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Abstract. In this paper, we study the generalized subdifferentials and the Riemannian gra-
dient subconsistency that are the basis for non-Lipschitz optimization on embedded sub-
manifolds of Rn. We then propose a Riemannian smoothing steepest descent method for 
non-Lipschitz optimization on complete embedded submanifolds of Rn. We prove that 
any accumulation point of the sequence generated by the Riemannian smoothing steepest 
descent method is a stationary point associated with the smoothing function employed in 
the method, which is necessary for the local optimality of the original non-Lipschitz prob-
lem. We also prove that any accumulation point of the sequence generated by our method 
that satisfies the Riemannian gradient subconsistency is a limiting stationary point of the 
original non-Lipschitz problem. Numerical experiments are conducted to demonstrate the 
advantages of Riemannian ℓp (0 < p < 1) optimization over Riemannian ℓ1 optimization for 
finding sparse solutions and the effectiveness of the proposed method.
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1. Introduction
We consider the Riemannian optimization problem

min f (x), x * M, (1) 

where M is a complete embedded submanifold of Rn and f : Rn ³ R is a proper lower semicontinuous function 
and possibly non-Lipschitz. It is worth mentioning that the results developed in this paper also work for matrix- 
variable problems, that is, f : Rm×n ³ R. Such problems arise in a variety of applications in signal processing, 
computer vision, and data mining (Adler et al. [3], Bačák et al. [7], Jiang et al. [36], Sun et al. [50]).

Many classical algorithms for unconstrained and smooth optimization have been extended from Euclidean 
space to Riemannian manifolds, such as the gradient descent algorithm, the conjugate gradient algorithm, the 
quasi-Newton algorithm, and the trust region method (Absil and Gallivan [1], Absil et al. [2], Boumal [12], 
Huang et al. [35]). Recently, Riemannian optimization with a nonsmooth but locally Lipschitz continuous objec-
tive function was considered in the literature. Here the smoothness and locally Lipschitz continuity are inter-
preted when the function in question is considered in the ambient Euclidean space. The Riemannian Clarke 
subdifferential of functions over manifolds has been defined, and its properties have been discussed in Hosseini 
and Pouryayevali [31]. Several algorithms have been proposed based on the notion of Riemannian Clarke subdif-
ferential. For example, Hosseini and Uschmajew [32] proposed the Riemannian gradient sampling algorithm. 
This algorithm approximates the subdifferential using the convex hull of transported gradients from tangent 
spaces of randomly generated nearby points to the tangent space of the current space. The [-subgradient 
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algorithm (Grohs and Hosseini [30]) is a steepest descent method where the descent directions are obtained by a 
computable approximation of the [-subdifferential. The line search algorithms (Hosseini et al. [33]) include the 
nonsmooth Riemannian BFGS algorithm as a special case. For both the [-subgradient algorithm and the line 
search algorithms, either the algorithms terminate after a finite number of iterations with the [-subgradient-ori-
ented descent direction being zero, or any accumulation point is a Riemannian Clarke stationary point. Other 
methods for nonsmooth optimization over Riemannian manifolds include the Riemannian subgradient method 
(Li et al. [42]), the Riemannian ADMM (Kovnatsky et al. [37], Lai and Osher [38], Li et al. [41]), the manifold prox-
imal gradient method (Chen et al. [17, 18], Huang and Wei [34], Wang et al. [52]), the manifold proximal point 
method (Chen et al. [15]), the manifold proximal linear method (Wang et al. [53]), the manifold augmented 
Lagrangian method (Chen et al. [19], Zhou et al. [60], Zhu et al. [61]), and zeroth-order algorithms over Riemann-
ian manifolds (Li et al. [40]).

The Riemannian generalized subdifferentials have been studied in Azagra et al. [4] and Ledyaev and Zhu [39] 
and are expected to be useful for analyzing non-Lipschitz optimization. To the best of our knowledge, how-
ever, there do not exist optimization algorithms for solving Riemannian non-Lipschitz optimization problems 
with rigorous convergence results. Consequently, the Riemannian generalized subdifferentials developed in 
Azagra et al. [4] and Ledyaev and Zhu [39] have not yet been used to show the convergence results for non- 
Lipschitz optimization. Non-Lipschitz optimization in Euclidean space finds many important applications, 
including, but not limited to, finding sparse solutions in signal processing and data mining (Chen et al. [24, 26], 
Liu et al. [43, 44], Shang et al. [48]) and neat edges in image restoration (Bian and Chen [9], Chen et al. [22], Zeng 
et al. [57]). Smoothing methods with a proper updating scheme for the smoothing parameter are efficient for 
solving large-scale nonsmooth optimization in Euclidean space (Chen [20], Chen and Zhou [21], Chen et al. [22, 
23], Zhang and Chen [58, 59]). With a fixed smoothing parameter, one solves the smoothed problem to update 
the iterate. Certain strategy is then applied to decide whether and how the smoothing parameter needs to be 
changed. Under the so-called gradient consistency property, it can be shown that any accumulation point of the 
smoothing method is a limiting stationary point of the original nonsmooth optimization problem; see, for exam-
ple, the definition in Zhang and Chen [59, p. 14]. The gradient consistency naturally holds for smoothing func-
tions arising in various real applications with nonsmooth and locally Lipschitz objective functions (Burke and 
Hoheisel [13], Burke et al. [14], Chen [20], Xu et al. [55], Zhang and Chen [58]). Smoothing methods have been 
widely used to solve unconstrained non-Lipschitz optimization problems (Chen et al. [23]) and constrained 
non-Lipschitz optimization problems with convex feasible sets (Zhang and Chen [59]). However, minimizing a 
non-Lipschitz function on a nonconvex set has not been widely considered in the literature. In Chen et al. [26], an 
augmented Lagrangian method for non-Lipschitz nonconvex programming was proposed where the constraint 
set is nonconvex.

In Zhang and Chen [58], a smoothing projected gradient method for minimizing a nonsmooth but locally 
Lipschitz function on a convex feasible set in Rn was proposed (Zhang and Chen [58, algorithm 3.1]). In Zhang 
and Chen [59], a smoothing active set method for linearly constrained non-Lipschitz nonconvex optimization in 
Rn (Zhang and Chen [59, algorithm 3.1]) was proposed. As mentioned in remark 3.2 of Zhang and Chen [59], a 
unified framework of smoothing methods can be obtained by slightly modifying algorithm 3.1 of Zhang and 
Chen [59] with the same convergence result developed in Zhang and Chen [59], including the smoothing steepest 
descent method if the feasible set is Rn: In this paper, the objective function is not necessarily locally Lipschitz. 
The Riemannian smoothing steepest descent (RSSD) method as well as the convergence analysis that will be 
developed in this paper extend those from Zhang and Chen [59]. The RSSD method can be considered as an 
extension of the smoothing steepest descent method on Rn from Zhang and Chen [59] to embedded submani-
folds of Rn; see Remark 4 for details.

1.1. Main Contributions
Our contributions of this paper are as follows: 

i. We characterize the Riemannian generalized subdifferentials for proper lower semicontinuous functions. We 
define the notion of limiting stationary point of (1) whose objective function is allowed to be not locally Lipschitz. 
When the objective function of (1) is locally Lipschitz, a limiting stationary point is a Clarke stationary point, but a 
Clarke stationary point is not necessarily a limiting stationary point of (1). Compared with the results in Ledyaev 
and Zhu [39], Proposition 2 in this paper has not been considered, and Example 2 of this paper has not been given 
there.

ii. We define the Riemannian subdifferential of f associated with a smoothing function f̃ . We define a stationary 
point x7 of (1) associated with f̃ and show that x7 being a stationary point of (1) associated with f̃ is a necessary opti-
mality condition for x7 being a local minimizer of (1).
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iii. To build the relationship between the above two notions of stationary points of (1), associated with or with-
out f̃ , we define the Riemannian gradient subconsistency of f̃ at x on M. Under the Riemannian gradient subcon-
sistency of f̃ , any stationary point of (1) associated with f̃ is a limiting stationary point of (1). These concepts and 
results in ii and iii are extensions of the corresponding counterparts from Zhang and Chen [59] for optimization in 
Rn to Riemannian optimization on M. We show that the Riemannian gradient subconsistency holds if the gradient 
subconsistency of f̃ holds at x on Rn, provided that f is locally Lipschitz near x on Rn. We also show that for a class 
of non-Lipschitz functions on Rn, the Riemannian gradient subconsistency of their smoothing functions holds on 
M. These two results have not been considered in the existing literature before.

iv. We design a Riemannian smoothing steepest descent method for solving (1). It is an extension of the smooth-
ing steepest descent method in Rn from Zhang and Chen [59] to embedded submanifolds of Rn; see Remark 4 for 
details. The proposed RSSD method is easy to implement and converges to a stationary point x7 of (1) associated 
with f̃ where the objective function is nonsmooth, possibly not even locally Lipschitz. Under Riemannian gradient 
subconsistency of f̃ , x7 is also a limiting stationary point of (1).

v. When the objective function is locally Lipschitz, the convergence result of our RSSD method is stronger than 
that of the aforementioned existing methods for Riemannian nonsmooth optimization with locally Lipschitz objec-
tive functions. This is because these existing methods can guarantee only that any accumulation point of the 
sequence is a Clarke stationary point, but our result guarantees that any accumulation point of the sequence is a 
limiting stationary point.

The rest of this paper is organized as follows. In Section 2, we give a brief review on some basic concepts and 
properties related to Riemannian manifolds, the generalized subdifferentials and smoothing functions. We define 
the generalized subdifferentials for non-Lipschitz functions on embedded submanifolds of Rn that are motivated 
by Azagra et al. [5] and Ledyaev and Zhu [39]. In Section 3, we discuss the properties of the generalized subdif-
ferentials for non-Lipschitz functions on embedded submanifolds of Rn. We also define and discuss the Rie-
mannian gradient subconsistency that is essential to the convergence analysis of our method. In Section 4, we 
propose our RSSD method and analyze its convergence behavior. In Section 5, we conduct numerical experi-
ments on two important applications: finding the sparsest vectors in a subspace, and the sparsely used orthogo-
nal complete dictionary learning (ODL). Finally, we draw some concluding remarks in Section 6.

2. Preliminaries
We define some notation first. Throughout this paper, without specification, M denotes a complete embedded 
submanifold of Rn. Let x * M and TxM be the tangent space of M at x. The cotangent space at x via the Rie-
mannian metric is denoted by T7

xM. We use TM to denote the tangent bundle, that is, the disjoint union of the 
tangent spaces of M: TM :ÿ {(x, v) |x * M and v * TxM}. We consider the Riemannian metric on M that is 
induced from the Euclidean inner product; that is, for any ξ,η * TxM, we have +ξ,η+x ÿ ξ¦η�if ξ�and η�are two 
column vectors of the same dimension, and +ξ,η+x ÿ Tr(ξ¦η) if ξ�and η�are two matrices of the same dimension, 
where Tr(Z) denotes the trace of matrix Z. We use 6x6 to denote the Euclidean norm when x is a vector, and the 
Frobenius norm when x is a matrix. We use Bx,δ ÿ {y | 6yÿ x6 f δ} to represent a neighborhood of x with radius 
δ > 0. For a subset D ¦ Rn with nonempty interior, a function h * C1(D) means that h is smooth, that is, continu-
ously differentiable on D. For each x * M, the Riemannian metric induces an isomorphism between TxM and 
T7

xM through the mapping TxM; ÿv ¢³ v7 ÿ +v, · +x * T7
xM. We define the norm on T7

xM by 6v762
x ÿ 6v62

x ÿ +v, v+x. 
The subscript x in + · , · +x and 6 · 6x may be omitted when there is no ambiguity.

We now give the definition of the retraction operation.

Definition 1 (Retraction; Absil et al. [2]). A retraction on a manifold M is a smooth mapping R : TM ³ M with 
the following two properties, where Rx denotes the restriction of R to the tangent space TxM: 

i. Rx(0x) ÿ x, where 0x denotes the zero element of TxM;
ii. it holds that

dRx(0x) ÿ idTxM, 

where dRx is the differential of Rx, and idTxM denotes the identity map on TxM.
By the inverse function theorem, we know that Rx is a local diffeomorphism (see, e.g., Hosseini et al. [33]).

2.1. Locally Lipschitz Functions on M
We adopt the definition of locally Lipschitz functions on M in Hosseini and Uschmajew [32]. Let r : [0, 1] ³ M 

be a C1 curve. The length of r is defined as l(r) ÿ
R 1

0 6r2(s)6ds: Let x, y * M. Denote the collection of C1 curves 
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joining x and y by C(x, y). Then the Riemannian distance between x and y is defined by dist(x, y) :ÿ inf{l(r) :
r * C(x, y)}:

Let M be an embedded submanifold of Rn with the Riemannian distance, and let U be an open subset of M. 
According to Hosseini and Uschmajew [32], f : M ³ R is said to satisfy a Lipschitz condition of constant J on U 
if for any x, y * U it holds that

| f (x)ÿ f (y) | f J dist(x, y):
A function f is said to be Lipschitz near x * M if it satisfies the Lipschitz condition of some constant on an open 
neighborhood of x. A function f is said to be locally Lipschitz on M if f is Lipschitz near x for every x * M.

2.2. Generalized Subdifferentials on Rn

In the case that f is nonsmooth but locally Lipschitz continuous near x, the Clarke subdifferential "çf (x) of f at x *
Rn is often used. Let

Ωf :ÿ {x * Rn | f is differentiable at x}:
According to Clarke [27, theorem 2.5.1, p. 63], for nonsmooth but locally Lipschitz continuous function f, we 
have

"çf (x) ÿ co
n

lim
ν³>

'f (xν) |xν ³ x, xν * Ωf

o

, (2) 

where “co” denotes the convex hull.
We now review some important concepts and properties related to generalized subdifferentials of non- 

Lipschitz functions in Euclidean space Rn that are often used in nonsmooth analysis (Bolte et al. [11], Rockafellar 
and Wets [47]).

Definition 2 (Subdifferentials). We consider a lower semicontinuous function f : Rn ³ R. Then, 
i. the regular (or Fréchet) subdifferential of f at x * Rn is defined as

"̂f (x) :ÿ {v | f (y) g f (x) + +v, yÿ x+ + o(6yÿ x6)};
ii. the limiting subdifferential of f at x is defined as

"f (x) :ÿ
n

lim
ν³>

vν |# (xν, f (xν)) ³ (x, f (x)), vν * "̂f (xν)
o

:

For a lower semicontinuous function f : Rn ³ R, according to Rockafellar and Wets [47, definition 8.3, p. 301], 
the horizontal subdifferential of f at x is defined as

">f (x) :ÿ
n

lim
ν³>

tνvν |# (xν, f (xν)) ³ (x, f (x)), tν ³ 0, vν * "̂f (xν)
o

, (3) 

and according to Bolte et al. [11, definition 1], the Clarke subdifferential of a non-Lipschitz function f at x is 
defined as

"çf (x) :ÿ c̄o{"f (x) + ">f (x)}, (4) 

where “c̄o” denotes the closure of convex hull.
It is known that

"̂f (x) ¦ "f (x) ¦ "çf (x): (5) 

We have the equivalent characterization for the regular subdifferential in the following lemma from Rockafellar 
and Wets [47, proposition 8.5, p. 302].

Lemma 1. A vector v * Rn belongs to "̂f (x) if and only if in some neighborhood of x, there is a function h f f with h(x) ÿ
f (x) such that h is differentiable at x with 'h(x) ÿ v. Moreover, h can be smooth with h(x) < f (x) for all x ≠ x near x.

2.3. Generalized Subdifferentials on M
Let h * C1(M). According to Boumal [12, definition 3.34, p. 35], the differential of h at x, dh(x) * T7

xM, is a linear 
operator defined by

dh(x)[v] ÿ d

dt
h(c(t))

ÿ

ÿ

ÿ

ÿ

tÿ0

, (6) 
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where c is a smooth curve on M passing through x at t ÿ 0 with velocity v. By Boumal [12, definition 3.58, p. 42], 
the Riemannian gradient of h is the vector field gradh on M uniquely defined by these identities:

∀(x, v) * TM, dh(x)[v] ÿ +v, gradh(x)+: (7) 

In the case that f : M ³ R is a nonsmooth but locally Lipschitz continuous function, the Riemannian Clarke sub-
differential has been studied and used in analyzing the convergence of algorithms (Grohs and Hosseini [30], 
Hosseini and Pouryayevali [31], Hosseini and Uschmajew [32], Hosseini et al. [33], Yang et al. [56]). Let

Ωf ,R :ÿ {x * M | f is differentiable at x}:

The Riemannian Clarke subdifferential, denoted by "ç
R

f (x), is defined as (Hosseini and Uschmajew [32])

"ç
R

f (x) :ÿ co
n

lim
ν³>

grad f (xν) |xν³ x, xν *Ωf ,R

o

: (8) 

Recall that limν³>grad f (xν) in (8) can be explained as follows (see Hosseini and Uschmajew [32]). Let 
{(xν,ξν)} ¦ TM, where ξν * TxνM. We say ξν�converges to ξ, denoted by limν³>ξν ÿ ξ, if xν³ x and if for any 
smooth vector field ζ�on M, it holds that +ξν,ζ(xν)+xν ³ +ξ,ζ(x)+x. An equivalent definition of "ç

R
f (x) (Hosseini 

and Uschmajew [32]) relying on the definition of the Clarke subdifferential on linear spaces is

"ç
R

f (x) ÿ "ç(f çRx)(0x) (9) 

for any retraction R.
The Riemannian regular (or Fréchet) subdifferential for lower semicontinuous functions on Riemannian mani-

folds was developed in Azagra et al. [5]. Later, the Riemannian regular, limiting, and horizontal subdifferentials 
were well studied in Ledyaev and Zhu [39]. The Riemannian generalized subdifferentials (Azagra et al. [5], 
Ledyaev and Zhu [39]) can be considered as natural extensions of the generalized subdifferentials of lower semi-
continuous functions on Rn. We will use the following definition for Riemannian subdifferentials throughout 
this paper.

Definition 3 (Riemannian Subdifferentials). Let f : Rn ³ R be a lower semicontinuous function. Then, 
i. the Riemannian regular (or Fréchet) subdifferential of f at x * M is defined as

"̂Rf (x) :ÿ {grad h(x) | #δ ÿ δ(h) > 0 such that h * C1(Bx,δ)
and f ÿ h attains a local minimum at x on M}; (10) 

ii. the Riemannian limiting subdifferential of f at x * M is defined as

"Rf (x) :ÿ
n

lim
ν³>

vν |# (xν, f (xν)) ³ (x, f (x)), vν * "̂Rf (xν)
o

: (11) 

Remark 1. The Riemannian regular (or Fréchet) subdifferential of f at x * M in definition 3.1 of Ledyaev and Zhu 
[39] is defined as

"Ff (x) :ÿ {dh(x) |h * C1(M)and f ÿ h attains a local minimum at x}: (12) 

The Riemannian regular subdifferential "̂Rf (x) in this paper is essentially related only to the local property of h. 
By Whitney’s [54] extension theorem, any smooth function on Bx,δ + M can be extended to the whole Euclidean 
space Rn. Therefore,

"̂R f (x) ÿ {grad h(x) | h * C1(M)and f ÿ h attains local minimum at x}
ÿ {grad h(x) | dh(x) * "Ff (x)}:

(13) 

Hence, "F f (x) in (12) and "̂Rf (x) in (10) are essentially the same, through the one-to-one correspondence between 
gradh(x) in tangent space and dh(x) in cotangent space.

In the next section, we will show that a vector in the Riemannian regular subdifferential "̂R f (x) can be com-
puted via the projection of an arbitrary vector of the regular subdifferential "̂f (x) onto TxM, if M is a Riemann-
ian submanifold. We thus prefer to express the condition for h in (10), because such h * C1(Bx,δ) is also suitable 
for defining "̂f (x). When M ÿ Rn and f : M ³ R is a nonsmooth but locally Lipschitz continuous function, the 
Riemannian Clarke subdifferential coincides with the Clarke subdifferential in Rn. When M ÿ Rn, the Riemann-
ian regular and limiting subdifferentials coincide with the usual regular and limiting subdifferentials in Rn.

In this paper, we consider Riemannian optimization with non-Lipschitz objective function f. We will explain 
later that f may not be locally Lipschitz at some points on M. For this purpose, we give the characterizations of 
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locally Lipschitz functions on M that are easily checkable in Ledyaev and Zhu [39], which need the concept of 
convexity on M. According to definition 2.5 of Azagra et al. [4], a subset U of M is convex if for any given two 
points x, y * U, there exists a unique geodesic in U joining x and y such that the length of the geodesic is dist(x, y). 
According to theorem 2.6 in Azagra et al. [4], we know that for every x * M, there exists an open convex set U of 
M such that x * U. Then, according to theorem 5.3 in Ledyaev and Zhu [39] and the relations in (7) and (13), we 
have the following characterizations for a function on M to be locally Lipschitz.

Lemma 2. Let M be an embedded submanifold of Rn with the Riemannian distance. Let f : Rn ³ R be a lower semicontin-
uous function. Then the following statements are equivalent: 

i. f is locally Lipschitz near x on M;
ii. "̂R f is bounded in a neighborhood of x on M.

2.4. Smoothing Function
We use the following definition of a smoothing function on Rn as in Zhang and Chen [59].

Definition 4 (Smoothing Function). A function f̃ (·, ·) : Rn × R+ ³ R is called a smoothing function of f : Rn ³ R if 
f̃ (·,µ) is continuously differentiable in Rn for any µ * R++,

lim
z³x, µ³0

f̃ (z,µ) ÿ f (x), (14) 

and there exist a constant κ > 0 and a function ω : R++ ³ R++ such that

| f̃ (x,µ)ÿ f (x) | f κω(µ) with lim
µ³0
ω(µ) ÿ 0: (15) 

In order to emphasize that µ is a smoothing parameter, we sometimes also write f̃ (·,µ) as f̃ µ(·) in this paper.

Example 1. We use the absolute value function |t | , t * R as an example to illustrate the smoothing function. We 
can use the so-called uniform smoothing function

sµ(t) ÿ
| t | if |t | g µ

2
,

t2

µ
+µ

4
if |t | < µ

2
,

8

>

>

<

>

>

:

(16) 

with κ ÿ 1=4 and ω(µ) ÿ µ in (15).
We refer to Chen [20] for more examples of smoothing functions. For the non-Lipschitz term |t | p where 

0 < p < 1, its smoothing function can be defined as (sµ(t))p, with κ ÿ (1=4)p and ω(µ) ÿ µp in (15).

3. Riemannian Generalized Subdifferentials and Riemannian Gradient Subconsistency
In this section, we first discuss properties of several generalized subdifferentials. We then define and discuss 
properties of Riemannian gradient subconsistency of proper lower semicontinuous functions and related station-
ary points of (1). These concepts and properties play important roles in the convergence analysis of our RSSD 
method in the next section. They also provide some basics for minimizing a non-Lipschitz function on an embed-
ded submanifold of Rn.

3.1. Riemannian Generalized Subdifferentials

Proposition 1. Let M be an embedded submanifold of Rn, x * M, and f : Rn ³ R be a lower semicontinuous function. 
Suppose R : TM ³ M is a retraction defined in Definition 1. Then 

i. "̂R f (x) ÿ "̂(f çRx)(0x) and "R f (x) ÿ "(f çRx)(0x);
ii. v * "̂R f (x) if and only if v * TxM and the following holds:

f çRx(ηx) g f çRx(0x) + +v,ηx+ + o(6ηx6), ∀ηx * TxM: (17) 

Proof. Statement i for "̂R f (x) holds, according to theorem 4.3 of Azagra et al. [5], corollary 4.2 of Ledyaev and 
Zhu [39], Definition 1 for retraction R : TM ³ M, and Remark 1 that "̂R f (x) in Definition 3 of this paper and 
"F(x) given in definition 3.1 of Ledyaev and Zhu [39] are essentially the same. The equivalent characterization of 
"̂R f (x) in statement ii can be easily obtained from statement i. w
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Now we give the following proposition about Riemannian regular subdifferential that is useful for computa-
tion and theoretical analysis; see the employment of Proposition 2 in Equation (37) of Example 4, in Equation 
(39) of Remark 3, and in Equations (34) and (52) in the proofs of Theorem 2 and 3, respectively.

Proposition 2. Let M be an embedded submanifold of Rn, x * M, and let f : Rn ³ R be a lower semicontinuous function. 
Then

{ProjTxM
v |v * "̂f (x)} ¦ "̂R f (x): (18) 

Proof. Using (10) in Definition 3 and that M is a submanifold embedded in Rn and h * C1(Bx,δ), we have

grad h(x) ÿ ProjTxM
'h(x), 

where ProjTxM
y denotes the projection of y * Rn onto TxM. Consequently,

"̂Rf (x) ÿ {ProjTxM
'h(x) | #δ > 0 such that h * C1(Bx,δ) and

f ÿ h attains a local minimum at x on M}: (19) 

Note that for any v * "̂f (x), according to Lemma 1, there exists h * C1, such that f – h attains a local minimum at x 
on Rn, which is sure to attain a local minimum at x on M ¦ Rn. This, combining with (19), indicates that (18) 
holds. w

Definition 5. A point x * M is called a limiting stationary point of (1) if 0 * "R f (x).
According to Proposition 1ii, we know that if x is a local minimizer of f on M, then 0 * "̂R f (x). By Definition 3, 

we have "̂R f (x) ¦ "R f (x). Hence, x being a limiting stationary point of (1) is a necessary condition of f achieving 
a local minimum at x on M.

For a locally Lipschitz function f, x * M is a Clarke stationary point of (1) if 0 * "ç
R

f (x). The Clarke stationary 
point of (1) is widely used in the nonsmooth but locally Lipschitz Riemannian optimization literature (Grohs and 
Hosseini [30], Hosseini and Pouryayevali [31], Hosseini and Uschmajew [32], Hosseini et al. [33]). We show in 
the next proposition that a limiting stationary point is a Clarke stationary point.

Proposition 3. Let M be an embedded submanifold of Rn, and let f : Rn ³ R be a locally Lipschitz function near x * M. 
Then "R f (x) ¦ "ç

R
f (x).

Proof. The inclusion holds because

"ç
R

f (x) ÿ "ç(f ç Rx)(0x) § "(f ç Rx)(0x) ÿ "R f (x):
The first equality is due to (9), which transforms the Riemannian Clarke subdifferential of f at x to be the Clarke 
subdifferential of f çRx at 0x on the Euclidean space TxM. The inclusion comes from (5). The last equality is 
obtained from Proposition 1i. w

We use the following example to show that for f being a locally Lipschitz function on Rn and M being an 
embedded submanifold of Rn, a Clarke stationary point is not necessarily a limiting stationary point.

Example 2. Let us consider the Riemannian optimization problem

min f (x1, x2) :ÿ
1

2
x2

1 ÿ x1 ÿ |x2 | , x * M, (20) 

where M ÿ S1 :ÿ {x * R2 |x¦x ÿ 1} is the unit circle, and f is locally Lipschitz in R2. Let x ÿ (1, 0)¦ and 
x[ ÿ (

oooooooooooo

1ÿ [2
:

,[)¦. It is clear that x[ ³ x when [³ 0, 6x6 ÿ 6x[6 ÿ 1, and for any [ * (0, 1),

f (x[) ÿ
1

2
(1ÿ [2)ÿ

oooooooooooo

1ÿ [2
:

ÿ [

<
1

2
ÿ (

oooooooooooo

1ÿ [2
:

+ [)

<
1

2
ÿ 1 ÿÿ

1

2
ÿ f (x):

Hence, x is not a local minimizer of f on S1.
For M ÿ S1, we know from Absil et al. [2] that

ProjTxM
ξ ÿ (I ÿ xx¦)ξ, TxM ÿ {z |x¦z ÿ 0}, (21) 
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and for any xℓ *Ωf ,R,

grad f (xℓ) ÿ ProjTxℓ
M
'f (xℓ) ÿ (I ÿ xℓx

¦
ℓ )'f (xℓ):

By (8), we can calculate that

0 * "ç
R

f (x) ÿ {(0, t)¦ | ∀t * [ÿ1, 1]}, 

which indicates that x is a Clarke stationary point of (20).
Using Proposition 1ii, we know that "̂R f (x) ÿ '. Using Definition 3, and noting that there exists a neighbor-

hood Bx,δ�for some δ > 0, such that f is continuously differentiable at any xℓ ≠ x in Bx,δ + S1, we have

0 ∉ "Rf (x) :ÿ {(0, 1)¦, (0, ÿ1)¦}:

Hence, x is not a limiting stationary point of (20).
The algorithm proposed in this paper is related to the smoothing function f̃ that is employed. It is natural that 

the convergence result also relates to f̃ . According to (3.7) of Zhang and Chen [59], given x * Rn, the subdifferen-
tial of f associated with f̃ at x on Rn is

Gf̃ (x) ÿ {u * Rn |'x f̃ (zk,µk) ³ u for some zk ³ x, µk ³ 0}: (22) 

We give the following definition for the Riemannian subdifferential of f associated with f̃ at x on M.

Definition 6. Given x * M, the Riemannian subdifferential of f associated with f̃ at x on M is

Gf̃ ,R(x) ÿ {v * TxM | grad f̃ (zk,µk) ³ v for some zk * M, zk ³ x, µk ³ 0}: (23) 

Remark 2. We require here that u * Gf̃ (x) and v * Gf̃ ,R(x) are vectors in the Euclidean space that f is defined on, 
and their entries are finite, that is, they are not > or ÿ>. It is clear that if M is the Euclidean space that f is 
defined on, then Gf̃ ,R(x) ÿ Gf̃ (x).
Example 3. For the smoothing function f̃ µ(t) ÿ (sµ(t))p of f (t) ÿ | t |p with 0 < p < 1, where sµ(t) is the uniform 
smoothing function of | t | defined in (16), we have

s2µ(t) ÿ
sign(t) if |t | g µ

2
,

2t

µ
if |t | < µ

2
,

and [(sµ(t))p]2 ÿ p(sµ(t))pÿ1s2µ(t):

8

>

>

<

>

>

:

Here, sign(t) ÿ 1 if t > 0, sign(t) ÿÿ1 if t < 0, and sign(t) ÿ 0 otherwise. For an arbitrary real number v * R and an 
arbitrarily chosen sequence µk ³ 0, let tk ÿ aµk

2ÿp with a ÿ 4pÿ1v=(2p). It is easy to see that

lim
µk³0

[(sµk
(tk))p]2 ÿ 2p41ÿpa ÿ v:

Hence, Gf̃ (0) ÿ (ÿ>,>). For any point t ≠ 0, we know that Gf̃ (t) ÿ p |t | pÿ1sign(t).
Definition 7. A point x * M is called a stationary point of (1) associated with f̃ if 0 * Gf̃ ,R(x), that is,

lim inf
z³x, z*M, µ³0

6grad f̃ (z,µ)6 ÿ 0: (24) 

The following result is an extension of proposition 3.4 of Zhang and Chen [59] from Rn to an embedded subma-
nifold of Rn. The key ingredient for the generalization to Riemannian manifold is to show that the sequence of 
the Riemannian gradients for the smoothing function has zero as one of its accumulation points.

Theorem 1. Let M be an embedded submanifold of Rn. For any smoothing function f̃ of f as defined in Definition 4, if x7 *
M is a local minimizer of f on M, then x7 is a stationary point of (1) associated with f̃ .

Proof. Because x7 * M is a local minimizer of f on M, minima are preserved by composition with diffeomorph-
isms (see, e.g., the proof of (2) ó (1) in proposition 2.2 of Azagra et al. [6]), we then know that 0x7 is a local mini-
mizer of f̂ ÿ f çRx7 on the tangent space Tx7M. Hence, there exists a neighborhood B0x7 ,δ�of 0x7 such that for any 
η * Tx7M + B0x7 ,δ, it holds that f̂ (0x7) f f̂ (η).
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Let us denote f̂ µ ÿ f̃ µ çRx7 for any fixed µ > 0. We have

f̂ µ(0x7) ÿ f̃ (x7,µ) f f (x7) + κω(µ)

ÿ f̂ (0x7) + κω(µ)

f f̂ (η) + κω(µ) for any η * B0x7 ,δ

ÿ f (x) + κω(µ) for x ÿ Rx7 (η)

f f̃ (x,µ) + 2κω(µ)

ÿ f̂ µ(η) + 2κω(µ):

Thus,
f̂ µ(0x7 ) f f̂ µ(η) + 2κω(µ), for any η * B0x7 , δ: (25) 

For any ηz * Tx7M + B0x7 ,δ, we define ηµ ÿ 0x7 +
oooooooooo

ω(µ)
p

ηz * Tx7M + B0x7 ,δ�for all µ sufficiently small, and ηµ ³ 0x7

as µ ³ 0. Because f̂ µ is continuously differentiable on Tx7M, by Taylor’s expansion, we have

f̂ µ(0x7 ) ÿ f̂ µ(ηµ) + +grad f̂ µ(ηµ), ÿ

oooooooooo

ω(µ)
q

ηz+x7 + o
oooooooooo

ω(µ)
q

6ηz6
ÿ ÿ

: (26) 

Substituting (26) into the left-hand side of (25), and replacing η�by ηµ with µ that is sufficiently small, we get
oooooooooo

ω(µ)
q +grad f̂ µ(ηµ), ÿ ηz+x7 + o

oooooooooo

ω(µ)
q

6ηz6
ÿ ÿ

f 2κω(µ):

Dividing both sides of the above inequality by 
oooooooooo

ω(µ)
p

and taking the limit as µ ³ 0, we get

lim sup
µ³0

+grad f̂ µ(ηµ), ÿ ηz+x7 f 0, 

which implies that

lim inf
η³0x7 , η*Tx7M, µ³0

+grad f̂ µ(η), ÿ ηz+x7 f 0: (27) 

Note that ηz * Tx7M + B0x7 ,δ�can be chosen arbitrarily. Let M be a d-dimensional embedded submanifold of Rn. 
We can choose E : Rn ³ Tx7M to be a linear bijection such that {E(ei)}d

iÿ1 is an orthonormal basis of Tx7M, where 
ei is the ith unit vector (see, e.g., Yang et al. [56, section 2]). Then

grad f̂ µ(η) ÿ
X

d

iÿ1

λ
µ
i E(ei), (28) 

for some λ
µ
i * R. Let us choose

η(i, 1)
z ÿ [iE(ei), η(i, 2)

z ÿÿ[iE(ei), for i ÿ 1, 2, : : : , d, 

where [i > 0 is a sufficiently small constant such that η(i, 1)
z ,η(i, 2)

z * B0x7 ,δ: Substituting grad f̂ µ(η) in (27) by (28), 
and substituting ηz in (27) by η(i, 1)

z and η(i, 2)
z , respectively, we obtain

lim inf
µ³0

ÿ[iλ
µ
i g 0 and lim inf

µ³0
[iλ

µ
i g 0:

The above two inequalities indicate
lim
µ³0
λ
µ
i ÿ 0:

Because i ÿ 1, 2, : : : , d can be chosen arbitrarily, the above equality holds for each i. Hence, we get

lim inf
η³0x7 , η*Tx7M, µ³0

6grad f̂ µ(η)6 ÿ lim
µ³0

ÿ

ÿ

ÿ

ÿ

ÿ

ÿ

ÿ

ÿ

ÿ

ÿ

X

d

iÿ1

λ
µ
i E(ei)

ÿ

ÿ

ÿ

ÿ

ÿ

ÿ

ÿ

ÿ

ÿ

ÿ

ÿ 0: (29) 

According to Absil et al. [2, lemma 7.4.9, p. 153], we know that for any constant τ > 1, there exist constants δ > 0 
and d > 0 such that for all 6η6 f d and x ÿ Rx7 (η) * Bx7,δ + M,

6grad f̃ (x,µ)6 ÿ 6grad f̃ µ(Rx7 (η))6 f τ6grad f̂ µ(η)6:
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Here δ�and d relate only to τ�and the definitions of the retraction R and the Riemannian metric g of M, which 
can be deduced from the proof of lemma 7.4.9 of Absil et al. [2]. Taking the limit η³ 0x7 ,η * Tx7M, µ ³ 0 to both 
sides of the above inequality and using (29), we get

lim inf
x³x7, x*M, µ³0

6grad f̃ (x,µ)6 ÿ 0, 

and hence x7 is a stationary point of (1) associated with f̃ as desired. w

We will show in Section 4 that any accumulation point of the proposed RSSD method is a stationary point of 
(1) associated with f̃ . We will also show in Section 4 that any accumulation point of the proposed RSSD method 
is also a limiting stationary point of (1), provided f̃ satisfies the Riemannian gradient subconsistency (to be 
defined in the next subsection) at the accumulation point.

3.2. Riemannian Gradient Subconsistency
Now we define the Riemannian gradient subconsistency of f̃ at x * M, which makes a connection between the 
Riemannian subdifferential Gf̃ ,R(x) associated with f̃ and the Riemannian limiting subdifferential "R f (x). The 
Riemannian gradient subconsistency is essential to show that any accumulation point of the RSSD method is a 
limiting stationary point of (1). Hence, when minimizing a nonsmooth but locally Lipschitz function on M, the 
RSSD method has stronger convergence result than the existing methods that guarantee any accumulation point 
is a Clarke stationary point of (1), for example, the [-subgradient algorithm (Grohs and Hosseini [30]), line search 
algorithms (Hosseini et al. [33]), the Riemannian gradient sampling algorithm (Hosseini and Uschmajew [32]), 
and Riemannian proximal gradient methods (Huang and Wei [34]).

Definition 8. Given x * Rn, a smoothing function f̃ of the function f is said to satisfy the gradient subconsistency 
at x on Rn if

Gf̃ (x) ¦ "f (x): (30) 

Given x * M, f̃ is said to satisfy the Riemannian gradient subconsistency at x on M if

Gf̃ ,R(x) ¦ "R f (x): (31) 

We say that f̃ satisfies the gradient subconsistency on Rn if (30) holds for any x * Rn, and that f̃ satisfies the Rie-
mannian gradient subconsistency on M if (31) holds for any x * M.

Later we will show that if f is nonsmooth but locally Lipschitz near x on Rn, f̃ is a smoothing function of f, and 
the gradient subconsistency of the smoothing function f̃ at x on Rn holds, then the Riemannian gradient subcon-
sistency of f̃ on M holds. Furthermore, we also provide in (35) a Riemannian optimization problem that mini-
mizes a non-Lipschitz function f on M. We show that its smoothing function f̃ defined in (42) satisfies the 
Riemannian gradient subconsistency on M. It is worth mentioning that in numerical experiments of Section 5, 
both the problem (59) of finding the sparsest vectors in a subspace and the problem in (65) for sparsely used 
orthogonal complete dictionary learning using ℓp (0 < p < 1) regularization are examples of the model (35).

If the inclusion is substituted by the equality in (30), then we say f̃ satisfies the gradient consistency at x on Rn. 
If the inclusion is substituted by the equality in (31), then we say f̃ satisfies the Riemannian gradient consistency 
at x on M. Clearly, the gradient consistency indicates the gradient subconsistency. The gradient consistency of f̃ 
on Rn has been well studied in smoothing methods for nonsmooth optimization. For nonsmooth but locally 
Lipschitz function f, it has been shown that the gradient consistency property on Rn holds for various smoothing 
functions in many real applications (Burke and Hoheisel [13], Burke et al. [14], Chen [20], Xu et al. [55], Zhang 
and Chen [58]).

The following theorem demonstrates that given an embedded submanifold M of Rn, x * M, if the gradient 
subconsistency of f̃ at x on Rn holds, then the Riemannian gradient subconsistency of f̃ holds at x on M, pro-
vided that f is locally Lipschitz near x on Rn.

Theorem 2. Given an embedded submanifold M of Rn and a vector x * M, let f be a locally Lipschitz function near x on 
Rn, with f̃ being a smoothing function of f. If the gradient subconsistency of f̃ at x on Rn holds, then the Riemannian gradi-
ent subconsistency of f̃ at x on M holds.

Proof. Let v * Gf̃ ,R(x). Note that Gf̃ (x) ¦ "f (x) is bounded if f is a locally Lipschitz function near x on Rn. Then 

there exist subsequences {xµk
} ¢ M, xµk

³ x, and {µk}, µk ³ 0 as k ³>, and a vector u * Gf̃ (x) such that

u ÿ lim
xµk

³x, xµk
*M, µk³0

'x f̃ (xµk
,µk), (32) 
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and

v ÿ lim
xµk

³x, xµk
*M, µk³0

grad f̃ (xµk
,µk)

ÿ lim
xµk

³x, xµk
*M, µk³0

ProjTxµk
M
'x f̃ (xµk

,µk),

ÿ ProjTxM
u: (33) 

The last equality holds because

6ProjTxµk
M
'x f̃ (xµk

,µk)ÿ ProjTxM
u6

f 6ProjTxµk
M
'x f̃ (xµk

,µk)ÿ ProjTxµk
M

u6 + 6ProjTxµk
M

u ÿ ProjTxM
u6

f 6'x f̃ (xµk
,µk)ÿ u6 + 6ProjTxµk

M
u ÿ ProjTxM

u6

³ 0, 

as xµk
³ x, xµk

* M, µk ³ 0: Here the second inequality comes from the fact that ProjTxµk
M 

is nonexpansive. More-

over, 6'x f̃ (xµk
,µk)ÿ u6³ 0 by (32), and 6ProjTxµk

M
uÿProjTxM

u6³ 0 because Proj : x ³ ProjTxM 
is continuously 

differentiable according to Boumal [12, exercise 3.66, p. 59].
Because the gradient subconsistency at x on Rn holds, that is, Gf̃ (x) ¦ "f (x), we know that u * "f (x). By the defi-

nition of limiting subdifferential of f on Rn,

#uℓ * "̂f (xℓ), (xℓ, f (xℓ) ³ (x, f (x)) such that lim
ℓ³>

uℓ ÿ u:

By the characterization of Riemannian regular subdifferential in (18), we have

vℓ ÿ ProjTxℓ
M

uℓ * "̂R f (xℓ), (34) 

and using the same arguments proving (33), we have

lim
ℓ³>

vℓ ÿ lim
ℓ³>

ProjTxℓ
M

uℓ ÿ ProjTxM
u ÿ v:

This implies v * "R f (x), and hence the smoothing function f̃ of f satisfies the Riemannian gradient subconsistency 
at x on M. w

Furthermore, we consider the following non-Lipschitz Riemannian minimization problem:

min
x*M

f (x) :ÿ f̂ (x) + λ
X

m

iÿ1

Ç( |d¦
i x | ), (35) 

where f̂ is a continuously differentiable function, M is an embedded submanifold of Rn, 0 ≠ di * Rn, i ÿ 1, : : : , m, 
are nonzero vectors, λ > 0 is a given constant, and Ç : R+ ³ R+ is a nonsmooth penalty function. The problem 
with M ÿ Rn has been well investigated in Chen et al. [23], which includes many widely used nonsmooth pen-
alty functions Ç in variable selection, image restoration, and signal reconstruction.

If Ç is nonsmooth but locally Lipschitz, it is easy to see that f is nonsmooth but locally Lipschitz. In this case, 
its Riemannian gradient subconsistency has been investigated in Theorem 2. Below we focus only on Ç that is 
not locally Lipschitz. Motivated by assumption 1.1 in Chen et al. [23], we require Ç to satisfy the following 
assumption.

Assumption 1. The function Ç : R+ ³ R+ is continuous at zero with Ç(0) ÿ 0, Ç2(0+) ÿ >, and Ç is nonsmooth but 
locally Lipschitz in (0,>).

For instance, the bridge penalty Ç1 used in Chen et al. [22] and Chen et al. [23–25], the log penalty Ç2 (Chen 
et al. [23]), and the penalty Ç3 used in Alcantara et al. [4],

Ç1(t) ÿ tp, Ç2(t) ÿ log(αtp + 1), Ç3(t) ÿ min{tp, 1}, for some 0 < p < 1,α > 0, (36) 

are not locally Lipschitz functions on R+ :ÿ {t * R | t g 0} that satisfy Assumption 1. If the objective function f is 
not locally Lipschitz on Rn, it may also be not locally Lipschitz on M as well (see the following example).
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Example 4. Let us consider M ÿ S1, which is the unit circle as in Example 2, x ÿ (
ooo

2
:

=2, ÿ
ooo

2
:

=2)¦, and

f (x) ÿ |x1 ÿ x2 |
1
2 + |x1 + x2 |

1
2:

For each γ > 0 let us define

hγ(x) :ÿ |x1 ÿ x2 |
1
2 + γ(x1 + x2), and δγ :ÿ

1

2γ2
> 0:

Then it is clear that f (x)ÿ hγ(x) ÿ 0, and we claim that

f (x)ÿ hγ(x) ÿ |x1 + x2 |
1
2
ÿ γ(x1 + x2) g 0, for any x * Bx,δγ :

To see this, note that for any x * Bx,δγ , if x1 + x2 f 0, then it is obvious that f (x)ÿ hγ(x) g 0. We then only need 
to consider x * Bx,δγ�and x1 + x2 > 0. In this case, f (x)ÿ hγ(x) g 0 is equivalent to

(x1 + x2)
1
2 g γ(x1 + x2), 

that is, (x1 + x2)
1
2 f 1

γ : In view of x * Bx,δγ , we know that

max{ |x1 ÿ x1 | , |x2 ÿ x2 | } f
oooooooooooooooooooooooooooooooooooooooooooo

(x1 ÿ x1)2 + (x2 ÿ x2)2
q

f 1

2γ2
, 

which indicates

x1 + x2 ÿ (x1 ÿ x1) + (x2 ÿ x2) f
1

γ2
, 

and, consequently, (x1 + x2)
1
2 f 1

γ. Thus, f (x)ÿ hγ(x) g 0 also holds in this case.
Therefore, f ÿ hγ�attains a minimum at x in a neighborhood Bx,δγ�of x. According to Lemma 1, we have, for any 

γ > 0,

vγ ÿ 'hγ(x) ÿ
1

2
ooo

24
: 1

ÿ1

ÿ ÿ

+ γ 1
1

ÿ ÿ

* "̂f (x):

Thus, according to (21) and Proposition 2, we find for any γ > 0,

uγ ÿ ProjTx M
vγ ÿ (I ÿ xx¦)

vγ ÿ
1

2

1 1

1 1

ÿ ÿ

vγ ÿ γ
1

1

ÿ ÿ

* "̂R f (x): (37) 

It is easy to see that 6uγ6³> as γ³>. In view of Lemma 2, we know that f is not locally Lipschitz on S1.

Remark 3. We consider a general embedded submanifold M of Rn. Let x * M and

Ix ÿ {i * {1, : : : , m} |d¦i x ≠ 0} and Jx ÿ {i * {1, : : : , m} |d¦
i x ÿ 0}: (38) 

Assume Jx ≠ '. Now we consider the model (35) with Ç ÿ Ç1. Using arguments similar to that in the above sim-
ple example, we choose an arbitrary i0 * Jx and let

hγ(x) ÿ f̂ (x) + h1(x) + h2,γ(x), 

where

h1(x) ÿ λ
X

i*Ix

|d¦
i x |p, h2,γ(x) ÿ λγd¦

i0
x for any γ > 0:

It is easy to see that f ÿ hγ�attains a local minimum in a neighborhood Bx ,δγ�for a positive constant δγ, and 
f (x) ÿ hγ(x). Hence, by Lemma 1, we have 'hγ(x) * "̂f (x), and, consequently, by Proposition 2, we find

uγ ÿ ProjTx M
'hγ(x) * "̂Rf (x): (39) 

As long as there exists a point x * M such that ProjTx M
'h2,γ(x) ≠ 0, because γ > 0 can be chosen arbitrarily large, 

we can conclude that f is not locally Lipschitz on M according to Lemma 2.
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For instance, if M is the unit sphere in Rn,

Snÿ1 ÿ {x * Rn | 6x6 ÿ 1}, (40) 

then, as d¦
i0

x ÿ 0, we have

ProjTx M
'h2,γ(x) ÿ (I ÿ x x¦)λγdi0 ÿ λγdi0 ≠ 0: (41) 

Hence, f is not locally Lipschitz on M.
Many applications can be formulated in the form of (35), such as finding the sparsest vectors in a subspace, 

and the sparsely used orthogonal complete dictionary learning that will be discussed later in Section 5.
Let s̃µ(t) be a smoothing function of |t | , Ç̃ be a smoothing function of Ç satisfying Definition 4, and the func-

tion

f̃ (x,µ) ÿ f̂ (x) +λ
X

m

iÿ1

Ç̃(s̃µ(d¦
i x),µ) (42) 

be a smoothing function of f defined in (35). For instance, for Ç ÿ Ç1 and Ç ÿ Ç2 in (36), we can choose

Ç̃(t,µ) ÿ Ç(t), 
and for Ç3, we can use

Ç̃3(t,µ) ÿ
tp
ÿ (tp

ÿ 1)+ if |tp
ÿ 1 | g µ

2
,

tp
ÿ

(tp
ÿ 1)2
2µ

+ tp
ÿ 1

2
+µ

8

 !

if |tp
ÿ 1 | < µ

2
:

8

>

>

<

>

>

:

Theorem 3. The smoothing function f̃ that is constructed in (42) for the non-Lipschitz objective function f in (35) satisfies 
the Riemannian gradient subconsistency on M.

Proof. For an arbitrary x * Rn, let the index sets Ix and Jx be defined as in (38) with x being replaced by x. Let DJx 

be the matrix whose columns are di, i * Jx, that is,

DJx
ÿ (di)i*Jx

* Rn× | Jx | , (43) 

with |Jx | being the cardinality of the index set Jx.
If Jx ÿ ', then f is locally Lipschitz near x on Rn. It is clear that f̃ satisfies the gradient subconsistency at x on Rn. 

Thus, f̃ satisfies the Riemannian gradient subconsistency at x on M as shown in Theorem 2.
Otherwise, Jx ≠ '. Define

f1(z) :ÿ λ
X

i*Ix

Ç( |d¦
i z | ) and f2(z) :ÿ λ

X

i*Jx

Ç( |d¦
i z | ),

f̃ 1(z,µ) :ÿ λ
X

i*Ix

Ç̃(s̃µ(d¦i z),µ) and f̃ 2(z,µ) :ÿ λ
X

i*Jx

Ç̃(s̃µ(d¦i z),µ):

Clearly,

λ
X

m

iÿ1

Ç( |d¦
i z | ) ÿ f1(z) + f2(z) and f̃ (z,µ) ÿ f̂ (z) + f̃ 1(z,µ) + f̃ 2(z,µ):

It is clear that

'x f̃ (zk,µk) ÿ 'f̂ (zk) + 'x f̃ 1(zk,µk) + 'x f̃ 2(zk,µk), (44) 

and

lim
k³>

'f̂ (zk) ÿ 'f̂ (x) and lim
k³>

'x f̃ 1(zk,µk) ÿ 'f1(x): (45) 

By direct computation,

'x f̃ 2(zk,µk) ÿ
X

i*Jx

Ç̃2(sµk
(d¦

i zk),µk)s2µk
(d¦

i zk)di ÿ DJx
uk, (46) 
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where

uk :ÿ uk(zk,µk) ÿ (Ç̃2(sµk
(d¦

i zk),µk)s2µk
(d¦i zk))i*Jx

* R | Jx | :

Let v * Gf̃ ,R(x). Then there exist infinite sequences {zk} ¢ M, zk ³ x, and {µk}, µk ³ 0 as k ³> such that

v ÿ lim
zk³x, zk*M, µk³0

grad f̃ (zk,µk)

ÿ lim
zk³x, zk*M, µk³0

ProjTzk
M
'x f̃ (zk,µk): (47) 

For any g1
k , g2

k * Rn, it is easy to see that

6ProjTzk
M

g2
k6ÿ 6ProjTzk

M
(g1

k + g2
k)6

f 6ProjTzk
M
(g1

k + g2
k)ÿProjTzk

M
g2

k6 f 6g1
k6, 

which implies

6ProjTzk
M

g2
k6 f 6ProjTzk

M
(g1

k + g2
k)6 + 6g1

k6: (48) 

By substituting g1
k ÿ 'f̂ (zk) + 'x f̃ 1(zk,µk) and g2

k ÿ 'x f̃ 2(zk,µk) into (48), we have

6ProjTzk
M
'x f̃ 2(zk,µk)6 f 6ProjTzk

M
'x f̃ (zk,µk)6 + 6'f̂ (zk) +'x f̃ 1(zk,µk)6:

The two terms on the right-hand side of the above inequality are bounded by noting (47) and (45). Thus,

{6ProjTzk
M
'x f̃ 2(zk,µk)6} is bounded: (49) 

We can write

DJx uk ÿ b1
k + b2

k , where b1
k * Tzk

M, b2
k * (Tzk

M)§; (50) 

'f̂ (zk) + 'x f̃ 1(zk,µk) ÿ a1
k + a2

k , where a1
k * Tzk

M, a2
k * (Tzk

M)§: (51) 

Here, (Tzk
M)§ is the orthogonal complement of Tzk

M. By (49) and (46), we know that {b1
k} is bounded.

Let r ÿ rank(DJx
) be the rank of DJx 

and Range(DJx
) be the range of DJx

. Let {j1, j2, : : : , jr} ¦ Jx such that {dji , i ÿ
1, 2: : : , r} constitutes a basis for Range(DJx

). We define ξi ÿ dji , i ÿ 1, 2: : : , r. If r < n, we can find ξi * Rn, i ÿ r+ 1, 
: : : , n, such that {ξ1,ξ2, : : : ,ξn} constitutes a basis for Rn. Let us define the matrix Ξ ÿ (ξ1,ξ2, : : : ,ξn ) * Rn×n that is 
invertible. Then the linear system with unknown vector w

Ξw ÿ b1
k 

is consistent and has a unique solution wk ÿ Ξÿ1b1
k : It is clear that {wk} is bounded.

Let K ¦ K be an infinite sequence such that limk³>, k*K wk ÿ w: By using (50) and (51), we get

ProjTzk
M
'x f̃ (zk,µk) ÿ ProjTzk

M
('f̂ (zk) + 'x f̃ 1(zk,µk) +DJx

uk)

ÿ ProjTzk
M
(a1

k + a2
k + b1

k + b2
k)

ÿ ProjTzk
M
(a1

k + b1
k) ÿ a1

k + b1
k :

Consequently,

v ÿ lim
zk³x, zk*M, µk³0

ProjTzk
M
'x f̃ (zk,µk)

ÿ lim
k³>, k*K

(a1
k + b1

k)

ÿ lim
zk³x, zk*M, µk³0, k*K

ProjTzk
M

'f̂ (zk) + 'x f̃ 1(zk,µk) + Ξwk

ÿ ÿ

ÿ ProjTxM
'f̂ (x) + 'f1(x) + Ξw
ÿ ÿ

, 

where the last equality can be obtained using the arguments for (33).
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We now define the function

h(z) ÿ f̂ (z) + f1(z) +
X

r

iÿ1

wid
T
ji
z +

X

n

iÿr+1

wiξ
T
i (z ÿ x):

It is then easy to check that there exists a neighborhood Bx,δ�for some δ > 0 such that h(z) f f (z) with h(x) ÿ f (x), 
and 'h(x) ÿ 'f̂ (x) +'f1(x) +Ξw. Then, by Lemma 1, 'h(x) * "̂f (x). Hence,

v ÿ ProjTxM
'f̂ (x) + 'f1(x) +Ξw
ÿ ÿ

* "̂Rf (x) ¦ "Rf (x), (52) 

which indicates that f̃ satisfies the Riemannian gradient subconsistency at x on M in this case.

Because x * M is arbitrary, we have that f̃ satisfies the Riemannian gradient subconsistency on M as 
desired. w

At the end of this section, we make clear the relation between the set of limiting stationary points defined in 
Definition 5,

Sl ÿ {x7 * M |0 * "Rf (x7)}, 
and that of stationary points associated with f̃ defined in Definition 7,

Sf̃ ÿ {x7 * M |0 * Gf̃ ,R(x7)}:

Any local minimizer of the Riemannian optimization problem (1) lies in both sets. If the Riemannian gradient 
subconsistency holds on M, that is, Gf̃ ,R(x7) ¦ "Rf (x7) for any x7 * M, then Sf̃ ¦ Sl.

4. Riemannian Smoothing Steepest Descent Method
In this section, we present our RSSD method for solving the Riemannian optimization problem (1), which is 
detailed in Algorithm 1. The objective function in (1) is allowed to be non-Lipschitz on M. We always assume 
there exists at least one global optimal solution of (1).

Algorithm 1 (Riemannian Smoothing Steepest Descent Method for Solving (1)) 

1: Input: x0 * M, δopt g 0, δ0 > 0, µopt g 0, µ0 > 0, σ * (0, 1),β * (0, 1), α > 0, θδ * (0, 1), θµ * (0, 1).
2: for ℓ ÿ 0, 1, 2, : : : do
3: Compute ηℓ ÿÿgrad f̃ (xℓ,µℓ):
4: if 6ηℓ6 f δopt and µℓ f µopt then
5: return
6: else if 6ηℓ6 f δℓ�then
7: µℓ+1 :ÿ θµµℓ,δℓ+1 :ÿ θδδℓ,
8: xℓ+1 :ÿ xℓ.
9: else
10: µℓ+1 ÿ µℓ,δℓ+1 ÿ δℓ.
11: Find tℓ :ÿ βmℓα�where mℓ�is the smallest integer such that

f̃ (Rxℓ (βmℓαηℓ),µℓ) f f̃ (xℓ,µℓ)ÿ σβmℓα6grad f̃ (xℓ ,µℓ)6
2: (53) 

12: Set xℓ+1 :ÿ Rxℓ (tℓηℓ):
13: end if
14: end for

A few remarks for Algorithm 1 are in order. First, the line search (53) is well defined, and tℓ�can be found in 
finite trials. To see this, note that for fixed µℓ, f̃ (·,µℓ) is continuously differentiable. Clearly, we have

lim
t³0

f̃µℓ
çRxℓ (tηℓ)ÿ f̃ µℓ

çRxℓ (0xℓ )
t

ÿ (f̃µℓ çRxℓ )2(0xℓ ,ηℓ) ÿ +gradf̃ (xℓ,µℓ),ηℓ+:

Note that ηℓ ÿÿgrad f̃ (xℓ,µℓ). Thus, there exists α > 0 such that for all t * (0,α),

f̃ µℓ
çRxℓ (tηℓ) f f̃ µℓ

çRxℓ (0xℓ )ÿ tσ6grad f̃ (xℓ ,µℓ)6
2:

This guarantees that the line search step (53) is well defined.
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The following result is an extension of theorem 3.5 together with remark 3.2 of Zhang and Chen [59]. The key 
ingredient for the extension is to show that the index set K related to the Riemannian gradient of the smoothing 
function defined in Theorem 4 is an infinite set.

Theorem 4. Let K ÿ {ℓ | 6ηℓ6 f δℓ} and {xℓ} be an infinite sequence generated by Algorithm 1 with δopt ÿ µopt ÿ 0. Then 
the following statements hold: 

i. Any accumulation point x7 of {xℓ}ℓ*K is a stationary point of (1) associated with f̃ .
ii. In addition, if f̃ satisfies the Riemannian gradient subconsistency at x7 on M, then x7 is a limiting stationary point of 

(1).

Proof. We first claim that if there exists an accumulation point x7 * M, then K is an infinite set, and

lim
ℓ³>, ℓ*K

δℓ ÿ 0 and lim
ℓ³>, ℓ*K

µℓ ÿ 0: (54) 

Suppose, on the contrary, that K is a finite set. This means there exists ℓ�such that for all ℓ g ℓ,

δℓ c δℓ , µℓ c µ
ℓ
, 

and

ηℓ ÿÿgrad f̃ (xℓ,µℓ ), 6ηℓ6 > δℓ > 0: (55) 

Therefore, for ℓ g ℓ, we have xℓ+1 ÿ Rxℓ (tℓηℓ), where tℓ�is obtained by using the line search (53) with fixed µ
ℓ
. 

Then Algorithm 1 becomes a Riemannian steepest descent method for minimizing a smooth function f̃ (·,µ
ℓ
) on 

M. According to theorem 4.3.1 of Absil et al. [2], we have grad f̃ (x7,µ
ℓ
) ÿ 0, which contradicts (55). Therefore, K 

is an infinite set. Note that for each ℓ * K, we have

µℓ+1 ÿ θµµℓ and δℓ+1 ÿ θδδℓ�

with decaying factors θµ * (0, 1) and θδ * (0, 1). This, together with K being an infinite set, yields (54) as desired.
By Algorithm 1, we have

lim
ℓ³>, ℓ*K

6grad f̃ (xℓ,µℓ)6 ÿ lim
ℓ³>, ℓ*K

6ηℓ6 f lim
ℓ³>, ℓ*K

δℓ ÿ 0:

Let Ǩ be a subsequence of K such that limℓ³>, ℓ*Ǩ xℓ ÿ x7. The completeness of M guarantees that x7 * M. Thus,

lim inf
x³x7, x*M, µ³0

6grad f̃ (x,µ)6 ÿ 0, and 0 * Gf̃ ,R(x7):

Hence, x7 is a stationary point of (1) associated with f̃ ; that is, statement i holds.
In addition, if f̃ satisfies the Riemannian gradient subconsistency at x7 on M, then we know Gf̃ ,R(x7) ¦ "R f (x7):

Thus, we find 0 * "R f (x7): Hence, x7 is a limiting stationary point of (1). Consequently, statement ii holds. w

The sequence {xℓ} generated by Algorithm 1 is guaranteed to have an accumulation point if the following 
assumption holds.

Assumption 2. For any µ * (0,µ0] and any given vector x * M, the level set Lx,µ ÿ {x * M | f̃ (x,µ) f f̃ (x,µ)} is 
compact.

Assumption 2 holds if M is compact. Assumption 2 also holds if f is coercive in Rn, that is, | f (x) | ³> if 
6x6 ³>, because for an arbitrary µ * (0,µ0] and an arbitrary given vector x * M, by using Definition 4 for 
smoothing function, x * Lx,µ implies that

f (x) f f (x) + 2κω(µ), 

which, together with the coercivity of f, yields that Lx,µ is compact.
Next, we explain how the RSSD method can be considered as an extension of the smoothing steepest descent 

method from Rn to an embedded submanifold of Rn in the following remark. Here, the smoothing steepest 
descent method comes from algorithm 3.1 and remark 3.2 of Zhang and Chen [59]. To be specific, we set Ω ÿ Rn 

in algorithm 3.1 of Zhang and Chen [59], and we substitute “the active set method in Algorithm 2.1” in algorithm 
3.1 Zhang and Chen [59] by the well-known “steepest descent method with Armijo line search” (see, e.g., Bertse-
kas [8, subsection 1.2]). Then we get the smoothing steepest descent method on Rn.
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Remark 4. When M ÿ Rn, let us set the parameters in our RSSD method to be

θµ ÿ θδ ÿ ζ, δ0 ÿ γ̂µ0, 

where ζ�and γ̂�are the parameters in the smoothing steepest descent method on Rn. On the other hand, for the 
smoothing steepest descent method on Rn, let us set n1 ÿ 1, choose the steepest descent method with Armijo line 
search to be the same as (53) in our RSSD method, and

µk+1 ÿ ζµk:

Then, from the same initial point x0, the sequence {x0, xℓ}ℓ*K where K ÿ {ℓ | 6ηℓ6 f δℓ} generated by our RSSD 
method coincides with the sequence generated by the smoothing steepest descent method.

In computation, we do not set µopt ÿ δopt ÿ 0, but instead set them to be small positive real numbers. For 
instance, we can set µopt ÿ δopt ÿ [ for a given small positive real number [. Then we expect to get an [-approxi-
mate stationary point x̂ of (1) associated with f̃ defined as follows, by implementing Algorithm 1.

Definition 9. We say that x̂ * M is an [-approximate stationary point of (1) associated with f̃ if

µ f [ and 6grad f̃ (x̂,µ)6 f [: (56) 

This definition of an [-approximate stationary point of (1) associated with f̃ is motivated by Garmanjani and 
Vicente [29], where smoothing direct-search methods in nonsmooth optimization on Rn have been developed to 
obtain an [-approximate solution.

Theorem 5 below is novel even when M ÿ Rn. It has not been considered before for the smoothing steepest 
descent method in Rn.

Theorem 5. Under Assumption 2, after finite iterations, Algorithm 1 with µopt ÿ δopt ÿ [ will reach an iterate point that is 
an [-approximate stationary point of (1) with respect to f̃ .

Proof. Let θ ÿ max{θµ,θδ} and

nK :ÿ max logθ
[

µ0

, logθ
[

6η06
, 1

ÿ ÿÿ ÿ

:

Here, +r+ refers to the smallest integer that is no less than the real number r.
We then have

θnKµ0 f [ and θnK6η06 f [:

Let us denote K[ ÿ {k1, k2, : : : , knK
}, where ki < kj for 1 f i < j f nK such that K[ contains the first nK elements that 

satisfy 6ηki
6 f δki

. Thus,

µknK
f θnKµ0 f [ and θknK

f θnK6η06 f [, 

and we get the iterate point xnK 
as an [-approximate stationary point of (1) associated with f̃ .

From iterations xki 
to xki+1 

for 1 f i f nK ÿ 1, the smoothing parameter keeps the same as µki
, and Algorithm 1

performs the iterates of the Riemannian steepest descent method for minimizing the smooth function f̃ (x,µki
) on 

M. According to corollary 4.3.2 of Absil et al. [2],

lim
ℓ³>

6grad f̃ (xℓ,µki
)6 ÿ 0:

This implies that after a finite number of steps (say, ℓ̂ i), we will get 6ηki+ℓ̂ i
6 ÿ 6grad f̃ (xki+ℓ̂ i ,µki

)6 f δki
: Hence, after

knK ÿ
X

nKÿ1

iÿ1

ℓ̂ i 

steps, we will get an [-approximate stationary point of (1) associated with f̃ as desired. w

Remark 5. Complexity for non-Lipschitz optimization in Rn has been investigated in Bian and Chen [9, 10], Chen 
[20], and Chen et al. [25]. In Chen et al. [25], it was shown that solving a non-Lipschitz optimization problem is 
strongly NP-hard. In Bian and Chen [9, 10], a smoothing sequential quadratic regularization (SSQR) algorithm 
was proposed for solving non-Lipschitz optimization. The worst-case iteration complexity of the SSQR algorithm 
for finding an [ affine-scaled stationary point is O([ÿ2). It is worth mentioning that the construction of a special 
strongly convex quadratic minimization problem and a special rule for updating the smoothing parameter at 
each iteration are essential to show the worst-case complexity in Bian and Chen [9, 10]. New techniques need to 
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be developed to obtain the iteration complexity of our RSSD method for Riemannian non-Lipschitz optimization, 
and we leave it for future work.

5. Numerical Experiments
In this section, we apply our RSSD method (Algorithm 1) to solve two problems: finding the sparsest vectors in a 
subspace (FSV) and the sparsely used orthogonal complete dictionary learning problem. A notebook with a 
1.80 GHz central processing unit (CPU) and 16 GB of random access memory was used for the numerical experi-
ments. We implemented Algorithm 1 in MATLAB (version R2018b).

5.1. Finding the Sparsest Vectors in a Subspace
The FSV problem seeks the sparsest vectors in an n-dimensional linear subspace W ¢ Rm (m > n). This problem 
has been studied recently and it finds interesting applications and connection with sparse dictionary learning, 
sparse principal component analysis, and many other problems in signal processing and machine learning (Qu 
et al. [45, 46]). This problem is also known as dual principal component pursuit and finds applications in robust 
subspace recovery (Tsakiris and Vidal [51], Zhu et al. [63]). Let Q * Rm×n denote a matrix whose columns form an 
orthonormal basis of W. The FSV problem can be formulated as

min 6Qx60, s:t: x * Snÿ1, (57) 

where Snÿ1 is the unit sphere, and 6z60 counts the number of nonzero entries of z. Because of the combinatorial 
nature of the cardinality function 6 · 60, (57) is very difficult to solve in practice. In the literature, people have 
been focusing on its ℓ1 norm relaxation given below (Qu et al. [45, 46], Tsakiris and Vidal [51], Zhu et al. [63]):

min 6Qx61, s:t: x * Snÿ1, (58) 

where 6z61 :ÿ
P

i |zi | is the ℓ1 norm of vector z. Many algorithms have been proposed for solving (58), including 
the Riemannian gradient sampling algorithm (Hosseini and Uschmajew [32]), projected subgradient method 
(Zhu et al. [62]), Riemannian subgradient method (Li et al. [42]), manifold proximal point algorithm (Chen et al. 
[16]), and so on.

Moreover, for the compressive sensing problems that have the same objective functions as (57) and (58), people 
have found that using the ℓp quasi-norm 6z6p

p :ÿ
P

i |zi |p (0 < p < 1) to replace 6z61 can help to promote the spar-
sity of z (Chartrand and Yin [15], Chen et al. [24, 25], Foucart and Lai [28], Liu et al. [43, 44]). Motivated by this, 
we propose the following ℓp (0 < p < 1) minimization model for the FSV problem:

min f (x) :ÿ 6Qx6p
p, s:t: x * Snÿ1: (59) 

We will illustrate that comparing with (58), (59) with proper choices of 0 < p < 1 is a better approximation to (57). 
To this end, we construct a simple example below for which the global minimizers of the Riemannian ℓ0 model 
are known ahead of time.

Let V ÿ [v1, v2, : : : , v5] * R35×5 be a matrix, whose columns have five, six, seven, eight, and nine nonzero entries 
sequentially, and each nonzero entry of the column is the only nonzero entry in its row. Specifically, the nonzero 
entries of V are

V(1 : 5, 1) ÿ (10 20 30 40 50 )T;
V(6 : 11, 2) ÿ (11 21 31 41 51 61 )T

;

V(12 : 18, 3) ÿ (12 22 32 42 52 62 72 )T;
V(19 : 26, 4) ÿ (13 23 33 43 53 63 73 83 )T

;

V(27 : 35, 5) ÿ (14 24 34 44 54 64 74 84 94 )T:

Let the linear space W be the span of column vectors of V, and let Q ÿ [q1, q2, : : : , q5] * R35×5 be a matrix where 
qj ÿ

vj

6vj6 for j ÿ 1, : : : , 5. Clearly the columns of the matrix Q form an orthonormal basis of W.
Denote by ei * R5 the ith column of the identity matrix for i ÿ 1, : : : , 5. It is then easy to see that for the Rie-

mannian ℓ0 model, the sparsest vector in the linear space W has five nonzero entries and 6e1 are the only two 
global minimizers, and 6ei, i ÿ 2, 3, 4, 5, are local minimizers corresponding to vectors 6Qei * R35 in the linear 
space W with six, seven, eight, and nine nonzero entries, respectively. By direct computation, we list in Table 1
the objective values at 6ei for i ÿ 1, : : : , 5 for the three models, respectively.
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It is obvious that 6e1 are not global minimizers of the Riemannian ℓ1 model, and 6Q(6e5)61 achieves the low-
est values among the five objective values. For p ÿ 0:1, 0:01, 0:001, we find that 6e1 achieve the lowest objective 
values among 6ei, i ÿ 1, : : : , 5. In view of the facts that each entry of Q is nonnegative and each nonzero entry of 
the column of Q is the only nonzero entry in its row, we know that Qei g 0, i ÿ 1, : : : , 5, and there is no index j 
such that

(Qei1)j > 0 and (Qei2)j > 0, ∀i1 ≠ i2, i1, i2 * {1, : : : , 5}:

For any x * S4, we have x ÿP5
iÿ1 xiei,

P5
iÿ1 x2

i ÿ 1, and |xi | g x2
i for i ÿ 1, : : : , 5. It is easy to see that

|Qx | ÿ
ÿ

ÿ

ÿ

ÿ

ÿ

X

5

iÿ1

xiQei

ÿ

ÿ

ÿ

ÿ

ÿ

ÿ
X

5

iÿ1

|xi |Qei g
X

5

iÿ1

x2
i Qei, 

and, consequently,

6Qx6p
p ÿ 6|Qx | 6p

p g
ÿ

ÿ

ÿ

ÿ

ÿ

ÿ

ÿ

ÿ

ÿ

ÿ

X

5

iÿ1

x2
i Qei

ÿ

ÿ

ÿ

ÿ

ÿ

ÿ

ÿ

ÿ

ÿ

ÿ

p

p

g
X

5

iÿ1

x2
i 6Qei6p

p g
X

5

iÿ1

x2
i 6Qe16p

p ÿ 6Qe16p
p, 

where the second inequality is obtained from the concavity of 6 · 6p
p for 0 < p < 1. Therefore, 6e1 are the global 

minimizers of the Riemannian ℓp model for p ÿ 0:1, 0:01, 0:001, which coincide with the global minimizers of the 
original Riemannian ℓ0 model. Moreover, the objective values at 6ei, i ÿ 1, : : : , 5 for the Riemannian ℓp model 
keep increasing for i as that for the Riemannian ℓ0 model.

There exists at least one nonzero row of Q, say, q̂¦
i0

, and there exists a vector x̂ * Snÿ1 such that q̂¦
i0

x̂ ÿ 0. Then, 
by the same arguments as in Remark 2, the objective function in (59) is not locally Lipschitz on Snÿ1. Hence, algo-
rithms proposed in Hosseini and Uschmajew [32], Li et al. [42], Chen et al. [16], and Zhu et al. [62] for solving 
(58) do not apply to (59). We propose to solve (59) using our RSSD method. We also use the proposed RSSD 
method to solve the Riemannian ℓ1 norm minimization problem (58). Now we show the details below.

According to Absil et al. [2], the tangent space at x * Snÿ1 is

TxSnÿ1 :ÿ {z * Rn |x¦z ÿ 0}, 
and the projection of ξ * Rn onto the tangent space TxSnÿ1 is

ProjTxSnÿ1ξ ÿ (I ÿ xx¦)ξ:

In our RSSD algorithm, we use Rx(ξ) ÿ (x+ ξ)=6x+ ξ6 as the retraction function. We use the following smoothing 
function for (59):

f̃ (x,µ) ÿ
X

m

iÿ1

[sµ((Qx)i)]p, (60) 

where sµ(t) is the uniform smoothing function for | t | defined in (16).
The parameters of our RSSD method are set as

µ0 ÿ 1, δ0 ÿ 0:1,θµ ÿ 0:5, θδ ÿ 0:5: (61) 

We choose 50 initial points x0 from normally distributed random vectors, using MATLAB code

randn(2state2, j); x0 ÿ randn(n, 1); x0 ÿ x0=norm(x0), 
for j ÿ 1, : : : , 50.

Table 1. Objective values of the three models at 6ei, i ÿ 1, : : : , 5.

i ÿ 1 i ÿ 2 i ÿ 3 i ÿ 4 i ÿ 5

6Q(6ei)60 5 6 7 8 9
6Q(6ei)61 2.2361 2.2014 2.0473 1.9385 1.8631

6Q(6ei)6p
p, p ÿ 0.1 4.6134 5.3531 5.8989 6.3284 6.6766

6Q(6ei)6p
p, p ÿ 0.01 4.9599 5.9310 6.8764 7.8018 8.7088

6Q(6ei)6p
p, p ÿ 0.001 4.9960 5.9931 6.9875 7.9798 8.9702
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We terminate each instance when the CPU time reaches 50 seconds and find that all the 50 computed solutions 
fall in {6ei, i ÿ 1, : : : , 5} corresponding to p ÿ 0:1, 0:01, 0:001. The CPU time is measured with the MATLAB com-
mand “cputime.” Here we say x̂ fall in {6ei} for i ÿ 1, : : : , 5 if

gap(x̂,6ei) ÿ min{6x̂ ÿ ei6, 6x̂ + ei6} f 10ÿ8: (62) 

We record in Table 2 the frequencies of the computed solutions that fall in {6ei, i ÿ 1, : : : , 5}, respectively. We can 
conclude that the Riemannian ℓp model with p ÿ 0.001 succeeds in finding the true global minimizers of the origi-
nal Riemannian ℓ0 model 10 times from the 50 initial points. In contrast, the Riemannian ℓ1 minimization model 
does not find the true global minimizers from the 50 initial points.

This example demonstrates that there indeed exists a problem for which the Riemannian ℓ1 model fails to find 
the sparsest vector in a subspace, whereas the Riemannian ℓp model with suitable 0 < p < 1 can find the sparsest 
vector in a subspace. Hence, it is useful to develop an algorithm for solving Riemannian non-Lipschitz optimiza-
tion problems with rigorous convergence results. This is the main motivation of this paper.

5.2. Sparsely Used Orthogonal Complete Dictionary Learning
Given a set of data Y ÿ [y1, y2, : : : , ym] * Rn×m, the sparsely used orthogonal complete dictionary learning seeks a 
dictionary that can sparsely represent Y. More specifically, ODL seeks an orthogonal matrix X ÿ [x1, x2, : : : , xn] *
Rn×n and a sparse matrix S * Rn×m such that Y j XS. The matrix X is called an orthogonal dictionary. We refer to 
Sun et al. [50] for more details of this model. This problem can be modeled as the Riemannian ℓ0 minimization 
problem (Spielman et al. [49]):

min
1

m

X

m

iÿ1

6y¦
i X60, s:t: X * St(n, n), (63) 

where St(n, n) ÿ {X * Rn×n |X¦X ÿ In} is the orthogonal group, which is a special case of the Stiefel manifold. To 
overcome the computational difficulty of the Riemannian ℓ0 minimization model, the ℓ0 term is usually replaced 
by the ℓ1 norm in the literature, which leads to the following Riemannian ℓ1 minimization problem for ODL 
(Spielman et al. [49], Sun et al. [50]):

min
1

m

X

m

iÿ1

6y¦
i X61, s:t: X * St(n, n): (64) 

Here we again consider the Riemannian ℓp (0 < p < 1) quasi-norm minimization model

min
1

m

X

m

iÿ1

6y¦
i X6p

p, s:t: X * St(n, n), (65) 

and apply the RSSD method to solve it. We now specify the details. The tangent space of the Stiefel manifold 
St(n, n) is

TXSt :ÿ {ξ * Rn×n : ξ¦X+X¦ξ ÿ 0}:
The projection of Z * Rn×n onto the tangent space TXSt(n, n) is

ProjTXStZ ÿ Zÿ

1

2
X(X¦Z+Z¦X): (66) 

We use the QR factorization as the retraction on the Stiefel manifold, which is given by RX(ξ) ÿ qf(X + ξ). Here, 
qf(A) denotes the Q factor of the QR decomposition of A.

Li et al. [42] proposed a Riemannian subgradient method and its variants—the Riemannian incremental sub-
gradient method and Riemannian stochastic subgradient method—for solving the Riemannian ℓ1 minimization 

Table 2. Frequencies of the computed solutions that fall in 6ei, i ÿ 1, : : : , 5, from the 50 
initial points, using the Riemannian ℓ1 model and Riemannian ℓp model, respectively.

6e1 6e2 6e3 6e4 6e5

ℓ1 model 0 4 15 10 21
ℓp model, p ÿ 0.1 1 4 16 9 20
ℓp model, p ÿ 0.01 6 5 14 8 17
ℓp model, p ÿ 0.001 10 9 10 5 16
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problem (64). In this section, we use our RSSD to solve the Riemannian ℓp minimization model (65) with p ÿ
0.001 and compare its performance with the algorithms proposed in Li et al. [42] for solving (64). We thus gener-
ate the synthetic data for ODL in a similar manner as in Li et al. [42], which is detailed below. We first generate 
the underlying orthogonal dictionary X7 * St(n, n) with n ÿ 30, whose entries are drawn according to standard 
Gaussian distribution. The number of samples m ÿ +10 · n1:5+ ÿ 1643. The sparse matrix S7 * Rn×m is generated 
such that the entries follow the Bernoulli–Gaussian distribution with parameter 0.5. Finally, we set Y ÿ X7S7. We 
generate 50 instances using this procedure. For each instance, we generate two different initial points: one is a 
standard Gaussian random vector denoted by xGauss

0 , and the other one is a uniform random vector denoted by 
xuniform

0 . For the ease of presentation, we refer to the three algorithms in Li et al. [42]—the Riemannian subgradi-
ent method, Riemannian incremental subgradient method, and Riemannian stochastic subgradient method—as 
R-Full, R-Inc, and R-Sto, respectively. We use the same parameters in (61) for RSSD. The codes for R-Full, R-Inc, 
and R-Sto were downloaded from the author’s web page.1

For each instance, we terminate each method if the CPU time reaches 50 seconds. We truncate the entries of 
Y¦X̂ as

(Y¦X̂)ij ÿ 0, if | (Y¦X̂)ij | < τ, 

where τ > 0 is a pregiven tolerance, and X̂ is the computed solution. We report the average of the sparsity level 
of Y¦X̂ over 50 instances in Table 3, where the sparsity level is computed by

sparsity level ÿ number of zero entries of Y¦X̂

mn
:

Note that the desired sparsity level of Y¦X̂ is 0.5 because of the way that S7 was generated. We see from Table 3
that the ℓp minimization model with p ÿ 0.001 solved by our RSSD method provides the best results in terms of 
the sparsity level.

For each instance, we compute the sparsity level at the latest iterate point obtained by each method when the 
CPU time reaches t ÿ 1, 2, : : : , 50 seconds, respectively. We then compute the corresponding average sparsity level 
of the 50 instances and plot the trajectory of the sparsity level at t ÿ 1, 2, : : : , 50 seconds in Figures 1 and 2. We use 
a log scale on the x-axes in Figures 1 and 2. From these figures, it is clear that the ℓp minimization model (65) 

Table 3. Average sparsity levels of computed solutions from 50 instances.

Initial points

ℓ1 minimization model
ℓp model, p ÿ 0.001

R-Full R-Inc R-Sto RSSD

xGauss
0 , τ ÿ 10ÿ4 0.3727 0.3857 0.3456 0.5000

xGauss
0 , τ ÿ 10ÿ5 0.3697 0.3852 0.3450 0.4895

xUniform
0 , τ ÿ 10ÿ4 0.3727 0.3784 0.3234 0.5000

xUniform
0 , τ ÿ 10ÿ5 0.3675 0.3773 0.3222 0.4915

Figure 1. (Color online) Average sparsity level vs. CPU time of 50 instances using Gaussian initial points. In the left panel, 
τ ÿ 10ÿ4. In the right panel, τ ÿ 10ÿ5. A log scale is used on the x-axes. 
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with p ÿ 0.001 solved by the RSSD method provides the best results in terms of sparsity level. More specifically, 
the RSSD method can improve the sparsity to the desired level 0.5 after about 15 seconds, whereas the other three 
algorithms stopped making progress after about one second, and none of the three algorithms achieved a spar-
sity level higher than 0.4. This example also demonstrates the necessity of developing the RSSD method for solv-
ing Riemannian non-Lipschitz optimization problems.

We admit that from our numerical experience, the computation cost of our RSSD method for each iteration is 
higher than those of the Riemannian subgradient-type methods, including the R-Full, R-Inc, and R-Sto methods 
in Li et al. [42]. The reason is that the Armijo line search is used in the RSSD method, whereas no line search strat-
egy is adopted in the Riemannian subgradient-type methods in Li et al. [42]. It is also possible to develop more 
efficient smoothing algorithms than the RSSD method for solving Riemannian non-Lipschitz optimization pro-
blems, by making use of the theoretical analysis of Riemannian generalized subdifferentials and Riemannian gra-
dient subconsistency property developed in this paper.

Recall that we use the CPU time budget (50 seconds) to terminate each method in numerical experiments. For 
our RSSD method, we record µℓ�and 6ηℓ6 ÿ 6ÿ grad f̃ (xℓ,µℓ)6 when the sparsity level becomes stable, and try the 
values around them. We find that µopt * [2 × 10ÿ3, 3 × 10ÿ3] and δopt * [4 × 10ÿ3, 10ÿ2] are suitable as stopping cri-
terion of the RSSD method for the sparsely used ODL problem, and in this case, the sparsity level keeps almost 
the same but the number of iterations is around one-third of that given by the CPU budget (50 seconds). If smal-
ler values of µopt and δopt are also used as a stopping criteria, together with the CPU budget (50 seconds), the 
RSSD method will often reach the CPU time budget, but the sparsity level keeps almost the same.

6. Concluding Remarks
In this paper, we study the Riemannian generalized subdifferentials and Riemannian gradient subconsistency 
relating to non-Lipschitz optimization on embedded submanifolds of Rn. We then develop RSSD, a novel Rie-
mannian smoothing steepest descent method, for minimizing a non-Lipschitz function over embedded submani-
folds of Rn. We prove that any accumulation point generated by our RSSD method is a stationary point of (1) 
associated with the smoothing function employed in the method, which is necessary for local optimality of (1). 
Moreover, we also prove that any accumulation point is a limiting stationary point of (1) if the Riemannian gradi-
ent subconsistency property holds at the accumulation point. We show that smoothing functions satisfy the Rie-
mannian gradient subconsistency under mild conditions. Numerical results on finding the sparsest vectors in a 
subspace and the sparsely used orthogonal complete dictionary learning demonstrate the necessity of studying 
non-Lipschitz optimization on embedded submanifolds of Rn and the effectiveness of our RSSD method for solv-
ing non-Lipschitz optimization on embedded submanifolds of Rn:

Acknowledgments
The authors are grateful to two anonymous referees for their constructive comments that greatly improved the presenta-
tion of this paper.

Figure 2. (Color online) Average sparsity level vs. CPU time of 50 instances using uniform initial points. In the left panel, 
τ ÿ 10ÿ4. In the right panel, τ ÿ 10ÿ5. A log scale is used on the x-axes. 
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Endnote
1 See https://github.com/lixiao0982/Riemannian-subgradient-methods.
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