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Abstract

Background: The Glycemia Risk Index (GRI) was developed in adults with diabetes and is a validated metric of quality of
glycemia. Little is known about the relationship between GRI and type | diabetes (T 1D) self-management habits, a validated
assessment of youths’ engagement in habits associated with glycemic outcomes.

Method: We retrospectively examined the relationship between GRI and T1D self-management habits in youth with TID
who received care from a Midwest pediatric diabetes clinic network. The GRI was calculated using seven days of continuous
glucose monitor (CGM) data, and TID self-management habits were assessed *seven days from the GRI score. A mixed-
effects Poisson regression model was used to evaluate the total number of habits youth engaged in with GRI, glycated
hemoglobin Alc (HbAlc), age, race, ethnicity, and insurance type as fixed effects and participant ID as a random effect to
account for multiple clinic visits per individual.

Results: The cohort included |182 youth aged 2.5 to 18.0 years (mean = 13.8, SD = 3.5) comprising 50.8% male, 84.6%
non-Hispanic White, and 64.8% commercial insurance users across a total of 6029 clinic visits. Glycemia Risk Index scores
decreased as total number of habits performed increased, suggesting youth who performed more self-management habits
achieved a higher quality of glycemia.

Conclusions: In youth using CGMs, GRI may serve as an easily obtainable metric to help identify youth with above target
glycemia, and engagement/disengagement in the T 1D self-management habits may inform clinicians with suitable interventions
for improving glycemic outcomes.
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and researchers have noted key drawbacks to the Ambulatory
Glucose Profile metrics such as the difficulty in monitoring
and creating care plans based on seven measures. These
barriers have resulted in the development of new metrics to

Introduction

Individuals with type 1 diabetes (T1D) increasingly report
using continuous glucose monitors (CGMs) to track glyce-

mia in real time.! Continuous glucose monitors offer insights
into glycemia, or the time spent in target range as opposed to
time spent above or below range, and optimal glycemia is
associated with improved long-term outcomes.> A variety
of metrics may be used to describe glycemia, many of
which involve multiple numbers or components to be eval-
uated wholistically. The American Diabetes Association
endorses seven characteristics to describe glycemia referred
to as the Ambulatory Glucose Profile.> While these metrics
provide a comprehensive overview of glycemia, clinicians

summarize glycemia.
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The Glycemia Risk Index (GRI) was developed based on
330 clinicians’ rankings of 2-week CGM tracings from 225
adults with diabetes.* Tracings were ranked from most opti-
mal to least optimal glycemia, and analyses of rankings
resulted in a composite metric comprised of weighted sums of
time spent in very low-glucose hypoglycemia (<54 mg/dL;
<3.0 mmol/L), low-glucose hypoglycemia (54 to <70 mg/
dL; 3.0-3.9 mmol/L), high-glucose hyperglycemia (>180-
250 mg/dL; >10.0-13.9 mmol/L), and very high-glucose
hyperglycemia (>250 mg/dL; >13.9 mmol/L). The low
component of the GRI—reflecting time spent in low-glucose
hypoglycemia and very low-glucose hypoglycemia—was
weighted more heavily than the high component of the GRI
(i.e., time spent in high-glucose hyperglycemia and very
high-glucose hyperglycemia). Low GRI values reflect more
optimal quality of glycemia while high values indicate sub-
optimal quality of glycemia where quality of glycemia refers
to the proportions of time spent in very low-glucose hypo-
glycemia, low-glucose hypoglycemia, high-glucose hyper-
glycemia, and very high-glucose hyperglycemia
concentrations.* Altogether, the GRI offers a condensed ver-
sion of some of the Ambulatory Glucose Profile metrics
using at least one or two weeks of CGM data, increasing ease
and usability in clinic as well as insights between clinic
visits.

The GRI was developed in an adult population; however,
patterns of glycemia, as reflected in metrics such as hemo-
globin Alc (HbAlc), are known to differ in adults versus
children.’ Studies that have examined the GRI in youth with
T1D showed that GRI scores differed between treatment
modalities,'* so the GRI metric appears to be sensitive to
changes in care when assessed as an outcome; however, it is
unclear how the GRI relates to other indicators of glycemia.
We aimed to examine how GRI values may relate to TID
self-management habits in youth using CGMs. Recently, Lee
and colleagues developed a composite metric that summa-
rizes individuals’ engagement with six diabetes self-manage-
ment behaviors (called the “Six Habits”) that are associated
with high quality glycemia.'® These “Six Habits” include the
following: (1) using a CGM or checking blood glucose at
least four times/day, (2) giving =three rapid-acting user-ini-
tiated insulin boluses per day, (3) using an insulin pump, (4)
delivering user-initiated boluses prior to meals, (5) review-
ing glucose data between clinic visits, and (6) changing insu-
lin doses since the last diabetes clinic visit. Individuals that
report consistent engagement with these behaviors show
improved glycemia as evidenced by greater time spent in tar-
get range (70-180 mg/dL; 3.9-10.0 mmol/L) and lower
HbAlc levels.'

We retrospectively analyzed electronic health record and
diabetes data from youth with T1D using CGMs receiving
care from a network of pediatric diabetes clinics in the
Midwest USA. We analyzed the GRI as a predictor of the
total number of habits engaged in a model that includes
demographic variables and HbAlc. In this study, we also

evaluated consumption of fruits and vegetables as a novel
seventh habit, to assess whether self-reported consumption
of a healthy diet may also impact the GRI. Altogether, we
sought to examine the relationship between the GRI and
T1D diabetes self-management habits to evaluate whether
the GRI metric is sensitive to or reflective of engagement in
the behaviors in children and young adults using CGMs.
We hypothesized that lower GRI values would be associ-
ated with higher habit scores. The GRI metric may offer a
lower-burden and more timely way to track glycemia at an
individual and population health level. This may provide
heath care providers and individuals with diabetes with
insights between regularly scheduled clinic visits, possibly
improving timely identification, monitoring, and interven-
tion to reduce dysglycemia and its short- and long-term
complications.

Methods

Participants

Data were extracted from an electronic health record data-
base between December 2019 and November 2023 for 2844
individuals receiving care from a network of pediatric diabe-
tes clinics in the Midwest USA. Continuous glucose monitor
data were collected via API (application programming inter-
face) or flat file export and stored in a secured cloud storage
account. Seven days of CGM data were used to calculate the
GRI. To be included in the analysis, individuals had to meet
the following criteria: (1) 7-day window of CGM data with
=50% of wear time (i.e., an individual’s CGM device
recorded data for at least half of the total possible glucose
readings in the window); (2) T1D duration =1 year; (3) age
=18 years; (4) HbAlc measurement *21 days from the GRI
calculation; (5) assessment of at least three self-management
habits completed *seven days from the GRI calculation.
Individuals diagnosed with other types of diabetes (e.g., cys-
tic fibrosis-related diabetes) were excluded from this cohort.

Continuous glucose monitor wear time was calculated by
dividing the total number of recorded glucose readings by
the total number of possible readings based on the type of
technology used. For CGM devices that measure glucose
every 5 minutes, the total possible number of glucose read-
ings is 288 (or 2016 per week). For CGM devices that mea-
sure glucose every 15 minutes, the total possible number of
glucose readings is 96 per day (or 672 per week). Type 1
diabetes duration was calculated by subtracting the clinic
encounter date from each individual’s documented T1D
diagnosis date.

Figure 1 shows the population for the analysis. Individuals
were excluded if they were diagnosed with other types of
diabetes such as T2D or cystic fibrosis-related diabetes,
resulting in 1182 eligible individuals with T1D with an
age range of 2.5 to 18 years. There were a total of 6029
observations. Clinical data were coded and collected in an
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2844 individuals with > 50% wear time in any given
7-day window

244 individuals did not have 2 50% wear

| 2600 individuals with T1D duration = 1 year

time in any given 7-day window

237 individuals did not have T1D duration

| 2363 individuals < 18 years of age

2> 1vyear

2109 individuals with an HbA1c measurement = 21
days of 7-day window CGM data for GRI score

—I 254 individuals were not < 18 years of age

927 individuals did not have an HbA1c

1182 individuals with at least 3 of 7 responses on
self-management habits assessment collected = 7
days from GRI score

measurement = 21 days of 7-day window
CGM data for GRI score

Figure |. Cohort identification flowchart.

Institutional Review Board (IRB)-approved research data
repository (IRB #11120355) that met the requirements for a
waiver of written informed consent. This study followed the
Strengthening the Reporting of Observational Studies in
Epidemiology (STROBE) reporting guideline.'®

Outcomes

The GRI was calculated according to the following
equation:

GRI = (3.0xVLow) +(2.4x Low) + (1.6 x VHigh) + (0.8 x High)

where VLow represents time spent in very low-glucose
hypoglycemia (<54 mg/dL; <3.0 mmol/L), low represents
time spent in low-glucose hypoglycemia (54 to <70 mg/dL;
3.0-3.9 mmol/L), High represents time spent in high-glucose
hyperglycemia (>180 to 250 mg/dL; >10.0 to 13.9 mmol/L),
and VHigh represents time spent in very high-glucose hyper-
glycemia (>250 mg/dL; >13.9 mmol/L). A GRI score was
calculated for each seven-day window of CGM data where
all inclusion criteria were met. Low GRI scores reflect opti-
mal quality of glycemia while high GRI scores reflect subop-
timal quality of glycemia. Multiple observations per
individual were included when data were available and all
inclusion criteria were met.

For the self-management habits, each habit was coded as
1 if the individual engaged with the habit and 0 if the indi-
vidual did not engage with the habit. The “Six Habits” were
assessed using the same methodology as that described by
Lee et al’s!® original report. Briefly, performance of Habits
1-3 was determined based on clinicians’ assessments of each
individual’s 14-day diabetes device(s) download(s) shared
with the clinic. For Habits 4 to 6 (and in cases where device
data were not available), habit performance was assessed

through self-report (or through proxy-report by a parent).
During clinic visits, diabetes educators assessed performance
of the seventh (novel) habit by documenting a “yes” or “no”
response after asking whether the family engaged in eating a
healthy diet. In general, proxy-reporting by parents was used
to answer this question; however, older youth who generally
managed their own diabetes care could also answer this
question. A total habit score was calculated by adding
together the number of habits performed by each person at a
clinic visit. An individual who performed all seven habits
had a total habit score of 7. Because all individuals included
in the analysis used a CGM device by definition they were
classified as performing Habit 1 (checking blood glucose at
least four times/day or use of a CGM), so all individuals had
a minimum score of 1 for the total habit score.

Statistical Analysis

Analysis was conducted in R (Version 4.1.2-1.2004.0)."7 A
mixed-effects Poisson regression model examined how GRI
associated with total habit scores. Glycemia Risk Index, age,
race, ethnicity, insurance type, and HbAlc were entered as
fixed effects, and participant ID was entered as a random
effect to account for multiple observations per individual.
Hemoglobin Alc was included as a covariate in the model
because we were interested in evaluating GRI’s predictive
potential above and beyond HbAlc. Categorical variables
(race, ethnicity, insurance type) were encoded using effect
coding, and continuous variables (age, HbAlc, GRI) were
mean-centered. Race was condensed into a three-level cate-
gorical variable (White, Black, or African American, and
Other [American Indian or Alaska Native, Asian, Hispanic,
Multiracial, Declined, Other]). Ethnicity was condensed into
a two-level categorical variable as well (non-Hispanic/non-
Latino/Declined and Hispanic/Latino). Insurance type was
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Table 1. Participant Demographics.

Total, no. 1182
Male, n (%) 601 (50.8)
Mean age (SD) in years 13.8 (3.5)
Median age (IQR) in years 14.5 (5.3)
Mean TID duration (SD) in years 6.0 (3.6)
Race, n (%)
White 1000 (84.6)
Black or African American 64 (5.4)
Multi-racial 55 (4.7)
Hispanic 39 (3.3)
Declined 7 (0.6)
Asian 6 (0.5)
Other 6 (0.5)
American Indian or Alaska Native 5(0.4)
Ethnicity, n (%)
Non-Hispanic/Non-Latino 1092 (92.4)
Hispanic/Latino 83 (7.0)
Declined 7 (0.6)
Insurance, n (%)
Commercial 766 (64.8)
Public 408 (34.5)
Self-Pay 8 (0.7)
Technology use, n (%)
CGM and advanced hybrid closed loop 834 (70.5)
CGM and hybrid closed loop 216 (18.3)
CGM and predictive low glucose suspend 113 (9.6)
CGM and no insulin pump 19 (1.6)

Information was reported as of each individual’s most recent observation
(when an individual had multiple observations).

condensed into a two-level categorical variable (commercial
or public/self-pay). We conducted two sensitivity analyses to
evaluate the impact of increased CGM wear time and insur-
ance type grouping on the relationships observed between
GRI and habit engagement (Supplemental Tables 1 and 2).
First, we assessed the impact on GRI and habit engagement
when the CGM wear time threshold was increased to =70%
(Supplemental Table 1), based on the recommendations of
previous studies of CGM wear time thresholds.!®2° Then, we
assessed the impact on GRI and habit engagement when
individuals who used “self-pay” as their primary insurance
type were not included in the model, leaving only individuals
whoused commercial or public insurance types (Supplemental
Table 2). The proportion of individuals who were self-pay
was relatively small, so the sensitivity analysis examined the
impact of grouping this insurance payment type with public
insurance.

Results

Demographic characteristics of our cohort (N = 1182) are
reported in Table 1. The cohort included 581 females and 601
males with T1D (mean age [SD], 13.8 [3.5] years). There
were a mean [SD] of 5.1 [3.8] observations per person and a

median [IQR] of 4.0 [5.0] observations per person. The num-
ber of observations ranged from 1 to 22 observations per
individual included in the analysis. Table 2 contains mean
and standard deviation values of the total habit score, the
GRI, the GRI high component, the GRI low component, and
HbAlc across all observations used in the analysis. Few
individuals were engaged in all seven habits. Based on the
inclusion criteria, the minimum possible total habit score
was | because all individuals used CGM devices satisfying
the criterion for Habit 1, but we found that the lowest total
habit score was 2, indicating that all individuals engaged in
at least one other habit in addition to Habit 1. Table 3 shows
individual habit engagement and the proportion of observa-
tions where the individual was engaged in the habit to obser-
vations where the individual was not engaged in the habit or
no response was recorded. The proportion of engagement to
disengagement/no response was higher for Habits 1-4 than
Habits 5 to 7, suggesting individuals were less likely to
engage in reviewing glucose data between clinic visits,
changing insulin doses between clinic visits, and consuming
a healthy diet.

There was a significant main effect of HbAlc (z = —2.50,
p = .01). Hemoglobin Alc decreased as habit scores
increased (Figure 2). In addition, GRI was a significant pre-
dictor of habit scores (z = —2.65, p = .01). As the total habit
score increased, the GRI score decreased. Individuals who
had optimal quality of glycemia as indicated by a lower GRI
score performed more T1D self-management habits, which
was consistent with our hypothesis (Figure 3). Altogether,
the GRI was predictive of the total habit scores when included
in a model with other covariates (Table 4). Sensitivity analy-
ses indicated that GRI remained an independent predictor of
the number of self-management habits performed when the
CGM wear time threshold was increased to =70%, as well as
when individuals whose primary insurance type was “self-
pay” were dropped from the model (Supplemental Tables 1
and 2).

Discussion

In a cohort of youth with T1D who used CGMs, the GRI
decreased as the total number of habits performed increased,
suggesting that youth who performed more T1D self-man-
agement habits had a higher quality of glycemia. Likewise,
HbAlc decreased as the total number of habits performed
increased. We found that few individuals were engaged in all
seven habits, but the lowest total habit score was 2, suggest-
ing youth with T1D engaged in at least one other habit in
addition to Habit 1 (checking blood glucose at least 4 times/
day or using a CGM device). Habits 1 to 4 had higher rates
of engagement compared to Habits 5 to 7, meaning fewer
individuals reviewed glucose data between clinic visits,
changed insulin doses between clinic visits, and consumed a
healthy diet. The GRI scores were readily calculated from
seven-day windows of CGM data, which is particularly
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Table 2. Average Habit, GRI, and HbA|c Values.

Total Habit Total Habit Total Habit Total Habit Total Habit Total Habit
Overall Score = 2 Score = 3 Score = 4 Score = 5 Score = 6 Score =7
Number of observations 6029 164 854 1923 2150 911 27
Mean total habit score (SD) 4.5 (1.0) 2 (0.0) 3 (0.0) 4 (0.0) 5(0.0) 6 (0.0 7 (0.0
Mean GRI (SD) 52.8 (25.3) 65.9 (32.5) 60.7 (28.6) 55.1 (26.1) 49.2 (22.4) 47.0 (22.5) 50.8 (20.7)
Mean GRI high component ~ 48.6 (26.2) 60.7 (33.8) 56.9 (29.7) 51.1 (27.0) 44.8 (23.3) 42.4 (22.8) 479 (21.7)
(SD)
Mean GRI low component 4.2 (6.0) 5.24 (7.4) 3.8 (4.9) 4.0 (5.8) 4.4 (6.4) 4.7 (6.1) 2.9 (2.6)
(SD)
Mean HbAIc (SD) 7.8 (1.3) 8.62 (2.4) 8.2 (1.6) 7.8 (1.3) 7.6 (1.2) 7.5 (1.1) 7.9 (1.1)

Note: The GRI is comprised of two parts, the high component (weighted sums of time spent in very high-glucose and high-glucose hyperglycemia) and the

low component (weighted sums of time spent in very low-glucose and low-glucose hypoglycemia).

Table 3. Individual Habit Engagement.

Habit | Habit 2 Habit 3 Habit 4 Habit 5 Habit 6 Habit 7
Observations where individuals engaged in habit 6029 4481 5947 4932 1966 1434 2241
Observations where individuals were not engaged in 0 416 82 1047 1650 609 2299
habit
Observations where no response was documented 0 1132 0 50 2413 3986 1489
Proportion of engaged observations to disengaged/no | 0.74 0.99 0.82 0.33 0.24 0.37

response observations

Note: Habit I: checking blood glucose at least 4 times/day or use of a CGM; Habit 2: giving at least 3 rapid-acting insulin boluses per day; Habit 3: using an
insulin pump; Habit 4: delivering boluses prior to meals; Habit 5: reviewing glucose data since the last clinic visit; Habit 6: changing insulin doses since the

last clinic visit; Habit 7: consuming a healthy diet.

important given the increasing use of CGM devices.!> The
GRI metric can also be dynamically updated every 7 to 14
days, summarizing one to two weeks of CGM data in con-
trast to HbAlc which summarizes three to four months of
glucose data but at a single time point. In sum, the GRI may
serve as an easily obtainable metric to help identify youth
using CGMs with above or below target glycemia, and
engagement/disengagement in the T1D self-management
habits may provide healthcare workers with candidate inter-
ventions for improving glycemic outcomes.

The present results support the original report of the
T1D self-management habits assessment that demonstrated
that engagement in the “Six Habits” was associated with
higher time spent in target range and lower HbA ¢ levels,'
which we also reported in this study. The original report of
the T1D self-management habits showed that a small per-
centage of individuals performed all six habits and identi-
fied Habits 5 and 6 as areas for improvement.'”” In this
study, we also found that few individuals engaged in all
seven habits, and engagement in Habits 5 to 7 was lower
than Habits 1 to 4. We added a seventh habit for consuming
a healthy diet to examine the relationships between diet,
GRI, and HbAlc. While there were small differences
in HbAlc for this novel habit, the GRI appears to be
more sensitive, showing a greater differentiation between

individuals who performed this habit and those that did not.
The GRI may be more sensitive for this habit than HbAlc
because HbAlc is typically used to assess glycemia over
the previous 3 to 4 months where the GRI reflects glycemia
over periods of time as short as seven days or greater.”!
Taken together, the GRI may offer insights into glycemia
between regularly scheduled clinic visits and HbA1c mea-
surements, and the T1D self-management habits may be
ideal interventions for improving glycemia.

Since GRI can only be calculated in individuals using
CGM, all individuals included in this study used CGM. Most
individuals in this cohort also used automated insulin deliv-
ery (AID) systems. In the original “Six Habits” report, sensi-
tivity analyses showed similar habit engagement patterns in
individuals who did versus did not use AID systems.'> Even
so, the use of advanced technologies such as AID is known to
impact behaviors related to bolusing.!> Automated insulin
delivery systems’ timing and dosing of insulin boluses may
provide added glycemic benefits and tend to make delivery
of insulin easier, compared to having no insulin pump.?223
Our results show that individuals engaged in Habit 2 or Habit
3 experienced improved HbAlc and GRI compared to indi-
viduals that did not engage in these habits. Future research
may consider the extent to which different AID technologies
may impact performance of Habit 2.
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Figure 2. Mean hemoglobin Alc (HbAlc) levels by total habit
score or total number of habits performed (A) and by each
habit (B). Error bars reflect 95% confidence intervals. Note that
all individuals included in analysis engaged in Habit I, since all
individuals used a continuous glucose monitor (CGM). Habit I:
checking blood glucose at least 4 times/day or use of a CGM;
Habit 2: giving at least 3 rapid-acting insulin boluses per day;
Habit 3: using an insulin pump; Habit 4: delivering boluses prior
to meals; Habit 5: reviewing glucose data since the last clinic visit;
Habit 6: changing insulin doses since the last clinic visit; Habit 7:
consuming a healthy diet.

Our results suggest that bolus delivery (i.e., giving a
needed bolus) has a larger impact on glycemic outcomes
than bolus timing. We noted little difference in mean HbAlc
and mean GRI between those that reported delivering boluses
prior to meals (Habit 4) and those that did not. We observed
larger differences in these glycemic outcomes in individuals
that reported giving, versus not giving, at least three rapid-
acting boluses per day (Habit 2). Of note, performance of
Habit 4 is not predicated on giving boluses a certain amount
of time prior to meals. The onset of action of rapid-acting
insulin is approximately 15 minutes; therefore, the timing of
bolus delivery (e.g., giving insulin right before a meal, ver-
sus 15 minutes prior) does impact glycemic outcomes. Future
research is needed to evaluate whether Habit 4 should be fur-
ther refined to better account for the impact of bolus timing
on postprandial glycemia.

We acknowledge several limitations of this study. All
individuals included in the analysis were using a CGM
device so that the GRI could be calculated from the CGM

Figure 3. Mean Glycemia Risk Index (GRI) by total habit
score or total number of habits performed (A) and by each
habit (B). Error bars reflect 95% confidence intervals. Note that
all individuals included in analysis engaged in Habit I, since all
individuals used a continuous glucose monitor (CGM). Habit I:
checking blood glucose at least 4 times/day or use of a CGM;
Habit 2: giving at least 3 rapid-acting insulin boluses per day;
Habit 3: using an insulin pump; Habit 4: delivering boluses prior
to meals; Habit 5: reviewing glucose data since the last clinic visit;
Habit 6: changing insulin doses since the last clinic visit; Habit 7:
consuming a healthy diet.

data, so this analysis does not capture the entire pediatric
population. Similarly, most individuals in this cohort were
using advanced technologies for diabetes management,
which is not necessarily reflective of the entire population of
pediatric individuals with T1D. Stark disparities in access to
and continued use of these technologies in youth with T1D
remain prevalent in the United States.?*?* Our findings may
not generalize to individuals who do not use or have access
to the advanced technologies that were so frequently used by
the cohort evaluated in this study. We also chose to include
individuals with a CGM wear time of at least 50% (equiva-
lent to 3.5 days of data in a 7-day window); therefore, these
results may not generalize to individuals with lower CGM
wear time. Sensitivity analyses (see Supplemental Materials)
showed that the relationship between GRI and habit engage-
ment did not change when the CGM wear time threshold was
increased to =70%. In addition to this criterion, we selected
individuals with a T1D duration of one year or more. More
research is needed to understand how the GRI describes



Panfil et al

785

Table 4. Model Output. A mixed-effects Poisson regression model was used to predict total habit scores, reflective of the number

of T1D self-management habits performed. GRI, HbAlc, age, race (three-level categorical variable with “Other” level as the reference
group), ethnicity (two-level categorical variable with “Non-Hispanic/Non-Latino” as the reference group), and insurance type (two-level
categorical variable with “Public/Self-Pay” as the reference group) were entered as fixed effects, and Participant ID was included as a

random effect to account for multiple observations per person.

Estimate Std. Error 95% Confidence Intervals z b
Intercept 1.498 0.015 [1.469, 1.527] 102.00 <.0001
GRI -0.001 0.0004 [-0.0016, —0.0002] -2.65 0.01
HbAIc -0.017 0.007 [-0.030, —0.004] -2.50 0.01
Age -0.010 0.002 [-0.013, —0.006] -5.43 <.0001
Race: White 0.002 0.013 [-0.024, 0.028] 0.16 0.87
Race: Black or African American -0.002 0.020 [-0.042, 0.038] -0.11 0.92
Ethnicity: Hispanic/Latino 0.009 0.014 [-0.019, 0.036] 0.61 0.54
Insurance: Commercial 0.012 0.007 [-0.001, 0.026] 1.84 0.06

glycemia in the first year following diagnosis, including a
“honeymoon period” where symptoms of TI1D may
decrease.?® Similarly, to better understand the exploratory
insight reported here between a healthy diet and GRI, further
research is needed to refine and validate the novel seventh
habit pertaining to consumption of a healthy diet.

Conclusions

The GRI associated with the T1D self-management habits
assessment, offering further validation for both measures.
The GRI may serve clinicians with insights into glycemia
beyond HbA ¢ as it can be calculated from as little as one to
two weeks of CGM data and dynamically updated. The GRI
metric may be easily obtained between regularly scheduled
clinic visits and HbA 1¢ measurements, which could improve
efforts to identify and offer more timely interventions to
youth using CGMs with above or below target glycemia.
Clinicians may consider the T1D self-management habits as
suitable intervention candidates for improving quality of gly-
cemia in youth with T1D.

Abbreviations

CGM, continuous glucose monitor; GRI, Glycemia Risk Index;
HbAlc, glycated hemoglobin Alc; T1D, type 1 diabetes.
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