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Abstract

BACKGROUND Digital health interventions may be optimized before evaluation in a ran-
domized clinical trial. Although many digital health interventions are deployed in pilot
studies, the data collected are rarely used to refine the intervention and the subsequent
clinical trials.

METHODS We leverage natural variation in patients eligible for a digital health interven-
tion in a remote patient-monitoring pilot study to design and compare interventions for a
subsequent randomized clinical trial.

RESULTS Our approach leverages patient heterogeneity to identify an intervention with

twice the estimated effect size of an unoptimized intervention.

CONCLUSIONS Optimizing an intervention and clinical trial based on pilot data may
improve efficacy and increase the probability of success. (Funded by the National Insti-
tutes of Health and others; ClinicalTrials.gov number, NCT04336969.)

Introduction

he use of digital health interventions (e.g., remote patient monitoring) is growing

in clinical practice and as an area of research.' Most digital health interventions

are deployed without evaluation in a randomized controlled trial (RCT).*® Of
the digital health interventions evaluated in an RCT, many are used in a pilot study before
the RCT, but, in most cases, the data from the pilot study are not used to optimize the
intervention nor the RCT. When interventions are deployed without being optimized, they
may fail to improve patient outcomes sufficiently to warrant widespread use or fail to
produce significant results in an RCT. A relatively short RCT of an efficacious multiyear The author affliations are listed
digital health intervention for the management of a chronic condition may fail if the inter- at the end of the article.
vention is not well targeted or optimized, leading to low effect sizes and insufficient statis- )

. . . . . Dr. Scheinker can be contacted at

tical power. Underpowered randomized trials are wasteful, can be misleading, and may dscheink@stanford.cdu or at 475
therefore be considered unethical.”'” As the use and impact of wearable sensors and Via Ortega, Stanford, CA 94305.
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digital health interventions increase, so does the need for
improved methods and practices for their evaluation and

optimization.'""”

Just-in-time adaptive interventions are designed to provide
care at the right time based on estimates of each patient’s
changing internal state and external context. New methods
are emerging for the design and evaluation of just-in-time
adaptive interventions. These include the multiphase opti-
mization strategy, sequential multiple assignment random-
ized trials, and microrandomized trials.””'® The multiphase
optimization strategy seeks to optimize an intervention in a
refining phase based on data from a screening phase before
evaluation in a confirming phase. A sequential multiple
assignment randomized trial, based on an optimization trial,
may be conducted to estimate the short-term effects of com-
ponents of a digital health intervention and optimize its
design.'” In a microrandomized trial, each participant is ran-
domly selected to receive or not receive a treatment recom-
mendation numerous times over the course of the trial. A
microrandomized clinical trial may be used to design an
adaptive intervention or as a substitute for a traditional RCT
when the primary outcome of interest is closely associated
with the short-term effects of individual components of the
digital health intervention.

We introduce Smart Start, a three-step method for using
retrospective data from a pilot study to design an adaptive
health intervention and a subsequent clinical trial. The
first step is to define candidate variants of the digital
health intervention based on different — potentially adap-
tive — policies for targeting patients to receive care. The
second step is to simulate microrandomized trials of each
intervention and estimate the average treatment effect in
each simulated trial. In this step, trials of varying size
(number of patients) and duration are simulated, and the
predicted probability of success (PPOS) is estimated. The
final step is to design a standard RCT or a microrando-
mized trial by choosing the intervention, study size, and
study duration.

Smart Start may be used for remote digital health inter-
ventions in which: patients wear sensors regularly trans-
mitting data; at regular intervals (e.g., weekly), clinicians
or a computer algorithm (e.g., mobile application) review
the data and potentially send recommendations to the
patient; and short-term observable changes in the
patient’s data can be used to estimate the impact of
the recommendations. In summary, Smart Start requires
data from a pilot of the remote intervention with a

NEJM EVIDENCE

sufficient number of patients, interactions, and observa-
tions. It also requires structured variation in the set of
patients who are eligible to receive a recommendation at
each decision interval (e.g., weekly). This variation must
be sufficient to support simulation and evaluation of the
effect of different targeting policies. Such variation is com-
mon when interventions are based on patient behavior
and characteristics.'”'” One form of structured variation
arises from constraints on how many patients the care
team has the capacity to contact in each interval of the
study (e.g., weekly).”” Another form of structured varia-
tion arises from constraints on how often to contact or
prompt a patient.”"”” As the use of sensor-based digital
health interventions continues to increase, growing con-
straints on provider availability and patient willingness to
engage will expand the interventions to which Smart Start
is applicable.

We illustrate Smart Start with data collected from indivi-
duals with type 1 diabetes using a continuous glucose
monitoring system.”””* In the study, different sets of
patients were eligible each week to receive a recommen-
dation from the clinicians reviewing remote monitoring
data.” The primary outcome, as is common in the study
of interventions for diabetes, was time in range, defined as
the proportion of glucose readings between 70 and
180 mg/dl.”»*>*" The variation in patient eligibility and
the short-term effects of interventions on time in range
made the study well suited for Smart Start. Incorporating
this kind of variation in pilot studies of digital health inter-
ventions may facilitate downstream evaluation of various
targeting policies with Smart Start.

Methods

The data used in this work are from the 4T (Teamwork,
Targets, Technology, and Tight Control in Newly Diag-
nosed Pediatric T1D) study (ClinicalTrials.gov number,
NCT03968055), which recruited youth with type 1 diabe-
tes to start continuous glucose monitoring within 1 month
of diabetes diagnosis and participate in remote monitoring
enabled by algorithmic analysis of patient continuous glu-
cose monitoring data.”
Board approved this study, and written informed consent
was obtained. Every week in the first year after diagnosis,
continuous glucose monitoring data were reviewed by cer-
tified diabetes care and education specialists who decided

The Stanford Institutional Review
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whether insulin dose adjustments or other changes to glu-
cose management were necessary and contacted patients
using secure messaging within the electronic health
record. After the first year, patients who continued remote
monitoring were reviewed by a clinician 1 out of every
4 weeks.

Our data set combines continuous glucose monitor read-
ings providing up to 288 glucose values daily, messages
sent to patients through the electronic health record, and
patient information from forms completed by study parti-
cipants. Included are all study participants who received
remote monitoring in the second year after their type 1
diabetes diagnosis, had at least 26 weeks of continuous
glucose monitoring data, and received a message based
on remote monitoring in their first year. During their first
year in the program, each patient’s data were included for
review by care providers every week. During their second
year in the program, their data were included for review
1week out of every 4weeks. Each week, data for all
patients to be reviewed were shown to a certified diabetes
care and education specialist. Patients were prioritized for
review according to various glucose metrics: time in range,
other aggregated continuous glucose monitoring data, and
criteria derived from consensus targets such as percent
time below and above range, as well as a personalized
metric defined in terms of the patient’s change in time in
range.”® After reviewing each patient’s data, the certified
diabetes care and education specialist decided, based on
clinical criteria and judgment, whether to provide care
guidance through an asynchronous message to the patient
or the patient’s parent/caregiver. Thus, to receive a mes-
sage regarding their glucose data, a patient must first have
been selected for review and then the clinician reviewing
the data must have decided the data warranted a message.
Our goal was to understand which policies for targeting,
or selecting, patients for review are most likely to result in
a favorable effect being observed in a subsequent clinical
trial. The data were split for each patient into training and
testing. The training data are each patient’s first year in
the program (year 1) and the testing data are each
patient’s second year in the program (year 2).

We designed a dynamic intervention based on a targeting
policy and a microrandomized trial of the intervention
in which the unit of observation is a patient-week.
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Each week, a targeting policy determines whether a
patient is eligible to have their data shown to a certified
diabetes care and education specialist for remote review
and potential contact. The patient-weeks targeted are ran-
domly assigned in the microrandomized trials into a treat-
ment and control group. For each patient-week in the
treatment group, a provider will review their data and
potentially contact the patient based on the same criteria
as in the pilot study. Patient-weeks in the control group
and those that were not targeted according to the policy
are not eligible for data review. The effect of each interven-
tion is estimated by comparing the outcomes of patient-
weeks in the treatment and control groups. Smart Start
consists of three steps.

Step 1: Define Candidate Interventions Based on a
Variety of Targeting Policies

Each intervention is defined by a targeting policy for how
to select from all patients in the trial, K patients to poten-
tially receive treatment recommendations each week, the
value of K, and the number of weeks (W) to run the inter-
vention. The following targeting polices were considered:

» Random: K patients are randomly selected.

* Lowest time in range: the K patients with the lowest
time in range in the previous week.

* Most likely to be contacted: the K patients with the
highest probability of contact based on their data from
that week, estimated using a random forest model
trained on year 1 data and predicting contact by the
clinic in a given week using continuous glucose
monitoring metrics from the previous week. These
metrics are the proportion of time in range; the
proportion of glucose readings in hypoglycemia
(54-70 mg/dl), clinically significant hypoglycemia
(<54 mg/dl), hyperglycemia (180-250mg/dl), and
extreme hyperglycemia (>250 mg/dl).”

* Largest expected effect: the K patients with the largest
expected treatment effect (increase in time in range in
the subsequent week). This is defined as the product of
the probability of the patient being contacted and the
expected change in time in range conditional on the
patient being contacted, as estimated by, respectively,
the random forest model described earlier and a
patient-level mean effect in year 1 data with empirical
Bayes adjustments to account for different sample
sizes and variances across patients.
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Step 2: Simulate Microvandomized Trials of the
Interventions

We use year 2 data, when patients were eligible for review
only 1 out of every 4 weeks, to simulate microrandomized
trials of each intervention. For this step, a variety of meth-
ods may be used from the active fields of statistical causal
inference and policy evaluation.”””” Our process is analo-
gous to emulating target trials of the interventions using
their associated candidate targeting policies.”’ We modeled
the distributions of outcomes for patients reviewed or not
reviewed with the potential outcomes framework (details
are provided in Section S1 of the Supplementary Appendix).

The simulated microrandomized trials consist of weekly
applications of the dynamic intervention to select K
patients, as specified by the targeting policy, from the 200
patients in the trial. Half of these patients are randomly
selected for inclusion in the treatment group and the other
half for inclusion in the control group (Fig. 1). For each
intervention, a trial is simulated, and its a@e treatment
effect is estimated as follows:

Step 1. Sample, with replacement, 100 patient-weeks
that were reviewed and 100 patient-weeks that were
not reviewed.

Eligible

. —_—
patient-weeks

Targeting policy

+_l

Targeted
patient-weeks

i

R Randomization
so% | s0%
Control Treated

patient-weeks
(not shown to clinician)

L — |

No contact Contact

i Behavior Change 1

___________ e

Qutcome

patient-weeks
(shown to clinician)

Figure 1. Simulated Microrandomized Trial
Design.
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Step 2. From the sample of 200 patient-weeks, subsample
the top K/2 reviewed patient-weeks and K/2 unreviewed
patient-weeks according to the targeting policy.

Step 3. Repeat steps #1 and #2 W times to simulate the
full length of the trial. This results in W*K patient-week
observations, one half of which were randomly selected
for review.

Step 4. Estimate the impact of the intervention on
week-to-week changes in time in range with a linear
regression of the change in time in range as a
function of an indicator variable reviewed (whether a
patient was reviewed). The average treatment effect
is estimated as the coefficient of reviewed, and the P
value of the coefficient is recorded.

For each intervention, the simulation is repeated 500
times, and the estimated average treatment effect and the
P value of each trial are kept.

To test the sensitivity of the results to our assumption that
the observations for each patient-week are independent,
we performed a simulation respecting the chronological
order of observations for each patient. This simulation
was done on a transformed version of the original data
with synthetic week IDs generated chronologically to
achieve a minimum sample size of reviewed and nonre-
viewed patients per week (results are presented in Section
S2 of the Supplementary Appendix). To test whether the
sampling process introduced bias by targeting only a sub-
set of patients, we repeated the simulations with the
review indicators randomly permuted (results are pre-
sented in Section S3 of the Supplementary Appendix).

Step 3: Choose the Intervention to Evaluate in a
Randomized Trial and the Size and Duration of
the Trial

To summarize the results from the simulated trials of each
intervention, we estimate the average treatment effect as
the mean estimated average treatment effect across 500
simulations with the same policy and values of K and W.
The PPOS is defined as the proportion of the simulated
trials with a P value less than 0.05.

The summarized results are then used to identify the
intervention with the best performance given the practical
constraints of the expected subsequent trial; for example,
the duration of the trial and the number of patients to
receive treatment recommendations each period. A micro-
randomized trial or standard RCT may be used to evaluate
the treatment effect of the chosen intervention.
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Results

Ninety-five patients met the inclusion criteria. The year 1
training data contained 9934 patient-weeks, 3222 of which
had a remote monitoring message sent to the patient; the
year 2 testing data contained 4648 patient-weeks, 1106 of
which were reviewed and 648 of which had a message
sent to the patient as part of the remote monitoring.
Of the total 14,582 participant-weeks, 3870 resulted in a
message being sent to a patient. There were 304,000 sim-
ulated microrandomized trials, 500 each of each permuta-
tion of policies, numbers of patients randomly assigned,
and numbers of weeks considered.

Across the interventions evaluated, the number of patients
selected for the intervention required to exceed a 90%
PPOS at a significance level of 0.05 in a 52-week trial was
15 for the Largest Expected Effect, 90 for Lowest Time in
Range, 100 for Most Likely to Be Contacted, and 105 for
Random. In a 26-week trial, the number of patients
selected for the intervention was 90 for the Largest
Expected Effect, 135 for Most Likely to Be Contacted, 115
for Lowest Time in Range, and 190 for Random (Fig. 2).

For all interventions, the maximum PPOS is attained in
trials with all 200 patients targeted with treatment recom-
mendations each week. The difference between the PPOS
for a 52-week trial targeting 200 patients weekly and one
targeting 15 patients weekly is 9% for the Largest Expected
Effect, 100% for Lowest Time in Range, 25% for Most
Likely to Be Contacted, and 74% for Random. The average
treatment effect does not change with the number of
patients targeted with Random selection, peaks at 100
patients for Lowest Time in Range, and decreases with the
number of patients targeted for Most Likely to Be Con-
tacted and Largest Expected Effect (Fig. 3). The main
results do not differ significantly from the results of more
complex simulations that do not assume independence
between patient-weeks (results are presented in the Sup-
plementary Appendix).

Discussion

We introduced Smart Start, a method to design an adaptive
digital health intervention by simulating variants of the
intervention before choosing one to evaluate in a random-
ized clinical trial. We applied it to 14,582 patient-weeks of
data from a pilot study of remote patient monitoring for
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patients with type 1 diabetes using a continuous glucose
monitoring system. The adaptive intervention (targeting
patients based on the largest expected effect) had higher
average treatment effects than the historical intervention
(targeting based on lowest time in range), requiring 50%
fewer patients selected for the intervention in a 26-week
trial and 85% fewer patients selected for the intervention in
a 52-week trial to achieve a PPOS of 90% at a significance
level of 0.05. Smart Start uses historical patient data to esti-
mate average treatment effects for the design of adaptive
interventions that yield greater average treatment effects
and greater PPOS than traditional approaches. The
improvements in PPOS result from targeting patients in
weeks when they are more likely to respond to treatment.
In appropriate digital health interventions with pilot data
available, using Smart Start may allow for the development
of an optimized dynamic intervention and make a random-
ized clinical trial more likely to succeed.

Existing adaptive trial designs (e.g., adaptive randomization)
offer alternative approaches to comparing the effects of vari-
ous targeting policies. If designed carefully, an adaptive trial
can identify a good policy and correctly estimate its long-
term effect on patient outcomes. However, to test multiple
policies, an adaptive trial will require enough participants
receiving care under each policy over a sufficiently long
period of time.”>** Smart Start avoids having to run an adap-
tive trial comparing many policies by leveraging variation in
pilot data to identify a single good intervention policy for a
subsequent confirmatory standard clinical trial.

It is common in digital health interventions for only a sub-
set of patients to receive treatment recommendations at
each potential opportunity.””*>*” Limits on care provider
time may impose limits on how many patients receive an
intervention in any given period. A desire to avoid over-
burdening patients may also lead to limitations on how
often any one patient receives an intervention. The Larg-
est Expected Effect policy developed is particularly well
suited for interventions in which such constraints are
more stringent; its average treatment effect and PPOS
improve over those of a random selection policy when the
number of patients targeted each week is low.

The candidate policies examined in our example do not con-
sider all indicators that are relevant to the intervention. We
evaluated simple targeting policies for illustrative purposes,
and some patient populations could be left out of the study
unintentionally. Additional work is necessary to identify
alternative interventions effective for patients not targeted
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Lowest TIR
1.00-

0.754

0.504

0.25
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N Patients Targeted Weekly
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0.50+
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—©-52

N Patients Needed for 90% PPOS in a

Targeting Policy 26-Week Trial | 52-Week Trial
Random 190 105
Lowest TIR 115 90
Most likely to be contacted 135 90
Largest expected effect 90 15

Figure 2. Estimated PPOS by Targeting Policy (Panel Titles), Number of Patients Targeted Each Week
(x Axis), Number of Weeks to Run the Trial (Line Colors), and Number of Patients Needed to Achieve

90% PPOS by Policy (Table).
The horizontal dashed lines indicate 90% PPOS. PPOS denotes predicted probability of success; and TIR, time in range.

with the primary interventions. If the patients who are not
expected to benefit significantly from a particular interven-
tion benefit from a complementary intervention, the effect
of the new treatment regimen may be greater. It may be
unethical not to provide alternative treatment to patients
who are less responsive to remote interventions. Future
work includes plans to incorporate equity constraints into
the adaptive policy we will apply in practice to make sure
we do not perpetuate existing inequities in how clinical
resources are allocated.”* One potential solution is to add
parity constraints across patient characteristics.” Future
work will incorporate additional metrics from wearable
technology (e.g., wearable activity trackers) that will provide
more information on patient outcomes.”®

Our limitations include working with data from a single
clinic. Our results are not meant to estimate any causal
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effects of an intervention. They estimate the effectiveness of
smarter targeting of a dynamic intervention for a subset of a
patient population with long, rich data trajectories. This use
case will continue to grow in popularity as more clinics
adopt the use of algorithm-enabled care and glucose moni-
toring for people with type 1 and type 2 diabetes, as well as
with other remote monitors for other chronic conditions.
The main results are from simulations that assume indepen-
dence between patient-weeks, but these do not differ signifi-
cantly from the results of a more complex simulation that
does not assume independence. Fully accounting for tempo-
ral variation in patient responses related to past engagement
with recommendations requires running a clinical trial to
measure long-term outcomes (last step of Smart Start).

Because we examine the scenario in which the clinical
trial follows a pilot study of the same population, we do
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Figure 3. Estimated ATEs by Targeting Policy (Panel Titles) and the Number of Patients Targeted
Each Week (x Axis).

The gray areas in the first two rows indicate the 95% confidence intervals around the estimated ATEs of the 52-week trials. ATE denotes

average treatment effect; and TIR, time in range.

not explicitly quantify the potential of Smart Start to
reduce the total number of patients required for a clinical
trial or design a policy for an entirely new population. Our
results suggest that for trials with fewer patients or new
patients, policies designed with Smart Start are likely to
achieve a higher PPOS than random policies. This should
be explored further in subsequent research.

Smart Start may be used to design and evaluate adaptive
policies for digital health interventions based on historical
pilot data with some randomness (e.g., from capacity con-
straints). Smart Start uses a patient-specific and context-
dependent likelihood to benefit from an intervention
to identify interventions with improved average treate-
ment effects that can achieve a desired predicted probabil-
ity of success while targeting fewer patients. Improving
the design and evaluation of adaptive digital health inter-
ventions may improve the impact and rigorous evaluation
of digital health interventions.
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