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Abstract

BACKGROUND Digital health interventions may be optimized before evaluation in a ran-

domized clinical trial. Although many digital health interventions are deployed in pilot

studies, the data collected are rarely used to refine the intervention and the subsequent

clinical trials.

METHODS We leverage natural variation in patients eligible for a digital health interven-

tion in a remote patient-monitoring pilot study to design and compare interventions for a

subsequent randomized clinical trial.

RESULTS Our approach leverages patient heterogeneity to identify an intervention with

twice the estimated effect size of an unoptimized intervention.

CONCLUSIONS Optimizing an intervention and clinical trial based on pilot data may

improve efficacy and increase the probability of success. (Funded by the National Insti-

tutes of Health and others; ClinicalTrials.gov number, NCT04336969.)

Introduction

T
he use of digital health interventions (e.g., remote patient monitoring) is growing

in clinical practice and as an area of research.1-3 Most digital health interventions

are deployed without evaluation in a randomized controlled trial (RCT).4-6 Of

the digital health interventions evaluated in an RCT, many are used in a pilot study before

the RCT, but, in most cases, the data from the pilot study are not used to optimize the

intervention nor the RCT. When interventions are deployed without being optimized, they

may fail to improve patient outcomes sufficiently to warrant widespread use or fail to

produce significant results in an RCT. A relatively short RCT of an efficacious multiyear

digital health intervention for the management of a chronic condition may fail if the inter-

vention is not well targeted or optimized, leading to low effect sizes and insufficient statis-

tical power. Underpowered randomized trials are wasteful, can be misleading, and may

therefore be considered unethical.6-10 As the use and impact of wearable sensors and
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digital health interventions increase, so does the need for

improved methods and practices for their evaluation and

optimization.11,12

Just-in-time adaptive interventions are designed to provide

care at the right time based on estimates of each patient’s

changing internal state and external context. New methods

are emerging for the design and evaluation of just-in-time

adaptive interventions. These include the multiphase opti-

mization strategy, sequential multiple assignment random-

ized trials, and microrandomized trials.12-16 The multiphase

optimization strategy seeks to optimize an intervention in a

refining phase based on data from a screening phase before

evaluation in a confirming phase. A sequential multiple

assignment randomized trial, based on an optimization trial,

may be conducted to estimate the short-term effects of com-

ponents of a digital health intervention and optimize its

design.17 In a microrandomized trial, each participant is ran-

domly selected to receive or not receive a treatment recom-

mendation numerous times over the course of the trial. A

microrandomized clinical trial may be used to design an

adaptive intervention or as a substitute for a traditional RCT

when the primary outcome of interest is closely associated

with the short-term effects of individual components of the

digital health intervention.

We introduce Smart Start, a three-step method for using

retrospective data from a pilot study to design an adaptive

health intervention and a subsequent clinical trial. The

first step is to define candidate variants of the digital

health intervention based on different — potentially adap-

tive — policies for targeting patients to receive care. The

second step is to simulate microrandomized trials of each

intervention and estimate the average treatment effect in

each simulated trial. In this step, trials of varying size

(number of patients) and duration are simulated, and the

predicted probability of success (PPOS) is estimated. The

final step is to design a standard RCT or a microrando-

mized trial by choosing the intervention, study size, and

study duration.

Smart Start may be used for remote digital health inter-

ventions in which: patients wear sensors regularly trans-

mitting data; at regular intervals (e.g., weekly), clinicians

or a computer algorithm (e.g., mobile application) review

the data and potentially send recommendations to the

patient; and short-term observable changes in the

patient’s data can be used to estimate the impact of

the recommendations. In summary, Smart Start requires

data from a pilot of the remote intervention with a

sufficient number of patients, interactions, and observa-

tions. It also requires structured variation in the set of

patients who are eligible to receive a recommendation at

each decision interval (e.g., weekly). This variation must

be sufficient to support simulation and evaluation of the

effect of different targeting policies. Such variation is com-

mon when interventions are based on patient behavior

and characteristics.18,19 One form of structured variation

arises from constraints on how many patients the care

team has the capacity to contact in each interval of the

study (e.g., weekly).20 Another form of structured varia-

tion arises from constraints on how often to contact or

prompt a patient.21,22 As the use of sensor-based digital

health interventions continues to increase, growing con-

straints on provider availability and patient willingness to

engage will expand the interventions to which Smart Start

is applicable.

We illustrate Smart Start with data collected from indivi-

duals with type 1 diabetes using a continuous glucose

monitoring system.23,24 In the study, different sets of

patients were eligible each week to receive a recommen-

dation from the clinicians reviewing remote monitoring

data.25 The primary outcome, as is common in the study

of interventions for diabetes, was time in range, defined as

the proportion of glucose readings between 70 and

180mg/dl.22,26,27 The variation in patient eligibility and

the short-term effects of interventions on time in range

made the study well suited for Smart Start. Incorporating

this kind of variation in pilot studies of digital health inter-

ventions may facilitate downstream evaluation of various

targeting policies with Smart Start.

Methods

STUDY PARTICIPANTS

The data used in this work are from the 4T (Teamwork,

Targets, Technology, and Tight Control in Newly Diag-

nosed Pediatric T1D) study (ClinicalTrials.gov number,

NCT03968055), which recruited youth with type 1 diabe-

tes to start continuous glucose monitoring within 1 month

of diabetes diagnosis and participate in remote monitoring

enabled by algorithmic analysis of patient continuous glu-

cose monitoring data.26 The Stanford Institutional Review

Board approved this study, and written informed consent

was obtained. Every week in the first year after diagnosis,

continuous glucose monitoring data were reviewed by cer-

tified diabetes care and education specialists who decided
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whether insulin dose adjustments or other changes to glu-

cose management were necessary and contacted patients

using secure messaging within the electronic health

record. After the first year, patients who continued remote

monitoring were reviewed by a clinician 1 out of every

4weeks.

PILOT DATA

Our data set combines continuous glucose monitor read-

ings providing up to 288 glucose values daily, messages

sent to patients through the electronic health record, and

patient information from forms completed by study parti-

cipants. Included are all study participants who received

remote monitoring in the second year after their type 1

diabetes diagnosis, had at least 26weeks of continuous

glucose monitoring data, and received a message based

on remote monitoring in their first year. During their first

year in the program, each patient’s data were included for

review by care providers every week. During their second

year in the program, their data were included for review

1week out of every 4weeks. Each week, data for all

patients to be reviewed were shown to a certified diabetes

care and education specialist. Patients were prioritized for

review according to various glucose metrics: time in range,

other aggregated continuous glucose monitoring data, and

criteria derived from consensus targets such as percent

time below and above range, as well as a personalized

metric defined in terms of the patient’s change in time in

range.26 After reviewing each patient’s data, the certified

diabetes care and education specialist decided, based on

clinical criteria and judgment, whether to provide care

guidance through an asynchronous message to the patient

or the patient’s parent/caregiver. Thus, to receive a mes-

sage regarding their glucose data, a patient must first have

been selected for review and then the clinician reviewing

the data must have decided the data warranted a message.

Our goal was to understand which policies for targeting,

or selecting, patients for review are most likely to result in

a favorable effect being observed in a subsequent clinical

trial. The data were split for each patient into training and

testing. The training data are each patient’s first year in

the program (year 1) and the testing data are each

patient’s second year in the program (year 2).

SMART START

We designed a dynamic intervention based on a targeting

policy and a microrandomized trial of the intervention

in which the unit of observation is a patient-week.

Each week, a targeting policy determines whether a

patient is eligible to have their data shown to a certified

diabetes care and education specialist for remote review

and potential contact. The patient-weeks targeted are ran-

domly assigned in the microrandomized trials into a treat-

ment and control group. For each patient-week in the

treatment group, a provider will review their data and

potentially contact the patient based on the same criteria

as in the pilot study. Patient-weeks in the control group

and those that were not targeted according to the policy

are not eligible for data review. The effect of each interven-

tion is estimated by comparing the outcomes of patient-

weeks in the treatment and control groups. Smart Start

consists of three steps.

Step 1: Define Candidate Interventions Based on a
Variety of Targeting Policies

Each intervention is defined by a targeting policy for how

to select from all patients in the trial, K patients to poten-

tially receive treatment recommendations each week, the

value of K, and the number of weeks (W) to run the inter-

vention. The following targeting polices were considered:

� Random: K patients are randomly selected.
� Lowest time in range: the K patients with the lowest

time in range in the previous week.
� Most likely to be contacted: the K patients with the

highest probability of contact based on their data from

that week, estimated using a random forest model

trained on year 1 data and predicting contact by the

clinic in a given week using continuous glucose

monitoring metrics from the previous week. These

metrics are the proportion of time in range; the

proportion of glucose readings in hypoglycemia

(54–70mg/dl), clinically significant hypoglycemia

(<54mg/dl), hyperglycemia (180–250mg/dl), and

extreme hyperglycemia (>250mg/dl).28

� Largest expected effect: the K patients with the largest

expected treatment effect (increase in time in range in

the subsequent week). This is defined as the product of

the probability of the patient being contacted and the

expected change in time in range conditional on the

patient being contacted, as estimated by, respectively,

the random forest model described earlier and a

patient-level mean effect in year 1 data with empirical

Bayes adjustments to account for different sample

sizes and variances across patients.
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Step 2: Simulate Microrandomized Trials of the
Interventions

We use year 2 data, when patients were eligible for review

only 1 out of every 4weeks, to simulate microrandomized

trials of each intervention. For this step, a variety of meth-

ods may be used from the active fields of statistical causal

inference and policy evaluation.29,30 Our process is analo-

gous to emulating target trials of the interventions using

their associated candidate targeting policies.31 We modeled

the distributions of outcomes for patients reviewed or not

reviewed with the potential outcomes framework (details

are provided in Section S1 of the Supplementary Appendix).

The simulated microrandomized trials consist of weekly

applications of the dynamic intervention to select K

patients, as specified by the targeting policy, from the 200

patients in the trial. Half of these patients are randomly

selected for inclusion in the treatment group and the other

half for inclusion in the control group (Fig. 1). For each

intervention, a trial is simulated, and its average treatment

effect is estimated as follows:

Step 1. Sample, with replacement, 100 patient-weeks

that were reviewed and 100 patient-weeks that were

not reviewed.

Step 2. From the sample of 200 patient-weeks, subsample

the top K/2 reviewed patient-weeks and K/2 unreviewed

patient-weeks according to the targeting policy.

Step 3. Repeat steps #1 and #2 W times to simulate the

full length of the trial. This results in W*K patient-week

observations, one half of which were randomly selected

for review.

Step 4. Estimate the impact of the intervention on

week-to-week changes in time in range with a linear

regression of the change in time in range as a

function of an indicator variable reviewed (whether a

patient was reviewed). The average treatment effect

is estimated as the coefficient of reviewed, and the P

value of the coefficient is recorded.

For each intervention, the simulation is repeated 500

times, and the estimated average treatment effect and the

P value of each trial are kept.

To test the sensitivity of the results to our assumption that

the observations for each patient-week are independent,

we performed a simulation respecting the chronological

order of observations for each patient. This simulation

was done on a transformed version of the original data

with synthetic week IDs generated chronologically to

achieve a minimum sample size of reviewed and nonre-

viewed patients per week (results are presented in Section

S2 of the Supplementary Appendix). To test whether the

sampling process introduced bias by targeting only a sub-

set of patients, we repeated the simulations with the

review indicators randomly permuted (results are pre-

sented in Section S3 of the Supplementary Appendix).

Step 3: Choose the Intervention to Evaluate in a
Randomized Trial and the Size and Duration of
the Trial

To summarize the results from the simulated trials of each

intervention, we estimate the average treatment effect as

the mean estimated average treatment effect across 500

simulations with the same policy and values of K and W.

The PPOS is defined as the proportion of the simulated

trials with a P value less than 0.05.

The summarized results are then used to identify the

intervention with the best performance given the practical

constraints of the expected subsequent trial; for example,

the duration of the trial and the number of patients to

receive treatment recommendations each period. A micro-

randomized trial or standard RCT may be used to evaluate

the treatment effect of the chosen intervention.

Outcome

Behavior Change

Contact

Treated
patient-weeks

(shown to clinician)

Control
patient-weeks

(not shown to clinician)

50% 50%

No contact

Targeting policy

Randomization

Eligible
patient-weeks

Targeted
patient-weeks

R

Figure 1. Simulated Microrandomized Trial
Design.
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Results
Ninety-five patients met the inclusion criteria. The year 1

training data contained 9934 patient-weeks, 3222 of which

had a remote monitoring message sent to the patient; the

year 2 testing data contained 4648 patient-weeks, 1106 of

which were reviewed and 648 of which had a message

sent to the patient as part of the remote monitoring.

Of the total 14,582 participant-weeks, 3870 resulted in a

message being sent to a patient. There were 304,000 sim-

ulated microrandomized trials, 500 each of each permuta-

tion of policies, numbers of patients randomly assigned,

and numbers of weeks considered.

Across the interventions evaluated, the number of patients

selected for the intervention required to exceed a 90%

PPOS at a significance level of 0.05 in a 52-week trial was

15 for the Largest Expected Effect, 90 for Lowest Time in

Range, 100 for Most Likely to Be Contacted, and 105 for

Random. In a 26-week trial, the number of patients

selected for the intervention was 90 for the Largest

Expected Effect, 135 for Most Likely to Be Contacted, 115

for Lowest Time in Range, and 190 for Random (Fig. 2).

For all interventions, the maximum PPOS is attained in

trials with all 200 patients targeted with treatment recom-

mendations each week. The difference between the PPOS

for a 52-week trial targeting 200 patients weekly and one

targeting 15 patients weekly is 9% for the Largest Expected

Effect, 100% for Lowest Time in Range, 25% for Most

Likely to Be Contacted, and 74% for Random. The average

treatment effect does not change with the number of

patients targeted with Random selection, peaks at 100

patients for Lowest Time in Range, and decreases with the

number of patients targeted for Most Likely to Be Con-

tacted and Largest Expected Effect (Fig. 3). The main

results do not differ significantly from the results of more

complex simulations that do not assume independence

between patient-weeks (results are presented in the Sup-

plementary Appendix).

Discussion
We introduced Smart Start, a method to design an adaptive

digital health intervention by simulating variants of the

intervention before choosing one to evaluate in a random-

ized clinical trial. We applied it to 14,582 patient-weeks of

data from a pilot study of remote patient monitoring for

patients with type 1 diabetes using a continuous glucose

monitoring system. The adaptive intervention (targeting

patients based on the largest expected effect) had higher

average treatment effects than the historical intervention

(targeting based on lowest time in range), requiring 50%

fewer patients selected for the intervention in a 26-week

trial and 85% fewer patients selected for the intervention in

a 52-week trial to achieve a PPOS of 90% at a significance

level of 0.05. Smart Start uses historical patient data to esti-

mate average treatment effects for the design of adaptive

interventions that yield greater average treatment effects

and greater PPOS than traditional approaches. The

improvements in PPOS result from targeting patients in

weeks when they are more likely to respond to treatment.

In appropriate digital health interventions with pilot data

available, using Smart Start may allow for the development

of an optimized dynamic intervention and make a random-

ized clinical trial more likely to succeed.

Existing adaptive trial designs (e.g., adaptive randomization)

offer alternative approaches to comparing the effects of vari-

ous targeting policies. If designed carefully, an adaptive trial

can identify a good policy and correctly estimate its long-

term effect on patient outcomes. However, to test multiple

policies, an adaptive trial will require enough participants

receiving care under each policy over a sufficiently long

period of time.32,33 Smart Start avoids having to run an adap-

tive trial comparing many policies by leveraging variation in

pilot data to identify a single good intervention policy for a

subsequent confirmatory standard clinical trial.

It is common in digital health interventions for only a sub-

set of patients to receive treatment recommendations at

each potential opportunity.20,22,25 Limits on care provider

time may impose limits on how many patients receive an

intervention in any given period. A desire to avoid over-

burdening patients may also lead to limitations on how

often any one patient receives an intervention. The Larg-

est Expected Effect policy developed is particularly well

suited for interventions in which such constraints are

more stringent; its average treatment effect and PPOS

improve over those of a random selection policy when the

number of patients targeted each week is low.

The candidate policies examined in our example do not con-

sider all indicators that are relevant to the intervention. We

evaluated simple targeting policies for illustrative purposes,

and some patient populations could be left out of the study

unintentionally. Additional work is necessary to identify

alternative interventions effective for patients not targeted
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with the primary interventions. If the patients who are not

expected to benefit significantly from a particular interven-

tion benefit from a complementary intervention, the effect

of the new treatment regimen may be greater. It may be

unethical not to provide alternative treatment to patients

who are less responsive to remote interventions. Future

work includes plans to incorporate equity constraints into

the adaptive policy we will apply in practice to make sure

we do not perpetuate existing inequities in how clinical

resources are allocated.34 One potential solution is to add

parity constraints across patient characteristics.35 Future

work will incorporate additional metrics from wearable

technology (e.g., wearable activity trackers) that will provide

more information on patient outcomes.36

Our limitations include working with data from a single

clinic. Our results are not meant to estimate any causal

effects of an intervention. They estimate the effectiveness of

smarter targeting of a dynamic intervention for a subset of a

patient population with long, rich data trajectories. This use

case will continue to grow in popularity as more clinics

adopt the use of algorithm-enabled care and glucose moni-

toring for people with type 1 and type 2 diabetes, as well as

with other remote monitors for other chronic conditions.

The main results are from simulations that assume indepen-

dence between patient-weeks, but these do not differ signifi-

cantly from the results of a more complex simulation that

does not assume independence. Fully accounting for tempo-

ral variation in patient responses related to past engagement

with recommendations requires running a clinical trial to

measure long-term outcomes (last step of Smart Start).

Because we examine the scenario in which the clinical

trial follows a pilot study of the same population, we do
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Figure 2. Estimated PPOS by Targeting Policy (Panel Titles), Number of Patients Targeted Each Week
(x Axis), Number of Weeks to Run the Trial (Line Colors), and Number of Patients Needed to Achieve

90% PPOS by Policy (Table).
The horizontal dashed lines indicate 90% PPOS. PPOS denotes predicted probability of success; and TIR, time in range.
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not explicitly quantify the potential of Smart Start to

reduce the total number of patients required for a clinical

trial or design a policy for an entirely new population. Our

results suggest that for trials with fewer patients or new

patients, policies designed with Smart Start are likely to

achieve a higher PPOS than random policies. This should

be explored further in subsequent research.

Smart Start may be used to design and evaluate adaptive

policies for digital health interventions based on historical

pilot data with some randomness (e.g., from capacity con-

straints). Smart Start uses a patient-specific and context-

dependent likelihood to benefit from an intervention

to identify interventions with improved average treate-

ment effects that can achieve a desired predicted probabil-

ity of success while targeting fewer patients. Improving

the design and evaluation of adaptive digital health inter-

ventions may improve the impact and rigorous evaluation

of digital health interventions.
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