—o0 t {—00 ]T'VM ¢ ]T-*M

This implies v € dr f(x), and hence the smoothing function f of f satisfies the Riemannian gradient subconsistency

atxon M. O

Furthermore, we consider the following non-Lipschitz Riemannian minimization problem:
m
min f(x) := f(x) + 1Y _e(ld] x]), (35)
i=1

where f is a continuously differentiable function, M is an embedded submanifold of R", 0 #d; e R",i=1,...,m,
are nonzero vectors, A >0 is a given constant, and ¢ : R, — R, is a nonsmooth penalty function. The problem
with M =R" has been well investigated in Chen et al. [23], which includes many widely used nonsmooth pen-
alty functions ¢ in variable selection, image restoration, and signal reconstruction.

If ¢ is nonsmooth but locally Lipschitz, it is easy to see that f is nonsmooth but locally Lipschitz. In this case,
its Riemannian gradient subconsistency has been investigated in Theorem 2. Below we focus only on ¢ that is
not locally Lipschitz. Motivated by assumption 1.1 in Chen et al. [23], we require ¢ to satisfy the following
assumption.

Assumption 1. The function ¢ : Ry — Ry is continuous at zero with ¢(0) =0, ¢’(0%) = oo, and ¢ is nonsmooth but
locally Lipschitz in (0, o).

For instance, the bridge penalty ¢, used in Chen et al. [22] and Chen et al. [23-25], the log penalty ¢, (Chen
et al. [23]), and the penalty ¢, used in Alcantara et al. [4],

@, (t) =1, p,(t) = log(at’ +1), p,(t) = min{t’,1}, forsomeO<p<1,a>0, (36)

are not locally Lipschitz functions on R, := {t € R|t > 0} that satisfy Assumption 1. If the objective function f is
not locally Lipschitz on R", it may also be not locally Lipschitz on M as well (see the following example).
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Example 4. Let us consider M = S!, which is the unit circle as in Example 2, ¥ = (v2/2, — v2/2)", and
1 1
f) = |1 —x2? + [x1 + x2 |2

For each y > 0 let us define

hy (x) := |x; —xz|% +y(x1+x2), and o, := 2L7,2> 0.

Then it is clear that f(x) — h, (x) = 0, and we claim that
f(x) =hy(x) = |x1+x2> —y(x1 +x2) 20, forany x € By .

To see this, note that for any x € Bz 5, if x1 +x2 <0, then it is obvious that f(x) —hy(x) 2 0. We then only need
to consider x € By 5, and x1 +x; > 0. In this case, f(x) — 1, (x) > 0 is equivalent to

(1 +12) = y(x1 +12),

1
that is, (x; +x2)2 < % In view of x € By 5 , we know that

1
_ < _ + _ ,
max{|x; — X1, [x2 — X2 [} \/(xl %)+ (rp — %)’ < =22
which indicates
x1+x= (0 —X1)+ (2 —X2) <

and, consequently, (x1 + xz)% < % Thus, f(x) — h,(x) > 0 also holds in this case.
Therefore, f — h,, attains a minimum at ¥ in a neighborhood Bg, 5, of X. According to Lemma 1, we have, for any

y >0,
o, =Vh},(x)=%5(_11) +y(}) € I @).

Thus, according to (21) and Proposition 2, we find for any y > 0,

uy, = Proj;_,, 0, = (I —xx")

1/1 1 1 A
vy:§<1 1>Uy:7/<1>€873f(f). (37)

It is easy to see that [|u, || — o0 as y — co. In view of Lemma 2, we know that f is not locally Lipschitz on st
Remark 3. We consider a general embedded submanifold M of R". Let X € M and
c={ie{l,...,m}|d'x #0} and [y ={i€{1,...,m}|d[x = 0}. (38)

Assume J; # (0. Now we consider the model (35) with ¢ = ¢,. Using arguments similar to that in the above sim-
ple example, we choose an arbitrary i € J; and let

Iy (x) = £ (x) + 1 (%) + T2, (%),
where

hi(x) = /\Z |d] x|P, ha,,(x) = Ayd]x foranyy >0.

i€l;

It is easy to see that f —h, attains a local minimum in a neighborhood Bs s for a positive constant ¢,, and
f(x) = h,(x). Hence, by Lemma 1, we have Vh, (%) € 8f (¥), and, consequently, by Proposition 2, we find

iy = Projp_, Vh,(x) € 8Rf (x). (39)

As long as there exists a point X € M such that Proj;_, Vs, (%) # 0, because y > 0 can be chosen arbitrarily large,
we can conclude that fis not locally Lipschitz on M according to Lemma 2.
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For instance, if M is the unit sphere in R",
s = {xeR"||lxll =1}, (40)
then, as d;f =0, we have
Projr_,Vha,(X) = (I - XX )Ayd;, = Ayd;, #0. (41)
Hence, fis not locally Lipschitz on M.
Many applications can be formulated in the form of (35), such as finding the sparsest vectors in a subspace,
and the sparsely used orthogonal complete dictionary learning that will be discussed later in Section 5.

Let §,(f) be a smoothing function of ||, ¢ be a smoothing function of ¢ satisfying Definition 4, and the func-
tion

Flo, ) =f )+ A @G x), 1) (42)
i=1

be a smoothing function of f defined in (35). For instance, for ¢ = ¢, and ¢ = ¢, in (36), we can choose

Pt 1) = @(b),

and for ¢,, we can use

P —1), 1f|tv—1|zg,

¢ (t/ )= P _1)2 P
P (D P if|t”—1|<%.

2u 2 '8

Theorem 3. The smoothing function f that is constructed in (42) for the non-Lipschitz objective function f in (35) satisfies
the Riemannian gradient subconsistency on M.

Proof. For an arbitrary x € R", let the index sets I, and ], be defined as in (38) with ¥ being replaced by x. Let D;,
be the matrix whose columns are d;, i € |, that is,

Dy, = (dy);ey, € R, (43)

with |J,| being the cardinality of the index set J,. }

If ] = 0, then fis locally Lipschitz near x on R". It is clear that f satisfies the gradient subconsistency at x on R".
Thus, f satisfies the Riemannian gradient subconsistency at x on M as shown in Theorem 2.

Otherwise, ], # 0. Define

fil2) =AY @(ldfz]) and fo(z):=1)_ @(|d]z]),

il ic]y

fl(z,y): /\Zgb(%(dﬁ),pt) and fz(z,y): )\Z(p(gy(dfz),y).

iel, iE]x

Clearly,

A o(ldfz) = fiz) + fo(z) and  f(z, 1) = f(2) +f1(z, 1) + fo(z, ).
i=1

It is clear that

Vi f (2, 1) = VF(2i) + Vi f 1 (2 1) + Vi 1), (44)
and
lim Vf(z) = Vf(x) and  lim V. f,(zi, 1) = Vfi(x). (45)
By direct computation,
Vafo(ze ) = D @' (s, (d] 20, p)s), (d] 20)d; = Dy, (46)

i€fy
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where
g = w(2x, ) = (7 (5, (A7 20), 1)s], (@] 21))igy, € RV
Letve GJ;,R(x). Then there exist infinite sequences {z;} ¢ M, zx — x, and {y, }, ;. | 0 as k — oo such that

v= lim grad f(z, 1)

2k =X, Z€M, 1, 10

= lim ProjTZk m Vx F(zi, ty)-

-, ZEM, 1,10
For any gi,¢7 € R", it is easy to see that
IProjr_ el — IIProjr_, (85 + 80
< IIProjy_ (i +87) — Projr_ 8zl < lgill
which implies
IProjy_u8ill < IProjr (i + 8N + llgil-
By substituting g} = Vf(2¢) + V. f,(zi, 1) and g2 = V. f, (2, 1) into (48), we have
IProjy Vi 52k k)l < ”ProszkMfo(Zk/ )l +I9F (20 + Vo (2 I
The two terms on the right-hand side of the above inequality are bounded by noting (47) and (45). Thus,
{IIProj; wVifa(ze wll} is bounded.
We can write
Dy, u; = b} + b, where b} € T, M, b? € (T, M)*;
Vi(zx) + Vo f (2, 1) = af + a2, where a} € T, M, a? € (T, M)™".
Here, (T, M)™ is the orthogonal complement of T,, M. By (49) and (46), we know that {b} } is bounded.

(47)

(48)

(49)

(50)
(51)

Let r =rank(Dy,) be the rank of Dj, and Range(D},) be the range of Dj,. Let {j1,/2,...,j;} € Jx such that {d;,i=
1,2...,r} constitutes a basis for Range(Dj,). We define & =d;,i=1,2...,r. If r < n, we can find & eR",i=7r+1,
...,n,such that {&;,&,,...,&,} constitutes a basis for R". Let us define the matrix 2 =(&;,&,,...,&, ) € RP that is

invertible. Then the linear system with unknown vector w
Ew="b}

is consistent and has a unique solution wy = E’lb,l. It is clear that {w;} is bounded.
Let K C K be an infinite sequence such that limkqm, ek Wk = W. By using (50) and (51), we get

Projp_(Vx Fzi 1) = Projr, wm(VF (@) + Vo f | (26 1) + Dy )
=Proj;,(a; +a; + b +b7)
%k
= ProjTZkM(a,% +bp)=a; +b;.

Consequently,

<
Il

lim ProjTZkMfo(zk, 1)

Z—X, zxeM, 1, 10

lim (a} +b)
k—co, keK

lim _ Projp_ (Vf(zk) + fol(zk, ) + Ewk)
zk—X, ZkeM, 1,10, keK k

= Projy_ (Vf (x) + VA(x) + Ew),

where the last equality can be obtained using the arguments for (33).
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We now define the function

h(z) = f(z) +fi(z) + Zw dTZ + Z w,E (z — x).

i=r+1

It is then easy to check that there exists a neighborhood By, for some 6 > 0 such that h(z) < f(z) with h(x) = f(x),
and Vh(x) = Vf (x) + VAi(x) + Zw. Then, by Lemma 1, Vh(x) € &f (x). Hence,

v =Proj; ,, (Vf(x) + Vi (x) + aw) € Irf(x) CIRf(x), (52)

which indicates that f satisfies the Riemannian gradient subconsistency at x on M in this case.

Because x € M is arbitrary, we have that f satisfies the Riemannian gradient subconsistency on M as
desired. O

At the end of this section, we make clear the relation between the set of limiting stationary points defined in
Definition 5,

= {x" e M[0 € Irf(x")},
and that of stationary points associated with f defined in Definition 7,

;={x"eM|0€ G];,R(x*)}.

Any local minimizer of the Riemannian optimization problem (1) lies in both sets. If the Riemannian gradient

subconsistency holds on M, that is, G;/R(x*) C drf(x*) for any x* € M, then Sj; cSs,.

4. Riemannian Smoothing Steepest Descent Method

In this section, we present our RSSD method for solving the Riemannian optimization problem (1), which is
detailed in Algorithm 1. The objective function in (1) is allowed to be non-Lipschitz on M. We always assume
there exists at least one global optimal solution of (1).

Algorithm 1 (Riemannian Smoothing Steepest Descent Method for Solving (1))
L Input: xg € M, dgpt 20, 60 > 0, p1,,,, 2 0, 115 >0, 0€(0,1),€(0,1),a>0,05€(0,1), 0, €(0,1).
2: for{=0,1,2,... do

3:  Compute r]f —gradf(xe, ;).

4: if ||1,l| < Oopt and p1, < Hop then

5: return

6: else if ||n,|| < 6, then

7 Pppq = Outty, 0041 = O50¢,

8: Xe+1 = Xg.

9: else

10: Hey1 = [’15’6“1 O¢.

11: Find t, := p"@ where m; is the smallest integer such that
FR (B an,), 1) < (xe, 1) — of ™ @llgrad f (xe. I (53)

12: Set Xeg1 o= Rx[(tﬂh;).

13:  endif

14: end for

A few remarks for Algorithm 1 are in order. First, the line search (53) is well defined, and ¢, can be found in
finite trials. To see this, note that for fixed w,, fCu ¢) is continuously differentiable. Clearly, we have

f ORX[(“?[) f‘u ORXz(Oxf)

ltll%’l ¢ = ;l o Rx[) (Ox(»/ Th?) = (gradf(xg, |u€) ’7€>

Note that n, = —grad f (x¢, pp). Thus, there exists a > 0 such that for all € (0, a),
Fu, o Re(tn) <F, o Ry (0x,) — tollgrad f (xe, I

This guarantees that the line search step (53) is well defined.
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The following result is an extension of theorem 3.5 together with remark 3.2 of Zhang and Chen [59]. The key
ingredient for the extension is to show that the index set K related to the Riemannian gradient of the smoothing
function defined in Theorem 4 is an infinite set.

Theorem 4. Let K = {C||In,ll < 6¢} and {x;} be an infinite sequence generated by Algorithm 1 with 5uy = Hopt =0 Then
the following statements hold:

i. Any accumulation point x* of {X¢} e is a stationary point of (1) associated with f .

ii. In addition, if f satisfies the Riemannian gradient subconsistency at x* on M, then x* is a limiting stationary point of

M.

Proof. We first claim that if there exists an accumulation point x* € M, then K is an infinite set, and

lim 6,=0 and  lim pu,=0. (54)

{—o0, {eK {—o0, teK

Suppose, on the contrary, that K is a finite set. This means there exists ¢ such that for all £ > ¢

0e =07 He =l

and

1, = —grad f(xe, u7), lInll>6; > 0. (55)

Therefore, for £ >, we have x¢1 = Ry, (t¢1,), where t; is obtained by using the line search (53) with fixed .
Then Algorithm 1 becomes a Riemannian steepest descent method for minimizing a smooth function f (-, u 7) on
M. According to theorem 4.3.1 of Absil et al. [2], we have grad f (x*, u7) = 0, which contradicts (55). Therefore, K
is an infinite set. Note that for each ¢ € K, we have

ey = Oupt, and Oe1 = 050¢

with decaying factors 0, € (0,1) and 05 € (0,1). This, together with K being an infinite set, yields (54) as desired.
By Algorithm 1, we have

lim_llgrad flxe )l = lim il < lim 5, =o0.

Let K be a subsequence of K such that lim, , ,.zX; = x*. The completeness of M guarantees that x* € M. Thus,

x—»i‘iggej\l/ll,fylo ||gradf(x, wll=0, and 0 e GJ;,R(x*).
Hence, x* is a stationary point of (1) associated with f; that is, statement i holds.

In addition, if f satisfies the Riemannian gradient subconsistency at x* on M, then we know G; »(x") € dr f(x").
Thus, we find 0 € dz f(x*). Hence, x* is a limiting stationary point of (1). Consequently, statement ii holds. O

The sequence {x;} generated by Algorithm 1 is guaranteed to have an accumulation point if the following
assumption holds.

Assumption 2. For any [ €(0,,] and any given vector X € M, the level set Lz ={xe M|f(x, @) <f(x,m)} is
compact.

Assumption 2 holds if M is compact. Assumption 2 also holds if f is coercive in R", that is, |f(x)| — oo if
||lx|| — oo, because for an arbitrary i € (0, 1,] and an arbitrary given vector ¥ € M, by using Definition 4 for
smoothing function, x € Lz ; implies that

f() <f(@) + 2k (@),

which, together with the coercivity of f, yields that L ; is compact.

Next, we explain how the RSSD method can be C0n51dered as an extension of the smoothing steepest descent
method from R" to an embedded submanifold of R" in the following remark. Here, the smoothing steepest
descent method comes from algorithm 3.1 and remark 3.2 of Zhang and Chen [59]. To be specific, we set Q = R"
in algorithm 3.1 of Zhang and Chen [59], and we substitute “the active set method in Algorithm 2.1” in algorithm
3.1 Zhang and Chen [59] by the well-known “steepest descent method with Armijo line search” (see, e.g., Bertse-
kas [8, subsection 1.2]). Then we get the smoothing steepest descent method on R".
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Remark 4. When M = R", let us set the parameters in our RSSD method to be
9# = 95 = Cr 60 = )7[—10/

where C and 7 are the parameters in the smoothing steepest descent method on R”. On the other hand, for the
smoothing steepest descent method on R", let us set 71 = 1, choose the steepest descent method with Armijo line
search to be the same as (53) in our RSSD method, and

Her = Cllg

Then, from the same initial point x,, the sequence {xo,x¢},cx Where K= {{|||n,l| < 06¢} generated by our RSSD
method coincides with the sequence generated by the smoothing steepest descent method.

In computation, we do not set Hopt = Oopt =0, but instead set them to be small positive real numbers. For
instance, we can set y,,, = 6ot = € for a given small positive real number €. Then we expect to get an e-approxi-
mate stationary point X of (1) associated with f defined as follows, by implementing Algorithm 1.

Definition 9. We say that £ € M is an e-approximate stationary point of (1) associated with f if
p<e and |grad f(%, )| <e. (56)

This definition of an e-approximate stationary point of (1) associated with f is motivated by Garmanjani and
Vicente [29], where smoothing direct-search methods in nonsmooth optimization on R" have been developed to
obtain an e-approximate solution.

Theorem 5 below is novel even when M =R". It has not been considered before for the smoothing steepest
descent method in R".

Theorem 5. Under Assumption 2, after finite iterations, Algorithm 1 with . = b = € will reach an iterate point that is
an e-approximate stationary point of (1) with respect to f.

Proof. Let 0 = max{0,, 05} and
€
ng := {max{logg logg||77 & H
0

Here, [r] refers to the smallest integer that is no less than the real number r.
We then have

0" u,<e and 0"l <e.

Let us denote K. = {ki, ko, ..., ks }, where k; < kj for 1 <i<j<ng such that K. contains the first ng elements that
satisfy || || < Ok Thus,

Hy, SO0 pg<e and O, <Ol <e,

and we get the iterate point x,, as an e-approximate stationary point of (1) associated with f.

From iterations xy, to xy,,, for 1 <i<ng —1, the smoothing parameter keeps the same as 1, , and Algorithm 1
performs the iterates of the Riemannian steepest descent method for minimizing the smooth function fx, ) on
M. According to corollary 4.3.2 of Absil et al. [2],

lim ligrad f (x', ) =0

This implies that after a finite number of steps (say, ), we will get [l o |l =llgrad j? (xkf+€f, Il < Ok, Hence, after

anl
Ky, = E ¢
i=1

steps, we will get an e-approximate stationary point of (1) associated with f as desired. [

Remark 5. Complexity for non-Lipschitz optimization in R" has been investigated in Bian and Chen [9, 10], Chen
[20], and Chen et al. [25]. In Chen et al. [25], it was shown that solving a non-Lipschitz optimization problem is
strongly NP-hard. In Bian and Chen [9, 10], a smoothing sequential quadratic regularization (SSQR) algorithm
was proposed for solving non-Lipschitz optimization. The worst-case iteration complexity of the SSQR algorithm
for finding an e affine-scaled stationary point is O(e~?). It is worth mentioning that the construction of a special
strongly convex quadratic minimization problem and a special rule for updating the smoothing parameter at
each iteration are essential to show the worst-case complexity in Bian and Chen [9, 10]. New techniques need to
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be developed to obtain the iteration complexity of our RSSD method for Riemannian non-Lipschitz optimization,
and we leave it for future work.

5. Numerical Experiments
In this section, we apply our RSSD method (Algorithm 1) to solve two problems: finding the sparsest vectors in a
subspace (FSV) and the sparsely used orthogonal complete dictionary learning problem. A notebook with a

1.80 GHz central processing unit (CPU) and 16 GB of random access memory was used for the numerical experi-
ments. We implemented Algorithm 1 in MATLAB (version R2018b).

5.1. Finding the Sparsest Vectors in a Subspace

The FSV problem seeks the sparsest vectors in an n-dimensional linear subspace W Cc R™ (m > n). This problem
has been studied recently and it finds interesting applications and connection with sparse dictionary learning,
sparse principal component analysis, and many other problems in signal processing and machine learning (Qu
et al. [45, 46]). This problem is also known as dual principal component pursuit and finds applications in robust
subspace recovery (Tsakiris and Vidal [51], Zhu et al. [63]). Let Q € R"™" denote a matrix whose columns form an
orthonormal basis of W. The FSV problem can be formulated as

min [|Qx]|,, s.t.xeS" 1, (57)

where 5! is the unit sphere, and ||z||y counts the number of nonzero entries of z. Because of the combinatorial
nature of the cardinality function [|- ||y, (57) is very difficult to solve in practice. In the literature, people have
been focusing on its {1 norm relaxation given below (Qu et al. [45, 46], Tsakiris and Vidal [51], Zhu et al. [63]):

min [|Qx|l;, s.t.xeS"}, (58)

where |z||; :=>",|zi| is the £, norm of vector z. Many algorithms have been proposed for solving (58), including
the Riemannian gradient sampling algorithm (Hosseini and Uschmajew [32]), projected subgradient method
(Zhu et al. [62]), Riemannian subgradient method (Li et al. [42]), manifold proximal point algorithm (Chen et al.
[16]), and so on.

Moreover, for the compressive sensing problems that have the same objective functions as (57) and (58), people
have found that using the £, quasi-norm ||z||£ :=>",]zi|" (0 <p <1) to replace ||z||; can help to promote the spar-
sity of z (Chartrand and Yin [15], Chen et al. [24, 25], Foucart and Lai [28], Liu et al. [43, 44]). Motivated by this,
we propose the following ¢, (0 < p < 1) minimization model for the FSV problem:

min f(x) :=||Qx|[,, s.t.xeS" 1 (59)

We will illustrate that comparing with (58), (59) with proper choices of 0 < p < 1 is a better approximation to (57).
To this end, we construct a simple example below for which the global minimizers of the Riemannian £y model
are known ahead of time.

Let V =[v1,Vy,...,Vs] € R be a matrix, whose columns have five, six, seven, eight, and nine nonzero entries
sequentially, and each nonzero entry of the column is the only nonzero entry in its row. Specifically, the nonzero
entries of V are

V(1:5,1)=(1° 20 30 40 59)7;

V(6:11,2) = (11 2 3 41 5! 6!)7;
V(12:18,3) = (12 22 32 42 52 62 72);
V(19:26,4) = (13 23 3% 43 5% 6% 73 83)";
V(27:35,5) = (1% 2% 34 4% 54 64 74 g4 o4)T

Let the linear space W be the span of column vectors of V, and let Q =[q,,q,,...,q5] € R¥*® be a matrix where

q; = ”:ﬁ forj=1,...,5. Clearly the columns of the matrix Q form an orthonormal basis of W.

Denote by e; € R the ith column of the identity matrix for i=1,...,5. It is then easy to see that for the Rie-
mannian £y model, the sparsest vector in the linear space W has five nonzero entries and *e; are the only two
global minimizers, and *e;, i =2,3,4,5, are local minimizers corresponding to vectors =Qe; € R¥® in the linear
space W with six, seven, eight, and nine nonzero entries, respectively. By direct computation, we list in Table 1

the objective values at *e; fori=1,...,5 for the three models, respectively.
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Table 1. Objective values of the three models at *e;, i=1,...,5.

i=1 i=2 i=3 i=4 i=5
IQ(=elly 5 6 7 8 9
[[Q(=ei)ll 2.2361 2.2014 2.0473 1.9385 1.8631
IQ(xelll, p = 0.1 4.6134 5.3531 5.8989 6.3284 6.6766
IQ(xeylll, p = 0.01 4.9599 5.9310 6.8764 7.8018 8.7088
||Q(ie,-)||£, p = 0.001 4.9960 5.9931 6.9875 7.9798 8.9702

It is obvious that *e; are not global minimizers of the Riemannian £; model, and [|Q(=*es5)||; achieves the low-
est values among the five objective values. For p =0.1,0.01,0.001, we find that *e; achieve the lowest objective
values among *e;,i=1,...,5. In view of the facts that each entry of Q is nonnegative and each nonzero entry of
the column of Q is the only nonzero entry in its row, we know that Qe; >0,i=1,...,5, and there is no index j
such that

(Qei); >0 and (Qey,); >0, Viy #ip,i1,i€{1,...,5}.

Forany x € S*, we have x = Y7 xie;, Y0 22 =1, and |x;| > 22

5 5 5
inQei = Z |x;|Qe; > inzQei/
i=1 i=1 i=1

fori=1,...,5. Itis easy to see that

Qx| =

and, consequently,

P — P
1Qxll, = ll1Qx]ll; =

5
2
D _xiQe:
i=1

p
p
5 5
2 2
> 2lQeillh = > 2|Qell, = [IQell,
i=1 i=1

where the second inequality is obtained from the concavity of || ||§ for 0 < p < 1. Therefore, *e; are the global
minimizers of the Riemannian £, model for p = 0.1,0.01,0.001, which coincide with the global minimizers of the
original Riemannian ¢, model. Moreover, the objective values at *e;,i=1,...,5 for the Riemannian £, model
keep increasing for i as that for the Riemannian ¢y model.

There exists at least one nonzero row of Q, say, ﬁ;, and there exists a vector £ € S"! such that tilTOJE =0. Then,
by the same arguments as in Remark 2, the objective function in (59) is not locally Lipschitz on S"~!. Hence, algo-
rithms proposed in Hosseini and Uschmajew [32], Li et al. [42], Chen et al. [16], and Zhu et al. [62] for solving
(58) do not apply to (59). We propose to solve (59) using our RSSD method. We also use the proposed RSSD
method to solve the Riemannian £; norm minimization problem (58). Now we show the details below.

According to Absil et al. [2], the tangent space at x € S" ! is

T.S" 1:={zeR"x"z2=0},
and the projection of & € R" onto the tangent space T,S" ! is
Projp g 1& = (I—xx")E.

In our RSSD algorithm, we use R.(&) = (x + &)/|lx + &]| as the retraction function. We use the following smoothing
function for (59):

Feom =" [su((Qx))Y, (60)
i=1

where s,(t) is the uniform smoothing function for |t| defined in (16).
The parameters of our RSSD method are set as

to=1,0=01,0,=05, 05 =0.5. (61)
We choose 50 initial points x, from normally distributed random vectors, using MATLAB code
randn(’state’, j); xo = randn(n, 1); xo = xp/norm(xy),

forj=1,...,50.
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Table 2. Frequencies of the computed solutions that fall in =e;, i=1,...,5, from the 50
initial points, using the Riemannian {; model and Riemannian ¢, model, respectively.

e *ep *e3 *ey *es
{1 model 0 4 15 10 21
¢, model, p = 0.1 1 4 16 9 20
¢, model, p = 0.01 6 5 14 8 17
¢, model, p = 0.001 10 9 10 5 16

We terminate each instance when the CPU time reaches 50 seconds and find that all the 50 computed solutions
fall in {*e;,i=1,...,5} corresponding to p =0.1,0.01,0.001. The CPU time is measured with the MATLAB com-
mand “cputime.” Here we say £ fall in {*e;} fori=1,...,5if

gap(¥, = e;) = min{||% — e, ¥ + e} <107°. (62)

We record in Table 2 the frequencies of the computed solutions that fall in {*e;,i=1,...,5}, respectively. We can
conclude that the Riemannian £, model with p = 0.001 succeeds in finding the true global minimizers of the origi-
nal Riemannian £, model 10 times from the 50 initial points. In contrast, the Riemannian ¢; minimization model
does not find the true global minimizers from the 50 initial points.

This example demonstrates that there indeed exists a problem for which the Riemannian ¢; model fails to find
the sparsest vector in a subspace, whereas the Riemannian £, model with suitable 0 <p <1 can find the sparsest
vector in a subspace. Hence, it is useful to develop an algorithm for solving Riemannian non-Lipschitz optimiza-
tion problems with rigorous convergence results. This is the main motivation of this paper.

5.2. Sparsely Used Orthogonal Complete Dictionary Learning

Given a set of data Y =[y,,y,,...,y,,] € R”", the sparsely used orthogonal complete dictionary learning seeks a
dictionary that can sparsely represent Y. More specifically, ODL seeks an orthogonal matrix X = [x1,Xz,...,X,] €
R™" and a sparse matrix S € R™" such that Y ~ XS. The matrix X is called an orthogonal dictionary. We refer to
Sun et al. [50] for more details of this model. This problem can be modeled as the Riemannian £, minimization
problem (Spielman et al. [49]):

1 m .
in — TX t. XeSt
mmm;Hyl lo, s € St(n,n), (63)

where St(n,n) = {X e R"™"|X"X =I,,} is the orthogonal group, which is a special case of the Stiefel manifold. To
overcome the computational difficulty of the Riemannian £y, minimization model, the {; term is usually replaced
by the {; norm in the literature, which leads to the following Riemannian ¢; minimization problem for ODL
(Spielman et al. [49], Sun et al. [50]):

1 m
min %ley? X|l;, s.t. X eSt(n,n). (64)
i=1
Here we again consider the Riemannian £, (0 < p < 1) quasi-norm minimization model
1 m
min aZnijup, s.t. X € St(n,n), (65)
i=1

and apply the RSSD method to solve it. We now specify the details. The tangent space of the Stiefel manifold
St(n,n) is

TxSt:={E€R™ : £TX+X"E=0}.

The projection of Z € R™" onto the tangent space TxSt(n, n) is
1
Projp s Z =2~ 5 X(X"Z+Z7X). (66)

We use the QR factorization as the retraction on the Stiefel manifold, which is given by Rx(&) = qf(X + &). Here,
qf(A) denotes the Q factor of the QR decomposition of A.

Li et al. [42] proposed a Riemannian subgradient method and its variants—the Riemannian incremental sub-
gradient method and Riemannian stochastic subgradient method—for solving the Riemannian £; minimization
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Table 3. Average sparsity levels of computed solutions from 50 instances.

{1 minimization model

¢, model, p = 0.001

Initial points R-Full R-Inc R-Sto RSSD
xGauss =10 0.3727 0.3857 0.3456 0.5000
x§auss, 7 =107 0.3697 0.3852 0.3450 0.4895
xgniform ¢ = 1074 0.3727 0.3784 0.3234 0.5000
xgmiform 7 =107 0.3675 0.3773 0.3222 0.4915

problem (64). In this section, we use our RSSD to solve the Riemannian £, minimization model (65) with p =
0.001 and compare its performance with the algorithms proposed in Li et al. [42] for solving (64). We thus gener-
ate the synthetic data for ODL in a similar manner as in Li et al. [42], which is detailed below. We first generate
the underlying orthogonal dictionary X* € St(n,n) with n = 30, whose entries are drawn according to standard
Gaussian distribution. The number of samples m = [10-n!5| = 1643. The sparse matrix S* € R is generated
such that the entries follow the Bernoulli-Gaussian distribution with parameter 0.5. Finally, we set Y = X*S*. We
generate 50 instances using this procedure. For each instance, we generate two different initial points: one is a
standard Gaussian random vector denoted by x§2%, and the other one is a uniform random vector denoted by
xgniform | For the ease of presentation, we refer to the three algorithms in Li et al. [42]—the Riemannian subgradi-
ent method, Riemannian incremental subgradient method, and Riemannian stochastic subgradient method—as
R-Full, R-Inc, and R-Sto, respectively. We use the same parameters in (61) for RSSD. The codes for R-Full, R-Inc,
and R-Sto were downloaded from the author’s web page.'

For each instance, we terminate each method if the CPU time reaches 50 seconds. We truncate the entries of
YTX as

(YTX);=0, if |(Y"X)l <7,

where 7> 0 is a pregiven tolerance, and X is the computed solution. We report the average of the sparsity level
of YT X over 50 instances in Table 3, where the sparsity level is computed by

number of zero entries of YT X

sparsity level = p_—
Note that the desired sparsity level of YTX is 0.5 because of the way that S* was generated. We see from Table 3
that the £, minimization model with p = 0.001 solved by our RSSD method provides the best results in terms of
the sparsity level.

For each instance, we compute the sparsity level at the latest iterate point obtained by each method when the
CPU time reaches t =1,2,...,50 seconds, respectively. We then compute the corresponding average sparsity level
of the 50 instances and plot the trajectory of the sparsity level at t = 1,2,...,50 seconds in Figures 1 and 2. We use
a log scale on the x-axes in Figures 1 and 2. From these figures, it is clear that the £, minimization model (65)

Figure 1. (Color online) Average sparsity level vs. CPU time of 50 instances using Gaussian initial points. In the left panel,
7=10"* In the right panel, T = 107°. A log scale is used on the x-axes.
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Figure 2. (Color online) Average sparsity level vs. CPU time of 50 instances using uniform initial points. In the left panel,
7=10"*In the right panel, 7 = 107°. A log scale is used on the x-axes.
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with p = 0.001 solved by the RSSD method provides the best results in terms of sparsity level. More specifically,
the RSSD method can improve the sparsity to the desired level 0.5 after about 15seconds, whereas the other three
algorithms stopped making progress after about one second, and none of the three algorithms achieved a spar-
sity level higher than 0.4. This example also demonstrates the necessity of developing the RSSD method for solv-
ing Riemannian non-Lipschitz optimization problems.

We admit that from our numerical experience, the computation cost of our RSSD method for each iteration is
higher than those of the Riemannian subgradient-type methods, including the R-Full, R-Inc, and R-Sto methods
in Li et al. [42]. The reason is that the Armijo line search is used in the RSSD method, whereas no line search strat-
egy is adopted in the Riemannian subgradient-type methods in Li et al. [42]. It is also possible to develop more
efficient smoothing algorithms than the RSSD method for solving Riemannian non-Lipschitz optimization pro-
blems, by making use of the theoretical analysis of Riemannian generalized subdifferentials and Riemannian gra-
dient subconsistency property developed in this paper.

Recall that we use the CPU time budget (50 seconds) to terminate each method in numerical experiments. For
our RSSD method, we record 1, and [|n,|| = || — grad f(x, t1,)]| when the sparsity level becomes stable, and try the
values around them. We find that 1, € [2x 10,3 X 10 ] and 4 € [4 X 103,10 2] are suitable as stopping cri-
terion of the RSSD method for the sparsely used ODL problem, and in this case, the sparsity level keeps almost
the same but the number of iterations is around one-third of that given by the CPU budget (50 seconds). If smal-
ler values of y,,; and 6, are also used as a stopping criteria, together with the CPU budget (50seconds), the
RSSD method will often reach the CPU time budget, but the sparsity level keeps almost the same.

6. Concluding Remarks

In this paper, we study the Riemannian generalized subdifferentials and Riemannian gradient subconsistency
relating to non-Lipschitz optimization on embedded submanifolds of R". We then develop RSSD, a novel Rie-
mannian smoothing steepest descent method, for minimizing a non-Lipschitz function over embedded submani-
folds of R". We prove that any accumulation point generated by our RSSD method is a stationary point of (1)
associated with the smoothing function employed in the method, which is necessary for local optimality of (1).
Moreover, we also prove that any accumulation point is a limiting stationary point of (1) if the Riemannian gradi-
ent subconsistency property holds at the accumulation point. We show that smoothing functions satisfy the Rie-
mannian gradient subconsistency under mild conditions. Numerical results on finding the sparsest vectors in a
subspace and the sparsely used orthogonal complete dictionary learning demonstrate the necessity of studying
non-Lipschitz optimization on embedded submanifolds of R" and the effectiveness of our RSSD method for solv-
ing non-Lipschitz optimization on embedded submanifolds of R".
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Endnote
! See https: // github.com/lixia0o0982/Riemannian-subgradient-methods.
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