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Abstract—We observe the need for continuous, online
training of dynamic graph neural network (DGNN) models
while at the same time using them to answer continuous
predictive queries as data streams in. �is implies signi�cant
training-time and memory costs. Along with the DGNN
model learning, we simultaneously learn a weight/priority
distribution over the nodes via a randomized online algo-
rithm. In turn, the DGNN is continuously trained/learned by
sampling nodes from the learned distribution and performing
the chosen nodes’ partitions of training work. We also devise
a novel graph Kernel Density Estimation technique to smooth
the distribution and improve the learning quality. Our exper-
iments show that continuous online learning is much needed
for graph streams and our approach signi�cantly improves
the standard DGNN models—to achieve the same accuracy,
the training time ranges from several times to two orders of
magnitude shorter, and the maximum memory consumption
is several times to 20 times smaller.

Index Terms—online learning, continuous model updates,
continuous predictive queries, dynamic graph neural net-
works, kernel density estimation

I. I�����������
Graphs are a general model to represent data/information,

especially when they are heterogeneous with various types,
as data can be represented by entities (nodes) and relations
(edges). �e relations here may also broadly refer to interac-
tions between entities. For this reason, graph representation
learning has been studied in a wide range of applications, in-
cluding e-commerce, recommender systems, social networks,
biology, healthcare, communication networks, computational
�nance, and tra�c. Many of these graphs are inherently
dynamic and are modeled as graph streams, which contain
streaming updates. Let us look at an example.

Example 1. Medical data for patients in the Intensive Care
Units (ICU) of hospitals is highly dynamic and rich, and is
a heterogeneous graph stream. Speci�cally, we look into the
MIMIC-III (Medical Information Mart for Intensive Care III)
data [1] comprising de-identi�ed health-related data associated
with over forty thousand patients who stayed in the critical care
units of the Beth Israel Deaconess Medical Center between 2001
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Fig. 1: Illustrating a graph stream in healthcare.

and 2012. Figure 1 illustrates a snippet of the data from this
dataset. First of all, there are many types of entities, shown as
vertices in the graph, including patients, diagnosis, procedures,
lab events, input events, and prescription drugs. �ey are shown
as nodes of di�erent colors.
Interaction relations such as lab measurement events and

input events (�uids administered to a patient) are very dynamic
and timestamped (dashed edges in Figure 1). Some relations can
be static, such as a patient’s diagnosis (solid edges in the �gure).
Two patients may have relations with the same diagnosis, or
they may have the same input events but at di�erent times.
Learning from such heterogeneous data sources is instrumental
for inference and reasoning. For instance, a hospital manager
may subscribe to the following continuous predictive query so
that su�cient resources can be allocated: “Notify me when it
is predicted that, in the next hour, grouped by the medical
procedure, the number of patients tested with abnormal results
is above a certain threshold”.

Graph streams [2] belong to the more general notion of
data streams [3], where a major type of queries widely used in
practice is continuous queries that monitor the dynamic data.
For high-rate graph streams, data is o�en partially observed
and incomplete, continuously predicting missing events and
future events can be very useful, as shown in Example 1
where a hospital manager may subscribe to a number of



predictive queries including the number of abnormal lab
results exceeding a threshold. In general, it has been shown
that monitoring such predictive events and predictive queries
is very valuable in healthcare, business operations, network
monitoring, among other domains [4], [5].
Graph neural networks have become the state-of-the-art

deep learning model for data represented as graphs [6]–[8].
In recent years, there has been a number of proposals of
dynamic graph neural networks (DGNN) [9], [10] that become
the dominant approach for dynamic networks and graph
streams, where node a�ributes and edges dynamically change
over time, as is the case in the application of Example 1.
Interestingly, not only does such a system need to con-

tinuously answer a set of predictive queries, we �nd that
(as shown later) it also needs to continuously perform graph
machine learning model updates, analogous to what other re-
searchers found for online machine learning in general [11]–
[13]. �us, the central questions that we try to answer in
this paper are: Do we need to continuously train a DGNN
model as we continuously answer predictive queries? If so, since
continuous learning can be resource demanding, how can we
perform it in a time- and memory-e�cient manner?
With empirical evidence (Section VI), we �nd the answer

to the �rst question to be a�rmative. �en computation
and memory e�ciency of online (as data changes) and
continuous training is much needed, given the real-time
requirement nature of the continuous monitoring tasks. We
reduce the resource usage of continuous model updates by
the observation that the size of a DGNN model is independent
of the size of G. �us, di�erent parts of G may not have equal
importance to online learning—chosen subgraphs might
be more e�ective for training given the same amount
of compute resources. In addition, which part of data to
focus on in training also has to do with the continuous
queries depending on what data is relevant to predicting their
results.�erefore, we devise a novel method to learn a weight
distribution over the nodes in G and perform adaptive online
training over selected subgraphs. Our method is both data
aware and workload aware.

A. Our Contributions
Although there has been work on online machine learn-

ing [11]–[13], to our knowledge, we are the �rst to answer
this question in the context of dynamic networks and graph
streams, where the DGNN training work can be partitioned
over nodes in the network and it is natural to adaptively
learn “what to learn”, i.e., which nodes are more pro�table
to train at a given time.
Our experimental study (Figure 4) clearly demonstrates

the need for online continuous learning in graph streams.
Towards our goal, we �rst propose a scheme for the node-level
partitioning of incremental training work, which includes
both self-supervised learning [6] using node/edge labels as
targets and supervised learning based on the revealed results
of the continuous predictive queries discussed above. �us
each node has its partition of training work.

�en we devise a randomized algorithm that simultane-
ously both (a) learns a weight distribution over the nodes
and (b) does weighted online training of DGNN (based on
any existing DGNN model)—by sampling over the nodes
using the very weight distribution learned in (a), and then
performing the sampled node’s partition of training work. We
prove that the running state of the continuous randomized
algorithm, which is a weight distribution of nodes, follows
a Markov chain that converges to its stationary distribution
where the probability of a state s (i.e., weight distribution)
is proportional to e

us , where us can be �exibly de�ned as
the utility (e.g., accuracy in evaluation) of using the weight
distribution s to sample and train. In other words, our
continuous learning algorithm will converge to a state with
high utility (corresponding to high query result accuracy).
Since message passing of graph neural networks is be-

tween each node and its neighborhood, the utilities of
training at two neighboring nodes should not be too far
apart. As a result, the weight distribution should be more
or less smooth with respect to edge connections in the
network. Inspired by the Kernel Density Estimation (KDE)
technique [14], [15] originally for estimating continuous dis-
tributions, we propose a novel graph KDE based on random-
walk kernels which is for discrete distributions and is aware
of network topology. We analyze the weight distribution
learning enhanced by the graph KDE, and show that the
e�ective sampling distribution is a smoothed version of the
original one based on a node’s network neighborhood. Our
experiments show that the graph-KDE enhanced version
further makes continuous learning more e�cient.
Our comprehensive empirical study using three real-world

graph stream datasets and six baseline models demonstrates
the need for online adaptive learning for graph streams
and shows the salient advantages of our proposed weighted
online learning enhanced by graph KDE over standard DGNN
models in previous work. To achieve the same prediction ac-
curacy, the training time of our proposed method is typically
one to two orders of magnitude shorter, and the maximum
memory consumption is several times to 20 times smaller.
In summary, our contributions include:

• We propose the problem of simultaneous resource-
e�cient model updates and continuous query answering
in graph streams.

• We carefully study and empirically verify the need for
continuous learning-model updates in graph streams.

• We devise a randomized algorithm with theoretical
guarantees that adaptively learns a node distribution
and performs weighted learning that reduces compute-
resource usage.

• We further propose a novel graph kernel density estima-
tion method that smooths the learned distribution and
further enhances the resource e�ciency.

• We perform a comprehensive experimental study that
evaluates the motivation, the e�ectiveness of our ap-
proaches, and the compute-resource reduction.



II. P������ S��������
A graph stream G = (N,E) is an in�nite sequence of snap-

shots G1,G2, ...,Gt, ..., where each snapshot Gt corresponds
to a time step t, N is the set of nodes, and E is the set of
edges. Each snapshot Gt = (Nt, Et) satis�es Nt ✓ N and
Et ✓ E. Each node v 2 N may have a set of a�ributes
X = X1, ..., Xa that may bear di�erent values in di�erent
snapshots. In addition, each edge e 2 E may be of one of
the r types. So this is a heterogeneous graph stream.
Note that there are other formulations of graph streams [2]

such as a sequence of graph edges, and the formulation above
that we use is a more general model that also incorporates
a�ribute updates and relations/edges with certain durations
(including static relations). For instance, in Example 1 and
Figure 1, there are also more static edges such as those
between patients and diagnosis nodes (e.g., Septic shock)
and between patients and procedures (e.g., Vascular cath
irrigation)—indicating the “properties” of ICU patients with-
out a timestamp.
G has a analytics workload which contains a number of

continuous predictive/monitoring queries, each of which is to
continuously predict, at every time t, a function of the data in
Gt+� , where � > 0. �at is, each query keeps predicting, at
every step t, a value that is a function of the data in a future
snapshot. �is is shown on the right hand side of Figure 2. As
an example, recall one such query near the end of Example 1.
For such an analytics workload, there is a body of previous
models called dynamic graph neural networks (DGNN) [9],
[10] that can be used to answer the continuous queries. �e
problem we are focusing on in this paper is:

• Does the system indeed need to continuously update
the dynamic graph neural network model in order to
continuously get up-to-date answers to the queries?

• If so, �nd a strategy to continuously update an existing
DGNN model so as to minimize the computational re-
source consumption for a �xed prediction error budget.

III. S����� A����������� ��� N��������� P�����������
�� L�������

A. Architecture and Model
�e system architecture is illustrated in Figure 2. Our

work can adopt any of the dynamic graph neural network
(DGNN) model in the literature [9], [10], which typically
consists of a conventional graph neural network (GNN)
model to capture message-passing at the graph-structure
level and a sequence model for temporal correlations. In our
evaluation in Section VI, we have experimented with seven
such models, namely TGCN [16], DCRNN [17], GCLSTM [18],
DyGrEncoder [19], ROLAND [20], WinGNN [21], and
EvolveGCN [22].
�e model operates on a graph stream G, and dynamically

learns the weights/importance of each node of the graph
as a distribution D[v]. Our ultimate approach is based on
the graph-KDE that we design, as illustrated in Figure 2
and detailed in Section V. �e main purpose is to handle

Fig. 2: �e overall architecture of our model. �e le�-
hand side is any dynamic graph neural network (DGNN)
model, and the right-hand side shows two parts of training—
supervised from continuous analytics workload and self-
supervised from graph data (node/link labels). �e online
training work is partitioned at the node level, and we
learn the weights/importance of each node of the graph
(distribution D[v]). Our ultimate approach is graph-KDE
sampling (details in Section V) that selects a number of seed
nodes (s1 to s6) based on their weights wi, and performs
a short random walk from a chosen seed to arrive at a
node u for incremental training at a subgraph induced by
the neighborhood of u.

the analytics workload, which contains a set of continuous
predictive queries, for each of which we further use a multi-
layer perceptron (MLP) model on top of the embeddings
from DGNN to predict the results. �e supervised and self-
supervised learning part will be explained in Section III-B
and Section III-C.

B. Two-Part Model Training
As commonly done for graph neural networks, the training

consists of two parts:
1) Supervised learning based on the q continuous predictive

queries in the analytics workload. �e system knows the
ground-truth result labels when the predicted time in
a query later arrives—so the supervised learning has a
slight delay to get the future result labels.

2) Self-supervised learning by predicting chosen
nodes/links (labels) in the network [23], i.e., supervision
signals within the graph, rather than external labels
from the analytics workload.

�is is illustrated in Figure 2. �e self-supervised learning
part is especially helpful when the external labels from the
analytics workload are insu�cient.

C. Node-level Partitioning of Training Work
Intuitions and Rationales. A key novelty in our work

is to reduce the computational resource usage of continuous
model updates by the observation that the size (i.e., number
of parameters) of a dynamic graph neural network model is
independent of the size of G. �erefore, depending on the
nature of the data (nodes, a�ributes, relations) and data up-
dates, we may not need to spend the resources to uniformly



train over all parts of G, i.e., some chosen subgraphs may
be more “pro�table” when investing the same amount
of compute resources. So our selective training is data
aware. Moreover, it is clear that which parts of the dynamic
graph G have higher importance for training also depends
on the continuous predictive queries—what subset of data is
relevant to the queries. Hence the selective training should
also be workload aware.
We now discuss how to partition the online incremental

training work for each node. Once we learn the weight
distribution D over all nodes in the graph stream (Sections IV
and V), we sample nodes from D and perform each chosen
node’s partition of work in their neighborhood subgraphs.
�is process is repeated, incremental, and adaptive to data
changes. �is is illustrated on the le� of Figure 2. For a node
v, its partition of incremental training work is as follows.
1) �e self-supervised learning part for node v is to choose

node v or any of its incident edges with node/link labels
as training targets.

2) Node v’s partition of supervised learning is to train
over the continuous queries based on a smaller, induced
subgraph Gv being fed into the DGNN model for back-
propagation. Speci�cally, Gv is the induced subgraph of
G by keeping only v and all its neighbors within L hop
distance, where L is the number of layers associated
with the underlying GNN model (usually no more than
3). Note that the inference (forward propagation) is still
based on the whole graph G.

�e purpose of node-level online learning partition is to
help us gauge the in�uence of incrementally selecting a
node partition for training (at the current moment) to the
accuracy/utility of the analytics workload.

IV. A������� N����W����� L�������
We devise a randomized online algorithm to learn the

node-weight distribution D adaptively from the data and the
continuous analytics workload. �e very �rst idea is that we
consider online learning as continuous discrete steps, where
we sample nodes based on a distribution D (that we are about
to learn at the same time!), and for each chosen node, we
perform its node-level partition of the training as described
above. Our algorithm will sample one or more pairs of nodes
in each training step, and perform their training partitions.
�ere is a �xed time interval between two training steps.

A. Temporal Utility
1) Utility of a Training Action: We measure the e�ec-

tiveness of an incremental training action (e.g., performing
a node’s training partition, as described in Section III-C)
using a utility value, where a higher utility should lead to
be�er accuracy when evaluating the analytics workload (all
continuous queries). However, we cannot a�ord to evaluate
the analytics workload every time we need to get the utility
of training a node’s partition.
Instead, inspired by previous work on focal loss [24] and

on con�dence-aware learning [25], the hardness of a node

sample, as measured by the training loss/error before back-
propagation, is indicative of how bene�cial it is to use this
node to train. �is also has no extra overhead. �us, we
choose the utility function as such in our experiments. Our
framework is �exible and allows other de�nitions of utilities.
In all, a utility value is essentially a score with a higher value
indicating a more desirable state in online learning.
2) Temporal Utility: We give the following de�nition.

De�nition IV.1. �e temporal utility at a node v at a step
during continuous learning is de�ned as a function u : V !
R. It is a function of the next node v to be selected for
training, and the returned utility u(v) is measured right a�er
the node v’s training partition is performed.

Note that the temporal utility at a node is conditioned on
the past training (which also follows D). As in our algorithm
(to be presented in Section IV-B), we choose the next node
randomly based on a weight distribution D, the temporal
utility U at a time step is a random variable, and it has an
expected temporal utility over the distribution D.
Intuitively, if the temporal utility at a node v is high, we

should probably increase v’s weight to gain more on the
overall expected utility. However, this does not go on forever
(hence the term “temporal” utility). Recall that the temporal
utility is conditioned on the previous training pro�le (also
determined by D). If v were trained too frequently already,
additional selection of v would not be as bene�cial to the
utility as selecting a di�erent node. In other words, the
temporal utility at node v will likely decrease a�er some
time (when it is trained su�ciently o�en), while the temporal
utility at other nodes will increase.

B. �e Algorithm
Our algorithm for learning the node weight distribution D

will be based on the notion of temporal utility discussed in
Section IV-A. As we aim for online continuous training and
query answering, we devise a simple, e�cient randomized
algorithm that has li�le overhead, but that has a solid
theoretical base. It is presented in Algorithm 1.
�e main idea of the algorithm is as follows. Like a chip-

�ring game on graphs [26], our algorithm places chips at each
node where the number of chips at a node is proportional to
its weight. Let D[v] be the number of chips at node v. For a
pair of nodes sampled based on D, we perform each node’s
partition of incremental training (Section III-C). We compare
the utilities from training each of the two nodes, and move
one chip from the “loser” node (with lower utility) to the
“winner” node with a higher probability than moving a chip
in the opposite direction. �e intuition is that, if training at
a node is more bene�cial now, we more likely increment its
weight by a small amount.
Line 1 initially places k chips at each node (empirically,

a small number, e.g., 5, gives good results). Line 2 iterates
over every pair of nodes (to be sampled from G below in
line 4) at each training step. In G��S�����N���, U is the
set of nodes that have (or whose incident edges have) new



data updates since the previous training step. D
��U in line 19

is the distribution (chips) from D when the node choices are
limited to set U . Lines 18-21 basically give more probability to
nodes with new updates (e.g., we empirically set pu = 0.5).
U gets updated between two training steps (as part of the
input graph stream G) and re�ects the current data changes.
Lines 5-6 perform vi’s partition of training work using

data in a window up to the current time step t. �e utility
in line 7 is as described in Section IV-A. Finally, lines 8-16
handle chip moving between the “winner” node (index w)
and “loser” node (index l). Lines 12 and 15 ensure that every
node at least has 1 chip so it still has some chance to be
selected.
Complexity. If the frequency of online learning is f

steps/sec, then the time cost of Algorithm 1 is O(fdL) per
second, where d is the average degree of sampled nodes and
L is the number of layers of DGNN. �e space complexity
is O(dL). �is is because the incremental training per step
(lines 5-6) is performed over the chosen node vi’s partition—
the induced subgraph L hops around vi (illustrated as the
subgraph inside the dashed circle in Figure 2).

Algorithm 1: O�����A�������L�������
Input: G: the graph stream

Q: continuous analytics workload
1 D[v] k for all n nodes in G
2 for each pair at each training step t do
3 for i 1, 2 do
4 vi  G��S�����N��� (D,U )
5 do self-supervised training at vi
6 do supervised training on Q for vi’s partition
7 ui  utility measured for the training above
8 w  2, l 1 // winner/loser index
9 if u1 > u2 then
10 w  1, l 2

11 with probability 1/2
12 if D[vl] > 1 then // minimum 1 chip
13 D[vw] + +; D[vl]��

14 else with probability e
�uw�ul

kn

15 if D[vw] > 1 then // minimum 1 chip
16 D[vl] + +; D[vw]��

17 Function G��S�����N��� (D,U )
18 with probability pu

19 v  randomly chosen from D
��U

20 else
21 v  randomly chosen from D
22 return v

C. �e Analysis
Now we perform a novel analysis of Algorithm 1. We

�rst draw a connection between our algorithm and the

in�uence functions in robust statistics [27]. �en we prove
the correctness/optimality of the algorithm in terms of the
learned distribution.
1) Preliminaries on In�uence Functions and Markov Chains:

An in�uence function tells us the e�ect of a change in one
observation on an estimator of a statistic.

De�nition IV.2. [27] Given some distribution F , the
in�uence function of statistic ✓̂ at F is the Gâteaux derivative
of ✓̂ at F in the direction �x:

IF✓̂,F (x) = lim
✏!0

✓̂((1� ✏)F + ✏�x)� ✓̂(F )

✏

where �x is a probability distribution with all its mass at
point x.

�e in�uence function thus quanti�es how statistic ✓̂(F )
changes if distribution F is contaminated by a small amount
of data mass at point x. Stated di�erently, it quanti�es the
in�uence of data point x on ✓̂.
In our analysis of Algorithm 1 below, the estimated statistic

✓̂ is the expected temporal utility of D, while point x is a
sampled node where chips may be moved in or out.
A Markov chain M is a discrete time stochastic process

de�ned over a set of states S in terms of a matrix P of
transition probabilities [28]. Let the number of states be
n. �en a stationary distribution of the Markov chain is a
probability distribution (over the states) ⇡ = (⇡[1], . . . ,⇡[n])
such that ⇡ = ⇡P . Intuitively, if the Markov chain is in the
stationary distribution at step t, it remains so at step t + 1.
A �nite, irreducible (i.e., there is a non-zero probability to
go between any two states), and aperiodic (i.e., the length of
path from a state to itself does not have to be divisible by a
period � > 1) Markov chain must have a unique stationary
distribution.
2) Analysis with In�uence Functions: We �rst analyze

the connection between the in�uence function and our
algorithm—the in�uence of a chosen node on the expected
temporal utility of D. We also show that the update of node
weight distribution D through moving chips is guided by
the in�uence function values at chosen nodes. We prove the
following.

�eorem IV.3. Let the node-weight distribution be D, and let
the expected temporal utility of D be û(D). �en the in�uence
function of û at D is IFû,D(x) = u(x) � û(D), where u(x)
is the temporal utility of node x. Moreover, for a pair of nodes
v1 and v2 chosen in lines 3-4 of Algorithm 1, the ratio of
the probabilities of moving one chip in the direction v1 ! v2

vs. v2 ! v1 (lines 13 and 16) is an exponential function of
IFû,D(v2)� IFû,D(v1).

Proof. Based on De�nition IV.2, we have

IFû,D(x) = lim
✏!0

û((1� ✏)D + ✏�x)� û(D)

✏

= lim
✏!0

(1� ✏)û(D) + ✏ · u(x)� û(D)

✏

= u(x)� û(D)



From the above equation, for two nodes v1 and v2 chosen
in lines 3-4 of Algorithm 1, we must have IFû,D(v2) �
IFû,D(v1) = u(v2) � u(v1). Consider the case u(v2) �
u(v1). �e ratio of the probabilities, from lines 11-16, is
pv1!v2
pv2!v1

= 1/2
(1/2)·e�(u(v2)�u(v1))/(kn) = e

(u(v2)�u(v1))· 1
kn , which

is an exponential function of IFû,D(v2)�IFû,D(v1) from the
equation above. One can verify that we get the same result
for the case u(v1) > u(v2).

�eorem IV.3 shows that the in�uence function of expected
utility from a given node is the di�erence between the utility
of the node and that of the whole distribution. Moreover, the
theorem shows that Algorithm 1 examines the IF di�erence
of nodes, and uses it to guide the movement of chips and
hence to change the node weight distribution D.
3) Correctness Analysis of Our Algorithm: �e following

theorem shows that the learned distribution D is as de-
sired. In particular, adaptive to the dynamic data and pat-
tern/workload changes, the execution of Algorithm 1 tends
to stay at a state with a probability being an exponential
function of the expected temporal utility of the state (i.e., a
higher utility has a much higher probability).

�eorem IV.4. Let the numbers of chips at each node of G
in D be the state during the execution of Algorithm 1. �en
the state follows a Markov chain with a unique stationary
distribution, in which the probability of state s is proportional
to e

us , where us is the expected temporal utility of s.

Proof. �e total number of chips stays constant and there is
a �nite number of nodes, so there is a �nite number of states.
�e next state only depends on the current state (lines 11-16),
making it a �nite Markov chain. �e state transition graph is
strongly connected, so the Markov chain is irreducible [28].
Also, there is a positive probability that a state will stay put
in the next step (no chip is moved), so the chain is aperiodic.
A �nite, irreducible, and aperiodic Markov chain must have
a unique stationary distribution [28]. At a discrete state
s of D, let the corresponding probability at node vi be pi

(normalized distribution based on the number of chips). From
the de�nition of temporal utility Us at state s, we have

us ⌘ E[Us] =
nX

i=1

piui (1)

where ui is the temporal utility at node vi (1  i  n).
Now let �p ⌘ 1

kn . Since there are kn chips in total (line
1), moving 1 chip in line 13 or 16 translates to moving �p

probability from one node to another. Let the two vertices
in the sample of a step be vw and vl with uw � ul. �ere
are two possible state transitions from state s—one is in line
13 to state s

+ while the other is in line 16 to state s
�. �e

expected temporal utility of state s
+ is

u
+ =

X

i=1...n,
i 6=w,l

piui + (pw +�p)uw + (pl ��p)ul

=
nX

i=1

piui +�p(uw � ul) = us +
uw � ul

kn

(2)

where the last equality is based on Eq 1 and the de�nition
of �p. Likewise, the expected temporal utility of state s

� is

u
� =

X

i=1...n,
i 6=w,l

piui + (pw ��p)uw + (pl +�p)ul

=
nX

i=1

piui ��p(uw � ul) = us �
uw � ul

kn

(3)

We now show that, the probability of state s in the stationary
distribution must be ⇡s = e

us/Z , where us is the expected
temporal utility of s and Z is a normalization constant.
Without loss of generality, consider two valid neighboring
states s� and s whose expected temporal utilities are in Eq 3
and Eq 1, respectively. �e transition probability from s

� to
s is ps�!s = 1/2 (line 11), while ps!s� = 1

2e
�uw�ul

kn (line
14). We now have

⇡s ·ps!s� =
e
us

Z
· 1
2
·e�

uw�ul
kn =

e
u�

Z
· 1
2
= ⇡s� ·ps�!s (4)

where the second to last equality is due to Eq 3. Eq 4 shows
⇡s = e

us/Z .

�eorem IV.4 shows that Algorithm 1 has a desired
property—a distribution D that has a higher utility will
have a much larger probability than one with a lower
utility. Furthermore, the distribution learning is adaptive to
data/workload shi�s. In turn, the training is adaptive to D.

V. S������� N���� ���� � G�����KDE S�������
D�����������

In this section, we begin with some background of kernel
density estimation (KDE), and how it could �t in our problem.
�en we propose a novel node sampling algorithm that is
equivalent to sampling from a sum of graph KDE kernel
functions. �e advantage is that the sampling distribution
ends up being a smoothed version of the node-weight distri-
bution learned in Algorithm 1. �is improves online training
e�ciency and reduces training resource usage.

A. Graph KDE
1) Preliminaries: In statistics, kernel density estimation

(KDE) is the application of kernel smoothing for probabil-
ity density estimation [14], [15]. It is used to model the
distribution of a variable based on a random sample. Let
x1, x2, . . . , xn be a sample drawn from an unknown proba-
bility density function f . �en the kernel density estimate of
f is given by

f̃(x) =
1

n

nX

i=1

Kh(x� xi) (5)

where Kh is the kernel function, Kh(t) = 1
hK( t

h ), and h

is the bandwidth parameter (for smoothing). Intuitively, the
true value of f(x) is estimated as the average “distance” from
x to the sample data points xi. �e “distance” between x and
xi is calculated via a kernel function K(t). Popular kernel
functions include Gaussian, Epanechnikov, and exponential



functions. So, for Gaussian kernels, f̃(x) is a mixture of
Gaussian functions, each of which is centered at sample data
point xi.
2) Random-walk KDE: For a large dynamic network, adap-

tively learning and revising the weights of each node to its
up-to-date value may have a signi�cant time lag. On the
other hand, since message passing of DGNN is between each
node and its neighborhood, the weights of two adjacent
nodes should not be far apart. In other words, the weight
distribution should be “smooth” along the edges.
A reasonable assumption widely used in the kernel den-

sity estimation [14], [15] is that a smooth distribution can
be approximated by the kernel mixture of a data sample.
However, there are at least two challenges to adopt KDE in
our problem:

• KDE is typically for continuous distributions, and in our
context, we have discrete nodes with a graph topology
as we intend to smooth the node-weight distribution.

• �e optimal node-weight distribution is dynamically
changing as the data changes over time.

For the �rst challenge, fortunately, in our problem, we do
not need to get the exact form of KDE function directly,
but only need to sample nodes from a smoothed node-
weight distribution, replacing the G��S�����N��� function
in Algorithm 1. �us, our goal is to devise a graph KDE
sampling algorithm that is equivalent to sampling from a sum
of a number of KDE kernels.
For the second challenge, we essentially sample from a sum

of a dynamic set of kernel functions, based on a dynamic
sample (set of nodes). Next, we present our random-walk
based sampling algorithm in conjunction with Algorithm 1
to achieve a smoothed node-weight distribution and a more
e�ective model update.

B. Graph KDE Based Node Sampling and the Analysis
1) Intuition and Basic Idea: As mentioned earlier, we only

need to replace the sampling function G��S�����N��� in
Algorithm 1 (while moving chips at nodes is still the same).
�e basic idea is as follows. First consider how one would
get a random sample from a classical KDE function as in
Equation 5. It’s simple—we �rst pick one of the n kernels
Kh(x � xi) uniformly at random, and then draw a sample
data point from that kernel function (e.g., a Gaussian func-
tion). In our context, it is analogous. Each kernel function
corresponds to the neighborhood of a center node (which
corresponds to a data point in the dynamic sample). For
a classical Gaussian kernel (or another type), a data point
that is closer to the kernel center has a higher probability
(and a farther one has a lower probability). We perform a
random walk from a center node (of a kernel), which will also
achieve the negative correlation between the hop-distance to
the center and the probability being sampled.
More speci�cally, we maintain a set (sliding window) of w

seed nodes Sw which consists of recently sampled nodes and
randomly chosen nodes. Sw is the dynamic sample for KDE
that creates w kernels. To get a new sample node, we �rst

Fig. 3: Illustrating graph-KDE sampling for online training.
A number of seeds (e.g., s1 to s6) are selected based on their
weights (wi = D[si]). A short random walk is performed
from a chosen seed s3 and reaches node u, where a step of
SGD training is performed in the induced subgraph Gu at u’s
3-hop neighborhood.

pick a seed s from Sw based on the chip distribution. �en
we perform a random walk from s and stop with a certain
probability at any node during the walk, which will be the
new sample node. �is is illustrated in Figure 3.

Algorithm 2: G����KDES������� (G,D)
Input: G: a graph stream

D: chip distribution
Output: a node sample continuously over time

1 choose w nodes Sw uniformly at random from G as
the seeds

2 while true do
3 s randomly chosen from Sw based on D
4 while true do
5 with probability q

6 add s to the continuous sample; break
7 else
8 s choose one neighbor of s uniformly

at random

9 with probability p

10 replace oldest node in Sw by s

11 else
12 replace oldest node in Sw by a node chosen

uniformly at random from G

2) Algorithm Details and Analysis: �e details are pre-
sented in Algorithm 2. Lines 4-8 perform a random walk
starting from s, and lines 9-12 update the seed window set
Sw . �e stop probability q and parameter p will be studied in
Section VI. Line 12 (“teleport”) is to prevent the seed set from
being con�ned to a densely connected but relatively isolated
area of the graph.
In a nutshell, the graph KDE function is embodied in our

novel sampling method that is equivalent to sampling from
a sum of graph KDE kernels. Note that the loop in lines 2-
12 is over continuous sampling calls—each sampling is only
one iteration of the loop in lines 2-12, which has an expected



time cost of O( 1q ) = O(1) and a space complexity of O(w) =
O(1). We perform an analysis as follows.

�eorem V.1. �e e�ective sampling density at node v,
denoted as pkde(v), is the sum of at least two terms, one of
which is positively correlated with D(v), while the other one is
a linear combination of the D(u) ·pkde(u) of all nodes u in v’s
neighborhood, whose coe�cients decrease as u’s hop distance
from v increases along a path.

Proof. For v to be a sample, it must be from one of the two
events: (E1) v is one of the seeds in Sw that is subsequently
chosen to begin a random walk (line 3) and the walk stops
right at v (line 6). (E2) A random walk started from one
of v’s neighbors stops at v (line 6). As these two events are
disjoint, the probability pkde(v) = Pr(E1) + Pr(E2). �e
�rst term is Pr(E1) = Pr(v 2 Sw) · D(v)P

u2Sw
D(u) ·q. Consider

Pr(v 2 Sw). Initially each node may join Sw with a constant
probability w

n (line 1). Line 12 (with probability 1 � p) also
chooses a node uniformly at random to include it in Sw .
Otherwise a node may be included in Sw a�er it is selected
as a sample (line 10), which has a probability pkde(v). So the
�rst term is positively correlated with D(v).
�e second term is Pr(E2) =

P
u2Nh(v),h�1[(1 � q)hq ·Q

ui2path(u,v)
1

deg(ui)
· Pr(u starts awalk)] , where Nh(v)

denotes the set of nodes that are h-hop distance to v. From
the previous analysis, the probability that u starts a walk is
proportional to D(u) · pkde(u) a�er some initial time. It is
also clear that the coe�cient (1�q)hq ·

Q
ui2path(u,v)

1
deg(ui)

decreases as h (i.e., u’s hop distance from v) increases along
a path to v.

Same as classical KDE kernels (Equation 5), the probability
of a data point (node) within a kernel component decreases as
it is farther away from the center (seed). �e distance metric
between two data points (nodes) here is the hop-distance
(i.e., the shortest path distance in the graph). �e parameter
q determines the smoothness—a smaller q gives a smoother
distribution, which is analogous to the role of the bandwidth
parameter h in Equation 5 of classical KDE.
Furthermore, it is a form of weighted KDE [29] where each

data-point in Sw carries a weight. �e chip counts c1, . . . , cw
of the seeds in Sw are the weights of the w kernels. In
general, for a node v that is h1 hops away from v1 in Sw ,
h2 hops away from v2, . . . , and hw hops away from vw , the
probability that it is the new sample node is the sum of its
corresponding probabilities in each of those w kernels. �is
is consistent with the classical KDE.
Consider a speci�c situation where a kernel center node

has a high degree (or is in a dense area of the graph)—each
of its neighbors will have a smaller probability to be chosen
in the random walk, but that is desired for our sampling
purpose—as long as some node in that area is chosen as a
sample node, the GNN based training will perform message
passing in that area of the graph. Finally, by using a dynamic
sample (Sw for w kernels), graph KDE is adaptive to data
distribution shi�s.

Intuition for why KDE sampling helps. Some regions of
the graph are more pro�table for training, i.e., they are the
peaks of a relatively smooth node-weight distribution D in
Algorithm 1. �e vanilla version of Algorithm 1 performs
point-by-point incremental update of the vertex probabilities
in D. By contrast, KDE sampling “plants” a number of seeds
in the graph; once a seed is close to a peak region, it learns
the high probability mass and the random-walk KDE grows
from the seed in the peak region, as seed-selection tends
to stick there due to the learned high probability-mass that
spans many vertices reached in the region. In other words,
the seeds and the smooth probability mass function from
�eorem V.1 enable Algorithm 1 to spend more time at high-
probability vertices and hence reach the true distribution D
faster.

VI. E����������
We have performed a comprehensive empirical study to

evaluate our work, from the motivation to the e�ectiveness
of our methodologies. We use three real-world graph stream
datasets and compare against six baseline state-of-the-art
dynamic graph neural network models. We aim to answer
the following research questions (RQ):

• RQ1: Regarding motivation, is continuous, online, adap-
tive training actually needed for graph streams?

• RQ2: How does our weighted adaptive training compare
to full/uniform training for graph streams in terms of
training time and memory usage? In addition, how does
our graph-KDE sampling version perform? How do they
compare against the six baseline models?

• RQ3: How do the choices of the parameter values of
our method a�ect training time, memory consumption,
and accuracy?

A. Dataset Description and Machine Setup
We use �ve real-world graph stream datasets as follows.
• Bitcoin: �is dataset [30], [31] maps Bitcoin transac-
tions to real entities belonging to licit categories (ex-
changes, wallet providers, etc.) versus illicit ones (scams,
malware, etc.). A major task is to classify the illicit and
licit nodes. We treat a transaction as a node and a �ow
of Bitcoins between two transactions as a dynamic edge.
Each node has 166 features. �ere are 203,769 nodes and
234,355 edges (700 MB).

• Reddit: �is network represents the directed connec-
tions between subreddits (a subreddit is a commu-
nity) [32]. It is extracted from Reddit data of 2.5 years.
Each ink is annotated with the sentiment of the source
post towards the target post, and the text property
vector of the source post. �ere are 55,863 nodes and
858,490 edges (4 GB).

• Taxi: It contains the information of all taxi trips in the
New York City in 2013 [33]. It has 14 a�ributes including
taxi and trip information. We partition the geographic
area into 20⇥20 grids. �ere are two types of nodes—the
grid nodes and 14.5M trip nodes. Each trip node has 2



temporal edges connecting 2 grid nodes; thus there are
29M edges (total 30 GB).

• Stack Over�ow: �is common link prediction data [34]
describes the interactions on the Stack Over�ow plat-
form. �e nodes are users and the edges are answering
and commenting activities. �ere are 2,601,977 nodes
and 63,497,050 edges (1.5 GB) over one week.

• UCI Messages: �is is another common link prediction
dataset [35] consisting of private messages sent on an
online social network system among students, where
nodes are users and edges are messages. It has 1,899
nodes and 59,835 edges (1.1 MB) over a one-week period.

All the algorithms described in this paper are implemented
in Python. All the experiments are run on a machine with
Intel i7-8750H CPU and GeForce RTX 2080 GPU.

B. Continuous Predictive �eries and Self-supervision Tasks

Each dataset is divided into time steps. Each step corre-
sponds to a graph snapshot. For the Bitcoin dataset, the
self-supervised learning targets are to predict whether a
transaction in the next time step is illicit or licit. �is is
called self-supervision as the information being predicted
is readily a node label within the dataset. �e supervised
analytics workload is to monitor predictive events that there
will be bitcoin �ows between licit and illicit transactions.
For the Reddit dataset, the self-supervised targets are to

predict the sentiment (positive or negative) of edge posts; this
is self-supervision as it is about labels directly provided by
the dataset. �e supervised workload is to monitor subreddits
that will have negative-post ratio above a threshold. For the
Taxi dataset, the self-supervised targets are to predict the
trip distance labels, while the supervised ones are to monitor
whether certain grid nodes (i.e., locations) have a fraction of
slow incoming/outgoing trips above a threshold. For each
of the three graph streams, a number of such continuous
predictive queries based at di�erent nodes/edges are being
monitored. We also use common link prediction datasets (e.g.,
in [20], [21]) Stack Over�ow and UCI Messages to perform
continuous link predictions in the next snapshots.

C. Baseline Models

As our architecture allows to plug in a given DGNN model
and reduce its resource consumption, we have tried a number
of DGNN models, and our methods can reduce both training
time and memory usage on all of them. We present the
experimental results comparing against seven DGNN baseline
models: (1) TGCN [16], (2) DCRNN [17], (3) GCLSTM [18],
(4) DyGrEncoder [19], (5) ROLAND [20], (6) WinGNN [21],
and (7) EvolveGCN [22].
All these baseline models characterize message passing at

graph snapshot level, as well as handle the sequential aspect
over time. �ese DGNN models are representative state-of-
the-art ones published in recent years. We note that our
approach can be applied to many other DGNN models as
well and reduce their resource usage.

D. Research �estion 1: Need for Continuous Model Updating
We �rst verify the motivation of online continuous model

updating. While online learning has been studied, to our
knowledge, li�le has been done to investigate the need and
extent of online adaptive learning for dynamic graphs and
graph streams.
�e results are shown in Figure 4. For each dataset, we

compare online continuous learning at each time step using
a recent sliding window of graph snapshots (Figure 4a) and
only continuous training for the �rst 1/4 of the steps in the
experiments (Figure 4b). We display the continuous target
evaluation loss at each step (predicting the targets of the
next step).
�e result for the Bitcoin data shows that continuous learn-

ing (�rst plot in Figure 4a) overall achieves low prediction
errors at nearly all time steps, except for occasional steps
(step 22) where there is a sudden data/pa�ern dri�. Yet online
learning is able to quickly adapt the change in the model and
bring the error down again for subsequent steps. By contrast,
in the �rst plot of Figure 4b, we only continuously train the
model using sliding windows at each step up to step 10. A�er
that, the training stops and we only evaluate the model (to
predict the next step targets) for the remaining steps. While
the model still performs well for another 10 steps or so, it
quickly deteriorates signi�cantly—the MSE loss goes all the
way to over 2000, while the maximum error in the top-le�
plot is less than 60. �is clearly demonstrates the need for
online adaptive training and model updating.
We observe similar results for the Taxi data, where, in

the Figure 4b right plot, the model is only continuously
trained for the �rst 10 steps, and it deteriorates increasingly
over the subsequent steps. Likewise, for the Reddit data, the
comparison between the middle one of Figure 4a and middle
one of Figure 4b shows that, when the continuous training
stops at step 20 (middle-top one, Figure 4b), the error stays
at a higher level than continuous training all the way. As the
loss di�erence is not as signi�cant as the other two datasets,
we further compare the accuracy of continuous predictions
in the two middle-bo�om plots. �e accuracy drops sharply
over time a�er the continuous training stops at step 20 in
the middle-bo�om plot of Figure 4b, while it stays at a high
level in Figure 4a.

E. Research �estion 2: Resource Consumption Comparisons
with Baselines
Next we compare our weighted adaptive training (Al-

gorithm 1) with the default full/uniform training using a
baseline DGNN model, as well as the weighted training
augmented by our graph-KDE method (Algorithm 2). We
use the default parameter values as determined in Research
�estion 3 below. We measure the total training time (in
seconds) over a �xed number of steps, maximum memory
consumption during training, and the average prediction MSE
(error). For monitoring binary events and link predictions,
as in [20], [21], we also use commonly-used metrics AUC,
mean reciprocal rank (MRR), and accuracy. �e error bars



.
(a) Continuous training on Bitcoin (le�), Reddit (middle) and Taxi (right) data

(b) Partial training on Bitcoin (le�), Reddit (middle) and Taxi (right) data

Fig. 4: �e need for online continuous training for datasets.

TABLE I: Experiments with event monitoring workloads

Dataset Model Method Training Time Memory Error AUC MRR

Bitcoin

TGCN
Full/Uniform 107.51±9.27 31MB 4.25±0.07 0.779±0.006 0.696±0.011
Weighted 12.92±1.05 12MB 4.24±0.05 0.780±0.008 0.693±0.009

KDE 11.85±0.78 12MB 4.12±0.05 0.780±0.005 0.697±0.009

WinGNN
Full/Uniform 126.63±10.72 31MB 4.51±0.06 0.733±0.009 0.615±0.013
Weighted 14.24±1.29 12MB 4.50±0.07 0.731±0.006 0.619±0.012

KDE 12.51±1.25 12MB 4.52±0.06 0.735±0.010 0.616±0.010

Reddit

GCLSTM
Full/Uniform 19.22±1.93 4.5MB 1.08±0.09 0.712±0.007 0.815±0.012
Weighted 8.24±0.41 272KB 1.09±0.11 0.709±0.009 0.819±0.008

KDE 7.33±0.57 272KB 1.07±0.09 0.711±0.008 0.816±0.011

DyGrEncoder
Full/Uniform 17.75±1.26 4.5MB 0.99±0.07 0.719±0.011 0.826±0.006
Weighted 5.43±0.68 267KB 0.98±0.09 0.726±0.006 0.829±0.008

KDE 5.14±0.65 265KB 0.98±0.11 0.725±0.006 0.830±0.009

Taxi

DCRNN
Full/Uniform 387.96±27.21 95MB 4.19±0.08 0.687±0.013 0.715±0.012
Weighted 7.14±0.77 15MB 4.17±0.07 0.685±0.012 0.721±0.008

KDE 3.11±0.59 15MB 3.85±0.05 0.690±0.008 0.719±0.011

ROLAND
Full/Uniform 78.73±6.59 153MB 4.28±0.07 0.679±0.012 0.706±0.015
Weighted 2.05±0.37 34MB 4.23±0.09 0.678±0.010 0.709±0.011

KDE 2.06±0.32 34MB 4.17±0.06 0.681±0.007 0.710±0.009

are over 10 runs. �e results are shown in Table I for event-
monitoring workloads and in Table II for the two continuous
link prediction datasets.
We adjust each method’s training interval so that they give

similar errors/accuracy, and then we can fairly compare each
method’s time spent on training and its maximum memory
usage. For each dataset, we display the results of one or
two DGNN baseline models (the trends are similar for other
combinations). For all the datasets, our weighted adaptive
learning and our graph-KDE variant consume up to 2 orders
of magnitude less training time, signi�cantly less memory,
when the prediction accuracy is similar.
Table I and Table II also show that the graph-KDE variant

achieves even less training times in general than the plain

weighted training with the same accuracy. �is veri�es the
reason and intuition stated at the end of Section V. In
contrast to the vanilla version of Algorithm 1 that does
point-by-point incremental probability update, graph-KDE
enables Algorithm 1 to sample and grow seeds in smooth
high-probability regions. Overall, the training using learned
weights and its graph-KDE variant consume signi�cantly less
memory and computation because they judiciously perform
weighted training on fewer and more important nodes. �us,
with less training, it can achieve the same level of accuracy.

F. Research �estion 3: Impact of Parameter Value Choices

We have studied how the choices of various parameters
of our ultimate method, the graph-KDE enhanced weighted



TABLE II: Experiments with common link prediction datasets

Dataset/Model Method Training Time Memory Accuracy AUC MRR

Stack Over�ow (EvolveGCN)
Full/Uniform 220.15±10.74 585MB 0.667±0.021 0.739±0.018 0.788±0.015
Weighted 32.57±3.18 6MB 0.692±0.017 0.745±0.016 0.795±0.010

KDE 32.41±4.65 6MB 0.660±0.018 0.747±0.015 0.771±0.012

UCI Messages (ROLAND)
Full/Uniform 98.76±7.52 35MB 0.779±0.008 0.875±0.019 0.907±0.011
Weighted 25.62±3.19 2MB 0.781±0.013 0.874±0.008 0.905±0.009

KDE 25.15±2.86 2MB 0.783±0.010 0.875±0.011 0.907±0.007

TABLE III: Experiments with various parameters and datasets

Dataset/Model Parameter Training Time Memory Error AUC MRR

Bitcoin (TGCN)

Interval = 1 11.85±0.78 12MB 4.12±0.05 0.780±0.005 0.697±0.009
Interval = 2 6.51±0.57 12MB 4.15±0.03 0.774±0.009 0.691±0.011
Interval = 5 2.37±0.41 11MB 4.19±0.05 0.772±0.010 0.692±0.009
Interval = 10 1.24±0.22 10MB 25.86±3.31 0.759±0.012 0.634±0.015

Reddit (DCRNN)
#pairs = 1 5.88±0.74 257KB 0.99±0.10 0.723±0.007 0.829±0.011
#pairs = 3 18.12±2.78 278KB 0.98±0.12 0.723±0.006 0.831±0.008
#pairs = 7 42.47±4.65 271KB 0.95±0.11 0.727±0.006 0.835±0.007

Taxi (GCLSTM)
#seeds = 5 2.47±0.29 16MB 7.17±0.11 0.669±0.013 0.702±0.008
#seeds = 15 39.76±4.77 38MB 3.76±0.08 0.695±0.009 0.721±0.011
#seeds = 50 14.51±3.14 27MB 3.84±0.09 0.683±0.010 0.714±0.006

Bitcoin (DyGrEncoder)
q = 0.1 11.79±0.91 12MB 3.58±0.11 0.769±0.009 0.690±0.007
q = 0.5 11.23±0.78 11MB 3.61±0.08 0.762±0.007 0.674±0.012
q = 0.9 11.19±0.65 11MB 8.72±0.12 0.721±0.009 0.618±0.006

Reddit (WinGNN)
p = 0.1 6.46±0.67 270KB 1.09±0.12 0.718±0.011 0.821±0.009
p = 0.5 6.71±0.45 268KB 0.99±0.11 0.713±0.007 0.827±0.012
p = 0.8 6.69±0.48 265KB 1.07±0.14 0.717±0.012 0.823±0.009

training, a�ect the training time, memory usage, and predic-
tive query accuracy. �e results are shown in Table III. Under
all the datasets and DGNN baseline models, we observe
similar pa�erns as we vary the parameter choices; thus, for
succinctness, we only display one dataset/model combination
for each parameter. We �rst vary the interval of continuous
training, ranging from 1 time step to 10 time steps. While the
total training time decreases proportionally as we increase
the training interval, the average prediction error does not
increase signi�cantly when the interval is no more than 5.
�is indicates that one can �nd a suitable training interval
to cut down resource consumption without sacri�cing much
on the accuracy.
Next we vary the number of pairs of sample nodes per

step used for adjusting the weight distribution. While the
total training time increases proportionally with the number
of pairs, the accuracy only slightly increases. �is indicates
that we may not need many pairs of sample nodes per step.
Our default is 1.
We then vary the number-of-seeds parameter of graph

KDE sampling (i.e., w in Algorithm 2). Our default is 15.
When we set it to a much smaller value, 5, the error
signi�cantly increases because fewer seeds imply a larger
variance on the quality of the sampled nodes. On the other
hand, when the number of seeds is a much larger value 50,
some seeds will be at sparser areas of the graph, which makes
training faster (recall from Algorithm 1 that the training
time/space cost is proportional to d

L where d is node degree
and L is the number of DGNN layers), but the error increases
as it explores areas of the graph that are less “pro�table” for

training.
Recall that the graph-KDE sampling has two probability

parameters q (probability to stop the random walk, default
0.5) and p (probability to make the current sample a new
seed, default 0.8). When q is smaller (0.1), the random walk
goes farther, and the distribution is smoother. �is slightly
increases the training cost, but results in slightly be�er
accuracy in this case. On the other hand, we �nd that
parameter p does not signi�cantly change the accuracy nor
the training cost.

G. Summary of Experimental Results

Our comprehensive experiments using �ve real-world
graph stream datasets and seven baseline models show that
continuously learning model updates while answering and
updating predictive queries is much needed to adapt to the
data changes in graph streams. Our experiments with various
parameter choices help us empirically pick the parameter
values, some of which (such as the training interval) provide
a tradeo� between resource consumption and query result
accuracy. With all six baseline dynamic graph neural network
models, our weighted adaptive model updates and query
answering take up to 2 orders of magnitude less training time
and signi�cantly less memory when the continuous predic-
tive query results have the same accuracy. �e experiments
also show that our graph-KDE-sampling variant is e�ective
and, in most cases, further reduces the continuous training
resource usage slightly.



VII. R������W���

Dynamic Graph Neural Networks (DGNN). We refer the
readers to two excellent surveys on DGNN [9], [10]. We
focus on discrete-time dynamic graphs (DTDG), for which
typically a DGNN consists of a GNN model (as in static
graphs) and a sequence model. We can plug in a given
DGNN model as a component of our work (Figure 2) and
reduce its training time and memory usage, as shown in our
experiments in Section VI. We have presented the results
with six representative recent DGNN models, and they all
show a very similar pa�ern in the reduction of training time
and maximum memory usage under the same accuracy. Our
work is general and applies to any models for DGNN, as we
�nd induced subgraphs for node-level training partitioning,
which is independent of the speci�c DGNN model.
Online Learning and Lifelong Learning. Online learning
has a long history. It learns to update models from data
streams sequentially [36], [37], with algorithms including
Perceptron [38], Online Gradient Descent [39], and Passive
Aggressive [40], all for learning linear models. �e work on
online Learning with kernels includes [41]. Recently online
learning is studied for deep learning [11]–[13]. Lifelong
learning considers systems that can continually learn many
tasks over a life time [42]. It is a concept related to online
learning, but it is not concerned with the online continuous
and real-time aspect. None of such previous work studies
online continuous learning under DGNN for continuous pre-
dictive queries as we do, where we aim to reduce the training
time and memory usage.
In�uence Functions and Subsampling. In�uence func-
tions originated in robust statistics [27]. Intuitively, a statistic
is robust if arbitrary changes to a small part of data, or
small changes to all data, result in only small changes to the
value of the statistic. �is notion of sensitivity is captured
in in�uence functions (IFs). In the pioneering work of Koh
and Liang [43], IFs are used to interpret machine learning
predictions. However, IFs are in general well-de�ned and
studied for models such as logistic regression [43], where the
underlying loss-function is convex. Basu et al. [44] provide
a comprehensive study when the convexity assumption is
violated, which is the case in deep learning, and �nd a
pessimistic answer: in�uence estimation is quite fragile for a
variety of deep networks. For the same reason, subsampling
using IFs as weights [45] is only limited to asymptotically
linear estimators.
�us, we do not directly use in�uence functions for the

node weights. Our novel weight-learning and sampling are
adaptive and applicable to DGNN, tailored to online learning,
while our analysis in �eorem IV.3 draws a connection to
the in�uence functions of the learning utility from any given
node.
Kernel Density Estimation (KDE). KDE is a nonparametric
approach that estimate the density distribution directly from
the data [46], [47]. It is a well-established technique in both
statistics and machine learning [14], [15]. KDE has been

successfully applied in many applications. Just to show but a
few examples, Zheng et al. propose randomized, parallel, and
distributed implementations of KDE on very large data [48].
Qahtan et al. study the estimation of the density of spa-
tiotemporal data streams [49]. �eir method can e�ciently
estimate the density function with linear time complexity
using interpolation on a kernel model.
Our KDE part of work is drastically di�erent. We devise

a novel graph KDE to smooth a discrete distribution over
the vertices of a graph. For the purpose of our work, we do
not need to get the exact form of the KDE function (which
is a sum of kernel functions); but rather, the graph KDE
function is embodied in a sampling method that is equivalent
to sampling from a sum of graph KDE kernels, which is based
on random walks and a dynamic sample.
Curriculum Learning and Boosting. Our online learning
of a node-weight distribution for model updates is also
remotely related to curriculum learning and boosting. �e
basic idea of curriculum learning (CL) [50] is to sort ex-
amples into a sequence ordered by easiness. Starting with
the easiest examples, simpler concepts are learned �rst, and
then introducing gradually more di�cult examples speeds up
the training. Likewise, in boosting algorithms [51], di�cult
examples are gradually emphasized.
By contrast, graph vertices are not the same as “examples”

and we do not sort them by easiness. Instead, we adaptively
learn a distribution over them, and use the vertices as
guidance for training both supervised and self-supervised
targets, as well as for back-propagation into the induced
subgraphs.

VIII. C���������� ��� D����������
Monitoring predictive events and queries in graph streams

has an important role in practical applications. We �nd that
continuous learning and model updating is crucial to keeping
the predictive query results current and correct. We aim
to reduce the time and memory usage in training given
the same prediction accuracy. Our approach partitions the
incremental training at the graph node level, and we propose
a randomized algorithm to continuously learn a weight distri-
bution over nodes, which is simultaneously used to do model
updates, which in turn give feedback to the node-weight
learning. We also devise a novel graph KDE embodied in its
sampling algorithm to smooth the node-weight distribution,
to make the model updates more e�ective, and to further
reduce the resource usage. Our experiments demonstrate the
advantage of our approach—to achieve the same prediction
accuracy, the training time ranges from several times to
two orders of magnitude shorter, and the maximum memory
consumption is several times to 20 times smaller.
One assumption of our approach is that dynamic online

training is more pro�table at certain regions of the graph
and that the distribution is relatively smooth. In other words,
the node-weight distribution that we learn has the homophily
property in the graph, which is the base of our graph-KDE
sampling design.



R���������

[1] A. Johnson, T. Pollard, L. Shen, L. Lehman, M. Feng, M. Ghassemi,
B. Moody, P. Szolovits, L. Celi, and R. Mark, “MIMIC-III, a freely
accessible critical care database,” Scienti�c Data, 2016.

[2] A. McGregor, “Graph stream algorithms: A survey,” SIGMOD Rec.,
vol. 43, no. 1, p. 9–20, 2014.

[3] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom, “Models and
issues in data stream systems,” in Proceedings of the Twenty-First ACM
SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems,
ser. PODS ’02, 2002, p. 1–16.

[4] T. Healy, “�e value of predictive analytical applications as digital
health tools,” Pharmaceutical Outsourcing, pp. 32–34, 2022.

[5] SAP, “Predictive analytics: �e future of data analysis,” SAP Business
Technology Platform, 2023.

[6] T. N. Kipf and M. Welling, “Semi-supervised classi�cation with graph
convolutional networks,” IEEE Transactions on Neural Networks, vol. 5,
no. 1, pp. 61–80, 2016.
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