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Abstract

Background: The glycemia risk index (GRI) is a composite metric developed and used to estimate quality of glycemia in 

adults with diabetes who use continuous glucose monitor (CGM) devices. In a cohort of youth with type 1 diabetes (T1D), 

we examined the utility of the GRI for evaluating quality of glycemia between clinic visits by analyzing correlations between 

the GRI and longitudinal glycated hemoglobin A1c (HbA1c) measures.

Method: Using electronic health records and CGM data, we conducted a retrospective cohort study to analyze the 

relationship between the GRI and longitudinal HbA1c measures in youth (T1D duration ≥1 year; ≥50% CGM wear time) 

receiving care from a Midwest pediatric diabetes clinic network (March 2016 to May 2022). Furthermore, we analyzed 

correlations between HbA1c and the GRI high and low components, which reflect time spent with high/very high and low/

very low glucose, respectively.

Results: In this cohort of 719 youth (aged = 2.5-18.0 years [median = 13.4; interquartile range [IQR] = 5.2]; 50.5% male; 

83.7% non-Hispanic White; 68.0% commercial insurance), baseline GRI scores positively correlated with HbA1c measures at 

baseline and 3, 6, 9, and 12 months later (r = 0.68, 0.65, 0.60, 0.57, and 0.52, respectively). At all time points, strong positive 

correlations existed between HbA1c and time spent in hyperglycemia. Substantially weaker, negative correlations existed 

between HbA1c and time spent in hypoglycemia.

Conclusions: In youth with T1D, the GRI may be useful for evaluating quality of glycemia between scheduled clinic visits. 

Additional CGM-derived metrics are needed to quantify risk for hypoglycemia in this population.
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Introduction

The glycemia risk index (GRI) is a composite metric that 

facilitates clinicians’ use of continuous glucose monitor 

(CGM) data to efficiently and holistically characterize an 

individual’s “quality of glycemia”—ie, the amount of time 

that an individual’s sensor glucose level is very low/low 

(<54 mg/dL; <3.0 mmol/L and 54-<70 mg/dL; 3.0-3.9 

mmol/L) or high/very high (>180-250 mg/dL; >10.0-13.9 

mmol/L and >250 mg/dL; >13.9 mmol/L).1 To develop the 

GRI, 330 clinicians ranked, from most optimal to least opti-

mal quality of glycemia, CGM tracings from 225 adults with 

diabetes. Clinicians’ rankings were principally based on their 

assessments of the following two “components” of glyce-

mia: (1) a low component, comprised of time spent with very 

low/low sensor glucose and (2) a high component, comprised 
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of time spent with high/very high sensor glucose. A GRI 

score is calculated as the weighted sum of time spent in each 

component of glycemia, where time spent in hypoglycemic 

states is weighted more heavily than time spent in hypergly-

cemic states. The GRI more strongly correlates with clini-

cians’ rankings of individuals’ quality of glycemia than do 

other CGM-derived metrics (eg, time in target range).1 It can 

also be used to reliably discern optimal from suboptimal gly-

cemic control in adults with type 1 diabetes (T1D)2-4 and 

type 2 diabetes.5

Although the GRI is known to accurately describe glyce-

mia quality in adults with T1D during the one- to two-week 

time frame during which the glucose data used to calculate 

the GRI were collected, little is known about whether the 

GRI correlates with other measures of metabolic control (eg, 

glycated hemoglobin A1c [HbA1c]) assessed over time, 

especially among youth. Studies in youth with T1D have 

evaluated the impact of changes in diabetes care modalities 

(eg, initiation of hybrid closed-loop therapy) on youths’ GRI 

scores and HbA1c.6-14 Prior research also demonstrates the 

prognostic significance of HbA1c for predicting risk for 

T1D-associated complications.15 Therefore, positive correla-

tions existing between an individual’s GRI score and longi-

tudinal HbA1c measures may analogously suggest that the 

GRI holds predictive potential (similar to that of HbA1c) for 

identifying individuals who are at risk for suboptimal near- 

and long-term health outcomes.

As the rate of CGM device adoption by youth with T1D 

continues to increase, the use of the GRI is also likely to 

increase.16 This, in turn, will afford clinicians additional 

opportunities to evaluate youths’ glycemia quality between 

regularly scheduled diabetes clinic visits and HbA1c mea-

surements, which typically occur at least 90 days apart. As 

the GRI is increasingly used to evaluate individuals’ glyce-

mia quality between clinic visits, care providers will have the 

opportunity to engage at-risk individuals in more timely 

interventions that can reduce risk for both short- and long-

term complications of T1D.

To test the hypothesis that the GRI correlates positively 

with longitudinal HbA1c measures, we used electronic 

health record and CGM device data to evaluate correlations 

between youths’ GRI scores at baseline and HbA1c results 

obtained at baseline (0 months) and 3, 6, 9, and 12 months 

later. Furthermore, we examined correlations between the 

low component (ie, time spent in very low/low hypoglyce-

mic range) of each youth’s baseline GRI score and their lon-

gitudinal HbA1c measures (at 0, 3, 6, 9, and 12 months). We 

also analyzed correlations between the high component (ie, 

time spent in high/very high hyperglycemic range) of each 

youth’s baseline GRI and their longitudinal HbA1c measures 

(at 0, 3, 6, 9, and 12 months).

Methods

Data Source and Cohort Selection

We extracted data from electronic health records for 2606 

youth with T1D who used CGM devices and received care 

from a network of pediatric diabetes clinics in the 

Midwest USA between March 2016 and May 2022. Data 

from CGM devices were collected via an application pro-

gramming interface (API) or exported as flat files and 

then stored in a secure cloud storage account. Individuals 

included in the analysis met the following criteria: (1) 

CGM wear time ≥50% during the seven-day window 

used to calculate a baseline GRI score; (2) T1D duration 

≥1 year; (3) age ≤18 years; (4) HbA1c measurement 

within three weeks (±21 days) of the baseline GRI score 

calculation; (5) minimum of 2 follow-up HbA1c mea-

surements within a 386-day window; and (6) no HbA1c 

Figure 1. Cohort identification flowchart.
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measurements missing at 2 or more consecutive time-

points (ie, for those that did not have HbA1c measure-

ments at all five timepoints) (Figure 1).

Cohort Characteristics

We used seven days of CGM data to calculate baseline GRI 

scores. We calculated CGM wear time as the number of glu-

cose measurements that were recorded by the CGM device 

divided by the maximum number of glucose measurements 

that could have been recorded by the device, per the type of 

device used. Glycemia risk index was calculated according 

the equation described by Klonoff et al.1 The investigators 

who originally developed the GRI elected to cap GRI scores 

at 100, even though GRI scores >100 are mathematically 

possible.1 We elected to not cap GRI scores, given that altera-

tion of outliers could artificially decrease GRI variability and 

thereby affect correlations between GRI scores and HbA1c. 

Of note, GRI scores can also be stratified into ranked zones or 

quintiles (A-E; Figure 2). Glycemia risk index scores in the 

highest quintiles reflect suboptimal glycemia while GRI 

scores in the lowest quintiles reflect optimal glycemia.

Baseline GRI scores were only calculated during seven-

day windows that occurred within three weeks (±21 days) of 

an HbA1c measurement, and the seven-day window closest 

in time to the HbA1c measurement was selected when mul-

tiple windows were possible. The first day of the seven-day 

window served as the GRI score date. Thereafter, we also 

assessed follow-up HbA1c measures documented 3, 6, 9, and 

12 months after baseline. We allowed longitudinal HbA1c 

measurements to occur within 386 days (rather than within 

365 days) of each other to allow for instances where the 

baseline HbA1c measurement was recorded up to three 

weeks after the date of the baseline GRI score calculation. 

Figure 3 depicts the timeline used to calculate GRI scores 

and assess subsequent HbA1c measurements. For each 12 

month time window, we calculated a single GRI score at 

baseline. Although most individuals were represented in the 

data set a single time, 154 individuals had sufficient data to 

examine multiple 12 month time windows.

Individuals with diabetes often have HbA1c measures 

every three to four months; however, in real-world data, the 

actual timepoints at which HbA1c results are documented 

can vary substantially within and across individuals. We 

therefore used an imputation procedure (see Supplemental 

Materials) to interpolate/extrapolate baseline and 12-month 

follow-up HbA1c values (but not 3-, 6-, or 9-month HbA1c 

values). This imputation procedure resulted in (1) all base-

line HbA1c values having the same relative “starting point” 

(relative to the date on which the GRI score was calculated) 

and (2) all 12 month HbA1c values being spaced equally 

from the baseline “starting point.”

Clinical data were coded and collected in an institutional 

review board–approved research data repository (IRB 

#11120355) that met the requirements for a waiver of written 

informed consent. This study followed the Strengthening the 

Reporting of Observational Studies in Epidemiology 

(STROBE) reporting guideline.17

Figure 2. Representation of the glycemia risk index (GRI) 
grid, adapted from Klonoff et al. This representation of the 
GRI grid displays the GRI quintiles; however, it is not based on 
data from this study or on data from the original paper. GRI 
scores appearing in the lowest quintile (Zone A) reflect optimal 
glycemia. GRI scores appearing in all subsequent zones (ie, Zones 
B-E) reflect increasingly suboptimal GRI scores.

Figure 3. Timeline of GRI score calculation and HbA1c  
follow-up measurements. GRI and HbA1c windows were 
generally structured to prevent overlapping. The only exception 
to this was in instances where a given 12 month measure met 
inclusion criteria that allowed it to also serve as a baseline 
measure for a subsequent longitudinal time window among 
individuals with sufficient data to allow examination of multiple 
time windows.
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Statistical Analysis

Analyses were conducted in R (Version 4.1.2-1.2004.0).18 

Pearson pairwise correlations were used to examine the rela-

tionship between the baseline GRI and HbA1c at 0, 3, 6, 9, 

and 12 months. Any non-sequentially missing HbA1c values 

were treated as such and ignored in the Pearson pairwise cor-

relation calculations. We also examined the correlations 

between the high and low components of the baseline GRI 

and HbA1c measures over time.

We then conducted a series of sensitivity analyses to eval-

uate the impact of various cohort selection criteria on corre-

lations observed between GRI scores and HbA1c 

(Supplemental Tables 1–6). First, we assessed the impact on 

correlations observed when GRI scores were capped at 

100—per the original paper that introduced the GRI metric.1 

In our primary analysis, 108 of 901 GRI scores (12.0% of all 

observations) were ≥100; therefore, in this first sensitivity 

analysis, these 108 scores were adjusted to 100 (Supplemental 

Table 1). Second, we assessed the impact on correlations 

observed when only a single (ie, the most recent) GRI score 

for each person was analyzed. Our primary analysis included 

719 individuals; therefore, 719 observations (ie, one per per-

son) were included in this sensitivity analysis (Supplemental 

Table 2). Third, we assessed the impact on correlations 

observed when only non-interpolated HbA1c measurements 

and GRI scores were analyzed (Supplemental Table 3). 

Fourth, we explored the impact on correlations observed 

when the required threshold for CGM wear time was 

increased to 50% to 70% (Supplemental Table 4) and then to 

≥70% (Supplemental Table 5), given previous studies’ use 

of these thresholds for CGM wear time.19-21 Finally, we 

examined correlations between GRI equation components 

(eg, the correlation between the Very Low Weight [3.0 × 

percent time spent in <54 mg/dL or <3.0 mmol/L]) and 

HbA1c to better understand the GRI score equation weight-

ing factors (Supplemental Table 6).

Results

We analyzed data for 901 longitudinal (ie, 12 month) time 

windows for 719 individuals. Demographic characteristics 

of the cohort (N = 719) are reported in Table 1. Comparisons 

to the original population of CGM users’ demographic and 

glycemic characteristics are included in the Supplemental 

Materials (Supplemental Table 7). Mean (SD) GRI was 64 

(29), which corresponds to Zone D of the GRI quintiles. At 

baseline, mean (SD) HbA1c was 8.1% (1.4) (10.3 mmol/L, 

(2.23)).

The GRI score at baseline positively correlated with 

HbA1c at baseline (r = 0.68, 95% confidence interval CI = 

[0.65, 0.72]). The GRI also positively correlated with HbA1c 

measures at 3 months (r = 0.65, 95% CI = [0.60, 0.70]), 6 

months (r = 0.60, 95% CI = [0.54, 0.66]), 9 months (r = 

0.57, 95% CI = [0.52, 0.62]), and 12 months (r = 0.52, 95% 

CI = [0.47, 0.57]). Correlations between the GRI score at 

baseline and longitudinal HbA1c measurements are shown 

in Table 2.

The high component of baseline GRI demonstrated sub-

stantial positive correlation with HbA1c measures at 0 

months (r = 0.69; 95% CI = [0.66, 0.72]), 3 months (r = 

0.66; 95% CI = [0.61, 0.71]), 6 months (r = 0.60; 95% CI = 

[0.54, 0.66]), 9 months (r = 0.57; 95% CI = [0.52, 0.61]), 

and 12 months (r = 0.51; 95% CI = [0.46, 0.56]) (Table 2). 

Correlations observed between the low component of base-

line GRI scores and HbA1c measures were negative, and 

Table 1. Participant Demographics.

Total, no. 719

Male, n (%) 363 (50.5)

Median age (IQR) in years 13.4 (5.2)

Median T1D duration (IQR) in years 3.8 (4.8)

Race, n (%)

 White 602 (83.7)

 Black or African American 38 (5.3)

 Multiracial 34 (4.7)

 Hispanic 33 (4.6)

 American Indian or Alaska Native 4 (0.6)

 Declined 4 (0.6)

 Asian 2 (0.3)

 Native Hawaiian or Pacific Islander 1 (0.1)

 Other 1 (0.1)

Ethnicity, n (%)

 Non-Hispanic/Non-Latino 664 (92.4)

 Hispanic/Latino 52 (7.2)

 Declined 3 (0.4)

Insurance, n (%)

 Commercial 489 (68.0)

 Public 209 (29.1)

 Self-Pay 11 (1.5)

 Other 10 (1.4)

Mean Proportion of Time Spent in Target  
Range (SD)

0.49 (0.19)

Mean Glucose Measurement, mg/dL (SD); 
mmol/ L (SD)

194.7 (43.3);
10.8 (2.4)

Mean Glucose Coefficient of Variation (SD) 0.37 (0.07)

Mean Proportion of Time Spent in Very  
Low-Glucose Hypoglycemia (SD)

0.005 (0.01)

Mean Proportion of Time Spent in Low-Glucose 
Hypoglycemia (SD)

0.02 (0.02)

Mean Proportion of Time Spent in  
High-Glucose Hyperglycemia (SD)

0.25 (0.08)

Mean Proportion of Time Spent in Very  
High-Glucose Hyperglycemia (SD)

0.24 (0.18)

Information reported here is at baseline or 0 months of each individual’s 
most recent observation window (when multiple observations were 
available).
Note: Very low-glucose hypoglycemia (<54 mg/dL; <3.0 mmol/L), 
low-glucose hypoglycemia (54-<70 mg/dL; 3.0-3.9 mmol/L), high-glucose 
hyperglycemia (>180-250 mg/dL; >10.0-13.9 mmol/L), and very high-
glucose hyperglycemia (>250 mg/dL; >13.9 mmol/L) ranges were used as 
reported in the original report of the GRI.1
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Table 2. Correlations Between GRI at Baseline and HbA1c Measurements Over Time.

GRI at 
Baseline HbA1c at Baseline HbA1c at 3 Months HbA1c at 6 Months HbA1c at 9 Months HbA1c at 12 Months

GRI at Baseline [95% CI] – 0.68*** [0.65, 0.72] 0.65*** [0.60, 0.70] 0.60*** [0.54, 0.66] 0.57*** [0.52, 0.62] 0.52*** [0.47, 0.57]

GRI High Component [95% CI] – 0.69*** [0.66, 0.72] 0.66*** [0.61, 0.71] 0.60*** [0.54, 0.66] 0.57*** [0.52, 0.61] 0.51*** [0.46, 0.56]

GRI Low Component [95% CI] – -0.16***
[-0.23,
-0.10]

-0.14*
[-0.22,
-0.05]

-0.12*
[-0.21,
-0.02]

-0.09*
[-0.16,
-0.02]

-0.05
[-0.12, 0.01]

Mean 63.58 8.12 8.14 8.25 8.21 8.16

SD 28.76 1.39 1.39 1.55 1.52 1.52

Note: *** denotes P < .001; * denotes P < .05. The GRI has two components: the High Component (weighted sums of time spent in very high-glucose 
and high-glucose hyperglycemia) and the Low Component (weighted sums of time spent in very low-glucose and low-glucose hypoglycemia).

also weaker, at 0 months (r = −0.16, 95% CI = [−0.23, 

−0.10]), 3 months (r = −0.14, 95% CI = [−0.22, −0.05]), 6 

months (r = −0.12, 95% CI = [−0.21, −0.02]), and 9 months 

(r = −0.09, 95% CI = [−0.16, −0.02]). At 12 months, the 

correlation between the two (r = −0.05, 95% CI = [−0.12, 

0.01]) was not statistically significant.

Results from the sensitivity analyses were similar, in both 

direction and strength, to those observed in the primary anal-

ysis. We found that capping the GRI, including only the most 

recent observation for each individual, analyzing only raw 

(vs interpolated) HbA1c measures, and increasing the thresh-

old for CGM wear time did not substantially alter our results 

(Supplemental Tables 1–5). We observed similar longitudi-

nal correlations when comparing GRI equation components’ 

correlations with HbA1c to overall GRI score correlations 

with HbA1c (Supplemental Table 6).

Discussion

In youth with T1D, we found that seven-day GRI scores pos-

itively correlated with concurrent HbA1c measurements. 

The GRI also positively correlated with HbA1c measure-

ments 3, 6, 9, and 12 months later. We identified strong and 

consistently positive correlations between the GRI high 

component and HbA1c over time, whereas the low compo-

nent only weakly (and negatively) correlated with HbA1c at 

0, 3, 6, and 9 months; at 12 months, no correlation was 

observed.

This study supports and extends previous work examin-

ing GRI in youth with T1D. Previous research showed a 

positive correlation between a single HbA1c measurement 

and a single GRI score calculated from four weeks of CGM 

data preceding the HbA1c measurement in 1067 children 

with T1D in Italy.8 This study supports and extends earlier 

findings over a 12 month time window and in a US-based 

cohort. Taken together, GRI adequately describes glycemia 

quality in youth with T1D.

This study is the first to examine the relationship between 

HbA1c and the GRI high and low components. One prior 

study did show that the GRI high component, but not the low 

component, was significantly different between pediatric 

individuals using CGM with multiple daily injections versus 

those using hybrid closed-loop systems.8 Similarly, GRI 

zones stratify adults with T1D based on time spent in high 

and very high-glucose ranges but not in low and very low-

glucose ranges.2 We conclude that further research is needed 

to understand how to best present the GRI to clinicians and 

individuals with T1D to adequately convey the risk to safety 

from hypoglycemia, particularly in youth with T1D. Youth 

with T1D may experience severe hypoglycemia more often 

than adults with T1D,16,22 which may be due in part to 

increased variability in blood glucose levels, and frequent 

fluctuations between high and low blood glucose levels may 

offset any effect of hyperglycemia on HbA1c. Previous 

research showed that risk of severe hypoglycemia and hypo-

glycemic coma was relatively the same across different 

HbA1c levels in youth with T1D,23 and results of a recent 

literature review on established CGM-derived metrics sug-

gest that no single composite metric sufficiently conveys 

overall glycemia, especially risk of hypoglycemia.24 The 

GRI (with the current weight applied to the low/very low 

component) is not likely to adequately distinguish between 

youth who are and are not at risk of hypoglycemia, necessi-

tating further research to better understand how to best edu-

cate individuals with T1D on the GRI and its utility. 

Sensitivity analyses comparing GRI equation components 

suggest the GRI may benefit from further weight being 

placed on time spent in low-glucose (54-<70 mg/dL) and 

very low-glucose (<54 mg/dL), as doing so may result in 

increased sensitivity of the GRI to this component of glyce-

mia in youth with T1D (see Supplemental Materials). 

Clinicians may opt to use the GRI to stratify youth by level 

of priority for outreach during remote patient monitoring 

programs such as those incorporated into the 4T study.25 

Using the GRI to stratify risk may be an improvement over 

using time spent in target range or other pre-defined risk 

thresholds. Future research may also consider evaluating the 

stability of GRI scores over time to identify youth at risk of 

hypoglycemia based on increasing GRI scores or longitudi-

nal variability in GRI scores.

The ease of obtaining GRI scores presents a major advan-

tage to its use. Recent research suggests that a sampling dura-

tion of only 7 to 14 days of CGM data is needed to provide a 

stable estimate of GRI when compared with GRI scores 
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calculated from 90 days of CGM data from adults with T1D.26 

Given that GRI scores can be calculated using one or two 

weeks of CGM data with no additional measures or labora-

tory work necessary, it is possible that the GRI may serve as 

an adequate proxy for HbA1c in situations where HbA1c can-

not otherwise be obtained. The GRI may therefore provide 

additional value to clinicians and to individuals with T1D 

who agree to participate in a remote monitoring program 

between clinic visits. It is important to note that the metric is 

easily obtainable after handling the complexity of ingesting 

and managing CGM data in near real-time for diabetes cen-

ters. After the initial investment of technical infrastructure, in 

many cases, CGM data and CGM-derived metrics like GRI 

and Ambulatory Glucose Profile metrics27 can be accessed 

remotely, allowing for review without the individual needing 

to travel to the clinic. In addition, CGM use is increasing 

among youth with T1D,16 making GRI an increasingly rele-

vant metric for evaluating glycemia. Our results suggest that 

the GRI positively correlates with HbA1c over time; there-

fore, GRI scores may be used to evaluate glycemic control in 

between HbA1c measurements, and potentially as part of an 

approach to forecast future glycemic control in youth.

Importantly, the GRI yields additional information, 

above and beyond time in range (TIR), the most commonly 

used CGM-derived metric. The precise reason that an indi-

vidual experiences low TIR (ie, increased time in hypogly-

cemia vs hyperglycemia) is not elucidated by the TIR 

metric, and identification of individuals with low TIR due 

to hypoglycemia can be complicated by the much higher 

incidence of low TIR that occurs due to time spent in hyper-

glycemia. With appropriate weighting, the GRI can be fine-

tuned to readily identify and stratify such risk—particularly 

in populations with elevated risk of low TIR due to hypo-

glycemia (eg, youth and older adults). Timely monitoring 

of glycemia quality may foster timely interventions to 

reduce the near-term and long-term risks of hyperglycemia 

and hypoglycemia.

It is important to note several limitations when consider-

ing the current results. First, as the GRI metric was devel-

oped using CGM tracings from adults with different types of 

diabetes (only some of whom had T1D), components used to 

calculate the GRI may require different weightings that are 

specific to youth with T1D. In addition, we examined the 

relationship between a single GRI score and HbA1c mea-

sures over the subsequent 12 months in a convenience sam-

ple from a tertiary care diabetes clinic network. However, the 

number and timing of follow-up HbA1c measures resulted in 

a relatively small cohort of individuals relative to the original 

population from the clinic network. The cohort was also lim-

ited to individuals with CGM wear time of ≥50%, so the 

GRI may not be accurately descriptive for individuals with 

low CGM wear time. Sensitivity analyses (see Supplemental 

Materials) showed that the correlations between GRI scores 

and HbA1c at 0, 3, 6, 9, and 12 months did not differ when 

examining observations with wear time ≥50%, 50% to 70%, 

or ≥70%. In addition, we did not examine GRI and HbA1c 

in the first year following T1D diagnosis. Further research is 

needed to determine whether GRI describes glycemia quality 

during this window, which often includes a “honeymoon 

period” where individuals may experience a partial remis-

sion of symptoms and require a reduced amount of insulin.28 

Finally, the retrospective analysis approach may introduce 

bias in sampling. In the current report, we chose not to cap 

GRI scores to help mitigate any artificial deflation of vari-

ability in the cohort. Sensitivity analyses (see Supplemental 

Information) showed that the correlations between GRI 

scores and HbA1c at 0, 3, 6, 9, and 12 months were not dif-

ferent when the GRI was capped at 100 vs when the GRI was 

not capped at 100. In larger population health studies, it 

remains possible that capping the GRI may artificially 

decrease variability. Further research in larger populations is 

needed to determine whether the GRI should be capped in 

youth with T1D.

Conclusions

The GRI, an easily obtainable metric of glycemic control in 

individuals who use CGM, positively correlates with HbA1c 

at baseline AND over a 12 month window in youth with 

T1D. The GRI may be useful for assessing the quality of 

glycemia between clinic visits and HbA1c measurements; it 

may also be used in a risk-stratified fashion to identify indi-

viduals with suboptimal glycemic control. It is not unex-

pected that the low component of the GRI was weakly and 

negatively correlated with HbA1c, but the GRI as it is cur-

rently calculated may be limited in its ability to identify 

youth at risk for hypoglycemia, particularly if clinics stratify 

patients by GRI score in order to determine how to prioritize 

outreach and intervention efforts. Improved monitoring of 

glycemia quality may enable more timely initiation of inter-

ventions designed to reduce risk for both short- and long-

term complications of T1D.
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CGM, continuous glucose monitor; GRI, glycemia risk index; 

HbA1c, glycated hemoglobin A1c; MDI, multiple daily injections; 

T1D, type 1 diabetes; TIR, time in range.
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