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ABSTRACT

Traditional neuroimaging research typically focuses on identifying
group level characteristics of brain connectivity across subjects.
However, recent research has shown that even among the neurologi-
cally healthy, brain function shows high individual variability. This
realization has lead to the concept of functional connectome (FC)
fingerprinting, where the functional connectivity profiles act as a
fingerprint that can be used to identify the individual and establish a
relationship between brain function and behavior. A core component
of fingerprinting is feature selection where a subset of edges from
FC are selected. In this paper, we propose an alternative feature se-
lection approach where functional subnetworks instead of individual
edges are identified to describe group and individual level network
activity. The proposed approach models the FCs from multiple
subjects as a multiplex network and employs a community detec-
tion method to extract functional subnetworks that are common and
unique across subjects. We then introduce metrics to evaluate the
common communities and quantify their consistency and variability
across subjects. The proposed framework is evaluated on functional
connectomes constructed from electroencephalogram (EEG) data
during a cognitive control study.

Index Terms— Functional Connectome, Community Detec-
tion, Individual Variability, Electroencephalogram

1. INTRODUCTION

Over the past two decades, there has been a growing interest in the
study of functional connectivity in the brain from different imag-
ing modalities such as the functional magnetic resonance imaging
(fMRI), electroencephalography (EEG), and magnetoencephalogra-
phy (MEG) [1]. While different methods have been proposed to
quantify functional connectivity, the research community has not
reached a consensus on how to evaluate the resulting functional con-
nectomes (FCs) within and across a group of subjects.

The first class of methods focus on inferring group level char-
acteristics of FCs. One such approach has been to analyze the net-
works estimated from brain-imaging modalities by means of graph
theoretic tools [2, 3]. Graph theory provides mathematical tools
for extracting features that could concisely describe the structure
of the estimated cerebral networks. This class of methods usually
extract graph theoretic metrics such as the clustering coefficient, ef-
ficiency and small-world parameter. These metrics are then com-
pared between groups using statistical testing. While this approach
is effective at summarizing the network activity at the group level
and discriminating between subject groups, it cannot identify the lo-
cal network components that contribute to the observed differences.
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Another class of methods in this category rely on extracting low-
dimensional latent embeddings such as group independent compo-
nent analysis (GICA) and group information guided ICA (GIG-ICA)
[4, 5]. These methods enable the extraction of intrinsic connectivity
patterns at both the group and subject-level.

While group-level inferences inform us of the generic princi-
ples, they obscure principles specific to individual subjects that are
essential for characterizing brain function in health and disease. Re-
cently, functional connectome fingerprinting [6], where the goal is
to uniquely identify individual subjects using subject-specific FC,
has gained a lot of attention. Specifically, given a set of N refer-
ence fMRI scans, one from each of the N subjects, and a new target
fMRI scan from one of the same N subjects, the goal is to iden-
tify the subject by “matching” the functional connectome of the tar-
get scan with that of the reference scans. A variety of methods for
performing fingerprinting using FC have been developed since this
initial work. These methods either use the whole connectivity ma-
trix or pre-defined subnetworks to identify individual subjects [7].
More recently, feature extraction methods such as PCA [8], graph
embedding based approach [9] and deep learning-based approaches
[10] have been proposed for fingerprinting. While these methods
have been successful in accurately identifying subjects from their
FC profiles, they have some shortcomings. First, simple fingerprint-
ing methods use either the whole FC or individual edges and thus
cannot identify functionally meaningful network components that
contribute most to individuality. Second, the more advanced feature
extraction methods do not necessarily produce interpretable features
limiting their use in neuroimaging. Finally, current methods mostly
focus on accuracy of subject identification rather than characterizing
both group and subject-level network components of FC.

In this paper, we aim to fill these gaps by introducing a net-
work based approach to characterize FCs. First, we propose to model
the FCs across multiple subjects as a multiplex network where each
layer corresponds to the FC of an individual [11, 12]. We then adopt
a recently introduced community detection algorithm [13] to identify
both common and individual communities across subjects. This ap-
proach enables us to take the heterogeneity of FCs across a group of
subjects into account. The resulting communities are then evaluated
based on their consistency and variability within a group.

2. BACKGROUND

2.1. Community Detection

A graph can be represented as G = {V,E,A}, where V , E and
A are the set of nodes, edges, and adjacency matrix of the graph,
respectively. Community detection refers to the task of partitioning
the node set V as C = {C1, . . . , CP }, where P denotes the number
of communities. One widely used method for partitioning graphs is
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the minimum cut approach, including the ratio cut and normalized
cut [14]. These methods aim to partition the graph such that the
number of edges between different communities is minimized.

For a given graph, the min-cut problem finds a partition that min-
imizes the following objective function:

1

2

K∑
p=1

Cut(Cp, C̄p), (1)

where C̄p represents the complement of Cp and Cut(Cp, C̄p)is the
sum of the edge weights between two disjoint sets Cp and C̄p. The
min-cut problem is NP-hard, but it has been shown that spectral clus-
tering and non-negative matrix factorization provide solutions to re-
laxed versions of this problem [14, 15].

In [15], it was shown that normalized cut using the normalized
adjacency matrix, Ã = D−1/2AD−1/2, where D is the degree
matrix defined as Dii =

∑
j Aij , is equivalent to the nonnegative

matrix factorization problem with argmin
H≥0

||Ã−HH⊤||2.

2.2. Multiplex Networks

Multiplex networks are high-dimensional networks composed of
multiple layers, where each layer shares the same set of nodes
with edges varying across layers. A sequence of graphs Gl =
(Vl, El,Al), with l ∈ {1, 2, . . . , L} is used to represent multiplex
networks [16]. Here, Vl denotes the set of nodes in layer l, El is the
set of edges and Al ∈ Rn×n represents the adjacency matrix for
layer l. In this paper, we consider undirected weighted adjacency
matrices with Alij ∈ [0, 1].

2.3. Functional Connectome Construction

A weighted graph can be constructed from EEG signals with the
nodes corresponding to brain regions and the edge weights corre-
sponding to functional connectivity. In this paper, we use a time-
frequency based phase synchrony measure to quantify functional
connectivity [17]. The Phase Locking Value (PLV) between two sig-
nals xi and xj as a function of time and frequency [18] is defined as

PLVi,j(t, ω) =
1

N

∣∣∣∣∣
N∑

k=1

exp
(
jΦk

i,j(t, ω)
)∣∣∣∣∣ , (2)

where N is the number of trials and Φk
i,j(t, ω) is the phase difference

between xk
i and xk

j defined as Φk
i,j(t, ω) = arg

[
Ck

i (t,ω)

|Ck
i (t,ω)|

Ck∗
j (t,ω)

|Ck
j (t,ω)|

]
for the kth trial with Ck

i (t, ω) being the RID-Rihaczek time-
frequency distribution [19].

The adjacency matrix for each subject, l, is then constructed as
the average phase locking value within a time window, T , and fre-
quency band, Ω, of interest as Al(i, j) =

1
|T ||Ω|

∑
t∈T

∑
ω∈Ω PLV (t, ω).

3. METHOD

3.1. Multiplex Community Detection Based on Orthogonal
Nonnegative Matrix Trifactorization (MX-ONMTF)

In this paper, we use MX-ONMTF [13], a multiplex community
detection method that models each layer’s adjacency matrix as the
sum of low-rank representations of common and private commu-
nities using Orthogonal Nonnegative Matrix Tri-Factorization (ON-
MTF). For a multiplex network with L layers and adjacency ma-

trices, Al ∈ Rn×n, l ∈ {1, 2, . . . , L}, the objective function is
formulated as

argmin
H≥0,Hl≥0,Sl≥0,Gl≥0

L∑
l=1

||Al −HSlH
⊤ −HlGlH

⊤
l ||2F

s.t H⊤H = I,H⊤
l Hl = I,with l ∈ {1, 2, . . . , L},

(3)

where H ∈ Rn×kc and Hl ∈ Rn×kpl , are the community member-
ship matrices corresponding to the common and private communi-
ties, respectively, and Sl ∈ Rkc×kc and Gl ∈ Rkpl

×kpl are sym-
metric matrices that capture the inter-community interactions and
provide additional degrees of freedom.

ONMTF optimization problem in (3) can be solved using a mul-
tiplicative update algorithm (MUA) similar to [20]. MX-ONMTF
follows this approach to derive the multiplicative update rules for
each variable as given in [13]. Algorithm 1 shows an overview of the
method. The algorithm converges when the norms of the difference
between two consecutive updates of all the variables are less than a
pre-determined threshold, e.g., ||H(k) −H(k+1)||2F ≤ ϵ. Then, the
community label of each node is found by identifying the column of
[H,Hl] with the highest value for each row.

Algorithm 1 MX-ONMTF

Input: Adjacency matrices Al, l ∈ {1, 2, . . . , L}.
Output: Community membership matrices H, Hl.

1: Find kc, kl, and kpl using Algorithm 2 in [13]. kl’s are found
using the eigengap rule for each layer. kc is found by apply-
ing ONMTF to each layer and using agglomerative hierarchical
clustering across the low-dimensional embeddings of each layer.

2: for r=1 to 50 do
3: Randomly initialize H,Hl,Sl,Gl > 0
4: for 1000 iterations or until convergence do
5: update H, Hl, Sl, and Gl using their corresponding mul-

tiplicative updates.
6: end for
7: for each layer l do
8: Identify which common communities are present in each

layer l using Algorithm 3 in [13].
9: for each i do

10: Hlnew = [H,Hl]
11: idx← argmaxjHlnew (i, j)
12: if idx(i) > kc then
13: idx(i)← (argmaxjHlnew (i, j)) +

∑l−1
n=1 kpn

14: end if
15: end for
16: end for
17: Compute the modularity density, QDr , [21].
18: end for
19: Choose the partition r∗ = argmaxr QDr .

3.2. Consistency

Once the kc common communities are identified, we quantify the
consistency of each brain region across subjects. For this purpose,
we introduce a measure of consistency of a node i with respect to
each of the kc communities as follows:

Ck
i =

H(i, k)∑kc
k=1 H(i, k)

. (4)
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This metric quantifies the probability of node i appearing in the kth
common community and is always between 0 and 1.

3.3. Variability

In addition to quantifying the importance of each node in describing
the common community structure, we also quantify the variability of
each common community across subjects. The variability is quan-
tified by a measure of normalized intra-community strength which
computes the ratio of the strength of intra-community edges to the
total connectivity (strength) for a given FC. The variability of subject
l with respect to the common community k is quantified as:

V arkl =

∑
(i,j)∈Ck

Al(i, j)∑
i,j Al(i, j)

. (5)

This measure is also between 0 and 1 and quantifies how important
common community k is with respect to each subject thus quantify-
ing the variability in FC.

4. RESULTS

4.1. EEG Data

In this paper, we analyze EEG data collected during a cognitive
control-related error processing study. The experimental procedures
involving human subjects were approved by the MSU Institutional
Review Board. All participants were female and the mean age was
20.78 (SD = 1.81). A letter version of the speeded reaction Flanker
task [22] was performed. For each trial, a string of five letters,
which could be congruent (e.g., SSSSS) or incongruent stimuli (e.g.,
SSTSS), were presented to each participant. The participants were
instructed to select the center letter with a standard mouse with re-
spect to the Flanker letters. Each trial began with 35ms of flanking
stimuli (e.g., SS SS). After that, the target stimuli were presented
for 100 ms (total presentation time is 135ms) by embedding them in
the center of the flanker letters (e.g., SSSSS/SSTSS) followed by an
inter-trial random interval ranging from 1200 to 1700 ms.

The EEG was recorded using the ActiveTwo system (BioSemi,
Amsterdam, The Netherlands). 64 Ag–AgCl electrodes were placed
following the international 10/20 system. The sampling frequency
of the data was 512 Hz. Trials with artifacts were removed and Cur-
rent Source Density (CSD) Toolbox [23] was used to minimize the
volume conduction. Each trial was one second long. For the multi-
subject FC analysis, the trials corresponding to the error responses
from 20 participants were considered. The inclusion criterion was
that the number of trials for error response should be at least 40.

4.2. Functional Connectomes

We are interested in studying the community structure in the FCs
corresponding to error-related negativity (ERN) across subjects.
ERN is an event-related brain potential following error responses.
Previous studies have shown that the ERN is associated with in-
creased synchronization in the theta band (4-8 Hz) between elec-
trodes in the central and lateral frontal regions [22, 24]. FCs from
error responses were constructed using the bivariate phase-locking
value (PLV) between pairs of electrodes [19]. For each subject, a
FC was constructed by averaging the PLV over the frequency bins
corresponding to the theta band and the ERN time window, [0−100]
ms.

The resulting FCs are fully connected and are not usually suit-
able for subsequent graph theoretic analysis. For this reason, thresh-
olding is a commonly applied approach in functional connectomics

to remove spurious connections and to obtain sparsely connected
matrices prior to graph theoretical analysis such as community de-
tection. To avoid systematic differences in absolute number of edges,
in this paper we use proportional thresholding with the threshold
equal to 0.9, where a pre-defined number of strongest connections
are selected as network edges, ensuring equal network density across
datasets [25].

4.3. Community Structure Across Subjects

We applied the MX-ONMTF algorithm to a multiplex network of
FCNS with L = 20 and n = 64 corresponding to the number of lay-
ers and brain regions. The number of communities was determined
as 3 common communities across 20 subjects. The distribution of
communities across layers is given in Fig. 1. From this figure, it can
be seen that the first common community is present across 11 sub-
jects, while the second and third common communities are present
across 6 and 3 subjects, respectively. In addition to these common
communities, 16 subjects each have one private community.
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Fig. 1: Scatter plot of communities versus subjects

We analyzed the distribution of nodes or brain regions across
subjects for the first two communities that account for the connec-
tivity patterns in the majority of subjects. Common community 3
is not illustrated as it consists of all the nodes in the network and
does not constitute an actual community. This community structure
appears in 3 subjects which implies that for these subjects the con-
nectivity values do not show significant variation resulting in a single
large community. The consistency of each node within a community
is computed using (4) and plotted in Fig. 2. From this figure, it can
be seen that for the first community, the highly consistent nodes are
concentrated around the medial prefrontal cortex (mPFC), e.g., FCz,
FC2, FC4, and right lateral prefrontal cortex (lPFC), e.g., F6, F8.
This is consistent with prior work on community structure associated
with ERN and with the time-domain ERN component topographies
[26]. In addition to this fronto-central structure, community 1 also
contains nodes in the parietal and occipital areas as visual cortex is
consistently recruited in response to the visual stimulus. Community
2, on the other hand, consists of nodes corresponding to the motor
cortex, e.g., C2, CPz, as the task requires the subjects to make a
motor response. This motor-related cluster structure was observed
in prior research [26]. In addition to this cluster, community 2 also
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Fig. 2: Brain topomaps illustrating the consistency of each node with respect to the common communities and variability of the common
communities across subjects. (Top) Common Community 1, (Bottom) Common Community 2.

contains nodes in the left and right-PFC.
The two common communities extracted from the 20 subjects

are also analyzed with respect to their individuality or variability
across subjects using the metric defined in (5). This metric shows
how important a particular community is for a given subject. From
Fig. 2, it can be seen that the common communities account for at
least 10% of the total connectivity within each subject. There is con-
siderable variability of the importance of these community structures
across subjects.

5. CONCLUSIONS

In this paper, we introduced a multiplex network model to charac-
terize variability of functional connectomes across a healthy group

of subjects performing the same task. In particular, a recently intro-
duced multiplex community detection algorithm, MX-ONMTF, is
adopted to determine functional subnetworks that are common and
unique to each layer. We furthermore introduced measures of consis-
tency and variability to identify brain regions that consistently play
a functional role during ERN and quantify the variability of commu-
nity structure across subjects.

Future work will consider extending this framework for FC
fingerprinting applications. Unlike the majority of current finger-
printing methods which either focus on the whole brain connectivity
or individual edges, the proposed framework provides interpretable
functional subnetworks that can be used to identify subjects. Fur-
thermore, these subnetworks can be used to construct behavior
prediction models.
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