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Abstract

Background: The glycemia risk index (GRI) is a composite metric developed and used to estimate quality of glycemia in
adults with diabetes who use continuous glucose monitor (CGM) devices. In a cohort of youth with type | diabetes (TID),
we examined the utility of the GRI for evaluating quality of glycemia between clinic visits by analyzing correlations between
the GRI and longitudinal glycated hemoglobin Alc (HbAIc) measures.

Method: Using electronic health records and CGM data, we conducted a retrospective cohort study to analyze the
relationship between the GRI and longitudinal HbAIc measures in youth (T1D duration =1 year; =50% CGM wear time)
receiving care from a Midwest pediatric diabetes clinic network (March 2016 to May 2022). Furthermore, we analyzed
correlations between HbAIc and the GRI high and low components, which reflect time spent with high/very high and low/
very low glucose, respectively.

Results: In this cohort of 719 youth (aged = 2.5-18.0 years [median = 13.4; interquartile range [IQR] = 5.2]; 50.5% male;
83.7% non-Hispanic White; 68.0% commercial insurance), baseline GRI scores positively correlated with HbA | c measures at
baseline and 3, 6, 9, and 12 months later (r = 0.68, 0.65, 0.60, 0.57, and 0.52, respectively). At all time points, strong positive
correlations existed between HbAlc and time spent in hyperglycemia. Substantially weaker, negative correlations existed
between HbAIc and time spent in hypoglycemia.

Conclusions: In youth with TID, the GRI may be useful for evaluating quality of glycemia between scheduled clinic visits.
Additional CGM-derived metrics are needed to quantify risk for hypoglycemia in this population.
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Introduction assessments of the following two “components” of glyce-

mia: (1) a low component, comprised of time spent with very

The glycemia risk index (GRI) is a composite metric that
facilitates clinicians’ use of continuous glucose monitor
(CGM) data to efficiently and holistically characterize an
individual’s “quality of glycemia”—ie, the amount of time
that an individual’s sensor glucose level is very low/low
(<54 mg/dL; <3.0 mmol/L and 54-<70 mg/dL; 3.0-3.9
mmol/L) or high/very high (>180-250 mg/dL; >10.0-13.9
mmol/L and >250 mg/dL; >13.9 mmol/L).! To develop the
GRI, 330 clinicians ranked, from most optimal to least opti-
mal quality of glycemia, CGM tracings from 225 adults with
diabetes. Clinicians’ rankings were principally based on their

low/low sensor glucose and (2) a high component, comprised
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up HbA1lc measurements within 386-day
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Figure |. Cohort identification flowchart.

of time spent with high/very high sensor glucose. A GRI
score is calculated as the weighted sum of time spent in each
component of glycemia, where time spent in hypoglycemic
states is weighted more heavily than time spent in hypergly-
cemic states. The GRI more strongly correlates with clini-
cians’ rankings of individuals’ quality of glycemia than do
other CGM-derived metrics (eg, time in target range).! It can
also be used to reliably discern optimal from suboptimal gly-
cemic control in adults with type 1 diabetes (T1D)** and
type 2 diabetes.’

Although the GRI is known to accurately describe glyce-
mia quality in adults with T1D during the one- to two-week
time frame during which the glucose data used to calculate
the GRI were collected, little is known about whether the
GRI correlates with other measures of metabolic control (eg,
glycated hemoglobin Alc [HbAlc]) assessed over time,
especially among youth. Studies in youth with T1D have
evaluated the impact of changes in diabetes care modalities
(eg, initiation of hybrid closed-loop therapy) on youths” GRI
scores and HbA1c.®! Prior research also demonstrates the
prognostic significance of HbAlc for predicting risk for
T1D-associated complications.!® Therefore, positive correla-
tions existing between an individual’s GRI score and longi-
tudinal HbA1c measures may analogously suggest that the
GRI holds predictive potential (similar to that of HbAlc) for
identifying individuals who are at risk for suboptimal near-
and long-term health outcomes.

As the rate of CGM device adoption by youth with T1D
continues to increase, the use of the GRI is also likely to
increase.'® This, in turn, will afford clinicians additional
opportunities to evaluate youths’ glycemia quality between
regularly scheduled diabetes clinic visits and HbAlc mea-
surements, which typically occur at least 90 days apart. As
the GRI is increasingly used to evaluate individuals’ glyce-
mia quality between clinic visits, care providers will have the

opportunity to engage at-risk individuals in more timely
interventions that can reduce risk for both short- and long-
term complications of T1D.

To test the hypothesis that the GRI correlates positively
with longitudinal HbAlc measures, we used electronic
health record and CGM device data to evaluate correlations
between youths’ GRI scores at baseline and HbA1c results
obtained at baseline (0 months) and 3, 6, 9, and 12 months
later. Furthermore, we examined correlations between the
low component (ie, time spent in very low/low hypoglyce-
mic range) of each youth’s baseline GRI score and their lon-
gitudinal HbA 1c measures (at 0, 3, 6, 9, and 12 months). We
also analyzed correlations between the high component (e,
time spent in high/very high hyperglycemic range) of each
youth’s baseline GRI and their longitudinal HbA 1c measures
(at 0, 3, 6, 9, and 12 months).

Methods

Data Source and Cohort Selection

We extracted data from electronic health records for 2606
youth with T1D who used CGM devices and received care
from a network of pediatric diabetes clinics in the
Midwest USA between March 2016 and May 2022. Data
from CGM devices were collected via an application pro-
gramming interface (API) or exported as flat files and
then stored in a secure cloud storage account. Individuals
included in the analysis met the following criteria: (1)
CGM wear time =50% during the seven-day window
used to calculate a baseline GRI score; (2) T1D duration
=1 year; (3) age =18 years; (4) HbAlc measurement
within three weeks (£21 days) of the baseline GRI score
calculation; (5) minimum of 2 follow-up HbAlc mea-
surements within a 386-day window; and (6) no HbAlc
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measurements missing at 2 or more consecutive time-
points (ie, for those that did not have HbAlc measure-
ments at all five timepoints) (Figure 1).

Cohort Characteristics

We used seven days of CGM data to calculate baseline GRI
scores. We calculated CGM wear time as the number of glu-
cose measurements that were recorded by the CGM device
divided by the maximum number of glucose measurements
that could have been recorded by the device, per the type of
device used. Glycemia risk index was calculated according
the equation described by Klonoff et al.! The investigators
who originally developed the GRI elected to cap GRI scores
at 100, even though GRI scores >100 are mathematically
possible.! We elected to not cap GRI scores, given that altera-
tion of outliers could artificially decrease GRI variability and
thereby affect correlations between GRI scores and HbAlc.
Of note, GRI scores can also be stratified into ranked zones or
quintiles (A-E; Figure 2). Glycemia risk index scores in the
highest quintiles reflect suboptimal glycemia while GRI
scores in the lowest quintiles reflect optimal glycemia.

Baseline GRI scores were only calculated during seven-
day windows that occurred within three weeks (*£21 days) of
an HbAlc measurement, and the seven-day window closest
in time to the HbA 1c measurement was selected when mul-
tiple windows were possible. The first day of the seven-day
window served as the GRI score date. Thereafter, we also
assessed follow-up HbA 1¢ measures documented 3, 6, 9, and
12 months after baseline. We allowed longitudinal HbAlc
measurements to occur within 386 days (rather than within
365 days) of each other to allow for instances where the
baseline HbAlc measurement was recorded up to three
weeks after the date of the baseline GRI score calculation.
Figure 3 depicts the timeline used to calculate GRI scores
and assess subsequent HbAlc measurements. For each 12
month time window, we calculated a single GRI score at
baseline. Although most individuals were represented in the
data set a single time, 154 individuals had sufficient data to
examine multiple 12 month time windows.

Individuals with diabetes often have HbAlc measures
every three to four months; however, in real-world data, the
actual timepoints at which HbAlc results are documented
can vary substantially within and across individuals. We
therefore used an imputation procedure (see Supplemental
Materials) to interpolate/extrapolate baseline and 12-month
follow-up HbA ¢ values (but not 3-, 6-, or 9-month HbAlc
values). This imputation procedure resulted in (1) all base-
line HbAlc values having the same relative “starting point”
(relative to the date on which the GRI score was calculated)
and (2) all 12 month HbAlc values being spaced equally
from the baseline “starting point.”

Clinical data were coded and collected in an institutional
review board—approved research data repository (IRB
#11120355) that met the requirements for a waiver of written
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Figure 2. Representation of the glycemia risk index (GRI)

grid, adapted from Klonoff et al. This representation of the

GRI grid displays the GRI quintiles; however, it is not based on
data from this study or on data from the original paper. GRI
scores appearing in the lowest quintile (Zone A) reflect optimal
glycemia. GRI scores appearing in all subsequent zones (ie, Zones
B-E) reflect increasingly suboptimal GRI scores.

Baseline

Days 1-7 = CGM data recorded and used to calculate GRI score

Day 1 = Serves as GRI score date

Day 14 = Baseline HbA1c interpolated using next available follow-up
HbAlc measurement

12 Months

Day 365 = 12-month HbA1c interpolated using the preceding follow-up
HbA1lc measurement

Figure 3. Timeline of GRI score calculation and HbAlc
follow-up measurements. GRI and HbA | c windows were
generally structured to prevent overlapping. The only exception
to this was in instances where a given 12 month measure met
inclusion criteria that allowed it to also serve as a baseline
measure for a subsequent longitudinal time window among
individuals with sufficient data to allow examination of multiple
time windows.

informed consent. This study followed the Strengthening the
Reporting of Observational Studies in Epidemiology
(STROBE) reporting guideline.!”
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Statistical Analysis

Analyses were conducted in R (Version 4.1.2-1.2004.0).'8
Pearson pairwise correlations were used to examine the rela-
tionship between the baseline GRI and HbAlc at 0, 3, 6, 9,
and 12 months. Any non-sequentially missing HbA1c values
were treated as such and ignored in the Pearson pairwise cor-
relation calculations. We also examined the correlations
between the high and low components of the baseline GRI
and HbA 1c measures over time.

We then conducted a series of sensitivity analyses to eval-
uate the impact of various cohort selection criteria on corre-
lations observed between GRI scores and HbAlc
(Supplemental Tables 1-6). First, we assessed the impact on
correlations observed when GRI scores were capped at
100—per the original paper that introduced the GRI metric.
In our primary analysis, 108 of 901 GRI scores (12.0% of all
observations) were =100; therefore, in this first sensitivity
analysis, these 108 scores were adjusted to 100 (Supplemental
Table 1). Second, we assessed the impact on correlations
observed when only a single (ie, the most recent) GRI score
for each person was analyzed. Our primary analysis included
719 individuals; therefore, 719 observations (ie, one per per-
son) were included in this sensitivity analysis (Supplemental
Table 2). Third, we assessed the impact on correlations
observed when only non-interpolated HbA 1¢ measurements
and GRI scores were analyzed (Supplemental Table 3).
Fourth, we explored the impact on correlations observed
when the required threshold for CGM wear time was
increased to 50% to 70% (Supplemental Table 4) and then to
=70% (Supplemental Table 5), given previous studies’ use
of these thresholds for CGM wear time.'°?' Finally, we
examined correlations between GRI equation components
(eg, the correlation between the Very Low Weight [3.0 X
percent time spent in <54 mg/dL or <3.0 mmol/L]) and
HbA 1c to better understand the GRI score equation weight-
ing factors (Supplemental Table 6).

Results

We analyzed data for 901 longitudinal (ie, 12 month) time
windows for 719 individuals. Demographic characteristics
of the cohort (N = 719) are reported in Table 1. Comparisons
to the original population of CGM users’ demographic and
glycemic characteristics are included in the Supplemental
Materials (Supplemental Table 7). Mean (SD) GRI was 64
(29), which corresponds to Zone D of the GRI quintiles. At
baseline, mean (SD) HbAlc was 8.1% (1.4) (10.3 mmol/L,
(2.23)).

The GRI score at baseline positively correlated with
HbA ¢ at baseline (r = 0.68, 95% confidence interval CI =
[0.65, 0.72]). The GRI also positively correlated with HbAlc
measures at 3 months (r = 0.65, 95% CI = [0.60, 0.70]), 6
months (r = 0.60, 95% CI = [0.54, 0.66]), 9 months (r =
0.57,95% CI = [0.52, 0.62]), and 12 months (r = 0.52, 95%

Table 1. Participant Demographics.

Total, no. 719
Male, n (%) 363 (50.5)
Median age (IQR) in years 13.4 (5.2)
Median TID duration (IQR) in years 3.8 (4.8)
Race, n (%)
White 602 (83.7)
Black or African American 38 (5.3)
Multiracial 34 (4.7)
Hispanic 33 (4.6)
American Indian or Alaska Native 4 (0.6)
Declined 4 (0.6)
Asian 2 (0.3)
Native Hawaiian or Pacific Islander I (0.1
Other I (0.1)
Ethnicity, n (%)
Non-Hispanic/Non-Latino 664 (92.4)
Hispanic/Latino 52 (7.2)
Declined 3 (0.4)
Insurance, n (%)
Commercial 489 (68.0)
Public 209 (29.1)
Self-Pay I (1.5)
Other 10 (1.4)
Mean Proportion of Time Spent in Target 0.49 (0.19)
Range (SD)
Mean Glucose Measurement, mg/dL (SD); 194.7 (43.3);
mmol/ L (SD) 10.8 (2.4)
Mean Glucose Coefficient of Variation (SD) 0.37 (0.07)
Mean Proportion of Time Spent in Very 0.005 (0.01)
Low-Glucose Hypoglycemia (SD)

Mean Proportion of Time Spent in Low-Glucose  0.02 (0.02)
Hypoglycemia (SD)

Mean Proportion of Time Spent in 0.25 (0.08)
High-Glucose Hyperglycemia (SD)

Mean Proportion of Time Spent in Very 0.24 (0.18)

High-Glucose Hyperglycemia (SD)

Information reported here is at baseline or 0 months of each individual’s
most recent observation window (when multiple observations were
available).

Note: Very low-glucose hypoglycemia (<54 mg/dL; <3.0 mmol/L),
low-glucose hypoglycemia (54-<70 mg/dL; 3.0-3.9 mmol/L), high-glucose
hyperglycemia (>180-250 mg/dL; >10.0-13.9 mmol/L), and very high-
glucose hyperglycemia (>250 mg/dL; >13.9 mmol/L) ranges were used as
reported in the original report of the GRI.'

CI = [0.47, 0.57]). Correlations between the GRI score at
baseline and longitudinal HbAlc measurements are shown
in Table 2.

The high component of baseline GRI demonstrated sub-
stantial positive correlation with HbAlc measures at 0
months (r = 0.69; 95% CI = [0.66, 0.72]), 3 months (r =
0.66; 95% CI = [0.61, 0.71]), 6 months (r = 0.60; 95% CI =
[0.54, 0.66]), 9 months (r = 0.57; 95% CI = [0.52, 0.61]),
and 12 months (r = 0.51; 95% CI = [0.46, 0.56]) (Table 2).
Correlations observed between the low component of base-
line GRI scores and HbAlc measures were negative, and
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Table 2. Correlations Between GRI at Baseline and HbA | ¢ Measurements Over Time.

GRl at
Baseline  HbAIc at Baseline HbAIc at 3 Months HbAIc at 6 Months HbAIc at 9 Months HbAIc at 12 Months
GRI at Baseline [95% ClI] - 0.68%+ [0.65, 0.72] 0.65%** [0.60, 0.70] 0.60*** [0.54, 0.66] 0.57*%%[0.52, 0.62] 0.52*** [0.47, 0.57]
GRI High Component [95% Cl] - 0.69%%¢ [0.66, 0.72] 0.66™** [0.61,0.71] 0.60%** [0.54, 0.66] 0.57***[0.52, 0.61] 0.51*** [0.46, 0.56]
GRI Low Component [95% CI] - -0.16%%* -0.14* -0.12* -0.09* -0.05
[-0.23, [-0.22, [-0.21, [-0.16, [-0.12,0.01]
-0.10] -0.05] -0.02] -0.02]
Mean 63.58 8.12 8.25 8.2l 8.16
SD 28.76 1.39 1.55 1.52 1.52

Note: *** denotes P < .001; * denotes P < .05. The GRI has two components: the High Component (weighted sums of time spent in very high-glucose
and high-glucose hyperglycemia) and the Low Component (weighted sums of time spent in very low-glucose and low-glucose hypoglycemia).

also weaker, at 0 months (r = —0.16, 95% CI = [-0.23,
—0.10]), 3 months (r = —0.14, 95% CI = [-0.22, —0.05]), 6
months (r = —0.12, 95% CI = [-0.21, —0.02]), and 9 months
(r = —0.09, 95% CI = [-0.16, —0.02]). At 12 months, the
correlation between the two (r = —0.05, 95% CI = [-0.12,
0.01]) was not statistically significant.

Results from the sensitivity analyses were similar, in both
direction and strength, to those observed in the primary anal-
ysis. We found that capping the GRI, including only the most
recent observation for each individual, analyzing only raw
(vs interpolated) HbA 1¢ measures, and increasing the thresh-
old for CGM wear time did not substantially alter our results
(Supplemental Tables 1-5). We observed similar longitudi-
nal correlations when comparing GRI equation components’
correlations with HbAlc to overall GRI score correlations
with HbAlc (Supplemental Table 6).

Discussion

In youth with T1D, we found that seven-day GRI scores pos-
itively correlated with concurrent HbAlc measurements.
The GRI also positively correlated with HbAlc measure-
ments 3, 6, 9, and 12 months later. We identified strong and
consistently positive correlations between the GRI high
component and HbA lc over time, whereas the low compo-
nent only weakly (and negatively) correlated with HbAlc at
0, 3, 6, and 9 months; at 12 months, no correlation was
observed.

This study supports and extends previous work examin-
ing GRI in youth with T1D. Previous research showed a
positive correlation between a single HbAlc measurement
and a single GRI score calculated from four weeks of CGM
data preceding the HbAlc measurement in 1067 children
with T1D in Italy.® This study supports and extends earlier
findings over a 12 month time window and in a US-based
cohort. Taken together, GRI adequately describes glycemia
quality in youth with T1D.

This study is the first to examine the relationship between
HbAlc and the GRI high and low components. One prior
study did show that the GRI high component, but not the low
component, was significantly different between pediatric
individuals using CGM with multiple daily injections versus

those using hybrid closed-loop systems.® Similarly, GRI
zones stratify adults with T1D based on time spent in high
and very high-glucose ranges but not in low and very low-
glucose ranges.” We conclude that further research is needed
to understand how to best present the GRI to clinicians and
individuals with T1D to adequately convey the risk to safety
from hypoglycemia, particularly in youth with T1D. Youth
with T1D may experience severe hypoglycemia more often
than adults with T1D,'%?? which may be due in part to
increased variability in blood glucose levels, and frequent
fluctuations between high and low blood glucose levels may
offset any effect of hyperglycemia on HbAlc. Previous
research showed that risk of severe hypoglycemia and hypo-
glycemic coma was relatively the same across different
HbA lc levels in youth with T1D,? and results of a recent
literature review on established CGM-derived metrics sug-
gest that no single composite metric sufficiently conveys
overall glycemia, especially risk of hypoglycemia.?* The
GRI (with the current weight applied to the low/very low
component) is not likely to adequately distinguish between
youth who are and are not at risk of hypoglycemia, necessi-
tating further research to better understand how to best edu-
cate individuals with TID on the GRI and its utility.
Sensitivity analyses comparing GRI equation components
suggest the GRI may benefit from further weight being
placed on time spent in low-glucose (54-<70 mg/dL) and
very low-glucose (<54 mg/dL), as doing so may result in
increased sensitivity of the GRI to this component of glyce-
mia in youth with T1D (see Supplemental Materials).
Clinicians may opt to use the GRI to stratify youth by level
of priority for outreach during remote patient monitoring
programs such as those incorporated into the 4T study.?
Using the GRI to stratify risk may be an improvement over
using time spent in target range or other pre-defined risk
thresholds. Future research may also consider evaluating the
stability of GRI scores over time to identify youth at risk of
hypoglycemia based on increasing GRI scores or longitudi-
nal variability in GRI scores.

The ease of obtaining GRI scores presents a major advan-
tage to its use. Recent research suggests that a sampling dura-
tion of only 7 to 14 days of CGM data is needed to provide a
stable estimate of GRI when compared with GRI scores
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calculated from 90 days of CGM data from adults with T1D.%
Given that GRI scores can be calculated using one or two
weeks of CGM data with no additional measures or labora-
tory work necessary, it is possible that the GRI may serve as
an adequate proxy for HbAlc in situations where HbAlc can-
not otherwise be obtained. The GRI may therefore provide
additional value to clinicians and to individuals with T1D
who agree to participate in a remote monitoring program
between clinic visits. It is important to note that the metric is
easily obtainable after handling the complexity of ingesting
and managing CGM data in near real-time for diabetes cen-
ters. After the initial investment of technical infrastructure, in
many cases, CGM data and CGM-derived metrics like GRI
and Ambulatory Glucose Profile metrics?’ can be accessed
remotely, allowing for review without the individual needing
to travel to the clinic. In addition, CGM use is increasing
among youth with T1D,'® making GRI an increasingly rele-
vant metric for evaluating glycemia. Our results suggest that
the GRI positively correlates with HbAlc over time; there-
fore, GRI scores may be used to evaluate glycemic control in
between HbA 1¢ measurements, and potentially as part of an
approach to forecast future glycemic control in youth.

Importantly, the GRI yields additional information,
above and beyond time in range (TIR), the most commonly
used CGM-derived metric. The precise reason that an indi-
vidual experiences low TIR (ie, increased time in hypogly-
cemia vs hyperglycemia) is not elucidated by the TIR
metric, and identification of individuals with low TIR due
to hypoglycemia can be complicated by the much higher
incidence of low TIR that occurs due to time spent in hyper-
glycemia. With appropriate weighting, the GRI can be fine-
tuned to readily identify and stratify such risk—particularly
in populations with elevated risk of low TIR due to hypo-
glycemia (eg, youth and older adults). Timely monitoring
of glycemia quality may foster timely interventions to
reduce the near-term and long-term risks of hyperglycemia
and hypoglycemia.

It is important to note several limitations when consider-
ing the current results. First, as the GRI metric was devel-
oped using CGM tracings from adults with different types of
diabetes (only some of whom had T1D), components used to
calculate the GRI may require different weightings that are
specific to youth with T1D. In addition, we examined the
relationship between a single GRI score and HbAlc mea-
sures over the subsequent 12 months in a convenience sam-
ple from a tertiary care diabetes clinic network. However, the
number and timing of follow-up HbA 1¢ measures resulted in
arelatively small cohort of individuals relative to the original
population from the clinic network. The cohort was also lim-
ited to individuals with CGM wear time of =50%, so the
GRI may not be accurately descriptive for individuals with
low CGM wear time. Sensitivity analyses (see Supplemental
Materials) showed that the correlations between GRI scores
and HbAlc at 0, 3, 6, 9, and 12 months did not differ when
examining observations with wear time =50%, 50% to 70%,

or =70%. In addition, we did not examine GRI and HbAlc
in the first year following T1D diagnosis. Further research is
needed to determine whether GRI describes glycemia quality
during this window, which often includes a “honeymoon
period” where individuals may experience a partial remis-
sion of symptoms and require a reduced amount of insulin.?
Finally, the retrospective analysis approach may introduce
bias in sampling. In the current report, we chose not to cap
GRI scores to help mitigate any artificial deflation of vari-
ability in the cohort. Sensitivity analyses (see Supplemental
Information) showed that the correlations between GRI
scores and HbAlc at 0, 3, 6, 9, and 12 months were not dif-
ferent when the GRI was capped at 100 vs when the GRI was
not capped at 100. In larger population health studies, it
remains possible that capping the GRI may artificially
decrease variability. Further research in larger populations is
needed to determine whether the GRI should be capped in
youth with T1D.

Conclusions

The GRI, an easily obtainable metric of glycemic control in
individuals who use CGM, positively correlates with HbAlc
at baseline AND over a 12 month window in youth with
T1D. The GRI may be useful for assessing the quality of
glycemia between clinic visits and HbA 1c¢ measurements; it
may also be used in a risk-stratified fashion to identify indi-
viduals with suboptimal glycemic control. It is not unex-
pected that the low component of the GRI was weakly and
negatively correlated with HbAlc, but the GRI as it is cur-
rently calculated may be limited in its ability to identify
youth at risk for hypoglycemia, particularly if clinics stratify
patients by GRI score in order to determine how to prioritize
outreach and intervention efforts. Improved monitoring of
glycemia quality may enable more timely initiation of inter-
ventions designed to reduce risk for both short- and long-
term complications of T1D.

Abbreviations

CGM, continuous glucose monitor; GRI, glycemia risk index;
HbAlc, glycated hemoglobin Alc; MDI, multiple daily injections;
T1D, type 1 diabetes; TIR, time in range.
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