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Abstract—We observe the need for continuous, online
training of dynamic graph neural network (DGNN) models
while at the same time using them to answer continuous
predictive queries as data streams in. This implies significant
training-time and memory costs. Along with the DGNN
model learning, we simultaneously learn a weight/priority
distribution over the nodes via a randomized online algo-
rithm. In turn, the DGNN is continuously trained/learned by
sampling nodes from the learned distribution and performing
the chosen nodes’ partitions of training work. We also devise
a novel graph Kernel Density Estimation technique to smooth
the distribution and improve the learning quality. Our exper-
iments show that continuous online learning is much needed
for graph streams and our approach significantly improves
the standard DGNN models—to achieve the same accuracy,
the training time ranges from several times to two orders of
magnitude shorter, and the maximum memory consumption
is several times to 20 times smaller.

Index Terms—online learning, continuous model updates,
continuous predictive queries, dynamic graph neural net-
works, kernel density estimation

I. INTRODUCTION

Graphs are a general model to represent data/information,
especially when they are heterogeneous with various types,
as data can be represented by entities (nodes) and relations
(edges). The relations here may also broadly refer to interac-
tions between entities. For this reason, graph representation
learning has been studied in a wide range of applications, in-
cluding e-commerce, recommender systems, social networks,
biology, healthcare, communication networks, computational
finance, and traffic. Many of these graphs are inherently
dynamic and are modeled as graph streams, which contain
streaming updates. Let us look at an example.

Example 1. Medical data for patients in the Intensive Care
Units (ICU) of hospitals is highly dynamic and rich, and is
a heterogeneous graph stream. Specifically, we look into the
MIMIC-IIT (Medical Information Mart for Intensive Care III)
data [1] comprising de-identified health-related data associated
with over forty thousand patients who stayed in the critical care
units of the Beth Israel Deaconess Medical Center between 2001
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Fig. 1: Nllustrating a graph stream in healthcare.

and 2012. Figure 1 illustrates a snippet of the data from this
dataset. First of all, there are many types of entities, shown as
vertices in the graph, including patients, diagnosis, procedures,
lab events, input events, and prescription drugs. They are shown
as nodes of different colors.

Interaction relations such as lab measurement events and
input events (fluids administered to a patient) are very dynamic
and timestamped (dashed edges in Figure 1). Some relations can
be static, such as a patient’s diagnosis (solid edges in the figure).
Two patients may have relations with the same diagnosis, or
they may have the same input events but at different times.
Learning from such heterogeneous data sources is instrumental
for inference and reasoning. For instance, a hospital manager
may subscribe to the following continuous predictive query so
that sufficient resources can be allocated: “Notify me when it
is predicted that, in the next hour, grouped by the medical
procedure, the number of patients tested with abnormal results
is above a certain threshold”.

Graph streams [2] belong to the more general notion of
data streams [3], where a major type of queries widely used in
practice is continuous queries that monitor the dynamic data.
For high-rate graph streams, data is often partially observed
and incomplete, continuously predicting missing events and
future events can be very useful, as shown in Example 1
where a hospital manager may subscribe to a number of



predictive queries including the number of abnormal lab
results exceeding a threshold. In general, it has been shown
that monitoring such predictive events and predictive queries
is very valuable in healthcare, business operations, network
monitoring, among other domains [4], [5].

Graph neural networks have become the state-of-the-art
deep learning model for data represented as graphs [6]-[8].
In recent years, there has been a number of proposals of
dynamic graph neural networks (DGNN) [9], [10] that become
the dominant approach for dynamic networks and graph
streams, where node attributes and edges dynamically change
over time, as is the case in the application of Example 1.

Interestingly, not only does such a system need to con-
tinuously answer a set of predictive queries, we find that
(as shown later) it also needs to continuously perform graph
machine learning model updates, analogous to what other re-
searchers found for online machine learning in general [11]-
[13]. Thus, the central questions that we try to answer in
this paper are: Do we need to continuously train a DGNN
model as we continuously answer predictive queries? If so, since
continuous learning can be resource demanding, how can we
perform it in a time- and memory-efficient manner?

With empirical evidence (Section VI), we find the answer
to the first question to be affirmative. Then computation
and memory efficiency of online (as data changes) and
continuous training is much needed, given the real-time
requirement nature of the continuous monitoring tasks. We
reduce the resource usage of continuous model updates by
the observation that the size of a DGNN model is independent
of the size of G. Thus, different parts of G may not have equal
importance to online learning—chosen subgraphs might
be more effective for training given the same amount
of compute resources. In addition, which part of data to
focus on in training also has to do with the continuous
queries depending on what data is relevant to predicting their
results. Therefore, we devise a novel method to learn a weight
distribution over the nodes in G and perform adaptive online
training over selected subgraphs. Our method is both data
aware and workload aware.

A. Our Contributions

Although there has been work on online machine learn-
ing [11]-[13], to our knowledge, we are the first to answer
this question in the context of dynamic networks and graph
streams, where the DGNN training work can be partitioned
over nodes in the network and it is natural to adaptively
learn “what to learn”, ie., which nodes are more profitable
to train at a given time.

Our experimental study (Figure 4) clearly demonstrates
the need for online continuous learning in graph streams.
Towards our goal, we first propose a scheme for the node-level
partitioning of incremental training work, which includes
both self-supervised learning [6] using node/edge labels as
targets and supervised learning based on the revealed results
of the continuous predictive queries discussed above. Thus
each node has its partition of training work.

Then we devise a randomized algorithm that simultane-
ously both (a) learns a weight distribution over the nodes
and (b) does weighted online training of DGNN (based on
any existing DGNN model)—by sampling over the nodes
using the very weight distribution learned in (a), and then
performing the sampled node’s partition of training work. We
prove that the running state of the continuous randomized
algorithm, which is a weight distribution of nodes, follows
a Markov chain that converges to its stationary distribution
where the probability of a state s (i.e., weight distribution)
is proportional to e“s, where us can be flexibly defined as
the utility (e.g., accuracy in evaluation) of using the weight
distribution s to sample and train. In other words, our
continuous learning algorithm will converge to a state with
high utility (corresponding to high query result accuracy).

Since message passing of graph neural networks is be-
tween each node and its neighborhood, the utilities of
training at two neighboring nodes should not be too far
apart. As a result, the weight distribution should be more
or less smooth with respect to edge connections in the
network. Inspired by the Kernel Density Estimation (KDE)
technique [14], [15] originally for estimating continuous dis-
tributions, we propose a novel graph KDE based on random-
walk kernels which is for discrete distributions and is aware
of network topology. We analyze the weight distribution
learning enhanced by the graph KDE, and show that the
effective sampling distribution is a smoothed version of the
original one based on a node’s network neighborhood. Our
experiments show that the graph-KDE enhanced version
further makes continuous learning more efficient.

Our comprehensive empirical study using three real-world
graph stream datasets and six baseline models demonstrates
the need for online adaptive learning for graph streams
and shows the salient advantages of our proposed weighted
online learning enhanced by graph KDE over standard DGNN
models in previous work. To achieve the same prediction ac-
curacy, the training time of our proposed method is typically
one to two orders of magnitude shorter, and the maximum
memory consumption is several times to 20 times smaller.

In summary, our contributions include:

e« We propose the problem of simultaneous resource-
efficient model updates and continuous query answering
in graph streams.

o We carefully study and empirically verify the need for
continuous learning-model updates in graph streams.

e We devise a randomized algorithm with theoretical
guarantees that adaptively learns a node distribution
and performs weighted learning that reduces compute-
resource usage.

o We further propose a novel graph kernel density estima-
tion method that smooths the learned distribution and
further enhances the resource efficiency.

o We perform a comprehensive experimental study that
evaluates the motivation, the effectiveness of our ap-
proaches, and the compute-resource reduction.



II. PROBLEM STATEMENT

A graph stream G = (N, E) is an infinite sequence of snap-
shots G1,Go, ..., Gy, ..., where each snapshot G; corresponds
to a time step t, N is the set of nodes, and F is the set of
edges. Each snapshot G; = (N, E;) satisfies N; C N and
E; C E. Each node v € N may have a set of attributes
X = Xj,..., X, that may bear different values in different
snapshots. In addition, each edge e € E may be of one of
the r types. So this is a heterogeneous graph stream.

Note that there are other formulations of graph streams [2]
such as a sequence of graph edges, and the formulation above
that we use is a more general model that also incorporates
attribute updates and relations/edges with certain durations
(including static relations). For instance, in Example 1 and
Figure 1, there are also more static edges such as those
between patients and diagnosis nodes (e.g., Septic shock)
and between patients and procedures (e.g., Vascular cath
irrigation)—indicating the “properties” of ICU patients with-
out a timestamp.

G has a analytics workload which contains a number of
continuous predictive/monitoring queries, each of which is to
continuously predict, at every time ¢, a function of the data in
Gi+s, where § > 0. That is, each query keeps predicting, at
every step t, a value that is a function of the data in a future
snapshot. This is shown on the right hand side of Figure 2. As
an example, recall one such query near the end of Example 1.
For such an analytics workload, there is a body of previous
models called dynamic graph neural networks (DGNN) [9],
[10] that can be used to answer the continuous queries. The
problem we are focusing on in this paper is:

e Does the system indeed need to continuously update
the dynamic graph neural network model in order to
continuously get up-to-date answers to the queries?

o If so, find a strategy to continuously update an existing
DGNN model so as to minimize the computational re-
source consumption for a fixed prediction error budget.

III. SYSTEM ARCHITECTURE AND NODE-LEVEL PARTITIONING
OF LEARNING

A. Architecture and Model

The system architecture is illustrated in Figure 2. Our
work can adopt any of the dynamic graph neural network
(DGNN) model in the literature [9], [10], which typically
consists of a conventional graph neural network (GNN)
model to capture message-passing at the graph-structure
level and a sequence model for temporal correlations. In our
evaluation in Section VI, we have experimented with seven
such models, namely TGCN [16], DCRNN [17], GCLSTM [18],
DyGrEncoder [19], ROLAND [20], WinGNN [21], and
EvolveGCN [22].

The model operates on a graph stream G, and dynamically
learns the weights/importance of each node of the graph
as a distribution D[v]. Our ultimate approach is based on
the graph-KDE that we design, as illustrated in Figure 2
and detailed in Section V. The main purpose is to handle
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Fig. 2: The overall architecture of our model. The left-
hand side is any dynamic graph neural network (DGNN)
model, and the right-hand side shows two parts of training—
supervised from continuous analytics workload and self-
supervised from graph data (node/link labels). The online
training work is partitioned at the node level, and we
learn the weights/importance of each node of the graph
(distribution D[v]). Our ultimate approach is graph-KDE
sampling (details in Section V) that selects a number of seed
nodes (s; to sg) based on their weights w;, and performs
a short random walk from a chosen seed to arrive at a
node u for incremental training at a subgraph induced by
the neighborhood of .

the analytics workload, which contains a set of continuous
predictive queries, for each of which we further use a multi-
layer perceptron (MLP) model on top of the embeddings
from DGNN to predict the results. The supervised and self-
supervised learning part will be explained in Section III-B
and Section III-C.

B. Two-Part Model Training

As commonly done for graph neural networks, the training
consists of two parts:

1) Supervised learning based on the ¢ continuous predictive
queries in the analytics workload. The system knows the
ground-truth result labels when the predicted time in
a query later arrives—so the supervised learning has a
slight delay to get the future result labels.

2) Self-supervised learning by  predicting
nodes/links (labels) in the network [23], i.e., supervision
signals within the graph, rather than external labels
from the analytics workload.

chosen

This is illustrated in Figure 2. The self-supervised learning
part is especially helpful when the external labels from the
analytics workload are insufficient.

C. Node-level Partitioning of Training Work

Intuitions and Rationales. A key novelty in our work
is to reduce the computational resource usage of continuous
model updates by the observation that the size (i.e., number
of parameters) of a dynamic graph neural network model is
independent of the size of G. Therefore, depending on the
nature of the data (nodes, attributes, relations) and data up-
dates, we may not need to spend the resources to uniformly



train over all parts of G, i.e., some chosen subgraphs may
be more “profitable” when investing the same amount
of compute resources. So our selective training is data
aware. Moreover, it is clear that which parts of the dynamic
graph G have higher importance for training also depends
on the continuous predictive queries—what subset of data is
relevant to the queries. Hence the selective training should
also be workload aware.

We now discuss how to partition the online incremental
training work for each node. Once we learn the weight
distribution D over all nodes in the graph stream (Sections IV
and V), we sample nodes from D and perform each chosen
node’s partition of work in their neighborhood subgraphs.
This process is repeated, incremental, and adaptive to data
changes. This is illustrated on the left of Figure 2. For a node
v, its partition of incremental training work is as follows.

1) The self-supervised learning part for node v is to choose
node v or any of its incident edges with node/link labels
as training targets.

2) Node v’s partition of supervised learning is to train
over the continuous queries based on a smaller, induced
subgraph G, being fed into the DGNN model for back-
propagation. Specifically, G, is the induced subgraph of
G by keeping only v and all its neighbors within L hop
distance, where L is the number of layers associated
with the underlying GNN model (usually no more than
3). Note that the inference (forward propagation) is still
based on the whole graph G.

The purpose of node-level online learning partition is to
help us gauge the influence of incrementally selecting a
node partition for training (at the current moment) to the
accuracy/utility of the analytics workload.

IV. ApAPTIVE NODE-WEIGHT LEARNING

We devise a randomized online algorithm to learn the
node-weight distribution D adaptively from the data and the
continuous analytics workload. The very first idea is that we
consider online learning as continuous discrete steps, where
we sample nodes based on a distribution D (that we are about
to learn at the same time!), and for each chosen node, we
perform its node-level partition of the training as described
above. Our algorithm will sample one or more pairs of nodes
in each training step, and perform their training partitions.
There is a fixed time interval between two training steps.

A. Temporal Utility

1) Utility of a Training Action: We measure the effec-
tiveness of an incremental training action (e.g., performing
a node’s training partition, as described in Section III-C)
using a utility value, where a higher utility should lead to
better accuracy when evaluating the analytics workload (all
continuous queries). However, we cannot afford to evaluate
the analytics workload every time we need to get the utility
of training a node’s partition.

Instead, inspired by previous work on focal loss [24] and
on confidence-aware learning [25], the hardness of a node

sample, as measured by the training loss/error before back-
propagation, is indicative of how beneficial it is to use this
node to train. This also has no extra overhead. Thus, we
choose the utility function as such in our experiments. Our
framework is flexible and allows other definitions of utilities.
In all, a utility value is essentially a score with a higher value
indicating a more desirable state in online learning.
2) Temporal Utility: We give the following definition.

Definition IV.1. The temporal utility at a node v at a step
during continuous learning is defined as a function v : V" —
R. Tt is a function of the next node v to be selected for
training, and the returned utility w(v) is measured right after
the node v’s training partition is performed.

Note that the temporal utility at a node is conditioned on
the past training (which also follows D). As in our algorithm
(to be presented in Section IV-B), we choose the next node
randomly based on a weight distribution D, the temporal
utility U at a time step is a random variable, and it has an
expected temporal utility over the distribution D.

Intuitively, if the temporal utility at a node v is high, we
should probably increase v’s weight to gain more on the
overall expected utility. However, this does not go on forever
(hence the term “temporal” utility). Recall that the temporal
utility is conditioned on the previous training profile (also
determined by D). If v were trained too frequently already,
additional selection of v would not be as beneficial to the
utility as selecting a different node. In other words, the
temporal utility at node v will likely decrease after some
time (when it is trained sufficiently often), while the temporal
utility at other nodes will increase.

B. The Algorithm

Our algorithm for learning the node weight distribution D
will be based on the notion of temporal utility discussed in
Section IV-A. As we aim for online continuous training and
query answering, we devise a simple, efficient randomized
algorithm that has little overhead, but that has a solid
theoretical base. It is presented in Algorithm 1.

The main idea of the algorithm is as follows. Like a chip-
firing game on graphs [26], our algorithm places chips at each
node where the number of chips at a node is proportional to
its weight. Let D[v] be the number of chips at node v. For a
pair of nodes sampled based on D, we perform each node’s
partition of incremental training (Section III-C). We compare
the utilities from training each of the two nodes, and move
one chip from the “loser” node (with lower utility) to the
“winner” node with a higher probability than moving a chip
in the opposite direction. The intuition is that, if training at
a node is more beneficial now, we more likely increment its
weight by a small amount.

Line 1 initially places k chips at each node (empirically,
a small number, e.g., 5, gives good results). Line 2 iterates
over every pair of nodes (to be sampled from G below in
line 4) at each training step. In GETSAMPLENODE, U is the
set of nodes that have (or whose incident edges have) new



data updates since the previous training step. ’D’L{ in line 19
is the distribution (chips) from D when the node choices are
limited to set U. Lines 18-21 basically give more probability to
nodes with new updates (e.g., we empirically set p,, = 0.5).
U gets updated between two training steps (as part of the
input graph stream G) and reflects the current data changes.

Lines 5-6 perform v;’s partition of training work using
data in a window up to the current time step t. The utility
in line 7 is as described in Section IV-A. Finally, lines 8-16
handle chip moving between the “winner” node (index w)
and “loser” node (index /). Lines 12 and 15 ensure that every
node at least has 1 chip so it still has some chance to be
selected.

Complexity. If the frequency of online learning is f
steps/sec, then the time cost of Algorithm 1 is O(fd") per
second, where d is the average degree of sampled nodes and
L is the number of layers of DGNN. The space complexity
is O(dl). This is because the incremental training per step
(lines 5-6) is performed over the chosen node v;’s partition—
the induced subgraph L hops around wv; (illustrated as the
subgraph inside the dashed circle in Figure 2).

Algorithm 1: ONLINEADAPTIVELEARNING

Input: G: the graph stream
Q: continuous analytics workload
1 D[v] < k for all n nodes in G
2 for each pair at each training step t do

3 for i+ 1,2 do

4 v; < GETSAMPLENODE (D, U)

5 do self-supervised training at v;

6 do supervised training on Q for v;’s partition
7 u; <— utility measured for the training above
8 w+ 2,11 // winner/loser index

9 if uy > uo then

10 L w+— 1,1+ 2

11 with probability 1/2

12 if D[v;] > 1 then // minimum 1 chip
13 L Dlvy] + +; Dlu] — —

14 else with probability e~ et

15 if D[v,] > 1 then // minimum 1 chip
16 L Dlv] + +; Dlvy] — —

17 Function GETSAMPLENODE (D,U)

18 with probability p,

19 L v < randomly chosen from D|Z/{

20 else

21 L v < randomly chosen from D

22 | return v

C. The Analysis

Now we perform a novel analysis of Algorithm 1. We
first draw a connection between our algorithm and the

influence functions in robust statistics [27]. Then we prove
the correctness/optimality of the algorithm in terms of the
learned distribution.

1) Preliminaries on Influence Functions and Markov Chains:
An influence function tells us the effect of a change in one
observation on an estimator of a statistic.

Definition IV.2. [27] Given some distribution F, the
influence function of statistic ¢ at I is the Gateaux derivative
of 6 at I in the direction d,:

IFy p(z) = lim B((1— F + ed,) — O(F)

e—0 €

where §, is a probability distribution with all its mass at
point x.

The influence function thus quantifies how statistic 6(F)
changes if distribution F' is contaminated by a small amount
of data mass at point z. Stated differently, it quantifies the
influence of data point x on 0.

In our analysis of Algorithm 1 below, the estimated statistic
0 is the expected temporal utility of D, while point x is a
sampled node where chips may be moved in or out.

A Markov chain M is a discrete time stochastic process
defined over a set of states S in terms of a matrix P of
transition probabilities [28]. Let the number of states be
n. Then a stationary distribution of the Markov chain is a
probability distribution (over the states) 7 = («[1],...,7[n])
such that 7 = 7 P. Intuitively, if the Markov chain is in the
stationary distribution at step ¢, it remains so at step ¢ + 1.
A finite, irreducible (i.e., there is a non-zero probability to
go between any two states), and aperiodic (i.e., the length of
path from a state to itself does not have to be divisible by a
period A > 1) Markov chain must have a unique stationary
distribution.

2) Analysis with Influence Functions: We first analyze
the connection between the influence function and our
algorithm—the influence of a chosen node on the expected
temporal utility of D. We also show that the update of node
weight distribution D through moving chips is guided by
the influence function values at chosen nodes. We prove the
following.

Theorem IV.3. Let the node-weight distribution be D, and let
the expected temporal utility of D be (D). Then the influence
function of @ at D is IF; p(z) = u(x) — a(D), where u(z)
is the temporal utility of node x. Moreover, for a pair of nodes
vy and vg chosen in lines 3-4 of Algorithm 1, the ratio of
the probabilities of moving one chip in the direction vi — vg
vs. vg — vy (lines 13 and 16) is an exponential function of
IF’&,D(U2) — IF{L’D (Ul).

Proof. Based on Definition IV.2, we have
w((1 —€)D + ed,) — (D)

IF@D (1’) = lim

e—0 €

~ lim (1—€)u(D) +e-u(x) — u(D)
e—0 €

= u(z) — u(D)



From the above equation, for two nodes v; and vy chosen
in lines 3-4 of Algorithm 1, we must have IF; p(ve) —
IF:p(v1) = w(ve) — u(vy). Consider the case u(ve) >
u(v1). The ratio of the probabilities, from lines 11-16, is

Pvy—vy 2 — S(u(v2)—u(v1)) 2 :
Posoy  (1/2) ez —utun/Gmy — € Fr, which

is an exponential function of IF; p(ve) —IF; p(v1) from the
equation above. One can verify that we get the same result
for the case u(vy) > u(vs). O

Theorem IV.3 shows that the influence function of expected
utility from a given node is the difference between the utility
of the node and that of the whole distribution. Moreover, the
theorem shows that Algorithm 1 examines the IF difference
of nodes, and uses it to guide the movement of chips and
hence to change the node weight distribution D.

3) Correctness Analysis of Our Algorithm: The following
theorem shows that the learned distribution D is as de-
sired. In particular, adaptive to the dynamic data and pat-
tern/workload changes, the execution of Algorithm 1 tends
to stay at a state with a probability being an exponential
function of the expected temporal utility of the state (i.e., a
higher utility has a much higher probability).

Theorem IV.4. Let the numbers of chips at each node of G
in D be the state during the execution of Algorithm 1. Then
the state follows a Markov chain with a unique stationary
distribution, in which the probability of state s is proportional
to e"s, where us is the expected temporal utility of s.

Proof. The total number of chips stays constant and there is
a finite number of nodes, so there is a finite number of states.
The next state only depends on the current state (lines 11-16),
making it a finite Markov chain. The state transition graph is
strongly connected, so the Markov chain is irreducible [28].
Also, there is a positive probability that a state will stay put
in the next step (no chip is moved), so the chain is aperiodic.
A finite, irreducible, and aperiodic Markov chain must have
a unique stationary distribution [28]. At a discrete state
s of D, let the corresponding probability at node v; be p;
(normalized distribution based on the number of chips). From
the definition of temporal utility Uy at state s, we have

us = E[UJ] =) piu; (1)
1=1

where w; is the temporal utility at node v; (1 < i < n).
Now let Ap = ﬁ Since there are kn chips in total (line
1), moving 1 chip in line 13 or 16 translates to moving Ap
probability from one node to another. Let the two vertices
in the sample of a step be v,, and v; with wu,, > w;. There
are two possible state transitions from state s—one is in line
13 to state s while the other is in line 16 to state s~. The
expected temporal utility of state s™ is

ut = > pii+ (Pw + Ap)uw + (1 — Ap)u
i=1...n,

i#£w,l (2)

n
= Zpﬂ% + Ap(uw - ul) = us +
=1

Uy — UL

kn

where the last equality is based on Eq 1 and the definition
of Ap. Likewise, the expected temporal utility of state s~ is

u” =Y pii + (pw — Ap)uw + (p + Ap)uw

i=1...n,
i#w,l

N (3)
> piwi — Ap(uy — ) = us —
i=1

Uq — UL

kn

We now show that, the probability of state s in the stationary
distribution must be 7, = e“: /Z, where u, is the expected
temporal utility of s and Z is a normalization constant.
Without loss of generality, consider two valid neighboring
states s~ and s whose expected temporal utilities are in Eq 3
and Eq 1, respectively. The transition probability from s~ to

s is py— ., = 1/2 (line 11), while p,_,,- = %e*uuﬁul (line
14). We now have
e 1  ww—u e 1
Ts Ps—s— = 7 9 e kno = 7 9 = Ts— Ds——s (4)
where the second to last equality is due to Eq 3. Eq 4 shows
s = e¥s /7. O

Theorem IV.4 shows that Algorithm 1 has a desired
property—a distribution D that has a higher utility will
have a much larger probability than one with a lower
utility. Furthermore, the distribution learning is adaptive to
data/workload shifts. In turn, the training is adaptive to D.

V. SAMPLING NODES FROM A GRAPH-KDE SMOOTHED
DISTRIBUTION

In this section, we begin with some background of kernel
density estimation (KDE), and how it could fit in our problem.
Then we propose a novel node sampling algorithm that is
equivalent to sampling from a sum of graph KDE kernel
functions. The advantage is that the sampling distribution
ends up being a smoothed version of the node-weight distri-
bution learned in Algorithm 1. This improves online training
efficiency and reduces training resource usage.

A. Graph KDE

1) Preliminaries: In statistics, kernel density estimation
(KDE) is the application of kernel smoothing for probabil-
ity density estimation [14], [15]. It is used to model the
distribution of a variable based on a random sample. Let
Z1,%2,...,%y be a sample drawn from an unknown proba-
bility density function f. Then the kernel density estimate of
f is given by

fo) =23 Kl - ) ®
=1

where K, is the kernel function, Kj,(t) = +K(£), and h
is the bandwidth parameter (for smoothing). Intuitively, the
true value of f(x) is estimated as the average “distance” from
2 to the sample data points x;. The “distance” between x and
x; is calculated via a kernel function K (t). Popular kernel

functions include Gaussian, Epanechnikov, and exponential



functions. So, for Gaussian kernels, f(x) is a mixture of
Gaussian functions, each of which is centered at sample data
point z;.

2) Random-walk KDE: For a large dynamic network, adap-
tively learning and revising the weights of each node to its
up-to-date value may have a significant time lag. On the
other hand, since message passing of DGNN is between each
node and its neighborhood, the weights of two adjacent
nodes should not be far apart. In other words, the weight
distribution should be “smooth” along the edges.

A reasonable assumption widely used in the kernel den-
sity estimation [14], [15] is that a smooth distribution can
be approximated by the kernel mixture of a data sample.
However, there are at least two challenges to adopt KDE in
our problem:

o KDE is typically for continuous distributions, and in our
context, we have discrete nodes with a graph topology
as we intend to smooth the node-weight distribution.

o The optimal node-weight distribution is dynamically
changing as the data changes over time.

For the first challenge, fortunately, in our problem, we do
not need to get the exact form of KDE function directly,
but only need to sample nodes from a smoothed node-
weight distribution, replacing the GETSAMPLENODE function
in Algorithm 1. Thus, our goal is to devise a graph KDE
sampling algorithm that is equivalent to sampling from a sum
of a number of KDE kernels.

For the second challenge, we essentially sample from a sum
of a dynamic set of kernel functions, based on a dynamic
sample (set of nodes). Next, we present our random-walk
based sampling algorithm in conjunction with Algorithm 1
to achieve a smoothed node-weight distribution and a more
effective model update.

B. Graph KDE Based Node Sampling and the Analysis

1) Intuition and Basic Idea: As mentioned earlier, we only
need to replace the sampling function GETSAMPLENODE in
Algorithm 1 (while moving chips at nodes is still the same).
The basic idea is as follows. First consider how one would
get a random sample from a classical KDE function as in
Equation 5. It’s simple—we first pick one of the n kernels
Kp(x — x;) uniformly at random, and then draw a sample
data point from that kernel function (e.g., a Gaussian func-
tion). In our context, it is analogous. Each kernel function
corresponds to the neighborhood of a center node (which
corresponds to a data point in the dynamic sample). For
a classical Gaussian kernel (or another type), a data point
that is closer to the kernel center has a higher probability
(and a farther one has a lower probability). We perform a
random walk from a center node (of a kernel), which will also
achieve the negative correlation between the hop-distance to
the center and the probability being sampled.

More specifically, we maintain a set (sliding window) of w
seed nodes S,, which consists of recently sampled nodes and
randomly chosen nodes. S, is the dynamic sample for KDE
that creates w kernels. To get a new sample node, we first

51(wy = D[s1])

’ Gy, for a training step |

l

u Sq.(wy)

=

S2(ws)
e

‘ Node weight distribution D[v] ‘

\<55(W5)

Fig. 3: Illustrating graph-KDE sampling for online training.
A number of seeds (e.g., s1 to sg) are selected based on their
weights (w; = D[s;]). A short random walk is performed
from a chosen seed s3 and reaches node u, where a step of
SGD training is performed in the induced subgraph G, at u’s
3-hop neighborhood.

S3(ws)

Se(ws)

pick a seed s from S,, based on the chip distribution. Then
we perform a random walk from s and stop with a certain
probability at any node during the walk, which will be the
new sample node. This is illustrated in Figure 3.

Algorithm 2: GRAPHKDESAMPLING (G, D)
Input: G: a graph stream
D: chip distribution
Output: a node sample continuously over time
1 choose w nodes S, uniformly at random from G as
the seeds
2 while true do
s <— randomly chosen from S,, based on D
while true do
with probability ¢
L add s to the continuous sample; break

QA G e W

else

8 L s < choose one neighbor of s uniformly
at random

9 with probability p

10 L replace oldest node in S, by s

~

11 else
12 replace oldest node in S, by a node chosen
uniformly at random from G

2) Algorithm Details and Analysis: The details are pre-
sented in Algorithm 2. Lines 4-8 perform a random walk
starting from s, and lines 9-12 update the seed window set
Sw. The stop probability ¢ and parameter p will be studied in
Section VL. Line 12 (“teleport”) is to prevent the seed set from
being confined to a densely connected but relatively isolated
area of the graph.

In a nutshell, the graph KDE function is embodied in our
novel sampling method that is equivalent to sampling from
a sum of graph KDE kernels. Note that the loop in lines 2-
12 is over continuous sampling calls—each sampling is only
one iteration of the loop in lines 2-12, which has an expected



time cost of O(%) = O(1) and a space complexity of O(w) =
O(1). We perform an analysis as follows.

Theorem V.1. The effective sampling density at node v,
denoted as prqe(v), is the sum of at least two terms, one of
which is positively correlated with D(v), while the other one is
a linear combination of the D(u) - pxae(u) of all nodes w in v’s
neighborhood, whose coefficients decrease as u’s hop distance
from v increases along a path.

Proof. For v to be a sample, it must be from one of the two
events: (E7) v is one of the seeds in S,, that is subsequently
chosen to begin a random walk (line 3) and the walk stops
right at v (line 6). (F3) A random walk started from one
of v’s neighbors stops at v (line 6). As these two events are
disjoint, the probability pg4e(v) = Pr(E;) + Pr(Es). The
first term is Pr(E1) = Pr(v € Su)- 5 D) __.q. Consider

D(u
Pr(v € S). Initially each node may jogrelsgw EVi)th a constant
probability  (line 1). Line 12 (with probability 1 — p) also
chooses a node uniformly at random to include it in S,,.
Otherwise a node may be included in S,, after it is selected
as a sample (line 10), which has a probability pg4.(v). So the
first term is positively correlated with D(v).

The second term is Pr(E2) = 3, cn, (o)n>1[(1 — Q)hq -
L epatuv) m - Pr(ustarts awalk)] , where Nj(v)
denotes the set of nodes that are h-hop distance to v. From
the previous analysis, the probability that u starts a walk is
proportional to D(u) - prge(u) after some initial time. It is

also clear that the coefficient (1—¢q)"q- L. epatnuv) —1—

deg(u;)
decreases as h (i.e., u’s hop distance from v) increases along
a path to v. O

Same as classical KDE kernels (Equation 5), the probability
of a data point (node) within a kernel component decreases as
it is farther away from the center (seed). The distance metric
between two data points (nodes) here is the hop-distance
(i.e., the shortest path distance in the graph). The parameter
q determines the smoothness—a smaller ¢ gives a smoother
distribution, which is analogous to the role of the bandwidth
parameter i in Equation 5 of classical KDE.

Furthermore, it is a form of weighted KDE [29] where each
data-point in S, carries a weight. The chip counts ¢y, ..., ¢y
of the seeds in &, are the weights of the w kernels. In
general, for a node v that is h; hops away from vy in S,
ho hops away from vs, ..., and h,, hops away from v,,, the
probability that it is the new sample node is the sum of its
corresponding probabilities in each of those w kernels. This
is consistent with the classical KDE.

Consider a specific situation where a kernel center node
has a high degree (or is in a dense area of the graph)—each
of its neighbors will have a smaller probability to be chosen
in the random walk, but that is desired for our sampling
purpose—as long as some node in that area is chosen as a
sample node, the GNN based training will perform message
passing in that area of the graph. Finally, by using a dynamic
sample (S,, for w kernels), graph KDE is adaptive to data
distribution shifts.

Intuition for why KDE sampling helps. Some regions of
the graph are more profitable for training, i.e., they are the
peaks of a relatively smooth node-weight distribution D in
Algorithm 1. The vanilla version of Algorithm 1 performs
point-by-point incremental update of the vertex probabilities
in D. By contrast, KDE sampling “plants” a number of seeds
in the graph; once a seed is close to a peak region, it learns
the high probability mass and the random-walk KDE grows
from the seed in the peak region, as seed-selection tends
to stick there due to the learned high probability-mass that
spans many vertices reached in the region. In other words,
the seeds and the smooth probability mass function from
Theorem V.1 enable Algorithm 1 to spend more time at high-
probability vertices and hence reach the true distribution D
faster.

VI. EXPERIMENTS

We have performed a comprehensive empirical study to
evaluate our work, from the motivation to the effectiveness
of our methodologies. We use three real-world graph stream
datasets and compare against six baseline state-of-the-art
dynamic graph neural network models. We aim to answer
the following research questions (RQ):

« RQ1: Regarding motivation, is continuous, online, adap-

tive training actually needed for graph streams?

« RQ2: How does our weighted adaptive training compare
to full/uniform training for graph streams in terms of
training time and memory usage? In addition, how does
our graph-KDE sampling version perform? How do they
compare against the six baseline models?

« RQ3: How do the choices of the parameter values of
our method affect training time, memory consumption,
and accuracy?

A. Dataset Description and Machine Setup
We use five real-world graph stream datasets as follows.

o Bitcoin: This dataset [30], [31] maps Bitcoin transac-
tions to real entities belonging to licit categories (ex-
changes, wallet providers, etc.) versus illicit ones (scams,
malware, etc.). A major task is to classify the illicit and
licit nodes. We treat a transaction as a node and a flow
of Bitcoins between two transactions as a dynamic edge.
Each node has 166 features. There are 203,769 nodes and
234,355 edges (700 MB).

o Reddit: This network represents the directed connec-
tions between subreddits (a subreddit is a commu-
nity) [32]. It is extracted from Reddit data of 2.5 years.
Each ink is annotated with the sentiment of the source
post towards the target post, and the text property
vector of the source post. There are 55,863 nodes and
858,490 edges (4 GB).

o Taxi: It contains the information of all taxi trips in the
New York City in 2013 [33]. It has 14 attributes including
taxi and trip information. We partition the geographic
area into 20 %20 grids. There are two types of nodes—the
grid nodes and 14.5M trip nodes. Each trip node has 2



temporal edges connecting 2 grid nodes; thus there are
29M edges (total 30 GB).

o Stack Overflow: This common link prediction data [34]
describes the interactions on the Stack Overflow plat-
form. The nodes are users and the edges are answering
and commenting activities. There are 2,601,977 nodes
and 63,497,050 edges (1.5 GB) over one week.

« UCI Messages: This is another common link prediction
dataset [35] consisting of private messages sent on an
online social network system among students, where
nodes are users and edges are messages. It has 1,899
nodes and 59,835 edges (1.1 MB) over a one-week period.

All the algorithms described in this paper are implemented
in Python. All the experiments are run on a machine with
Intel i7-8750H CPU and GeForce RTX 2080 GPU.

B. Continuous Predictive Queries and Self-supervision Tasks

Each dataset is divided into time steps. Each step corre-
sponds to a graph snapshot. For the Bitcoin dataset, the
self-supervised learning targets are to predict whether a
transaction in the next time step is illicit or licit. This is
called self-supervision as the information being predicted
is readily a node label within the dataset. The supervised
analytics workload is to monitor predictive events that there
will be bitcoin flows between licit and illicit transactions.

For the Reddit dataset, the self-supervised targets are to
predict the sentiment (positive or negative) of edge posts; this
is self-supervision as it is about labels directly provided by
the dataset. The supervised workload is to monitor subreddits
that will have negative-post ratio above a threshold. For the
Taxi dataset, the self-supervised targets are to predict the
trip distance labels, while the supervised ones are to monitor
whether certain grid nodes (i.e., locations) have a fraction of
slow incoming/outgoing trips above a threshold. For each
of the three graph streams, a number of such continuous
predictive queries based at different nodes/edges are being
monitored. We also use common link prediction datasets (e.g.,
in [20], [21]) Stack Overflow and UCI Messages to perform
continuous link predictions in the next snapshots.

C. Baseline Models

As our architecture allows to plug in a given DGNN model
and reduce its resource consumption, we have tried a number
of DGNN models, and our methods can reduce both training
time and memory usage on all of them. We present the
experimental results comparing against seven DGNN baseline
models: (1) TGCN [16], (2) DCRNN [17], (3) GCLSTM [18],
(4) DyGrEncoder [19], (5) ROLAND [20], (6) WinGNN [21],
and (7) EvolveGCN [22].

All these baseline models characterize message passing at
graph snapshot level, as well as handle the sequential aspect
over time. These DGNN models are representative state-of-
the-art ones published in recent years. We note that our
approach can be applied to many other DGNN models as
well and reduce their resource usage.

D. Research Question 1: Need for Continuous Model Updating

We first verify the motivation of online continuous model
updating. While online learning has been studied, to our
knowledge, little has been done to investigate the need and
extent of online adaptive learning for dynamic graphs and
graph streams.

The results are shown in Figure 4. For each dataset, we
compare online continuous learning at each time step using
a recent sliding window of graph snapshots (Figure 4a) and
only continuous training for the first 1/4 of the steps in the
experiments (Figure 4b). We display the continuous target
evaluation loss at each step (predicting the targets of the
next step).

The result for the Bitcoin data shows that continuous learn-
ing (first plot in Figure 4a) overall achieves low prediction
errors at nearly all time steps, except for occasional steps
(step 22) where there is a sudden data/pattern drift. Yet online
learning is able to quickly adapt the change in the model and
bring the error down again for subsequent steps. By contrast,
in the first plot of Figure 4b, we only continuously train the
model using sliding windows at each step up to step 10. After
that, the training stops and we only evaluate the model (to
predict the next step targets) for the remaining steps. While
the model still performs well for another 10 steps or so, it
quickly deteriorates significantly—the MSE loss goes all the
way to over 2000, while the maximum error in the top-left
plot is less than 60. This clearly demonstrates the need for
online adaptive training and model updating.

We observe similar results for the Taxi data, where, in
the Figure 4b right plot, the model is only continuously
trained for the first 10 steps, and it deteriorates increasingly
over the subsequent steps. Likewise, for the Reddit data, the
comparison between the middle one of Figure 4a and middle
one of Figure 4b shows that, when the continuous training
stops at step 20 (middle-top one, Figure 4b), the error stays
at a higher level than continuous training all the way. As the
loss difference is not as significant as the other two datasets,
we further compare the accuracy of continuous predictions
in the two middle-bottom plots. The accuracy drops sharply
over time after the continuous training stops at step 20 in
the middle-bottom plot of Figure 4b, while it stays at a high
level in Figure 4a.

E. Research Question 2: Resource Consumption Comparisons
with Baselines

Next we compare our weighted adaptive training (Al-
gorithm 1) with the default full/uniform training using a
baseline DGNN model, as well as the weighted training
augmented by our graph-KDE method (Algorithm 2). We
use the default parameter values as determined in Research
Question 3 below. We measure the total training time (in
seconds) over a fixed number of steps, maximum memory
consumption during training, and the average prediction MSE
(error). For monitoring binary events and link predictions,
as in [20], [21], we also use commonly-used metrics AUC,
mean reciprocal rank (MRR), and accuracy. The error bars
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TABLE I: Experiments with event monitoring workloads
[ Dataset | Model [ Method [ Training Time | Memory | Error | AUC [ MRR ]

Full/Uniform 107.5149.27 31MB 4.2540.07 | 0.779+0.006 | 0.696+0.011
TGCN Weighted 12.92+1.05 12MB 4.2440.05 | 0.78010.008 | 0.693+0.009
Bitcoin KDE 11.851+0.78 12MB 4.1240.05 | 0.780+0.005 | 0.697+0.009
Full/Uniform 126.631+10.72 31MB 4.514+0.06 | 0.7331+0.009 | 0.615+0.013
WinGNN Weighted 14.24+1.29 12MB 4.50+0.07 | 0.731£0.006 | 0.619+0.012
KDE 12.51+1.25 12MB 4.524+0.06 | 0.7351+0.010 | 0.616+0.010
Full/Uniform 19.22+1.93 4.5MB 1.084+0.09 | 0.71240.007 | 0.81540.012
GCLSTM Weighted 8.241+0.41 272KB 1.09+0.11 | 0.709+0.009 | 0.81940.008
Reddit KDE 7.33+0.57 272KB 1.0740.09 | 0.711£0.008 | 0.81640.011
Full/Uniform 17.75+1.26 4.5MB 0.994+0.07 | 0.71940.011 | 0.826+0.006
DyGrEnCOder Weighted 5.431+0.68 267KB 0.984+0.09 | 0.726+£0.006 | 0.829+0.008
KDE 5.1410.65 265KB 0.984+0.11 | 0.72540.006 | 0.830+0.009
Full/Uniform 387.96+27.21 95MB 4.1940.08 | 0.687+0.013 | 0.715+0.012
DCRNN Weighted 7.1440.77 15MB 4.174+0.07 | 0.6851+0.012 | 0.721+£0.008
Taxi KDE 3.11+0.59 15MB 3.8540.05 | 0.690+0.008 | 0.719+0.011
Full/Uniform 78.73+£6.59 153MB 4.284+0.07 | 0.6794+0.012 | 0.706+£0.015
ROLAND Weighted 2.05+0.37 34MB 4.234+0.09 | 0.678+0.010 | 0.709+0.011
KDE 2.0610.32 34MB 4.171+0.06 | 0.6811+0.007 | 0.710=£0.009

are over 10 runs. The results are shown in Table I for event-
monitoring workloads and in Table II for the two continuous
link prediction datasets.

We adjust each method’s training interval so that they give
similar errors/accuracy, and then we can fairly compare each
method’s time spent on training and its maximum memory
usage. For each dataset, we display the results of one or
two DGNN baseline models (the trends are similar for other
combinations). For all the datasets, our weighted adaptive
learning and our graph-KDE variant consume up to 2 orders
of magnitude less training time, significantly less memory,
when the prediction accuracy is similar.

Table I and Table II also show that the graph-KDE variant
achieves even less training times in general than the plain

weighted training with the same accuracy. This verifies the
reason and intuition stated at the end of Section V. In
contrast to the vanilla version of Algorithm 1 that does
point-by-point incremental probability update, graph-KDE
enables Algorithm 1 to sample and grow seeds in smooth
high-probability regions. Overall, the training using learned
weights and its graph-KDE variant consume significantly less
memory and computation because they judiciously perform
weighted training on fewer and more important nodes. Thus,
with less training, it can achieve the same level of accuracy.

F. Research Question 3: Impact of Parameter Value Choices

We have studied how the choices of various parameters
of our ultimate method, the graph-KDE enhanced weighted



TABLE II: Experiments with common link prediction datasets

[ Dataset/Model [ Method [ Training Time | Memory [ Accuracy | AUC [ MRR
Full/Uniform 220.151+10.74 585MB 0.667£0.021 | 0.73940.018 | 0.78840.015
Stack Overflow (EvolveGCN) Weighted 32.57+3.18 6MB 0.692+0.017 | 0.745+0.016 | 0.7954-0.010
KDE 32.41£4.65 6MB 0.660£0.018 | 0.74740.015 | 0.77140.012
Full/Uniform 98.76+7.52 35MB 0.77940.008 | 0.87540.019 | 0.907-£0.011
UCI Messages (ROLAND) Weighted 25.6213.19 2MB 0.781£0.013 | 0.87440.008 | 0.9054-0.009
KDE 25.15+2.86 2MB 0.783+0.010 | 0.875+0.011 | 0.907=£0.007
TABLE III: Experiments with various parameters and datasets
[ Dataset/Model [ Parameter [ Training Time [ Memory [ Error | AUC | MRR |
Interval =1 11.85+0.78 12MB 4.1240.05 0.78040.005 | 0.69740.009
Bitcoin (TGCN) Interval = 2 6.51+0.57 12MB 4.15+0.03 0.774%£0.009 | 0.691+£0.011
Interval =5 2.37£0.41 11MB 4.1940.05 0.77240.010 | 0.69240.009
Interval =10 1.24£0.22 10MB 25.86+3.31 | 0.759+0.012 | 0.634+£0.015
#pairs =1 5.88+0.74 257KB 0.9940.10 | 0.7234+0.007 | 0.82940.011
Reddit (DCRNN) #pairs = 3 18.1242.78 278KB 0.98+0.12 0.723+0.006 | 0.8312£0.008
#pairs =7 42.4714.65 271KB 0.9540.11 0.72740.006 | 0.83540.007
#seeds =5 2.47+0.29 16MB 7.1710.11 0.669+0.013 | 0.7022£0.008
Taxi (GCLSTM) #seeds = 15 39.761+4.77 38MB 3.7610.08 0.69540.009 | 0.721£0.011
#seeds = 50 14.5143.14 27MB 3.84+0.09 | 0.68310.010 | 0.71430.006
q=0.1 11.79+0.91 12MB 3.5840.11 0.76940.009 | 0.690+0.007
Bitcoin (DyGrEncoder) q=0.5 11.2340.78 11MB 3.61£0.08 0.762+0.007 | 0.674£0.012
q=20.9 11.194+0.65 11MB 8.7240.12 0.72140.009 | 0.618=40.006
p=0.1 6.46+0.67 270KB 1.0940.12 0.718+0.011 | 0.8212£0.009
Reddit (WinGNN) p=20.5 6.7140.45 268KB 0.9940.11 0.71340.007 | 0.82740.012
p=0.8 6.691+0.48 265KB 1.074£0.14 | 0.717£0.012 | 0.82340.009
training, affect the training time, memory usage, and predic- training.

tive query accuracy. The results are shown in Table III. Under
all the datasets and DGNN baseline models, we observe
similar patterns as we vary the parameter choices; thus, for
succinctness, we only display one dataset/model combination
for each parameter. We first vary the interval of continuous
training, ranging from 1 time step to 10 time steps. While the
total training time decreases proportionally as we increase
the training interval, the average prediction error does not
increase significantly when the interval is no more than 5.
This indicates that one can find a suitable training interval
to cut down resource consumption without sacrificing much
on the accuracy.

Next we vary the number of pairs of sample nodes per
step used for adjusting the weight distribution. While the
total training time increases proportionally with the number
of pairs, the accuracy only slightly increases. This indicates
that we may not need many pairs of sample nodes per step.
Our default is 1.

We then vary the number-of-seeds parameter of graph
KDE sampling (i.e., w in Algorithm 2). Our default is 15.
When we set it to a much smaller value, 5, the error
significantly increases because fewer seeds imply a larger
variance on the quality of the sampled nodes. On the other
hand, when the number of seeds is a much larger value 50,
some seeds will be at sparser areas of the graph, which makes
training faster (recall from Algorithm 1 that the training
time/space cost is proportional to d* where d is node degree
and L is the number of DGNN layers), but the error increases
as it explores areas of the graph that are less “profitable” for

Recall that the graph-KDE sampling has two probability
parameters ¢ (probability to stop the random walk, default
0.5) and p (probability to make the current sample a new
seed, default 0.8). When ¢ is smaller (0.1), the random walk
goes farther, and the distribution is smoother. This slightly
increases the training cost, but results in slightly better
accuracy in this case. On the other hand, we find that
parameter p does not significantly change the accuracy nor
the training cost.

G. Summary of Experimental Results

Our comprehensive experiments using five real-world
graph stream datasets and seven baseline models show that
continuously learning model updates while answering and
updating predictive queries is much needed to adapt to the
data changes in graph streams. Our experiments with various
parameter choices help us empirically pick the parameter
values, some of which (such as the training interval) provide
a tradeoff between resource consumption and query result
accuracy. With all six baseline dynamic graph neural network
models, our weighted adaptive model updates and query
answering take up to 2 orders of magnitude less training time
and significantly less memory when the continuous predic-
tive query results have the same accuracy. The experiments
also show that our graph-KDE-sampling variant is effective
and, in most cases, further reduces the continuous training
resource usage slightly.



VII. RELATED WORK

Dynamic Graph Neural Networks (DGNN). We refer the
readers to two excellent surveys on DGNN [9], [10]. We
focus on discrete-time dynamic graphs (DTDG), for which
typically a DGNN consists of a GNN model (as in static
graphs) and a sequence model. We can plug in a given
DGNN model as a component of our work (Figure 2) and
reduce its training time and memory usage, as shown in our
experiments in Section VI. We have presented the results
with six representative recent DGNN models, and they all
show a very similar pattern in the reduction of training time
and maximum memory usage under the same accuracy. Our
work is general and applies to any models for DGNN, as we
find induced subgraphs for node-level training partitioning,
which is independent of the specific DGNN model.

Online Learning and Lifelong Learning. Online learning
has a long history. It learns to update models from data
streams sequentially [36], [37], with algorithms including
Perceptron [38], Online Gradient Descent [39], and Passive
Aggressive [40], all for learning linear models. The work on
online Learning with kernels includes [41]. Recently online
learning is studied for deep learning [11]-[13]. Lifelong
learning considers systems that can continually learn many
tasks over a life time [42]. It is a concept related to online
learning, but it is not concerned with the online continuous
and real-time aspect. None of such previous work studies
online continuous learning under DGNN for continuous pre-
dictive queries as we do, where we aim to reduce the training
time and memory usage.

Influence Functions and Subsampling. Influence func-
tions originated in robust statistics [27]. Intuitively, a statistic
is robust if arbitrary changes to a small part of data, or
small changes to all data, result in only small changes to the
value of the statistic. This notion of sensitivity is captured
in influence functions (IFs). In the pioneering work of Koh
and Liang [43], IFs are used to interpret machine learning
predictions. However, IFs are in general well-defined and
studied for models such as logistic regression [43], where the
underlying loss-function is convex. Basu et al. [44] provide
a comprehensive study when the convexity assumption is
violated, which is the case in deep learning, and find a
pessimistic answer: influence estimation is quite fragile for a
variety of deep networks. For the same reason, subsampling
using IFs as weights [45] is only limited to asymptotically
linear estimators.

Thus, we do not directly use influence functions for the
node weights. Our novel weight-learning and sampling are
adaptive and applicable to DGNN, tailored to online learning,
while our analysis in Theorem IV.3 draws a connection to
the influence functions of the learning utility from any given
node.

Kernel Density Estimation (KDE). KDE is a nonparametric
approach that estimate the density distribution directly from
the data [46], [47]. It is a well-established technique in both
statistics and machine learning [14], [15]. KDE has been

successfully applied in many applications. Just to show but a
few examples, Zheng et al. propose randomized, parallel, and
distributed implementations of KDE on very large data [48].
Qahtan et al. study the estimation of the density of spa-
tiotemporal data streams [49]. Their method can efficiently
estimate the density function with linear time complexity
using interpolation on a kernel model.

Our KDE part of work is drastically different. We devise
a novel graph KDE to smooth a discrete distribution over
the vertices of a graph. For the purpose of our work, we do
not need to get the exact form of the KDE function (which
is a sum of kernel functions); but rather, the graph KDE
function is embodied in a sampling method that is equivalent
to sampling from a sum of graph KDE kernels, which is based
on random walks and a dynamic sample.

Curriculum Learning and Boosting. Our online learning
of a node-weight distribution for model updates is also
remotely related to curriculum learning and boosting. The
basic idea of curriculum learning (CL) [50] is to sort ex-
amples into a sequence ordered by easiness. Starting with
the easiest examples, simpler concepts are learned first, and
then introducing gradually more difficult examples speeds up
the training. Likewise, in boosting algorithms [51], difficult
examples are gradually emphasized.

By contrast, graph vertices are not the same as “examples”
and we do not sort them by easiness. Instead, we adaptively
learn a distribution over them, and use the vertices as
guidance for training both supervised and self-supervised
targets, as well as for back-propagation into the induced

subgraphs.

VIII. CONCLUSIONS AND DISCUSSIONS

Monitoring predictive events and queries in graph streams
has an important role in practical applications. We find that
continuous learning and model updating is crucial to keeping
the predictive query results current and correct. We aim
to reduce the time and memory usage in training given
the same prediction accuracy. Our approach partitions the
incremental training at the graph node level, and we propose
a randomized algorithm to continuously learn a weight distri-
bution over nodes, which is simultaneously used to do model
updates, which in turn give feedback to the node-weight
learning. We also devise a novel graph KDE embodied in its
sampling algorithm to smooth the node-weight distribution,
to make the model updates more effective, and to further
reduce the resource usage. Our experiments demonstrate the
advantage of our approach—to achieve the same prediction
accuracy, the training time ranges from several times to
two orders of magnitude shorter, and the maximum memory
consumption is several times to 20 times smaller.

One assumption of our approach is that dynamic online
training is more profitable at certain regions of the graph
and that the distribution is relatively smooth. In other words,
the node-weight distribution that we learn has the homophily
property in the graph, which is the base of our graph-KDE
sampling design.
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