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Abstract

Background: The Glycemia Risk Index (GRI) was developed in adults with diabetes and is a validated metric of quality of 

glycemia. Little is known about the relationship between GRI and type 1 diabetes (T1D) self-management habits, a validated 

assessment of youths’ engagement in habits associated with glycemic outcomes.

Method: We retrospectively examined the relationship between GRI and T1D self-management habits in youth with T1D 

who received care from a Midwest pediatric diabetes clinic network. The GRI was calculated using seven days of continuous 

glucose monitor (CGM) data, and T1D self-management habits were assessed ±seven days from the GRI score. A mixed-

effects Poisson regression model was used to evaluate the total number of habits youth engaged in with GRI, glycated 

hemoglobin A1c (HbA1c), age, race, ethnicity, and insurance type as fixed effects and participant ID as a random effect to 

account for multiple clinic visits per individual.

Results: The cohort included 1182 youth aged 2.5 to 18.0 years (mean = 13.8, SD = 3.5) comprising 50.8% male, 84.6% 

non-Hispanic White, and 64.8% commercial insurance users across a total of 6029 clinic visits. Glycemia Risk Index scores 

decreased as total number of habits performed increased, suggesting youth who performed more self-management habits 

achieved a higher quality of glycemia.

Conclusions: In youth using CGMs, GRI may serve as an easily obtainable metric to help identify youth with above target 

glycemia, and engagement/disengagement in the T1D self-management habits may inform clinicians with suitable interventions 

for improving glycemic outcomes.
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Introduction

Individuals with type 1 diabetes (T1D) increasingly report 

using continuous glucose monitors (CGMs) to track glyce-

mia in real time.1 Continuous glucose monitors offer insights 

into glycemia, or the time spent in target range as opposed to 

time spent above or below range, and optimal glycemia is 

associated with improved long-term outcomes.2 A variety 

of metrics may be used to describe glycemia, many of 

which involve multiple numbers or components to be eval-

uated wholistically. The American Diabetes Association 

endorses seven characteristics to describe glycemia referred 

to as the Ambulatory Glucose Profile.3 While these metrics 

provide a comprehensive overview of glycemia, clinicians 

and researchers have noted key drawbacks to the Ambulatory 

Glucose Profile metrics such as the difficulty in monitoring 

and creating care plans based on seven measures. These 

barriers have resulted in the development of new metrics to 

summarize glycemia.
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The Glycemia Risk Index (GRI) was developed based on 

330 clinicians’ rankings of 2-week CGM tracings from 225 

adults with diabetes.4 Tracings were ranked from most opti-

mal to least optimal glycemia, and analyses of rankings 

resulted in a composite metric comprised of weighted sums of 

time spent in very low-glucose hypoglycemia (<54 mg/dL; 

<3.0 mmol/L), low-glucose hypoglycemia (54 to <70 mg/

dL; 3.0-3.9 mmol/L), high-glucose hyperglycemia (>180-

250 mg/dL; >10.0-13.9 mmol/L), and very high-glucose 

hyperglycemia (>250 mg/dL; >13.9 mmol/L). The low 

component of the GRI—reflecting time spent in low-glucose 

hypoglycemia and very low-glucose hypoglycemia—was 

weighted more heavily than the high component of the GRI 

(i.e., time spent in high-glucose hyperglycemia and very 

high-glucose hyperglycemia). Low GRI values reflect more 

optimal quality of glycemia while high values indicate sub-

optimal quality of glycemia where quality of glycemia refers 

to the proportions of time spent in very low-glucose hypo-

glycemia, low-glucose hypoglycemia, high-glucose hyper-

glycemia, and very high-glucose hyperglycemia 

concentrations.4 Altogether, the GRI offers a condensed ver-

sion of some of the Ambulatory Glucose Profile metrics 

using at least one or two weeks of CGM data, increasing ease 

and usability in clinic as well as insights between clinic 

visits.

The GRI was developed in an adult population; however, 

patterns of glycemia, as reflected in metrics such as hemo-

globin A1c (HbA1c), are known to differ in adults versus 

children.5 Studies that have examined the GRI in youth with 

T1D showed that GRI scores differed between treatment 

modalities,6-14 so the GRI metric appears to be sensitive to 

changes in care when assessed as an outcome; however, it is 

unclear how the GRI relates to other indicators of glycemia. 

We aimed to examine how GRI values may relate to T1D 

self-management habits in youth using CGMs. Recently, Lee 

and colleagues developed a composite metric that summa-

rizes individuals’ engagement with six diabetes self-manage-

ment behaviors (called the “Six Habits”) that are associated 

with high quality glycemia.15 These “Six Habits” include the 

following: (1) using a CGM or checking blood glucose at 

least four times/day, (2) giving ≥three rapid-acting user-ini-

tiated insulin boluses per day, (3) using an insulin pump, (4) 

delivering user-initiated boluses prior to meals, (5) review-

ing glucose data between clinic visits, and (6) changing insu-

lin doses since the last diabetes clinic visit. Individuals that 

report consistent engagement with these behaviors show 

improved glycemia as evidenced by greater time spent in tar-

get range (70-180 mg/dL; 3.9-10.0 mmol/L) and lower 

HbA1c levels.15

We retrospectively analyzed electronic health record and 

diabetes data from youth with T1D using CGMs receiving 

care from a network of pediatric diabetes clinics in the 

Midwest USA. We analyzed the GRI as a predictor of the 

total number of habits engaged in a model that includes 

demographic variables and HbA1c. In this study, we also 

evaluated consumption of fruits and vegetables as a novel 

seventh habit, to assess whether self-reported consumption 

of a healthy diet may also impact the GRI. Altogether, we 

sought to examine the relationship between the GRI and 

T1D diabetes self-management habits to evaluate whether 

the GRI metric is sensitive to or reflective of engagement in 

the behaviors in children and young adults using CGMs. 

We hypothesized that lower GRI values would be associ-

ated with higher habit scores. The GRI metric may offer a 

lower-burden and more timely way to track glycemia at an 

individual and population health level. This may provide 

heath care providers and individuals with diabetes with 

insights between regularly scheduled clinic visits, possibly 

improving timely identification, monitoring, and interven-

tion to reduce dysglycemia and its short- and long-term 

complications.

Methods

Participants

Data were extracted from an electronic health record data-

base between December 2019 and November 2023 for 2844 

individuals receiving care from a network of pediatric diabe-

tes clinics in the Midwest USA. Continuous glucose monitor 

data were collected via API (application programming inter-

face) or flat file export and stored in a secured cloud storage 

account. Seven days of CGM data were used to calculate the 

GRI. To be included in the analysis, individuals had to meet 

the following criteria: (1) 7-day window of CGM data with 

≥50% of wear time (i.e., an individual’s CGM device 

recorded data for at least half of the total possible glucose 

readings in the window); (2) T1D duration ≥1 year; (3) age 

≤18 years; (4) HbA1c measurement ±21 days from the GRI 

calculation; (5) assessment of at least three self-management 

habits completed ±seven days from the GRI calculation. 

Individuals diagnosed with other types of diabetes (e.g., cys-

tic fibrosis-related diabetes) were excluded from this cohort.

Continuous glucose monitor wear time was calculated by 

dividing the total number of recorded glucose readings by 

the total number of possible readings based on the type of 

technology used. For CGM devices that measure glucose 

every 5 minutes, the total possible number of glucose read-

ings is 288 (or 2016 per week). For CGM devices that mea-

sure glucose every 15 minutes, the total possible number of 

glucose readings is 96 per day (or 672 per week). Type 1 

diabetes duration was calculated by subtracting the clinic 

encounter date from each individual’s documented T1D 

diagnosis date.

Figure 1 shows the population for the analysis. Individuals 

were excluded if they were diagnosed with other types of 

diabetes such as T2D or cystic fibrosis-related diabetes, 

resulting in 1182 eligible individuals with T1D with an 

age range of 2.5 to 18 years. There were a total of 6029 

observations. Clinical data were coded and collected in an 
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Institutional Review Board (IRB)-approved research data 

repository (IRB #11120355) that met the requirements for a 

waiver of written informed consent. This study followed the 

Strengthening the Reporting of Observational Studies in 

Epidemiology (STROBE) reporting guideline.16

Outcomes

The GRI was calculated according to the following 

equation:

GRI VLow Low VHigh High= × + × + × + ×( . ) ( . ) ( . ) ( . )3 0 2 4 1 6 0 8

where VLow represents time spent in very low-glucose 

hypoglycemia (<54 mg/dL; <3.0 mmol/L), low represents 

time spent in low-glucose hypoglycemia (54 to <70 mg/dL; 

3.0-3.9 mmol/L), High represents time spent in high-glucose 

hyperglycemia (>180 to 250 mg/dL; >10.0 to 13.9 mmol/L), 

and VHigh represents time spent in very high-glucose hyper-

glycemia (>250 mg/dL; >13.9 mmol/L). A GRI score was 

calculated for each seven-day window of CGM data where 

all inclusion criteria were met. Low GRI scores reflect opti-

mal quality of glycemia while high GRI scores reflect subop-

timal quality of glycemia. Multiple observations per 

individual were included when data were available and all 

inclusion criteria were met.

For the self-management habits, each habit was coded as 

1 if the individual engaged with the habit and 0 if the indi-

vidual did not engage with the habit. The “Six Habits” were 

assessed using the same methodology as that described by 

Lee et al’s15 original report. Briefly, performance of Habits 

1-3 was determined based on clinicians’ assessments of each 

individual’s 14-day diabetes device(s) download(s) shared 

with the clinic. For Habits 4 to 6 (and in cases where device 

data were not available), habit performance was assessed 

through self-report (or through proxy-report by a parent). 

During clinic visits, diabetes educators assessed performance 

of the seventh (novel) habit by documenting a “yes” or “no” 

response after asking whether the family engaged in eating a 

healthy diet. In general, proxy-reporting by parents was used 

to answer this question; however, older youth who generally 

managed their own diabetes care could also answer this 

question. A total habit score was calculated by adding 

together the number of habits performed by each person at a 

clinic visit. An individual who performed all seven habits 

had a total habit score of 7. Because all individuals included 

in the analysis used a CGM device by definition they were 

classified as performing Habit 1 (checking blood glucose at 

least four times/day or use of a CGM), so all individuals had 

a minimum score of 1 for the total habit score.

Statistical Analysis

Analysis was conducted in R (Version 4.1.2-1.2004.0).17 A 

mixed-effects Poisson regression model examined how GRI 

associated with total habit scores. Glycemia Risk Index, age, 

race, ethnicity, insurance type, and HbA1c were entered as 

fixed effects, and participant ID was entered as a random 

effect to account for multiple observations per individual. 

Hemoglobin A1c was included as a covariate in the model 

because we were interested in evaluating GRI’s predictive 

potential above and beyond HbA1c. Categorical variables 

(race, ethnicity, insurance type) were encoded using effect 

coding, and continuous variables (age, HbA1c, GRI) were 

mean-centered. Race was condensed into a three-level cate-

gorical variable (White, Black, or African American, and 

Other [American Indian or Alaska Native, Asian, Hispanic, 

Multiracial, Declined, Other]). Ethnicity was condensed into 

a two-level categorical variable as well (non-Hispanic/non-

Latino/Declined and Hispanic/Latino). Insurance type was 

Figure 1. Cohort identification flowchart.
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condensed into a two-level categorical variable (commercial 

or public/self-pay). We conducted two sensitivity analyses to 

evaluate the impact of increased CGM wear time and insur-

ance type grouping on the relationships observed between 

GRI and habit engagement (Supplemental Tables 1 and 2). 

First, we assessed the impact on GRI and habit engagement 

when the CGM wear time threshold was increased to ≥70% 

(Supplemental Table 1), based on the recommendations of 

previous studies of CGM wear time thresholds.18-20 Then, we 

assessed the impact on GRI and habit engagement when 

individuals who used “self-pay” as their primary insurance 

type were not included in the model, leaving only individuals 

who used commercial or public insurance types (Supplemental 

Table 2). The proportion of individuals who were self-pay 

was relatively small, so the sensitivity analysis examined the 

impact of grouping this insurance payment type with public 

insurance.

Results

Demographic characteristics of our cohort (N = 1182) are 

reported in Table 1. The cohort included 581 females and 601 

males with T1D (mean age [SD], 13.8 [3.5] years). There 

were a mean [SD] of 5.1 [3.8] observations per person and a 

median [IQR] of 4.0 [5.0] observations per person. The num-

ber of observations ranged from 1 to 22 observations per 

individual included in the analysis. Table 2 contains mean 

and standard deviation values of the total habit score, the 

GRI, the GRI high component, the GRI low component, and 

HbA1c across all observations used in the analysis. Few 

individuals were engaged in all seven habits. Based on the 

inclusion criteria, the minimum possible total habit score 

was 1 because all individuals used CGM devices satisfying 

the criterion for Habit 1, but we found that the lowest total 

habit score was 2, indicating that all individuals engaged in 

at least one other habit in addition to Habit 1. Table 3 shows 

individual habit engagement and the proportion of observa-

tions where the individual was engaged in the habit to obser-

vations where the individual was not engaged in the habit or 

no response was recorded. The proportion of engagement to 

disengagement/no response was higher for Habits 1-4 than 

Habits 5 to 7, suggesting individuals were less likely to 

engage in reviewing glucose data between clinic visits, 

changing insulin doses between clinic visits, and consuming 

a healthy diet.

There was a significant main effect of HbA1c (z = −2.50, 

p = .01). Hemoglobin A1c decreased as habit scores 

increased (Figure 2). In addition, GRI was a significant pre-

dictor of habit scores (z = −2.65, p = .01). As the total habit 

score increased, the GRI score decreased. Individuals who 

had optimal quality of glycemia as indicated by a lower GRI 

score performed more T1D self-management habits, which 

was consistent with our hypothesis (Figure 3). Altogether, 

the GRI was predictive of the total habit scores when included 

in a model with other covariates (Table 4). Sensitivity analy-

ses indicated that GRI remained an independent predictor of 

the number of self-management habits performed when the 

CGM wear time threshold was increased to ≥70%, as well as 

when individuals whose primary insurance type was “self-

pay” were dropped from the model (Supplemental Tables 1 

and 2).

Discussion

In a cohort of youth with T1D who used CGMs, the GRI 

decreased as the total number of habits performed increased, 

suggesting that youth who performed more T1D self-man-

agement habits had a higher quality of glycemia. Likewise, 

HbA1c decreased as the total number of habits performed 

increased. We found that few individuals were engaged in all 

seven habits, but the lowest total habit score was 2, suggest-

ing youth with T1D engaged in at least one other habit in 

addition to Habit 1 (checking blood glucose at least 4 times/

day or using a CGM device). Habits 1 to 4 had higher rates 

of engagement compared to Habits 5 to 7, meaning fewer 

individuals reviewed glucose data between clinic visits, 

changed insulin doses between clinic visits, and consumed a 

healthy diet. The GRI scores were readily calculated from 

seven-day windows of CGM data, which is particularly 

Table 1. Participant Demographics.

Total, no. 1182

Male, n (%) 601 (50.8)

Mean age (SD) in years 13.8 (3.5)

Median age (IQR) in years 14.5 (5.3)

Mean T1D duration (SD) in years 6.0 (3.6)

Race, n (%)

 White 1000 (84.6)

 Black or African American 64 (5.4)

 Multi-racial 55 (4.7)

 Hispanic 39 (3.3)

 Declined 7 (0.6)

 Asian 6 (0.5)

 Other 6 (0.5)

 American Indian or Alaska Native 5 (0.4)

Ethnicity, n (%)

 Non-Hispanic/Non-Latino 1092 (92.4)

 Hispanic/Latino 83 (7.0)

 Declined 7 (0.6)

Insurance, n (%)

 Commercial 766 (64.8)

 Public 408 (34.5)

 Self-Pay 8 (0.7)

Technology use, n (%)

 CGM and advanced hybrid closed loop 834 (70.5)

 CGM and hybrid closed loop 216 (18.3)

 CGM and predictive low glucose suspend 113 (9.6)

 CGM and no insulin pump 19 (1.6)

Information was reported as of each individual’s most recent observation 

(when an individual had multiple observations).
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Table 2. Average Habit, GRI, and HbA1c Values.

Overall
Total Habit 
Score = 2

Total Habit 
Score = 3

Total Habit 
Score = 4

Total Habit 
Score = 5

Total Habit 
Score = 6

Total Habit 
Score = 7

Number of observations 6029 164 854 1923 2150 911 27

Mean total habit score (SD) 4.5 (1.0) 2 (0.0) 3 (0.0) 4 (0.0) 5 (0.0) 6 (0.0) 7 (0.0)

Mean GRI (SD) 52.8 (25.3) 65.9 (32.5) 60.7 (28.6) 55.1 (26.1) 49.2 (22.4) 47.0 (22.5) 50.8 (20.7)

Mean GRI high component 
(SD)

48.6 (26.2) 60.7 (33.8) 56.9 (29.7) 51.1 (27.0) 44.8 (23.3) 42.4 (22.8) 47.9 (21.7)

Mean GRI low component 
(SD)

4.2 (6.0) 5.24 (7.4) 3.8 (4.9) 4.0 (5.8) 4.4 (6.4) 4.7 (6.1) 2.9 (2.6)

Mean HbA1c (SD) 7.8 (1.3) 8.62 (2.4) 8.2 (1.6) 7.8 (1.3) 7.6 (1.2) 7.5 (1.1) 7.9 (1.1)

Note: The GRI is comprised of two parts, the high component (weighted sums of time spent in very high-glucose and high-glucose hyperglycemia) and the 

low component (weighted sums of time spent in very low-glucose and low-glucose hypoglycemia).

Table 3. Individual Habit Engagement.

Habit 1 Habit 2 Habit 3 Habit 4 Habit 5 Habit 6 Habit 7

Observations where individuals engaged in habit 6029 4481 5947 4932 1966 1434 2241

Observations where individuals were not engaged in 
habit

0 416 82 1047 1650 609 2299

Observations where no response was documented 0 1132 0 50 2413 3986 1489

Proportion of engaged observations to disengaged/no 
response observations

1 0.74 0.99 0.82 0.33 0.24 0.37

Note: Habit 1: checking blood glucose at least 4 times/day or use of a CGM; Habit 2: giving at least 3 rapid-acting insulin boluses per day; Habit 3: using an 

insulin pump; Habit 4: delivering boluses prior to meals; Habit 5: reviewing glucose data since the last clinic visit; Habit 6: changing insulin doses since the 

last clinic visit; Habit 7: consuming a healthy diet.

important given the increasing use of CGM devices.1,5 The 

GRI metric can also be dynamically updated every 7 to 14 

days, summarizing one to two weeks of CGM data in con-

trast to HbA1c which summarizes three to four months of 

glucose data but at a single time point. In sum, the GRI may 

serve as an easily obtainable metric to help identify youth 

using CGMs with above or below target glycemia, and 

engagement/disengagement in the T1D self-management 

habits may provide healthcare workers with candidate inter-

ventions for improving glycemic outcomes.

The present results support the original report of the 

T1D self-management habits assessment that demonstrated 

that engagement in the “Six Habits” was associated with 

higher time spent in target range and lower HbA1c levels,15 

which we also reported in this study. The original report of 

the T1D self-management habits showed that a small per-

centage of individuals performed all six habits and identi-

fied Habits 5 and 6 as areas for improvement.15 In this 

study, we also found that few individuals engaged in all 

seven habits, and engagement in Habits 5 to 7 was lower 

than Habits 1 to 4. We added a seventh habit for consuming 

a healthy diet to examine the relationships between diet, 

GRI, and HbA1c. While there were small differences  

in HbA1c for this novel habit, the GRI appears to be  

more sensitive, showing a greater differentiation between 

individuals who performed this habit and those that did not. 

The GRI may be more sensitive for this habit than HbA1c 

because HbA1c is typically used to assess glycemia over 

the previous 3 to 4 months where the GRI reflects glycemia 

over periods of time as short as seven days or greater.21 

Taken together, the GRI may offer insights into glycemia 

between regularly scheduled clinic visits and HbA1c mea-

surements, and the T1D self-management habits may be 

ideal interventions for improving glycemia.

Since GRI can only be calculated in individuals using 

CGM, all individuals included in this study used CGM. Most 

individuals in this cohort also used automated insulin deliv-

ery (AID) systems. In the original “Six Habits” report, sensi-

tivity analyses showed similar habit engagement patterns in 

individuals who did versus did not use AID systems.15 Even 

so, the use of advanced technologies such as AID is known to 

impact behaviors related to bolusing.15 Automated insulin 

delivery systems’ timing and dosing of insulin boluses may 

provide added glycemic benefits and tend to make delivery 

of insulin easier, compared to having no insulin pump.22,23 

Our results show that individuals engaged in Habit 2 or Habit 

3 experienced improved HbA1c and GRI compared to indi-

viduals that did not engage in these habits. Future research 

may consider the extent to which different AID technologies 

may impact performance of Habit 2.
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Our results suggest that bolus delivery (i.e., giving a 

needed bolus) has a larger impact on glycemic outcomes 

than bolus timing. We noted little difference in mean HbA1c 

and mean GRI between those that reported delivering boluses 

prior to meals (Habit 4) and those that did not. We observed 

larger differences in these glycemic outcomes in individuals 

that reported giving, versus not giving, at least three rapid-

acting boluses per day (Habit 2). Of note, performance of 

Habit 4 is not predicated on giving boluses a certain amount 

of time prior to meals. The onset of action of rapid-acting 

insulin is approximately 15 minutes; therefore, the timing of 

bolus delivery (e.g., giving insulin right before a meal, ver-

sus 15 minutes prior) does impact glycemic outcomes. Future 

research is needed to evaluate whether Habit 4 should be fur-

ther refined to better account for the impact of bolus timing 

on postprandial glycemia.

We acknowledge several limitations of this study. All 

individuals included in the analysis were using a CGM 

device so that the GRI could be calculated from the CGM 

data, so this analysis does not capture the entire pediatric 

population. Similarly, most individuals in this cohort were 

using advanced technologies for diabetes management, 

which is not necessarily reflective of the entire population of 

pediatric individuals with T1D. Stark disparities in access to 

and continued use of these technologies in youth with T1D 

remain prevalent in the United States.24,25 Our findings may 

not generalize to individuals who do not use or have access 

to the advanced technologies that were so frequently used by 

the cohort evaluated in this study. We also chose to include 

individuals with a CGM wear time of at least 50% (equiva-

lent to 3.5 days of data in a 7-day window); therefore, these 

results may not generalize to individuals with lower CGM 

wear time. Sensitivity analyses (see Supplemental Materials) 

showed that the relationship between GRI and habit engage-

ment did not change when the CGM wear time threshold was 

increased to ≥70%. In addition to this criterion, we selected 

individuals with a T1D duration of one year or more. More 

research is needed to understand how the GRI describes 

Figure 3. Mean Glycemia Risk Index (GRI) by total habit 
score or total number of habits performed (A) and by each 
habit (B). Error bars reflect 95% confidence intervals. Note that 
all individuals included in analysis engaged in Habit 1, since all 
individuals used a continuous glucose monitor (CGM). Habit 1: 
checking blood glucose at least 4 times/day or use of a CGM; 
Habit 2: giving at least 3 rapid-acting insulin boluses per day; 
Habit 3: using an insulin pump; Habit 4: delivering boluses prior 
to meals; Habit 5: reviewing glucose data since the last clinic visit; 
Habit 6: changing insulin doses since the last clinic visit; Habit 7: 
consuming a healthy diet.

Figure 2. Mean hemoglobin A1c (HbA1c) levels by total habit 
score or total number of habits performed (A) and by each 
habit (B). Error bars reflect 95% confidence intervals. Note that 
all individuals included in analysis engaged in Habit 1, since all 
individuals used a continuous glucose monitor (CGM). Habit 1: 
checking blood glucose at least 4 times/day or use of a CGM; 
Habit 2: giving at least 3 rapid-acting insulin boluses per day; 
Habit 3: using an insulin pump; Habit 4: delivering boluses prior 
to meals; Habit 5: reviewing glucose data since the last clinic visit; 
Habit 6: changing insulin doses since the last clinic visit; Habit 7: 
consuming a healthy diet.
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Table 4. Model Output. A mixed-effects Poisson regression model was used to predict total habit scores, reflective of the number 
of T1D self-management habits performed. GRI, HbA1c, age, race (three-level categorical variable with “Other” level as the reference 
group), ethnicity (two-level categorical variable with “Non-Hispanic/Non-Latino” as the reference group), and insurance type (two-level 
categorical variable with “Public/Self-Pay” as the reference group) were entered as fixed effects, and Participant ID was included as a 
random effect to account for multiple observations per person.

Estimate Std. Error 95% Confidence Intervals z p

Intercept 1.498 0.015 [1.469, 1.527] 102.00 <.0001

GRI −0.001 0.0004 [−0.0016, −0.0002] −2.65 0.01

HbA1c −0.017 0.007 [−0.030, −0.004] −2.50 0.01

Age −0.010 0.002 [−0.013, −0.006] −5.43 <.0001

Race: White 0.002 0.013 [−0.024, 0.028] 0.16 0.87

Race: Black or African American −0.002 0.020 [−0.042, 0.038] −0.11 0.92

Ethnicity: Hispanic/Latino 0.009 0.014 [−0.019, 0.036] 0.61 0.54

Insurance: Commercial 0.012 0.007 [−0.001, 0.026] 1.84 0.06

glycemia in the first year following diagnosis, including a 

“honeymoon period” where symptoms of T1D may 

decrease.26 Similarly, to better understand the exploratory 

insight reported here between a healthy diet and GRI, further 

research is needed to refine and validate the novel seventh 

habit pertaining to consumption of a healthy diet.

Conclusions

The GRI associated with the T1D self-management habits 

assessment, offering further validation for both measures. 

The GRI may serve clinicians with insights into glycemia 

beyond HbA1c as it can be calculated from as little as one to 

two weeks of CGM data and dynamically updated. The GRI 

metric may be easily obtained between regularly scheduled 

clinic visits and HbA1c measurements, which could improve 

efforts to identify and offer more timely interventions to 

youth using CGMs with above or below target glycemia. 

Clinicians may consider the T1D self-management habits as 

suitable intervention candidates for improving quality of gly-

cemia in youth with T1D.

Abbreviations

CGM, continuous glucose monitor; GRI, Glycemia Risk Index; 

HbA1c, glycated hemoglobin A1c; T1D, type 1 diabetes.
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