Go Go Gadget Hammer: Flipping Nested Pointers for Arbitrary Data Leakage

Youssef Tobah Andrew Kwong Ingab Kang
University of Michigan UNC Chapel Hill University of Michigan
ytobah@umich.edu andrew @cs.unc.edu igkang @umich.edu
Daniel Genkin Kang G. Shin
Georgia Tech University of Michigan
genkin@ gatech.edu kgshin@umich.edu
Abstract given rise to a plethora of security vulnerabilities. Of par-

Rowhammer is an increasingly threatening vulnerability that
grants an attacker the ability to flip bits in memory without di-
rectly accessing them. Despite efforts to mitigate Rowhammer
via software and defenses built directly into DRAM modules,
more recent generations of DRAM are actually more sus-
ceptible to malicious bit-flips than their predecessors. This
phenomenon has spawned numerous exploits, showing how
Rowhammer acts as the basis for various vulnerabilities that
target sensitive structures, such as Page Table Entries (PTEs)
or opcodes, to grant control over a victim machine.
However, in this paper, we consider Rowhammer as a
more general vulnerability, presenting a novel exploit vec-
tor for Rowhammer that targets particular code patterns. We
show that if victim code is designed to return benign data to
an unprivileged user, and uses nested pointer dereferences,
Rowhammer can flip these pointers to gain arbitrary read ac-
cess in the victim’s address space. Furthermore, we identify
gadgets present in the Linux kernel, and demonstrate an end-
to-end attack that precisely flips a targeted pointer. To do so
we developed a number of improved Rowhammer primitives,
including kernel memory massaging, Rowhammer synchro-
nization, and testing for kernel flips, which may be of broader
interest to the Rowhammer community. Compared to prior
works’ leakage rate of .3 bits/s, we show that such gadgets
can be used to read out kernel data at a rate of 82.6 bits/s.
By targeting code gadgets, this work expands the scope and
attack surface exposed by Rowhammer. It is no longer suffi-
cient for software defenses to selectively pad previously ex-
ploited memory structures in flip-safe memory, as any victim
code that follows the pattern in question must be protected.

1 Introduction

In recent decades, the field of computer architecture has made
great strides in boosting performance while reducing power
and area costs. Such aggressive optimization has reaped con-
siderable benefit for use in the common case, but has also

ticular interest is the advancement of DRAM, packing more
information into denser areas while neglecting security risks.

Consequently, the Rowhammer bug [22] has shown how
attackers can take advantage of the tightly-packed capacitors
in DRAM to flip bits in memory without directly accessing
them. By rapidly accessing a row of memory, an attacker can
induce disturbance effects on adjacent rows, causing their
capacitors to leak charge and flip their values from 1 to 0, or
vice versa. This newfound ability to flip bits led to a wealth of
follow-up work, demonstrating both how to flip bits on newer
generation DIMMs [13, 19,25] and how to exploit the flips
to escape sandboxes [40], gain root privilege [14,40,43,44],
and leak secret keys [26], among other attacks [2, 10,12, 15,
28,31,34,36,41,42,51].

However, a majority of these attacks focus on targeting
specific sensitive targets [14,14,40,43,44,51]. These prior
works consider the dangers of bit flips in important structures
such as PTEs [40,43,44,51] and security-critical code (e.g.
sudo password checks [14]). This led to various mitigation
proposals that protect PTEs from bit-flips. [49, 53].

In contrast, few have considered more general targets
Rowhammer can exploit to leak data. RAMBIleed [26] demon-
strated that attackers can hammer their own memory to leak
individual bit-values of adjacent rows, and SpecHammer [42]
showed how Rowhammer can be used to leak data via Spectre
gadgets. However, RAMBIeed only allows for leaking one
bit of information per flip, and SpecHammer is restricted to
leaking information while in the speculative state. Moreover,
to the best of our knowledge, no work beyond these has ex-
plored how Rowhammer can be used to read out victim data
without relying on flipping PTE bits or otherwise gaining root.
While defenses addressing the PTE vulnerability already ex-
ist [49,53], it is still unknown if the scope of these mitigations
is sufficient. Thus, we pose the following questions:

Do there exist additional, hitherto unknown, code se-
quences that yield an arbitrary confidentiality break under a
Rowhammer attack? If so, what would the implications be of
such a vulnerability?

1.1 Our Contributions

In this paper, we present a new type of Rowhammer gadget
that offers answers to these questions. This gadget, consisting
of nested pointer dereferences, shows that by flipping victim
pointers, Rowhammer can be used to gain arbitrary read ac-
cess to a victim’s address space. Furthermore, we found that
such gadgets are quite common, and discovered 29 unique
instances in the Linux kernel’s filesystem handler code alone.
We additionally developed an end-to-end exploit targeting
one such kernel gadget to gain arbitrary read access to a vic-
tim’s address space. Unlike prior work targeting bit-flips in
the kernel, we target kernel-stack variables, bypassing any de-
fenses that protect PTEs against flips [49, 53]. To the best of
our knowledge, this is the first exploit using kernel stack flips
without relying on deduplication or speculative execution.

func (initial_pointer) {

1

2 pointerA = initial_pointer
3 pointerB = *pointerA

4 return_value = *pointerB

return return_value

Listing 1: GadgetHammer toy gadget.

Rowhammer Gadget. Our core contribution is the obser-
vation that a common code behavior serves as an exploitable
Rowhammer gadget. A simple exemplary gadget is shown in
Listing |. In its most general form, the gadget has two key
requirements: 1) a nested pointer dereference and 2) the return
of data to a calling attacker. That is, a pointer (e.g. PointerA
in Listing 1) must first be dereferenced (Line 3) to retrieve a
second pointer value (PointerB) that is subsequently deref-
erenced (Line 4). Then, the data from the second dereference
should be sent back to the attacker (Line 5).

func (struct* init_pnt) {
2 struct* strct_pntA = init_pnt->mbr_pnt;
3 struct* strct_pntB = strct_pntA->mbr_pnt;
4 ret_val = strct_pntB->mbr_val;
return ret_val

Listing 2: GadgetHammer example kernel gadget.

If we assume the attacker has the ability to flip a bit in the
first pointer, she can redirect it to attacker-controlled data,
allowing an attacker to set an arbitrary value for the second
pointer. Consequently, this pointer can be set to point to any
arbitrary address in the victim’s address space, leading the
second pointer dereference to read out arbitrary values that
get passed back to the attacker.

Gadget Presence. While the prior listing demonstrated a toy
example, Listing 2 shows an example closer to the real-world
gadgets present in the Linux kernel. The danger of this gadget
comes from the fact that the Linux kernel relies heavily on

the use of struct and function pointers. Instead of passing
numerous arguments to function calls, custom structs can
be designed to carry all necessary information (represented
by init_pnt in Listing 2). While this style of programming
provides the convenience of passing a single struct pointer
to a function, it also leads to many nested pointer derefer-
ences, making kernel code ripe for exploitation. Furthermore,
gaining control of a struct pointer via bit-flipping gives the
attacker control over every member value of the struct as well,
allowing the attacker to inject her own data into numerous
variables, granting control over the victim function.

1.2 Challenges

Performing an end-to-end attack against the Linux kernel
has several key requirements that form the following core
challenges:

e Challenge 1: We must precisely flip pointer values in a
particular thread in the kernel’s address space.

Challenge 2: We must run Rowhammer in parallel with the
victim gadget, flipping values in "real-time" synchronously
with the victim process.

Challenge 3: We must point to data that we control within
the victim address space.

Challenge 4: Finally, we must demonstrate an end-to-end
attack on an example gadget to show the practicality of
exploiting such gadgets.

Primitive 1: Flipping Kernel Stack Bits. The attack re-
quires flipping a pointer located within a victim process. Fur-
thermore, in the case of the Linux kernel, this means flipping
a pointer residing on the kernel stack. Typically, Rowham-
mer attacks “massage” flip-vulnerable physical pages into the
victim address space to subsequently flip victim data at will.
However, in the case of the Linux kernel, prior work either
flipped page table entries (PTEs) or relied on other vulnera-
bilities such as Spectre [2,40,42]. In particular, kernel stack
massaging is a probabilistic process, involving allocating nu-
merous kernel stacks across many threads. The low accuracy
of this technique, along with the challenge of pin-pointing
which thread contains the flip-vulnerable page, has prevented
its use in real-world attacks.

To overcome this challenge, we improved upon existing
kernel memory massaging techniques and devised a primi-
tive for accurately identifying which thread contains the flip-
vulnerable page in a time-efficient manner. For massaging,
we observe that we can identify numerous flip-vulnerable
pages and massage them all into the kernel at once, improving
the chance that a flippable page will be used by the kernel
stack. For identifying flippable threads, we observe that we
can run, hammer, and check all victim threads simultaneously,
requiring us to perform Rowhammer only once to identify
which thread contains the flip-vulnerable page. By employing
these primitives, we can flip target kernel bits.

Primitive 2: Real-time Flips. In order for the target bit-flip
to be useful, we need the ability to flip the bit in synchro-
nization with the victim code’s execution. In the case of a
kernel target, the victim is a pointer variable residing on the
kernel stack. Thus, whenever the victim function is called,
the target variable will first be initialized with pointer data
before the pointer is used. Our bit-flip needs to occur between
initialization and pointer-use, while the victim function is run-
ning. If the flip happens before initialization, the flipped data
will simply be overwritten by initialization data. If the flip
occurs after the pointer is used, the flip has no affect on the
victim function. Furthermore, Rowhammer bit-flips occur in
DRAM, but the pointer’s initialization will cause its value to
be cached. If we manage to flip the pointer’s value in DRAM,
but subsequent use of the pointer reads cached data, our flip
will effectively be “masked” by the cache and rendered use-
less. Therefore, we must also ensure victim data is evicted
from the cache between pointer initialization and pointer use.
To overcome these timing issues, we utilize kernel stalling
techniques to delay kernel execution long enough to flip bits.
We show such stalling can be achieved either by running par-
allel threads that contend for resources required by the gadget,
or by using the Filesystems in USErspace (FUSE) interface
to create a file system handler that can stall such shared re-
sources indefinitely. Additionally, we show that forming an
eviction set for the flip-vulnerable page allows us to efficiently
evict cache lines and prevent the cache from masking flips.
Primitive 3: Pointing to Attacker Controlled Data. The
goal is to read out arbitrary data from the victim address space.
However, Rowhammer can realistically flip one or two bits
at best, making it difficult to overwrite a pointer to point to
arbitrary addresses. We therefore flip a pointer to point to data
that we control in order to populate a second pointer with our
data. This means we must control data that is one bit-flip away
from the original, unflipped address. For a kernel attack, this
means populating the kernel with attacker-controlled values.
To this end, we devised a technique utilizing pipes that
allows the attacker to fill the kernel heap with arbitrary values.
By sending data into a pipe and not reading it out, we can
indefinitely store data in the heap. This allows us to fill the ker-
nel with “artificial” malicious structs. Thus, when the victim
struct pointer is flipped to point to our kernel data, the struct
will populate its member variables with our malicious values,
granting us control of the syscall’s variables. From here, we
can direct the syscall to read out any address in memory.
Primitive 4: End-to-end Attack. Finally, in order to demon-
strate the practicality of this attack compared to prior work,
we demonstrate an end-to-end attack on code identified in a
Linux kernel-syscall. We demonstrate a maximum leakage
rate of 82.6 bits/s, improving the 0.3 bit/s leakage reported in
prior confidentiality-based Rowhammer work [26,42].
Contributions. We make the following contributions:

* Identifying a new class of code patterns that can be ex-
ploited as a Rowhammer gadget. (Section 4.1)

e Improving memory massaging techniques for flipping ker-
nel bits (Section 4.2).

* A novel technique for testing for kernel flips (Section 4.3).

* New synchronization techniques (Section 4.3).

¢ Performing an end-to-end attack on a Linux Kernel syscall,
demonstrating a leakage rate of 82.6 bits/s (Section 5).

1.3 Disclosures

We sent a copy of our paper to the Linux kernel security team
on April 26, 2023 and ran all experiments on our machines.

2 Background

2.1 Gadget-based Attacks

Orthogonal to Rowhammer is a class of attacks that takes
advantage of exploitable patterns in victim code. These ex-
ploitable code snippets are referred to as gadgets. The central
idea of such attacks is to identify gadgets in victim code and
use them to lead the victim process to do malicious work
for the attacker. For example, return oriented programming
(ROP) attacks work by redirecting control flow to sequences
of instructions that end in the return instruction. Attackers
scan memory for these "ROP gadgets" (i.e., series of instruc-
tions that can be chained together for malicious purposes),
and overwrite return addresses to point to them.

A more recent class of gadget-based attacks has spawned
from Spectre [42] and subsequent work in the speculative
domain [4]. These attacks are based on finding victim gadgets
that can trigger states of speculative execution. With Spectre,
attackers train branch predictors to predict a particular execu-
tion path, then force the opposite execution path to occur. This
results in a misprediction, meaning any speculatively executed
code will eventually be undone. While in the speculative state,
however, attackers can use gadgets to access out of bounds
data [1,24,39] or perform arbitrary code execution [29], and
retrieve speculatively read data via a covert-channel. Spectre
is difficult to mitigate [4] as it not only leverages performance-
critical processor features (branch prediction), but can target
any victim containing a gadget.

2.2 Pipes

Pipes are channels in the kernel used for passing data be-
tween processes. The convenience of pipes is that transmitters
and receivers do not need to synchronize. Transmitters can
send data into a pipe, and data will be stored in the kernel
indefinitely until it is read out of the same pipe.

2.3 Caching

Cache Interference. One important consideration with
Rowhammer is cache interference. Rowhammer requires re-

peatedly accessing rows of DRAM to induce flips in adjacent
DRAM rows. Therefore, between each aggressor access, the
attacker must flush these addresses from the cache. This en-
sures each access activates a DRAM row and does not simply
interact with the cache instead. Additionally, the attacker must
ensure the target victim address has been flushed from the
cache as well before hammering begins. Otherwise, even if a
bit is successfully flipped in DRAM, the victim may subse-
quently read data from the cache, "masking" the bit-flip.
Cache Eviction. If the attacker has access to a c1f1lush in-
struction and target addresses, she can directly flush addresses
from the cache to prevent interference. However, in scenarios
where there is no c1flush [15] the attacker may need to rely
on cache eviction. This is a technique in which an attacker
identifies a group of addresses (called the eviction set) that all
belong to the same cache set as a flush target. Since the cache
can only hold a limited number of entries from a particular
set, accessing all of the addresses in the eviction set causes the
flush target to be evicted from the cache, providing a substitute
to direct flushing. Prior work has demonstrated techniques for
efficiently generating minimal eviction sets [45].

Cache Side-channels. Caches are also useful as a source of
side-channel leakage. Accessing cached data is faster than ac-
cessing data from DRAM, meaning timing memory accesses
can reveal information about victim access patterns and physi-
cal memory. For example, the PRIME+PROBE [33] technique
begins by filling (or "priming") the cache with attacker con-
trolled addresses. Then, the victim is left to run. Next, the
attacker attempts to access the same set of addresses that ini-
tially filled the cache, timing (or "probing") how long each
access takes. If the accesses are all fast, the attacker knows
the victim never accessed memory occupying the same cache
set. If any accesses are slow, however, another process must
have accessed a conflicting address, revealing information
about victim memory accesses.

2.4 Rowhammer

Exploits. Rowhammer [22] demonstrated how attackers
can flip bits in memory without accessing them, spawning
a plethora of new attacks taking advantage of these bit-flips
[2,7,8,12, 14,15, 26,28, 36,40-43, 52]. Most notably, the
first exploit [40] showed how Rowhammer can flip values
in page table entries (PTEs), which could in turn be used to
gain root access. This was followed up by numerous attacks
focused on achieving the same goal of flipping PTEs to gain
root under new threat models, such as attacks targeting mobile
devices [43,44], and attacks that flipped PTEs through the
browser [15] among others [31].

Defenses. To counter the threat posed by Rowhammer, vari-
ous defenses have been developed to either prevent bit-flips
or protect sensitive data. The only widely deployed defense
in the former category is Target Row Refresh (TRR), which
can be easily bypassed with more advanced hammering tech-

niques [13, 19, 25]. Next-generation DDRS5 DIMMs use a
new technique called refresh management (RFM), but even
this has shown to be inadequate [30]. Software defenses have
sought to protect sensitive structures, by, for example, placing
buffers between user space and kernel space [3] or placing
PTE:s in flip-safe memory [49].
DRAM Organization. At its core, Rowhammer takes advan-
tage of DRAM design and its reliance on capacitors. DRAM
organizes memory into channels, ranks, banks, rows, and cells.
The lowest level of DRAM is the cell, which stores a single
bit of information using a capacitor. A fully charged capacitor
represents a 1 and discharged capacitor a O (or vice versa).
Upon accessing a DRAM address, an entire row of cells
is activated, meaning the charge from each cell in the row is
pulled into the corresponding row buffer, where the bit values
can be passed to the processor. Once the memory access is
complete, the charges are restored to their original cells.
Flipping Bits. Rowhammer made the observation that ca-
pacitors are being packed more and more tightly together in
newer generations of DIMMs, and can thus have disturbance
effects on adjacent capacitors. In particular, accessing a row
of memory and temporarily discharging and recharging the
corresponding cells can slightly accelerate the leakage rate of
adjacent capacitors. Repeatedly accessing a row of memory
can thus pull an adjacent capacitor’s charge below their thresh-
old value, flipping the capacitor’s value from 1 to O (or vice
versa), before it has the chance to be refreshed. Rowhammer
therefore enables bit-flips in addresses attackers should not
be able to modify by repeatedly accessing (or "hammering")
their own accessible rows.
DDRA4. Rowhammer was first demonstrated on DDR3
DIMMs. In response to the attack, a defense called Target
Row Refresh (TRR) was added to DDR4 [20]. TRR tracks row
activations, and if the number of activations on a particular
row crosses a set threshold, adjacent rows are refreshed im-
mediately, preventing bit-flips in these targeted victim rows.
However, TRRespass [13] demonstrated that Rowhammer
accesses can be scattered to multiple addresses across a bank,
preventing the TRR counter from properly tracking activa-
tions while still inducing leakage in the row at the center of all
these accesses; a technique called multi-sided Rowhammer.
Thus, TRRespass demonstrated that even DDR4 is vulner-
able to Rowhammer. This was followed up by numerous
works [8, 19, 25] that all demonstrated new techniques for
flipping bits on DDR4, revealing that these new DIMMs were
even more vulnerable to bit-flips underneath TRR.

2.5 Memory Massaging

With Rowhammer, an attacker can trigger bit-flips on a tar-
get physical page. However, for a flip to be exploitable, the
attacker must force a victim process to use the flip-vulnerable
(or "flippy") page. This is typically done via a primitive re-
ferred to as memory massaging, which manipulates (or "mas-

Victim Memory

]
pointerB

value

corrupt
flipped_pointer A attacker .

- -pOinterB

return to attacker Secret
I

Figure 1: Flipping a pointer to return secrets to an attacker.

sages") a physical memory allocator into a state that is likely
to serve its next allocation request using the flip-vulnerable
page [6,26,36,42,43]. The attacker can then force the victim
to use a flippy page and flip victim variables at will.

For user-space attacks, the attacker can simply deallocate
the flip-vulnerable page, placing it in a page frame cache
(PFC) [6]. Subsequent victim allocations on the same proces-
sor core will pull from the flip vulnerable page from the PFC,
allocating its variables on a flip-vulnerable page. Kernel at-
tacks are more complex since kernel and user-space memory
use different pools of physical pages. The general idea is to
drain kernel memory to the point where the kernel is forced to
pull from the pool of free user-space pages. For a PTE attack,
the attacker can force PTE allocations by mapping virtual
addresses to physical memory [40]. For an attack on kernel
stack variables, kernel stacks can be allocated by creating new
threads, which each allocate their own kernel stack [42].

3 Threat Model

We assume the attacker can use unprivileged software on the
victim machine. We also assume the victim machine uses an
uncompromised operating system. Additionally, we assume
the victim machine uses a DIMM vulnerable to Rowhammer.

4 GadgetHammer

4.1 Attack Overview

Example Gadget. The central idea of the GadgetHam-
mer attack is to target gadgets which grant arbitrary read
access upon flipping a victim pointer. An example gadget is
shown in Listing |. The requirements for a gadget are that a
pointer (pointerA, Line 2) is dereferenced to obtain a second
pointer value (pointerB, Line 2), and the second pointer is
subsequently dereferenced (Line 3). The value of this second
dereference should be returned to the user calling the gadget.
Exploiting the Gadget. As shown in Figure | the gadget
can be exploited if we assume the attacker has the capability
of flipping pointera (Line2, Listing 1) to lead pointerA to
point to attacker controlled data. Having pointerA point to

an address we control effectively gives us control the value
of pointerB (due to the dereference in Line 3). With full
control over the value of pointerB, we can effectively read
any data from the victim’s address space into return_value
(Line 4) which gets returned to the attacker (Line 5).
Technical Challenges. Exploiting the gadget as described re-
quires the use of several key primitives. We must first identify
DRAM addresses containing bits that can be flipped as needed
for the attack. Then, we need to force the victim gadget to use
a physical page corresponding to this flip-vulnerable address.
Additionally, we must control data at an address that is one
bit-flip off from the address the victim would normally point
to. Lastly, we must flip the victim while the gadget is running
and efficiently flush victim data from the cache to ensure the
victim directly reads the flipped data from DRAM.

The following sections explain how we overcome each of
these challenges, beginning with the "offline stage" where we
identify flip-vulnerable addresses and force the victim to use
them, followed by the "online stages" where we confirm the
presence of our bit-flip and finally use the gadget to leak data.

4.2 Offline Stage

Memory Templating. The first step of any Rowhammer
attack is to find which physical addresses in victim mem-
ory are subject to "useful" bit-flips (i.e., bit-flips at the same
page offset as our target victim), a step commonly referred to
as "memory templating”. We follow the same steps as prior
work [13,26,40], allocating transparent huge pages, and ham-
mering groups of addresses until finding useful flips, relying
on TRRespass [46] to induce flips in DDR4.

Massaging Physical Memory We now control physical
pages containing useful bit-flips, as well as the corresponding
aggressor rows that we can use to induce these flips. However,
to run the exploit, we need these flips to occur in target victim
values, not pages that we control. We must therefore "massage
memory" to force the victim into using the flippy page.

In the case of targeting a kernel variable, we must massage
our physical page onto the kernel stack. To this end, we can
use a kernel memory massaging primitive from [42]. We
drain kernel memory such that it is forced to steal user space
pages for subsequent allocations. We can then free the flip-
vulnerable page and spawn numerous threads, which each
allocate memory for their own kernel stack, relying on one of
these threads to allocate the flippy page for its stack.
Improving Memory Massaging Probability. A weakness
of memory massaging techniques is their probabilistic nature.
A low success rate technique requires the attacker to repeat
the time-consuming step of finding bit-flips and checking if
they landed in the kernel (see Section 4.3). In order to better
ensure that we can land a flip in the kernel once we find it, we
template to find many useful flips, instead of just a single flip,
before attempting massaging. As shown in Figure 2, finding
numerous flippy pages, freeing them all into the page allocator,

Free Pages

User space

normal page
normal page
normal page
normal page
flippy page

normal page
normal page
normal page
normal page
normal page

page request normal page

flippy page unmap

Kernel Thread
I

Free Pages
Kernel Thread
e

User space Hljeray o

normal page
flippy page
normal page
normal page
flippy page
normal page
normal page
flippy page
normal page
flippy page

flippy page unmap

Kernel Thread

page request normal page

flippy page unmap

Kernel Thread
I

normal page

flippy page unmap

unmap

flippy page

Figure 2: : Improving memory massage probability. The left side shows the lower chance that a kernel stack will allocate a
flip-vulnerable page if there is only one flip-vulnerable page in memory. The right side shows how these odds can be improved if
more flip-vulnerable pages are freed before forcing kernel stack allocations.

and then forcing kernel stack allocations, can greatly increase
the probability that a flippy page can land in the kernel.

4.3 Online Stage: Testing Flips

At this point we control numerous threads and hope at least
one thread has allocated this flippy page for its kernel stack.
In the steps that follow, we must call the victim syscall and
trigger bit-flips while the syscall is running in order to first
identify which thread contains the flippy page and then subse-
quently begin leaking data from the kernel.

Checking for kernel flips. For the memory massage step, we
allocated many threads to drain any remaining kernel memory
and then steal pages from userspace until our recently-freed
flippy page was used for a kernel stack allocation. To continue
the attack, we must first identify which thread contains the
flippy page. At this stage, we cannot simply attempt the attack
to verify whether a flip landed, since additional uncertainties
remain in upcoming stages of the attack. Thus, to reduce one
unknown at a time, we need a method to test for flips that is
isolated from the rest of the attack.

Flip-check Syscall. In order to check which thread holds
our flippy page, we rely on a second syscall, separate from
our target gadget, that returns a binary result dependent on the
presence of the flip. This syscall served a similar purpose to
the Spectre-based oracle used in prior work [25], however, it
does not rely on the use of a speculation-based exploit. Such a
syscall, which we will call the fester syscall should meet two
requirements. The first, is that is must contain a local variable
at the same page offset as the target gadget syscall. Second,
the syscall returns a value that is dependent on said local
variable. We find that meeting both requirements is feasible.
Requirement 1: Variable Offset. In the case of the first
requirement (matching page offset), the page offset depends
entirely on the local variable’s position on the stack. This, in
turn, is a direct result of the total number of local variables
allocated and nested function calls made over the course of
the entire tester syscall.

See Figure 3 for a simplified example. If we call our tester
syscall from userspace, and the highest-level function of this
syscall, FunctionA allocates three local variables, those vari-
ables might occupy page offsets 0x100 through 0x110. If
FunctionA calls another function, FunctionB, which allo-
cates three additional variables, those variables may reside
further down the stack at offsets 0x120 through 0x130. To
find a suitable target for a tester syscall, we thus only need to
find a local variable that resides a similar number of function
calls deep among the myriad of syscall options in the kernel.

Furthermore, many variants of similar syscalls exist (e.g.
write and writev or setxattr and getxattr) which will
have paths similar to each other, with slight differences in
number of function calls made and local variables allocated.
This effectively allows for "sliding" the position of target local
variables up and down the stack until finding a suitable target.

Requirement 2: Flip Dependent Result. We can meet the
second requirement thanks to the good programming prac-
tices followed by the kernel. Syscalls commonly have many
checks throughout their functions to catch errors, preventing
bad values from propagating through kernel code and causing
crashes. Thus, if a local variable is flipped to an incorrect
value, the syscall may detect something is wrong and grace-
fully return an error code as opposed to crashing, creating a
flip-dependant result. Otherwise, if the syscall behaves prop-
erly, we can move on to check the next thread. As we will see
in Section 5.1, we find filesystem syscalls work quite well
as tester syscalls.

Working Around Cache Flushes. Challenges still remain
in flipping syscall bits. The first is the issue of cache flushing.
Upon calling our victim gadget, our target flip variable will
first be initialized before we can induce our flip. This will
likely cause the victim variable to be cached, thus "masking"
any potential flips with cached data.

Therefore, we take advantage of cache eviction techniques
[45]. Instead of directly flushing our victim from the cache,
we will fill the same cache set with arbitrary data, forcibly

Kernel stack

tester_syscall(){

Kernel stack

target_syscall(){

localGl

localGz metadata

localG3

0xZZZZ77Z100 localG1

gadget () 02222772108 localG2
0xZZZZ7Z110 localG3
metadataB

gadget{ 0xZ722777120 localG4

localG4; 0x222272128 RREReE

Toyeanae errrrrdE 0l | localG5

return;

}

Functiona()
} retum metadataA
Functiona () { OxZZZZ7Z100 localA1
localat; 0x2ZZZ77108 localA2
yocaaz; localA3
localas: 0xZZZ777110
metadataB
FunctionB() 0xZZZZ7Z120 localB1
return; 0xZZZZ77128 localB2
}
FunctionB () { 0xZZZ7277130 localB3
localBl;
localB2;
localB3;
;eturn;

Figure 3: Function calls placing data on the stack. The left side shows the target gadget’s stack, and that the variable we seek to
flip happens to reside at page offset 0x128. The right side shows the tester gadget, which stores variables at a similar stack depth,

also storing a local variable at page offset 0x128.

evicting our target victim, exposing it Rowhammer. We ob-
serve that with physically-indexed caches, we can easily form
eviction sets for our victim during the templating phase, since
during that phase, we control the victim physical page and
know the lower physical address bits. When we release the
victim page and force the syscall to use it, we can use the same
eviction set made of userspace pages, giving us the ability to
flush kernel data from the cache at will.

Stalling Kernel Execution. The last remaining challenge
for our tester syscall is flipping the victim variable in parallel
with syscall execution. We must wait for the victim variable
to be first initialized with its pointer value, and then flip the
pointer before it gets dereferenced. If the syscall is left to
run normally, this window will likely be too tight to induce
a bit-flip, especially in the case of DDR4 where we require
multi-sided hammering. Furthermore, since our victim runs
in the kernel, we have no direct way of knowing which line
of code the victim is executing at any given time and cannot
precisely synchronize our hammering to begin when needed.

FUSE. Prior work relied on the userfaultfd syscall, which
can be used to indefinitely stall the kernel [9,42]. However,
this syscall has recently been restricted to superuser privilege.
Alternatively, Linux’s filesystem in userspace (FUSE), can be
used to achieve a similar effect [17]. With FUSE, we can map
files to an attacker-defined filesystem, force the victim syscall
to interact with such files, and define the filesystem handlers
to stall indefinitely. This consequently stalls the victim syscall,
giving us room to flip bits.

Additionally, even if the target syscall does not directly
trigger any of our handlers, so long as the syscall requests a
lock, semaphore, or mutex, we can call other syscalls that use
the same resources, wait for them to hold the lock, and then

stall them indefinitely. Without access to the lock, our target
syscall will not be able to run until our handler completes.
Moreover, since the kernel forbids mixing declarations and
code, and since optimal code holds locks for as briefly as pos-
sible, lock requests tend to be conveniently located between
victim variable initialization and use.

Thread Contention. For distributions of Linux that may
not have FUSE installed, we devise an alternate technique
that can delay the tester syscall. We simply allocate numerous
threads that each request the same lock as our tester syscall
and have the syscall run in parallel with all threads. With
numerous threads contending for the same resource, the tester
syscall’s execution becomes delayed, giving us enough time
to hammer and flip bits. This technique is less reliable than
FUSE, as the tester syscall may get the resource ahead of its
contenders, before we have time to flip the victim. We show
that despite this disadvantage, this technique can work against
the tester syscall in practice (see Section 5.1).

Simultaneous Thread Hammering. We can now hammer
a syscall to identify which thread contains the flip-vulnerable
page. However, consider that a single "round" of Rowham-
mering typically requires tens to hundreds of thousands of
accesses to flip a bit. Additionally, its helpful to perform mul-
tiple repeated rounds of hammering to ensure bit-flips. This
means our hammering operations will require time on the or-
der of milliseconds. Furthermore, as explained in Section 4.2,
we have identified multiple flip-vulnerable pages, each with
their own aggressor set, that could each have been success-
fully massaged into our target victim. This means we need
to hammer every aggressor set for each test, and we need to
repeat this process for every thread that potentially contains a
flip-vulnerable page. Multiplying the time needed for a sin-

gle hammer procedure by the number of aggressor sets and
number of threads results in a process that takes several hours.

To reduce the time required, we instead hammer all threads

in parallel. In the case of using FUSE for stalling, we create a
single file shared by all threads, and run every thread until it
is forced to stall by our file system handler. This causes every
thread to load its local variable data in DRAM and keep it
there until the filesystem allows the threads to continue. Now,
running our eviction sets and hammering our aggressors for
one round will simultaneously hammer all threads, flipping
any variables that use a flip-vulnerable page. We therefore
only need to perform our hammering rounds once, reducing
the required time from hours to seconds.
Reducing Risk of Bad Flips. Simultaneously massaging
numerous flippy pages into kernel memory introduces a new
risk. We may potentially cause an important kernel structure
(other than our target) to use a flip-vulnerable page and inad-
vertently flip a critical value. In the worst case, this can cause
a kernel panic and crash the victim system, which is undesired
since our goal is to target confidentiality, not availability.

To help alleviate the risk of a crash, we can take advantage
of a PRIME+PROBE side-channel. Note that we have already
formed an eviction set of addresses that occupy the same
cache set as our flip-vulnerable victim. Besides directly using
these addresses for eviction, we can also use them for PRIME+
PROBE testing. Before we perform any hammering, we first
access every address in our eviction set to ensure the cache is
occupied by our data. We then repeatedly access our eviction
set, timing how long each access takes, and run a candidate
victim thread in parallel. If the victim thread uses the flip-
vulnerable victim page, it will affect the time required to
access our eviction set addresses, revealing which threads
may use the massaged flip-vulnerable pages.

PRIME+PROBE tends to be a noisy measurement, and re-
peating measurements enough times to eliminate noise would
take impractically long. We therefore use the noisy mea-
surement with conservative thresholds to filter which threads
should be hammer tested. The hammer testing then shows
which thread uses the flippy page with 100% accuracy.

4.4 Online Stage: Leaking Data

The remaining step is to flip the target syscall pointer, leading
it to point to data we control, granting arbitrary kernel reads.
Targetting the Kernel Heap. The first challenge is how
to point this victim to our own controlled data. An obvious
choice might be to flip a high order bit and force a point to
userspace, where we could control a large region of mem-
ory. However, recent processors come with supervisor mode
access prevention (SMAP). This prevents the kernel from
accessing any data in userspace. We must therefore inject
our own data directly into the Linux kernel. Even though our
target pointer resides on the stack, the pointer value may point
either to kernel stack or heap data. Since we can realistically

typedef struct ft{ Victim Memory
int len;
int *pt;
int idx; e
} len
pt - ft struct
gadget () { ;
struct ft* p; idx —
len = p->len; I
pt = p->pt; flipped malicious len e
idx = p->idx; sl lici t | artificial
ret = 0; ma‘lc_lous‘p struct
malicious idx i
while (idx < len){ I
ret+=pt [idx] malicious len artificial
idx+=1 ici
) ma!lc_lous_pt struct
malicious idx
return ret;
}

Figure 4: Filling victim memory with artificial structs that
contain attacker data. Flipping a struct pointer to point to our
structs gives us control of the true struct’s member variables.

flip only a single bit, it is most practical to attempt changing
this pointer to point to an alternate address also within the
same memory region. Since the gadget chosen for our ex-
ample end-to-end attack uses a heap pointer (Section 5), we
focus on injecting our data into the kernel heap, noting that
injecting data into the stack is possible as well [9,42].
Spraying the Heap. The first question is how to inject heap
data. Prior works have explored different techniques for heap
spraying [50], however, here we have an advantage in that we
have none of the usual constraints characteristic of heap spray
exploits, such as reusing dangling pointers.

We find that pipes act as a convenient mechanism for stuff-
ing the kernel with data that we control, as previously demon-
strated on non-Linux operating systems [18]. Pipes are de-
signed to act as files that users can read and write from, but
instead of storing values in an actual file, they are stored in
the kernel heap. Pipes can store 16 pages of data, and multiple
pipes can be allocated up to the operating system’s hard limit
of about 1 million files. Furthermore, we can swap data in and
out of the pipe at any time by simply writing to our pipe of
choice, which will prove useful for the final step of the attack.
Spray Contents. We need to fill the heap with values such
that if the victim pointer points to our heap data, we can lead
subsequent instructions in the syscall to point to secret data.
We thus consider the structure of the victim struct and form
artificial structs to populate the kernel heap. When the vic-
tim is flipped to point to an artificial struct, every subsequent
dereference will pull from our artificial struct, allowing us
to fill the victim syscall with our own values and take over
the execution path. As an example, suppose the target gad-
get behaves as show in Figure 4. The key to this gadget is
the pointer p pointing to a struct of type ft. We can flip this
pointer to point to a location of memory we control, contain-
ing an artificial £t struct. From here, malicious, len, pt, and

idx values can be set to control the number of addresses the
syscall will read , and what each of those addresses will be.
Positioning Heap Contents One challenge is positioning
our data so that its address is one flip away from the victim
pointer. Like any address, the victim address consists of two
components, the higher order bits signifying the page, and the
lower order bits signifying the page offset. Our injected heap
data will reside on a separate page from the victim, meaning
our bit-flip must occur in the page field of the address, and the
page offset of our injected data must match that of the victim
variable’s original pointer.

Since this victim value is pointing to the heap, the page and
offset values are randomized, as the heap values are allocated
at random. To counter the random nature of the page value,
we spray the heap with as many artificial structs as possible,
maximizing the odds that we control a page one bit-flip away.

The page offset value is also random, but, since we target
struct pointers, the lower order bits of the page offset are
restricted based on the size of the struct being pointed to,
as the struct must be aligned in memory. For example, we
find that pointer value in our target in Section 5.1 is always a
multiple of 0x40. Therefore, within the pages we control in
the heap, we can position our artificial struct at every multiple
of this value over the space of the entire page. This guarantees
that if we point to the page containing our data, the victim
struct will point to an offset containing our data as well.
Checking Heap Spray Using Flip. At this point, we have
filled the heap with data we control. However, we need to be
sure we control data that is one flip away from our victim (See
Figure 5). Therefore, we must first set our attacker-controlled
heap values such that they point to fixed control data in the
kernel, before we attempt to leak secrets. This way, we can
spray the heap, flip our bit, and check if the gadget leaks out
control data to confirm a successful heap spray. For the control
data, we use tables used for Linux’s AES encryption libraries,
as they contain 16KB of contiguous, constant, unique data. If
we’re able to successfully read out bytes from this table, we
know our heap data landed in a useful position. Otherwise,

we simply deallocate our heap data and attempt a reallocation.

We can point to control data in presence of KASLR by relying

on existing techniques to derandomize kernel addresses [38].

It is worth noting here that the repeated attempts at landing
heap data at a useful address is precisely why the tester syscall
is needed. Without the tester syscall, we would be unsure
whether we are unable to flip bits due to not controlling a
flippy page in the kernel or due to an unsuccessful heap-spray
attempt, and would have to run numerous heap-spray attempts
on each thread to be confident the issue is due to the lack
of a flippy bit. Fortunately, the tester syscall guarantees the
presence of a flip in a given thread, allowing us to repeatedly
heap-spray and hammer a single thread, while being fully
confident in the presence of a bit-flip.

Pointing to Leak Target. At last, we are ready to arbitrarily
read data from the kernel. For this final step, we simply write

to the pipes containing our heap data, filling the pipes with
pointers to whichever address we wish to leak. We then run the
syscall again, flip the gadget pointer, and read out data from
the chosen address. For example, we can point to the physmap,
and read all physical memory on the victim machine.
Results. The leakage rate depends on the data returned by
the victim syscall. Each time we hammer and call the syscall,
we get one return value with leaked data. Since we stall for
about 0.5 seconds to give time for hammering, the maximum
theoretical leakage rate is 128 bits/s (when the return value
is 64 bits). See Section 5.2 for an empirical evaluation on a
chosen example gadget present in the kernel.

5 Attacking the Linux Kernel

As a proof-of-concept of the risk posed by GadgetHammer
we demonstrate an end to end attack on the Linux kernel,
successfully mounting our attack on an existing syscall.

5.1 Target Victims

Target Gadget. We identify a suitable GadgetHammer gad-
get in the 1oct1 syscall. In particular, within the pipe_ioctl
function located in fs/pipe.c. A simplified version of this
gadget is shown in Listing 3. The usual use case of this func-
tion is for the user to pass in a file descriptor referring to
a pipe (filp on Line 1), and receive the number of unread
bytes contained in that pipe. The syscall begins by extracting
the private_data pointer from filp and passing the pointer
value to the local pipe variable (Line 2). The pipe variable
now points to a struct containing all corresponding metadata.

1 pipe_ioctl (struct file *filp, unsigned int
cmd, unsigned long arg) {
struct pipe_inode_info *pipe = filp->
private_data;
3 int count, head, tail, mask;

5 __pipe_lock (pipe);

6 count = 0;

7 head = pipe->head;

8 tail = pipe->tail;

9 mask = pipe->ring_size-1;

10 while (tail != head) {

11 count += pipe->bufs[tail & mask].len;

12 tail++;

13 }

14 __pipe_unlock (pipe);

15 return put_user (count, (int _user *)arg);

Listing 3: GadgetHammer example kernel gadget

The syscall then locks a semaphore (Line 5) to ensure the
pipe will not be modified while values are read out. On Lines
7-9 meta data is extracted giving the starting address (head),
ending address (tail) and maximum size of the pipe data

Victim Memory

0x100101000

struct data

other data

heap spray
data

other data

send to
0x101101000
attacker
heap spray

data

heap spray
data

other data

Victim Memory

struct data

Struct Pointer

0x100101000

AES Table
(control data)

other data

heap spray
data

other data

heap spray send to
data attacker
I

other data
|

0x1234abcd
0x5678fedc

0x101101000

Figure 5: Confirming heap spray results. The left side shows that if our heap sprayed data does not land at an address one bit-flip
away from the victim, the gadget will return junk values. We repeat the heap spray until we can read out our "control" data from

the kernel, as shown on the right side.

(ring_size). This data is used to iterate through the pipe’s
buffers, starting from the tail and ending at the head (Lines
10 - 12), using count to keep a running sum of the number of
bytes in each buffer. Finaly, the pipe semaphore is unlocked
(Line 14) and the number of bytes is passed back (as count)
to the calling function via put_user (Line 15).

Flipping the Target Gadget. The target victim for bit-
flipping is the pipe pointer variable declared and initialized
on Line 2. Note that this gadget follows the pattern of heavily
relying on this pointer for passing arguments, as the struct
pointer is repeatedly dereferenced such that its members pop-
ulate the function’s local variables.

The goal, then, is to flip the value of pipe such that it points
to our data. This data is then subsequently used as the base
address for the bufs array (Line 11). Therefore, we can set
this base address of bufs to point to any kernel address and
read out its contents as an array access. From here, the tail
variable is masked by a mask variable, and used as an index
into our base array address to read out leaked data. This leaked
data then gets added to the count variable (Line 11). After
this, the tail index variable is incremented and additional
data will be read out from the next entry in bufs and added
to count. This process repeats as many times as specified by
the 1loop and head variables, due to the loop in Line 10.

In a hypothetical scenario of controlling only the bufs
array, the target data becomes partially scrambled by the ad-
dition of subsequent values. Even then, it would be possible
to leak sums of secret data at various starting addresses and
then filter out the noisy additions from the desired target data.
However, here lies the strength of controlling the pipe struct
pointer itself, as we can control all the variables of this func-
tion and consequently control the number of loop iterations
and the array index. By setting our injected data to populate
tail with 0 and head with 1, we can ensure the victim will

loop only once, writing the desired leak target to count and
then immediately returning this value to the calling attacker.

Tester Gadget. As explained in Section 4.3, it is useful to
have a tester gadget that we can use to confidently check for
bit-flips in the kernel. We identify the removexattr function,
located in the fs/xattr.c file as such a gadget, shown in
Listing 4. We can reach this gadget via the fremovexattr
syscall. This syscall is part of the xattr family of syscalls,
which are used to interface with "extended attributes," essen-
tially adding additional properties to files for security and file
management. As the name suggests, removexattr removes
an attribute from a specified file. To specify which attribute
to remove, users pass the name of the attribute (as a string) as
one of the syscalls arguments.

The function starts by copying an attribute name passed by
the user via name into the local kernel variable kname (Line
4). Lines 5-8 simply check if a proper attribute name with an
appropriate length was used before calling vfs_removeattr
to remove the specified attribute (Line 9).

1 removexattr (....,const char __user *name) {
2 int error;
char kname [XATTR_NAME_MAX + 1];
4 error = strncpy_from_user (kname, name,
sizeof (kname));
5 if (error == || error == sizeof (kname))
6 error = -ERANGE;
7 if (error < 0)
8 return error;
9 return vfs_removexattr (..., kname);
10 }

Listing 4: GadgetHammer example tester gadget

Flipping Tester Gadget. The key to this syscall is the
kname variable shown at Line 3. This is a 256 byte long array

that stores the name of the attribute, passed in as a string
from userspace. To use the syscall as a tester gadget, we
first open any arbitrary file and add an attribute with a name
consisting of 256 characters. We then call fremovexattr to
remove the attribute we just added, meaning kname (Line 3)
will be occupied by 256 characters of our choice. Normally,
removexattr would then continue execution and remove our
attribute via vfs_removexattr (Line 9).

However, here we use Rowhammer to flip one of the char-
acters stored in kname. If we successfully flip one of these
characters, kname will no longer have a string that properly
specifies an attribute, meaning vfs_removexattr will be un-
able to remove our attribute and will return an error instead
(Line 9). Thus, by calling fremovexattr, hammering, and
checking if our attribute is still on the specified file, (or simply
checking if an error was returned) we can test for flips in the
kernel. Furthermore, the 256 addresses the kname array occu-
pies in the kernel stack overlaps with the address of the pipe
variable, our flip target in our main leakage gadget (Listing 3,
Line 2). This allows us to use fremovexattr (via kname) to
test for bit-flips at the required offset in the kernel stack.

Simultaneous Hammering In order to avoid the impracti-
cally long time required to hammer each thread one by one,
we run all threads simultaneously until they have all loaded
their syscall stack variables into memory and are stalled on our
filesystem. This allows us to perform our hammering rounds
once and simultaneously test all threads for flips. However,
this also requires the fremovexattr call in every thread to
use the same file. Furthermore, we test each thread by at-
tempting to remove an attribute, where unsuccessful removal
means no flip occurred. Since all threads use the same file,
each thread needs to add a unique attribute, otherwise removal
of the attributes by any thread would cause subequent threads
to have unsuccessful removals (regardless of flips) since the
file no longer holds the attribute.

However, a file can store only a limited number of attributes,
preventing us from adding thousands of unique attributes that
would be required for the thousands of threads. Therefore,
we organize threads into groups, with each group sharing
a single, unique file. Since each group contains a limited
number of threads, each thread is free to add a unique attribute
to its group’s file without hitting the limit. We can then stall
all of these "group files" simultaneously and test all threads,
each with a unique attribute. Any thread that returns an error
contains a flip-vulnerable page.

Stalling. We use FUSE to stall execution for a guaran-
teed 0.5 seconds to allow a comfortable hammering window.
This is accomplished by first using FUSE to create our own
filesystem, including the handlers for any files mapped to our
system. We define these handlers such that any basic inter-
actions with corresponding files (e.g., writing, reading) will
stall indefinitely. Next, we map a pipe to our filesystem and
attempt to write to this pipe via pipe_write. Writing to a
pipe requires holding a mutex via pipe_lock, and since this

write interaction is defined by our filesystem, the write to the
pipe will stall and the mutex will be held indefinitely. Thus,
any subsequent calls to pipe_ioctl will stall indefinitely
upon hitting pipe_lock (Listing 4, line 5), as the mutex is
held by our pipe_write call, thereby allowing us to create a
stalling window for hammering.

While FUSE provides the advantage of creating an indef-
inite stalling window, the FUSE package is not installed by
default on all distributions of Linux. Thus, we have also suc-
cessfully flipped tester gadget bits without FUSE by relying
only on thread contention. We spawn 1000 threads, each si-
multaneously attempting to write to a pipe, causing them to
contend over the pipe_lock mutex. This leads to a delay
in pipe_ioctl as well, as it must contend with 1000 other
threads for the mutex before the syscall can complete. Since
we do not control the order in which mutex requests are served,
the delay can vary from completely negligible to above the re-
quired 0.5 second needed for hammering, depending entirely
on the order in which threads are given the mutex. We observe
that repeating this approach 100 times per gadget-flip-attempt
is sufficient to guarantee at least one attempt will encounter a
stalling window large enough to allow for bit-flipping.

Thus, while FUSE grants a guaranteed stalling window,
and guaranteed bit-flips within a single hammering round,
thread contention does not rely on a potentially unavailable
package, but requires more attempts per bit-flip.
Deallocating the Tester Gadget. Lastly, now that we have
successfully flipped a bit in our tester gadget, we need to use
the same flip in our target gadget. This can be achieved simply
by calling the target gadget within the same thread as the tester
gadget. That is, when we return from the tester gadget syscall,
all the tester gadget variables will be popped off the kernel
stack, making room for the target gadget variables.

5.2 Attack Execution

Experimental Setup. Having identified our targets, we
conducted the attack following the steps laid out in Section 4.
We ran our evaluation on an Intel 199-9900K processor, using
a Samsung M378A1K43BB1-CPB DDR4 DIMM, running
an unmodified Linux kernel version 5.16.2 (Ubuntu 18.05.5
LTS) as well as an Intel i7-7700 CPU, using a Samsung
M378A1K43BB2-CRC DDR4 DIMM running an unmod-
ified Linux kernel version 5.16.2 (Ubuntu 20.04.6 LTS). To
better understand the performance and success rate of each
stage of the attack, we ran each stage in isolation repeatedly
for 24 to 72 hours before running all stages together in a
complete end-to-end attack.

Memory Templating We began by searching for 5 bit-flips
during the templating stage, as well as an evictions set for each
flip. We restricted our search only to flips at the page offset of
our flip-target, pipe (0xecbh through 0xec9). Within a 48 hour
period of repeated hammering, we observed 7682 bit-flips
within pages at these offsets. Of these flips, 370 were reliably

reproducible. On average, it took 5.8 minutes to obtain 1
reproducible flip. Searching for flips at 5 different addresses
strikes a reasonable balance between the time needed for
bit-flip search and success rate of memory massaging.
Memory Massaging We unmapped our 5 reproducible
flippy pages and allocated 8192 threads, hoping at least 1
flippy page would be successfully massaged into the kernel
stack. Additionally, to reduce the risk of hammering a bit in a
dangerous position, we used our PRIME+PROBE side-channel
to check if our victim threads contained one of our flippy
pages in the required position on the stack. Note that the stack
allocated multiple pages, but we only consider an attempt
successful if the flippy page is allocated to the stack page
containing our flip-target. We observed that an unmapped
flippy page landed at the required position in the kernel stack
3 times out of 37 attempts, yielding an accuracy of 8.1%.
While the accuracy is quite low, massaging attempts can be
repeated until the page lands, as done in prior work [40].

Additionally, to better understand how increasing the num-

ber of simultaneously massaged flips affects massaging, we
ran tests unmapping a single flippy page and unmapping 50
flippy pages. The 1 flip test showed a success rate of 0.65%,
landing 1 out of 153 attempts, while the 50-flip test showed a
33% accuracy, landing 4 out of 12 attempts.
Prime+Probe. Finally, we tested the ability of PRIME+
PROBE to detect cases in which a flippy page landed in the
kernel stack. Massaging attempts for these experiments were
made using 5-flippy pages at a time. In this case, the flippy
page was considered to have landed if it resided anywhere
among the 4 pages of kernel stack (rather than the specific tar-
get page) since that is the extent to which PRIME+PROBE can
detect. Among 13 cases of the victim kernel stack containing
a flippy page, 8 were correctly identified via PRIME+PROBE,
yielding an accuracy of 61.5%. Any of the remaining false
negatives would result in another massaging attempt, giving
a total average time of 25 hours for the offline stage.

It is also worth noting that of all the massaging attempts,

the PRIME+PROBE side-channel reported 5 false positives
out of 34 instances (14.7%) of a flip not landing in the victim
stack, allowing hammering to occur when a bit-flip is in a
potentially dangerous position in the kernel. However, we
additionally ran a test consisting of 60 5-flip massage tests
without the PRIME+PROBE side-channel and observed only
2 crashes. Thus, even when allowing a small percentage of
false negatives, we did not observe any dangerous kernel flips
while the side-channel was active, making PRIME+PROBE a
useful filter for preventing kernel panics.
Checking for Flips. Next, we checked which threads contain
flippy bits. For each thread, we called our tester syscall, and
stall operation for 0.5 second, while performing simultaneous
hammering on all threads. Thanks to the simultaneous ham-
mer, this step completed within a single stalling window of
0.5 second. Since our bit-flips are reliably reproducible, this
step completed with 100% accuracy in one attempt.

Heap Spraying. Finally, we sprayed the heap with artificial
structs. We then called ioctl within the thread containing
the flippy page, and hammered in parallel. If we did not leak
the expected data, we assumed the heap spray did not land our
target data at a location one bit-flip away and sprayed again.
For our evaluation, we made 3485 attempts to land our
attacker-controlled data into the heap at a position 1 bit-flip
away from our target gadget. On average, each attempt re-
quired 129 spray attempts, averaging 38.9 seconds to land
data at a useful position in the heap. Once the spray had suc-
cessfully landed, we could swap the sprayed data without
changing its position in the heap, allowing us to point to any
address in the kernel without needing to heap-spray again.
Leakage Rate. After completing the previous stages end-to-
end on an unmodified kernel, we left the attack to leak data
over a 48-hour period. This process consisted of repeatedly
running the victim gadget, hammering our aggressors, reading
out arbitrary kernel data, swapping the sprayed data to point
to a new arbitrary kernel address, and repeating. We observed
an average leakage rate of 82.6 bits/second over this period.

5.3 Effects of Noise

To evaluate the performance of our attack under noisy con-
ditions, we ran our attack code in parallel with benchmarks
from the Phoronix Test Suite [35] running the default CPU and
memory (RAM) benchmarking suites.

The average time needed to find a reproducible bit-flip
increased from 5.8 minutes without noise to 25.15 minutes
under a CPU-heavy load and 309 minutes under a memory
heavy load. The drastic effect of the memory benchmark is
likely due to DDR4 Rowhammer relying on striking memory
in particular patterns to trigger bit-flips. Interference with this
careful pattern of accesses likely triggers TRR and causes
early refreshes before the bits have a chance to flip.

In contrast, the heap spray is not as sensitive to noise. The
CPU-intensive benchmarks increased the average time to land
heap data from 38 seconds to 52.4 seconds, and the memory-
intensive benchmarks increased the time to 55 seconds. This
is likely due to the heap spray relying on controlling large con-
tiguous regions of the heape, and that ordinary user processes
are unlikely to allocate large amounts of kernel heap.

Finally, the leakage rate under a CPU-heavy load decreased
from 82.6 bits/s to 41.9 bits/s and under a memory-heavy load
to 45.75 bits/s. The reduced rate is largely due to noise slow-
ing down the process of swapping out all the heap-sprayed
values when switching to a new address to leak.

5.4 Additional Gadgets

Read Gadget Search Tool. To explore the prevalence of gad-
gets in the kernel, we modified an existing gadget search tool.
We extended smatch [27] to report any instance in which a
nested pointer dereference sends data to a user via put_user,

copy_to_user, or copy_to_iter, which all have the prop-
erty of passing kernel data to a calling unprivileged user. We
classify such patterns as read gadgets.

Write Gadgets. We also observed that a similar pattern
can be exploited to form a potential write gadget. Compli-
mentary to copy_to_user is copy_from_user, which writes
user space data to a specified, safe kernel address. Further-
more, with the read gadget, we require a nested pointer deref-
erence. First, to point to data we control, which in turn points
to a target address to leak. With a single dereference, we
would simply read out data we already control back to our-
selves. However, with the write gadget, we only require a sin-
gle derefrence. If we flip a pointer to point to data we control,
and the kernel writes to that address we can arbitrarily write
to any address in memory. In other words, copy_from_user
itself includes a guaranteed pointer dereference, giving us
the same exploitable behavior as the read gadget without an
explicit nested dereference occurring prior to the function
call. We thus extend smatch further to report any instance of
a pointer dereference in which the result is used as the target
of get_user, copy_from_user, or copy_from_iter.
Results. We ran our modified smatch on Linux kernel
version 5.16.2 and observed 192 read gadgets, and 28 write
gadgets. We demonstrate an end-to-end attack on one such
gadget in Section 5. We note smatch’s known deficiencies in
reporting both false positives [4] and false negatives [42], but
believe it is the best option for detecting gadgets on the Linux
kernel [5]. We leave the development of a more precise tool
for future work.

6 Prior Attacks, Mitigations, and Conclusion

6.1 Prior Attacks

The first Rowhammer exploit demonstrated how the phe-
nomenon could be used to flip PTE bits and give an attacker
root privilege [40], and numerous follow-up studies have
demonstrated new techniques for reproducing PTE flips under
various attack scenarios [15,31,43,44]. GadgetHammer is
complimentary to PTE flipping in that it demonstrates how
Rowhammer can be used to exploit general code patterns in
the Linux kernel. In contrast to prior work focused on PTE
flipping, GadgetHammer cannot be neutralized by protecting
a specific kernel structure (e.g., page tables) but requires more
holistic defenses to be considered. Similarly, other Rowham-
mer works present new ways to flip bits [13] or suggest alter-
nate structures to target [14]. GadgetHammer is, to the best of
our knowledge, the first work to consider targeting gadgets.

6.2 Mitigations

Code Patches. One defense option is to patch victim code
to remove any gadgets. However, creating such a defense
is non-trivial. As seen from attempts at patching Spectre

gadgets [4] the challenge is two-fold. First, it is difficult to
design tools that can automatically detect gadgets. They either
use methods too slow to scale to large code bases, such as
the kernel [16], or lack full coverage of all possible code
paths, relying on approximate techniques such as fuzzing [32].
Second, defenses designed to protect against specific patterns
can be bypassed by exploiting slight variations [23].
Software Mitigations for Rowhammer. Numerous attempts
have been made at preventing exploits via software. For ex-
ample, CATT [3] proposed placing buffers between user and
kernel memory. That way, hammering user-space aggressor
rows can cause flips only in the buffer addresses. However,
prior work has demonstrated that it is possible to flip sensitive
data despite these buffers [14]. Other defenses use a more di-
rect approach, storing only key kernel structures, specifically
PTEs, in flip-safe memory [49]. However, we have shown that
Rowhammer attacks do not need to target specific structures,
but rather can target general code patterns (nested pointers).
Hardware Mitigations for Rowhammer. The root of the
Rowhammer problem is the ability to flip bits in DRAM.
Therefore, numerous mitigations have attempted to prevent
Rowhammer by adding defenses directly to DIMMs to de-
tect and prevent flips. However, as mentioned in Section 2,
both DDR4’s Target Row Refresh [20], and DDRS5’s Refresh
Management [21], have proven to be inadequate [13,30].
Additional prior works have proposed ways to allow for
bit-flips, but prevent the use of flipped data by the CPU or
reallocating hammered rows of memory [11,37,47,48]. How-
ever, such mitigations require area and performance overheads
unlikely to be relinquished by manufacturers. Additionally,
RAMBIeed [26] and ECCsploit [7] have shown how Rowham-
mer can be effective even in the presence of integrity checks.
Ultimately, past attempts at mitigations have shown that
allowing flips to occur in DRAM will inevitably lead to new
vulnerabilities. The surest way to protect against Rowhammer
would be to reconsider the fundamental causes of vulnerable
DIMMs, such as how much voltage is supplied to capacitors,
or the length of the slowest allowable refresh rate, to prevent
bit-flips from occurring in the first place.
Conclusions. In this paper, we have identified a new type
of Rowhammer gadget, demonstrating a particular pattern
that makes code vulnerable to confidentiality exploits via
Rowhammer. In future work, we hope to consider additional
code patterns that may be susceptible to bit-flips.

7 Acknowledgments

This research was supported by the Air Force Office of Sci-
entific Research (AFOSR) under award number FA9550-20-
1-0425; the Defense Advanced Research Projects Agency
(DARPA) under contracts HR00112390029 and W912CG-
23-C-0022, the Office of Navel Research (ONR) under Grant
No. N00014-22-1-2622; the National Science Foundation un-
der grant CNS-1954712; and gifts by Cisco and Qualcomm.

The views and conclusions contained in this document are
those of the authors and should not be interpreted as repre-
senting the official policies, either expressed or implied, of
the U.S. Government.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

Atri Bhattacharyya, Alexandra Sandulescu, Matthias
Neugschwandtner, Alessandro Sorniotti, Babak Falsafi,
Mathias Payer, and Anil Kurmus. Smotherspectre: ex-
ploiting speculative execution through port contention.
In Proceedings of the 2019 ACM SIGSAC Conference
on Computer and Communications Security, pages 785—
800, 2019.

Erik Bosman, Kaveh Razavi, Herbert Bos, and Cristiano
Giuffrida. Dedup est machina: Memory deduplication
as an advanced exploitation vector. In 2016 IEEE sym-
posium on security and privacy (SP), pages 987—1004.
IEEE, 2016.

Ferdinand Brasser, Lucas Davi, David Gens, Christopher
Liebchen, and Ahmad-Reza Sadeghi. Can’t touch this:
Software-only mitigation against rowhammer attacks
targeting kernel memory. In 26th {USENIX} Security
Symposium ({USENIX} Security 17), pages 117-130,
2017.

Claudio Canella, Jo Van Bulck, Michael Schwarz,
Moritz Lipp, Benjamin Von Berg, Philipp Ortner, Frank
Piessens, Dmitry Evtyushkin, and Daniel Gruss. A sys-
tematic evaluation of transient execution attacks and
defenses. In 28th {USENIX} Security Symposium
({USENIX} Security 19), pages 249-266, 2019.

Sunjay Cauligi, Craig Disselkoen, Daniel Moghimi,
Gilles Barthe, and Deian Stefan. Sok: Practical foun-
dations for software spectre defenses. In 2022 IEEE
Symposium on Security and Privacy (SP), pages 666—
680. IEEE, 2022.

Anirban Chakraborty, Sarani Bhattacharya, Sayandeep
Saha, and Debdeep Mukhopadhyay. Explframe: exploit-
ing page frame cache for fault analysis of block ciphers.
In 2020 Design, Automation & Test in Europe Confer-
ence & Exhibition (DATE), pages 1303-1306. IEEE,
2020.

Lucian Cojocar, Kaveh Razavi, Cristiano Giuffrida, and
Herbert Bos. Exploiting correcting codes: On the effec-
tiveness of ecc memory against rowhammer attacks. In
2019 IEEE Symposium on Security and Privacy (SP),
pages 55-71. IEEE, 2019.

Finn de Ridder, Pietro Frigo, Emanuele Vannacci, Her-
bert Bos, Cristiano Giuffrida, and Kaveh Razavi. Smash:

(9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

(17]

Synchronized many-sided rowhammer attacks from
javascript. In USENIX Security Symposium, pages 1001—
1018, 2021.

Lizzie Dixon. Using userfaultfd. 2016. URL:https:
//blog.lizzie.io/using-userfaultfd.html.

Michael Fahr Jr, Hunter Kippen, Andrew Kwong,
Thinh Dang, Jacob Lichtinger, Dana Dachman-Soled,
Daniel Genkin, Alexander Nelson, Ray Perlner, Arkady
Yerukhimovich, et al. When frodo flips: End-to-end key
recovery on frodokem via rowhammer. In Proceedings
of the 2022 ACM SIGSAC Conference on Computer and
Communications Security, pages 979-993, 2022.

Ali Fakhrzadehgan, Yale N Patt, Prashant J Nair, and
Moinuddin K Qureshi. Safeguard: Reducing the se-
curity risk from row-hammer via low-cost integrity
protection. In 2022 IEEE International Symposium
on High-Performance Computer Architecture (HPCA),
pages 373-386. IEEE, 2022.

Pietro Frigo, Cristiano Giuffrida, Herbert Bos, and
Kaveh Razavi. Grand pwning unit: Accelerating mi-
croarchitectural attacks with the gpu. In 2018 IEEE
Symposium on Security and Privacy (SP), pages 195—
210. IEEE, 2018.

Pietro Frigo, Emanuele Vannacc, Hasan Hassan, Victor
Van Der Veen, Onur Mutlu, Cristiano Giuffrida, Herbert
Bos, and Kaveh Razavi. Trrespass: Exploiting the many
sides of target row refresh. In 2020 IEEE Symposium on
Security and Privacy (SP), pages 747-762. IEEE, 2020.

Daniel Gruss, Moritz Lipp, Michael Schwarz, Daniel
Genkin, Jonas Juffinger, Sioli O’Connell, Wolfgang
Schoechl, and Yuval Yarom. Another flip in the wall
of rowhammer defenses. In 2018 IEEE Symposium on
Security and Privacy (SP), pages 245-261. IEEE, 2018.

Daniel Gruss, Clémentine Maurice, and Stefan Mangard.
Rowhammer. js: A remote software-induced fault attack
in javascript. In International conference on detection of
intrusions and malware, and vulnerability assessment,
pages 300-321. Springer, 2016.

Marco Guarnieri, Boris Kopf, José F Morales, Jan
Reineke, and Andrés Sanchez. Spectector: Principled
detection of speculative information flows. In 2020
IEEE Symposium on Security and Privacy (SP), pages
1-19. IEEE, 2020.

Jann Horn. How a simple linux kernel
memory corruption bug can lead to com-
plete system compromise, 2021. URL:https:

//googleprojectzero.blogspot.com/2021/10/
how-simple-linux-kernel-memory.html.

[18] Alex Ionescu. Sheep year kernel heap
fengshui: Spraying in the big kids’ pool.
2014. URL:https://www.alex-1ionescu.com/
kernel-heap-spraying-like-its-2015-swimming/
-in-the-big-kids-pool/.

[19] Patrick Jattke, Victor Van Der Veen, Pietro Frigo, Stijn
Gunter, and Kaveh Razavi. Blacksmith: Scalable
rowhammering in the frequency domain. In 2022 IEEE
Symposium on Security and Privacy (SP), pages 716—
734.IEEE, 2022.

[20] JEDEC. Jesd209-4d Ipddr4, 2017. URL:https:
//www.jedec.org/standards-documents/docs/
jesd209-4b.

[21] JEDEC. Jesd79-5b ddr5 sdram, 2022. URL:https:
//www.jedec.org/standards-documents/docs/
jesd79-5b.

[22] Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin,
Ji Hye Lee, Donghyuk Lee, Chris Wilkerson, Konrad
Lai, and Onur Mutlu. Flipping bits in memory without
accessing them: An experimental study of dram distur-
bance errors. ACM SIGARCH Computer Architecture
News, 42(3):361-372, 2014.

[23] Paul Kocher. Spectre mitigations in microsoft’s c/c++
compiler, 2018. URL:https://www.paulkocher.
com/doc/MicrosoftCompilerSpectreMitigation.
html.

[24] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin,
Daniel Gruss, Werner Haas, Mike Hamburg, Moritz
Lipp, Stefan Mangard, Thomas Prescher, et al. Spectre
attacks: Exploiting speculative execution. In 2079 IEEE
Symposium on Security and Privacy (SP), pages 1-19.
IEEE, 2019.

[25] Andreas Kogler, Jonas Juffinger, Salman Qazi, Yoongu
Kim, Moritz Lipp, Nicolas Boichat, Eric Shiu, Mattias
Nissler, and Daniel Gruss. {Half-Double}: Hammer-
ing from the next row over. In 3/st USENIX Security
Symposium (USENIX Security 22), pages 3807-3824,
2022.

[26] Andrew Kwong, Daniel Genkin, Daniel Gruss, and Yu-
val Yarom. Rambleed: Reading bits in memory without
accessing them. In 2020 IEEE Symposium on Security
and Privacy (SP), pages 695-711. IEEE, 2020.

[27] Jonathan LCorbet. Finding spectre vulnerabilities with
smatch, 2018. URL:https://lwn.net/Articles/
752408/.

[28] Moritz Lipp, Michael Schwarz, Lukas Raab, Lukas Lam-
ster, Misiker Tadesse Aga, Clémentine Maurice, and
Daniel Gruss. Nethammer: Inducing rowhammer faults

[29]

(30]

(31]

(32]

(33]

[34]

(35]

(36]

[37]

(38]

through network requests. In 2020 IEEE European
Symposium on Security and Privacy Workshops (Eu-
roS&PW), pages 710-719. IEEE, 2020.

Giorgi Maisuradze and Christian Rossow. ret2spec:
Speculative execution using return stack buffers. In
Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, pages 2109—
2122, 2018.

Michele Marazzi, Patrick Jattke, Flavien Solt, and Kaveh
Razavi. Protrr: Principled yet optimal in-dram target
row refresh. In 2022 IEEE Symposium on Security and
Privacy (SP), pages 735-753. IEEE, 2022.

Onur Mutlu and Jeremie S Kim. Rowhammer: A retro-
spective. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 39(8):1555-1571,
2019.

Oleksii Oleksenko, Bohdan Trach, Mark Silberstein, and
Christof Fetzer. {SpecFuzz}: Bringing spectre-type
vulnerabilities to the surface. In 29th USENIX Security
Symposium (USENIX Security 20), pages 1481-1498,
2020.

Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache
attacks and countermeasures: the case of aes. In Cryp-
tographers’ track at the RSA conference, pages 1-20.
Springer, 2006.

Peter Pessl, Daniel Gruss, Clémentine Maurice, Michael
Schwarz, and Stefan Mangard. {DRAMA }: Exploiting
{DRAM} addressing for cross-cpu attacks. In 25th
{USENIX} security symposium ({USENIX} security
16), pages 565-581, 2016.

phoronix-test suite. Phoronix test suite 10.8.4, Jun 2023.
URL:https://github.com/phoronix-test-suite/
phoronix-test-suite.

Kaveh Razavi, Ben Gras, Erik Bosman, Bart Preneel,
Cristiano Giuffrida, and Herbert Bos. Flip feng shui:
Hammering a needle in the software stack. In 25th
{USENIX} Security Symposium ({USENIX} Security
16), pages 1-18, 2016.

Anish Saxena, Gururaj Saileshwar, Prashant J Nair, and
Moinuddin Qureshi. Aqua: Scalable rowhammer mit-
igation by quarantining aggressor rows at runtime. In
2022 55th IEEE/ACM International Symposium on Mi-
croarchitecture (MICRO), pages 108—123. IEEE, 2022.

Michael Schwarz, Claudio Canella, Lukas Giner, and
Daniel Gruss. Store-to-leak forwarding: leaking data on
meltdown-resistant cpus (updated and extended version).
arXiv preprint arXiv:1905.05725, 2019.

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]
[47]

[48]

Michael Schwarz, Moritz Lipp, Daniel Moghimi,
Jo Van Bulck, Julian Stecklina, Thomas Prescher, and
Daniel Gruss. Zombieload: Cross-privilege-boundary
data sampling. In Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security,
pages 753-768, 2019.

Mark Seaborn and Thomas Dullien. Exploiting the dram
rowhammer bug to gain kernel privileges. Black Hat,
15:71, 2015.

Andrei Tatar, Radhesh Krishnan Konoth, Elias Athana-
sopoulos, Cristiano Giuffrida, Herbert Bos, and Kaveh
Razavi. Throwhammer: Rowhammer attacks over the
network and defenses. In 2018 {USENIX} Annual Tech-
nical Conference ({USENIX}{ATC} 18), pages 213—
226, 2018.

Youssef Tobah, Andrew Kwong, Ingab Kang, Daniel
Genkin, and Kang G Shin. Spechammer: Combining
spectre and rowhammer for new speculative attacks. In
2022 IEEE Symposium on Security and Privacy (SP),
pages 681-698. IEEE, 2022.

Victor van der Veen, Yanick Fratantonio, Martina Lin-
dorfer, Daniel Gruss, Calementine Maurice, Giovanni
Vigna, Herbert Bos, Kaveh Razavi, and Cristiano Giuf-
frida. Drammer: Deterministic rowhammer attacks on
mobile platforms. In CCS, 2016.

Victor Van der Veen, Martina Lindorfer, Yanick Fratan-
tonio, Harikrishnan Padmanabha Pillai, Giovanni Vigna,
Christopher Kruegel, Herbert Bos, and Kaveh Razavi.
Guardion: Practical mitigation of dma-based rowham-
mer attacks on arm. In Detection of Intrusions and
Malware, and Vulnerability Assessment: 15th Interna-
tional Conference, DIMVA 2018, Saclay, France, June
28-29, 2018, Proceedings 15, pages 92—113. Springer,
2018.

Pepe Vila, Boris Kopf, and José F Morales. Theory
and practice of finding eviction sets. In 2019 IEEE
Symposium on Security and Privacy (SP), pages 39-54.
IEEE, 2019.

vusec. trresspass, Mar 2020.

Minbok Wi, Jaehyun Park, Seoyoung Ko,
Michael Jaemin Kim, Nam Sung Kim, Eojin Lee,
and Jung Ho Ahn. Shadow: Preventing row hammer
in dram with intra-subarray row shuffling. In 2023
IEEE International Symposium on High-Performance
Computer Architecture (HPCA), pages 333-346. IEEE,
2023.

Jeonghyun Woo, Gururaj Saileshwar, and Prashant J
Nair. Scalable and secure row-swap: Efficient and safe

[49]

[50]

[51]

[52]

[53]

row hammer mitigation in memory systems. In 2023
IEEE International Symposium on High-Performance
Computer Architecture (HPCA), pages 374-389. IEEE,
2023.

Xin-Chuan Wu, Timothy Sherwood, Frederic T Chong,
and Yanjing Li. Protecting page tables from rowhammer
attacks using monotonic pointers in dram true-cells. In
Proceedings of the Twenty-Fourth International Confer-
ence on Architectural Support for Programming Lan-
guages and Operating Systems, pages 645-657, 2019.

Kyle Zeng, Yueqi Chen, Haehyun Cho, Xinyu Xing,
Adam Doupé, Yan Shoshitaishvili, and Tiffany Bao.
Playing for {K (H) eaps}: Understanding and improving
linux kernel exploit reliability. In 375t USENIX Security
Symposium (USENIX Security 22), pages 71-88, 2022.

Zhi Zhang, Yueqiang Cheng, Dongxi Liu, Surya Nepal,
Zhi Wang, and Yuval Yarom. Pthammer: Cross-user-
kernel-boundary rowhammer through implicit accesses.
In 2020 53rd Annual IEEE/ACM International Sym-
posium on Microarchitecture (MICRO), pages 28—41.
IEEE, 2020.

Zhi Zhang, Yueqiang Cheng, and Surya Nepal.
Ghostknight: Breaching data integrity via speculative
execution. arXiv preprint arXiv:2002.00524, 2020.

Zhi Zhang, Yueqiang Cheng, Minghua Wang, Wei He,
Wenhao Wang, Surya Nepal, Yansong Gao, Kang Li,
Zhe Wang, and Chenggang Wu. {SoftTRR}: Protect
page tables against rowhammer attacks using software-
only target row refresh. In 2022 USENIX Annual Tech-
nical Conference (USENIX ATC 22), pages 399-414,
2022.

