Strongly Tail-Optimal Scheduling in the Light-Tailed M/G/1

GEORGE YU, Cornell University, USA
ZIV SCULLY, Cornell University, USA

We study the problem of scheduling jobs in a queueing system, specifically an M/G/1 with light-tailed job
sizes, to asymptotically optimize the response time tail. This means scheduling to make P[T > t], the chance a
job’s response time exceeds t, decay as quickly as possible in the t — co limit. For some time, the best known
policy was First-Come First-Served (FCFS), which has an asymptotically exponential tail: P[T > t] ~ Ce™’.
FCFS achieves the optimal decay rate y, but its tail constant C is suboptimal. Only recently have policies that
improve upon FCFS’s tail constant been discovered. But it is unknown what the optimal tail constant is, let
alone what policy might achieve it.

In this paper, we derive a closed-form expression for the optimal tail constant C, and we introduce y-Boost, a
new policy that achieves this optimal tail constant. Roughly speaking, y-Boost operates similarly to FCFS, but
it pretends that small jobs arrive earlier than their true arrival times. This significantly reduces the response
time of small jobs without unduly delaying large jobs, improving upon FCFS’s tail constant by up to 50% with
only moderate job size variability, with even larger improvements for higher variability. While these results
are for systems with full job size information, we also introduce and analyze a version of y-Boost that works
in settings with partial job size information, showing it too achieves significant gains over FCFS. Finally, we
show via simulation that y-Boost has excellent practical performance.

CCS Concepts: » General and reference — Performance; - Mathematics of computing — Queue-
ing theory; « Networks — Network performance modeling; « Computing methodologies — Model
development and analysis; « Software and its engineering — Scheduling.

Additional Key Words and Phrases: scheduling; response time; sojourn time; tail latency; service level objective
(SLO); M/G/1 queue; light-tailed distribution; FCFS; Boost scheduling

ACM Reference Format:
George Yu and Ziv Scully. 2024. Strongly Tail-Optimal Scheduling in the Light-Tailed M/G/1. Proc. ACM Meas.
Anal. Comput. Syst. 8, 2, Article 27 (June 2024), 33 pages. https://doi.org/10.1145/3656011

1 INTRODUCTION, BACKGROUND, AND KEY IDEAS

Service Level Objectives (SLOs) for practical queueing systems often relate to the tail of the system’s
response time distribution T. The tail is the function that maps an amount of time ¢ to P[T > t],
the probability that a job’s response time T exceeds t, where a job’s response time is the amount of
time between the job’s arrival and departure.

Motivated by the problem of meeting SLOs, we consider the problem of scheduling jobs to
minimize the tail P[T > ¢] in the M/G/1 queue. We actually focus on asymptotically minimizing the
tail, optimizing the decay of P[T > t] in the ¢ — co limit. This is an extensively studied problem in
queueing theory [6, 7, 13-15, 21, 29-32, 34, 39, 40, 44-46, 48] for a number of reasons:

Authors’ addresses: George Yu, Cornell University, School of Operations Research and Information Engineering, Ithaca, NY,
USA; Ziv Scully, Cornell University, School of Operations Research and Information Engineering, Ithaca, NY, USA.

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

This is the author’s version of the work. It is posted here for your personal use. Not for redistribution. The definitive
Version of Record was published in Proceedings of the ACM on Measurement and Analysis of Computing Systems, https:
//doi.org/10.1145/3656011.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 2, Article 27. Publication date: June 2024.

https://doi.org/10.1145/3656011
https://doi.org/10.1145/3656011
https://doi.org/10.1145/3656011

27:2 George Yu and Ziv Scully

e Optimizing the tail P[T > ¢] for any particular value of ¢ is seldom the sole design objective.
Instead, one generally hopes to achieve low P[T > t] for a range of values of t.
e Because practical SLOs relate to high-quantile response times, meeting those SLOs corre-
sponds to optimizing P[T > ¢] for large values of t.
o Optimizing P[T > t] for fixed finite t appears to be theoretically intractable, but there has
been promising recent progress on asymptotic improvements in the ¢t — oo limit [21, 45].
In this paper, we study the M/G/1 with light-tailed job size distributions. We propose a new
policy, called y-Boost, and prove it has asymptotically optimal response time tail in a sense made
precise in Section 1.1 below. This resolves a significant open problem in queueing theory [7, 46].
Moreover, y-Boost has excellent practical performance, as illustrated in Fig. 1.2.
The rest of this section gives background on the problem of asymptotically optimal tail scheduling,
with discussion of prior work integrated throughout, and describes the main ideas behind our
solution. See Section 1.7 for a summary of our contributions and an outline of the rest of the paper.

1.1 Background on weak and strong tail optimality

Consider an M/G/1 with job size distribution S. For now, we primarily focus on the full-information
setting where job sizes are known to the scheduler, but some of our results apply more broadly to
partial-information settings (Section 2.2).

Let T,; denote the response time distribution under policy 7. Following Boxma and Zwart [7],
we say a policy 7 is weakly tail-optimal if there exists a constant ¢ > 1 such that

I P[T, >t] _
BN TF PR B
If additionally ¢ = 1, we say 7« is strongly tail-optimal.

Whether a scheduling policy is weakly tail-optimal depends critically on whether the job size
distribution S is heavy-tailed or light-tailed. If S is heavy-tailed, then several preemptive policies
like Shortest Remaining Processing Time (SRPT) and Least Attained Service (LAS) are known to be
weakly tail-optimal and conjectured to to be strongly tail-optimal [7, 46]. In fact, we observe in
Appendix A that a result of Wierman and Zwart [46] implies strong tail optimality of SRPT, LAS,
and other policies for an important class of heavy-tailed distributions. The problem of achieving
strong tail optimality is thus largely solved in the heavy-tailed case.

In this work, we focus on the case of light-tailed job size distributions S, specifically so-called
class I distributions [1, 2] (Definition 2.1), for which strong tail optimality is a significant open
problem [7, 46]. For some time, the only common policy known to be weakly tail-optimal was
First-Come First-Served (FCFS), which has asymptotically exponential response time tail. That is,

P[Tecrs > t] ~ Cecrs exp(—yt),

where y > 0 is a constant called the decay rate, and Cpcps > 0 is a constant we call FCFS’s tail
constant. Both y and Crcps depend on S and the system’s arrival rate.

It is known that no policy can achieve asymptotic decay rate greater than y [7, 44], so we can
measure the performance of a weakly tail-optimal policy 7 by its tail constant

Cr= tlim exp(yt) P[T > t]. (1.1)
The question of finding a strongly tail-optimal policy thus amounts to minimizing C, over all

policies . Until recently, it was conjectured that FCFS may be strongly tail-optimal, but recent
progress has improved upon FCFS’s tail constant [21, 45] (Section 1.3). This prompts a question:

What is the smallest possible tail constant C,, and what policy r achieves it?

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 2, Article 27. Publication date: June 2024.

Strongly Tail-Optimal Scheduling in the Light-Tailed M/G/1 27:3

1.2 Obstacle: prioritizing short jobs without delaying long jobs

As explained in Section 1.1, optimizing tail asymptotics with light-tailed job sizes is an open problem,
in contrast to the heavy-tailed case. Why is the light-tailed case so much more difficult? The main
obstacle is that there is a tension between prioritizing short jobs and delaying long jobs. This
tension is best illustrated by contrasting two policies, FCFS and SRPT.

Suppose a “tagged” job of random size S arrives to a steady-state system and observes work W,
meaning the total remaining service time of jobs in the system is W.

o FCFS serves jobs in the order they arrive. This means the tagged job’s response time is
Trcps = W + S. In particular, the job’s response time is unaffected by future arrivals.
e SRPT always preemptively serves the job of least remaining service time. This means the
tagged job may not need to wait for all of the work W to be completed before entering service.
But future arrivals of size less than S may be prioritized over the tagged job.
The reason SRPT is good in the heavy-tailed setting is that the amount of work from future arrivals
that delays the tagged job, which we denote by Rsgpr(S), has a lighter tail than W. But in the
light-tailed setting, Rsgpr(S) is heavier-tailed than W, with a decay rate less than y. See Nuyens
et al. [31], who prove these results for SRPT and a class of related policies, for details.

The takeaway of the above comparison is that for light-tailed job size distributions, strictly
prioritizing short jobs delays long jobs too much for good tail performance. But prioritizing short
jobs is essentially the only tool we have for improving response times. The question is thus: how
should one partially prioritize short jobs to improve tail performance?

A number of works have studied scheduling with some sort of partial priority, whether by having
just a few priority buckets [10, 23, 28] or by dynamically changing priority over time [11, 12, 43].
While the tail asymptotics of most of these policies have not been formally studied, they seem
unlikely to be weakly tail-optimal. This is because they still have the property that a sufficiently
long tagged job might be delayed by a constant fraction of future arrivals. A result of Scully and van
Kreveld [39, Proposition 9.9] suggests this should lead to worse decay rate, though their result does
not directly apply to all of the other policies cited. Scully and van Kreveld [39, Theorem 5.5] also
show that no policy in the recently proposed class of “SOAP” policies [34, 36, 38] can improve upon
FCFS’s tail constant, because all SOAP policies other than FCFS have decay rate worse than y.!

1.3 Nudge: a promising but limited first step

The first improvement upon FCFS’s tail constant was through the Nudge family of policies, intro-
duced by Grosof et al. [21] and expanded upon by Van Houdt [45] and Charlet and Van Houdt [9].
In its simplest variant, Nudge creates two classes of jobs, short and long, then runs FCFS with a
small modification, illustrated in Fig. 1.1(a):
e When a short job arrives, it is allowed to pass in front of up to K large jobs, where K is a
fixed constant.
e Each large job can be passed by a limited number of short jobs. Different variants of Nudge
differ in exactly how the limiting works. The two most important variants are the following:
— Nudge-K [45]: Each large job can be passed only once.
— Nudge-M [9]: Small jobs only pass large jobs that are within the K most recent arrivals.
When K = 1, Nudge-K and Nudge-M coincide, and are called simply “Nudge” [21].
Nudge is a family of policies rather than a single policy, because there are many ways to decide
which jobs are short and which are long; one can vary the parameter K; and one can choose between
Nudge-K, Nudge-M, and other variants [9]. One can think of these parameters as controlling the

IScully and van Kreveld [39] actually consider only a subset of SOAP policies, but one can generalize the relevant part of
their argument to cover all SOAP policies.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 2, Article 27. Publication date: June 2024.

27:4 George Yu and Ziv Scully

job X job X
-~T-T=~ jobY jobY
g SX SN SX

‘
earlier later b(sx)
arrival arrival

b(sy)
T — time
ax ay

(a) Nudge always serves X after Y, (b) Boost serves X after Y if their (c) Boost serves X before Y if their
regardless of their arrival times. arrival times are close together. arrival times are far apart.

Fig. 1.1. Comparison between how Nudge and Boost each handle a long job X arriving before a short job Y.
Suppose that Y arrives before X enters service. Nudge decides the order to serve the jobs based only on the
arrival order, as shown in (a). In contrast, Boost uses not just the arrival order but also the respective arrival
times, as shown in (b) and (c). Notation: job i’s arrival time is ga;, its size is s;, and its boost is b(s;).

degree to which short jobs are prioritized over long jobs. For instance, larger values of K further
prioritize short jobs, and for a fixed value of K, Nudge-K is more conservative about letting short
jobs pass long jobs than Nudge-M.

Recent progress on Nudge has yielded several improvements to the best known tail constant.
Grosof et al. [21] introduce Nudge with K = 1 and show that with appropriate tuning, Nudge
achieves Cnudge < Crcrs, thus demonstrating that FCFS is not strongly tail-optimal. In fact, they
show that with sufficiently conservative tuning, Nudge stochastically improves upon FCFS, meaning
P[TNudge > t] < P[TFCFS > t] forallt > 0.

Building on this progress, Van Houdt [45] introduces Nudge-K for K > 2 and, for any given split
between small and large jobs, characterizes the value of K that minimizes Cnydge k. The optimal
value is generally neither K = 1 nor K = oo. This reflects the fact that while short jobs should get
some priority, giving them too much priority hurts long jobs, and thereby the tail constant Cnudge k-

Concurrently with this work, Charlet and Van Houdt [9] introduce the Nudge-M variant and
show several results about it. The most important of these is that for any given split between small
and large jobs, Nudge-M with the optimal value of K achieves the minimum possible tail constant
out of any variant of Nudge. That is, Nudge-M is strongly tail-optimal among Nudge policies.
Charlet and Van Houdt [9] also characterize the value of K that leads to this minimal Cnudge-M>
showing that it coincides with the value that minimizes Cnudge k-

While Nudge is significant due to its improving upon FCFS, there are two reasons to believe that
Nudge can also be improved upon. First, it seems likely that it would help to have finer-grained
distinctions between job sizes, as opposed to grouping them into just two classes, and it may be
beneficial to allow jobs to move many spots in the queue. As an extreme example, if a job were
size 0, it would make sense to let it jump straight to the front of the queue. Second, while Nudge
makes use of the order in which jobs arrive, it does not make use of the amounts of time between
arrivals. For instance, suppose a job X arrives before a shorter job Y. If the time between the arrivals
is very small, as in Fig. 1.1(b), it may make sense to serve the shorter Y before X. But if there is a
long interarrival time between X and Y, as in Fig. 1.1(c), it may make sense to keep X in front of Y,
because Y will not have been waiting as long by the time the system starts serving X.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 2, Article 27. Publication date: June 2024.

Strongly Tail-Optimal Scheduling in the Light-Tailed M/G/1 27:5

p=038 o p = 0.8, Exponential
0.7 —e— Boost
-2 061 o 061 Nudge-M
E ’ = —4— Nudge-K
= 05 o Nudge
g g | —+— SRPT
£ 04 £ 04
; ;
2,03 503
.g —e— Hyperexponential ,_5 0.2
% 0.2 —&— Exponential Tg ’
& 01 Bounded Lomax = 0.1
—4— Uniform
0.0 u T T T T T T T 0.0 T T T T T T T T
0 10 20 30 40 50 60 70 0 5 10 15 20 25 30 35
Response time Response time
(a) Boost’s tail improvement ratio for several job size (b) Several policies’ tail improvement ratios for an
distributions. exponential job size distribution.

Fig. 1.2. Empirical performance (higher is better) of Boost, specifically the strongly tail-optimal y-Boost,
(a) on several job size distributions, and (b) compared to two other policies, Nudge (and the K and M variants
with optimal parameter K) and SRPT. The plots show tail improvement ratio 1 — P[T; > t]/P[Tpcps > t] as a
function of ¢. Dotted lines indicate the asymptotic tail improvement ratio 1 — C,/Crcrs. The load is p = 0.8,
and the mean job size is E[S] = 1. See Section 6 for additional details on the job size distributions and other
simulation parameters.

1.4 Our answer: Boost

Motivated by the limitations of Nudge discussed above, we define Boost, a new family of scheduling
policies. In the full-information setting where job sizes are known to the scheduler, an instance of
Boost is specified by a boost function b : Ry — R, where b(s) is called the boost of a job of size s.
The rough idea is that Boost acts like FCFS, except it pretends that a job of size s arrives b(s) time
earlier than it actually does. Specifically, if a job of size s arrives at time a, we define its boosted
arrival time to be

boosted arrival time = arrival time — boost = a — b(s).

Boost then follows one scheduling rule: prioritize jobs from least to greatest boosted arrival time. See
Figs. 1.1(b) and 1.1(c) for an illustration. Notice that Boost, unlike Nudge, takes into account not
just the arrival order but also the arrival times.

One can define preemptive and nonpreemptive versions of Boost, depending on whether the
priority rule is applied at every moment in time or only when a job completes. The distinction
turns out not to affect Boost’s tail asymptotics, so our results apply to both versions.

The boost function b determines how Boost balances the tension between prioritizing short jobs
and prioritizing jobs that have been waiting a long time. For example, setting b(s) = 0 reduces the
policy to FCFS, whereas setting b(s) = r/s for a large constant r results in prioritizing jobs nearly
entirely based on their size, similar to SRPT. We therefore ask: what boost function is best?

We prove two main theoretical results about Boost. First, we find an explicit formula for its tail
constant Cpgest in terms of the boost function b (Theorem 3.1). Second, we study a particular version
of Boost, which we call y-Boost, where the boost function is

by (s) = }l/log (12)

1-exp(-ys)’

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 2, Article 27. Publication date: June 2024.

27:6 George Yu and Ziv Scully

We show that y-Boost is strongly tail-optimal, meaning Cy poost < C for every other scheduling
policy 7 (Theorem 5.1). This solves the open problem of finding a strongly tail-optimal policy, as
well as the problem of characterizing the best possible tail constant inf, C,.

Of course, strong tail optimality is a theoretical property, and one would hope that pursuing it as
an objective yields a policy with good practical performance. We confirm via simulation that this
is indeed the case for y-Boost. Observe in Fig. 1.2 that y-Boost’s improvement over FCFS is often
even better than one would predict from the asymptotic tail constants.

Above, we have focused on the case of full job size information, but Boost and y-Boost can also
be defined for systems with partial job size information. The specific partial-information model we
consider has multiple types of jobs, each with a distinct label, and the scheduler knows each job’s
label, but not its size. In this partial-information setting, a job’s boost is a function of its label rather
than its size. Our analysis of Boost’s tail constant also applies to the partial-information setting
(Theorem 3.1). We also show that partial-information y-Boost achieves better tail constant than
any other Boost policy (Appendix C) and the previous state-of-the-art, Nudge-M (Appendix D).

1.5 Key idea: relate strong tail optimality to an easier scheduling problem

Where does the boost function in (1.2) come from, and how does one show that the resulting
y-Boost policy is strongly-tail optimal? Our key idea is to relate the problem of minimizing the tail
constant C,; to a more traditional scheduling problem involving a type of weighted cost.

We begin by considering the following alternative characterization of C,, which follows from
final value theorem [21, Theorem 4.3]:

-0
Cy = lim Y—E[exp(GT,,)].
0—-y v

There is thus a vague sense in which minimizing C, is equivalent to minimizing E[exp(yT,)]. This
is only an informal statement because, as one can deduce from (1.1), we have E[exp(yT,;)] = oo for
all policies 7, even those that are weakly tail-optimal.

While minimizing the always-infinite quantity E[exp(yT;)] is not a well-posed problem in the
M/G/1, it is analogous to a well-posed problem in deterministic single-machine scheduling [27, 33].
Consider an arbitrary finite batch of jobs I = {(ay, 1), ..., (an, sn) } Here g; is the arrival time of
job i, and s; is its size. Additionally, let d,.; be the departure time of job i under policy 7, and let
the 6-cost of policy be K;(0,1) = 3, exp(6(dr; — a;)). Minimizing E[exp(yT,)] is analogous
to minimizing y-cost K, (y, I') in the deterministic setting.

For § < 0, minimizing 0-cost is actually a variation of a classic single-machine scheduling
problem: minimizing total weighted discounted completion time [27, 33], where job i’s weight
is exp(—0a;). This problem is hard, but only because of arrival times. In the batch relaxation, in
which we allow job i to be served even before time a;, the optimal policy is an index policy called
Weighted Discounted Shortest Processing Time (WDSPT) [33, Theorem 3.1.6]. To clarify, the arrival
times a; still matter in the batch relaxation, because they determine the weights exp(—6a;).

Because y > 0, one can view minimizing y-cost as an instance of minimizing total weighted
discounted completion time, but with a negative discount rate. To the best of our knowledge, this
variant of the problem has not been considered in the literature. Nevertheless, essentially the same
proof as in the standard positive-discount case shows that a version of WDSPT is optimal in the
negative-discount case.” The y-Boost policy arises from finding a function b, such that WDSPT is
equivalent to serving jobs in order of increasing boosted arrival time a; — b, (s;).

2See, for instance, the interchange argument in Pinedo [33, Theorem 3.1.6]. We believe this result may be folklore, but we
sketch a proof in Section 4 for completeness.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 2, Article 27. Publication date: June 2024.

Strongly Tail-Optimal Scheduling in the Light-Tailed M/G/1 27:7

Above, we have focused on the full-information case, but nearly the same reasoning works in
the partial-information case. The difference is that we base the optimal boost function on Weighted
Discounted Shortest Expected Processing Time (WDSEPT) [33, Theorem 10.1.3] instead of WDSPT.

1.6 Technical challenge: translating from the batch relaxation to the M/G/1

The fact that y-Boost minimizes y-cost in the batch relaxation is a promising sign that it is strongly
tail-optimal, meaning Cypoost = inf; Cy, in the M/G/1. There are two significant obstacles between
this intuition and a proof of y-Boost’s strong tail optimality.

The first obstacle is that the batch relaxation allows jobs to be served at any time, whereas in the
M/G/1, jobs cannot be served before they arrive. We therefore need to show that adjusting y-Boost’s
schedule from the batch relaxation to not serve jobs before they arrive does not significantly
degrade its performance. If we consider an arbitrarily long sequence of arrivals, this might not
be true, so the first step is to figure out how to split up the M/G/1’s infinite sequence of arrivals
into finite batches. It turns out that using busy periods as batches works well. The main technical
challenge then becomes showing that “honest” y-Boost, which only serves jobs after they arrive, is
nearly as good as “cheating” y-Boost, which is allowed to serve any job in the current busy period,
even if it has not arrived yet.

The second obstacle is that minimizing steady-state mean y-cost E[exp(yT;)] is not a well-posed
problem in the M/G/1, because the expectation is infinite for all policies. Instead, we must make
do with the fact that for any weakly tail-optimal policy 7, mean 6-cost E[exp(6T,)] is finite for
all & < y. We therefore work with § — y limits of 8-cost throughout the paper, as opposed to
working directly with y-cost. The main technical challenge is to show that y-Boost is near-optimal
for minimizing not just mean y-cost but also mean 6-cost, provided 8 is close enough to y.

Above, we have focused on the full-information case, and for good reason: we have not been
able to generalize part of this argument to the partial-information case. The issue has to do with a
subtle difference between the traditional stochastic batch setting [33, Section 10.1], which assumes
independent job sizes, and the instances that arise from busy periods, which can have subtle
dependencies between jobs’ sizes (Appendix B). Nevertheless, we show y-Boost outperforms all
other versions of Boost (Appendix C) and Nudge-M (Appendix D) in the partial-information setting.

1.7 Contributions

In this work, we present the first strongly tail-optimal scheduling policy, namely y-Boost, for the
M/G/1 with light-tailed job size distributions. This solves a significant open problem in queueing
and scheduling theory. We also study Boost more generally in both theory and simulation, making
the following specific contributions:

o (Section 2) We propose Boost, a new family of scheduling policies that balance the tradeoff
between prioritizing short jobs and prioritizing jobs that have been waiting a long time.

o (Section 3) We theoretically analyze Boost, giving an explicit formula for its tail constant
Cioost in terms of the boost function used (Theorem 3.1).

o (Section 4) We draw a new connection between minimizing the tail constant in the M/G/1
and a batch scheduling problem with negative discounting. We solve the batch scheduling
problem using y-Boost, a specific instance of Boost.

e (Section 5) In the full-information setting, we prove y-Boost is strongly tail-optimal in the
M/G/1 with light-tailed job size distribution (Theorem 5.1).

e (Section 6) We show in simulation that y-Boost has excellent practical performance, improving
upon FCFS’s tail performance by more than 50% in some cases. We observe that y-Boost’s
performance is robust to using the wrong value of y or noisily estimated job sizes.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 2, Article 27. Publication date: June 2024.

27:8 George Yu and Ziv Scully

We also make an observation about strong tail optimality in the heavy-tailed case in Appendix A,
though it follows nearly immediately from known results.

2 SYSTEM MODEL AND BOOST POLICIES

We consider an M/G/1 queue with arrival rate A, job size distribution S, and load p = AE[S]. We
make the standard assumption that p < 1, ensuring stability, and we assume that S > 0 almost
surely to avoid trivial jobs of size 0. We assume that S is light-tailed, considering the following
specific class of light-tailed distributions initially identified by Abate et al. [1].

Definition 2.1. A distribution S is class I if its moment generating function’s leftmost singularity
0" = sup{f € R | E[exp(6S) < o]},

which may be co, satisfies 0* > 0 and limg_, ¢« E[exp(0S)] = 0. In informal discussion, “light-tailed”
is understood to refer to class I unless otherwise stated.

The main metric we are concerned with is response time, the amount of time between a job’s
arrival and departure. We denote the response time distribution under scheduling policy = by T;,.
Thanks to the “PASTA” property of Poisson arrivals [47], we can interpret T,; as the response time
of a random “tagged” job arriving to a steady-state system. We discuss the details of the scheduling
policies 7 we consider in Section 2.2.

The quantity that has the largest impact on the system’s response time is the work, the total
remaining processing time of jobs currently in the system. We denote the steady-state amount
of work in the M/G/1 by W. This amount is the same under all non-idling (aka work-conserving)
scheduling policies.

Our main objective is to find the strongly tail-optimal scheduling policy, defined in Section 1.1
and recalled below.

Definition 2.2. A scheduling policy 7 is weakly tail-optimal if there exists finite ¢ > 1 such that

I P[T, >t] _
S P[Ty >]
If additionally ¢ = 1, we say 7« is strongly tail-optimal.

The supremum in Definition 2.2 ranges over all preemptive scheduling policies 7’ that have
access to full information about the sizes and arrival times of all arrivals. In particular, 7’ could in
principle use information about future arrivals. However, none of the policies we consider use this
information (aside from the “cheating” policy introduced in Section 2.4), and we achieve strong tail
optimality without it.

2.1 Asymptotic tails

The key property of class I distributions is that they ensure that the work W has asymptotically
exponential tail. Specifically, there exist constants y > 0 and Cy > 0 such that [21, equation (2)]*

—0
Cw = lim exp(yt)P[W >] = lim Y Elexp(6W)], 2.1)
—00 -y Y

with the equivalence of the two limits being due to final value theorem [21, Theorem 4.3]. We call
y the decay rate and Cyy the tail constant of the work distribution W. It is known that y is the least
positive real solution to

y = A(E[exp(yS)] - 1). (2.2)

3Throughout the paper, @ — y limits are understood as being limits from below, seeing as E[exp(0W)] = oo for all 6 > y.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 2, Article 27. Publication date: June 2024.

Strongly Tail-Optimal Scheduling in the Light-Tailed M/G/1 27:9

When S is class I, y is a simple pole of W’s moment generating function 6 — E[exp(6W)] [1, 2],
regardless of the arrival rate A. Our results likely generalize to other combinations of A and S for
which this is the case.

We define the tail constant of scheduling policy x, denoted C,, in the same way as the tail constant
of the work distribution:*

)
Cr = lim exp(yt)P[T, > t] = lim Y Eexp(8Ty)]. (2.3)
—00 -y Y

As an example, FCFS’s tail constant is easily shown to be

Crcrs = CwE[exp(yS)],

where finiteness of E[exp(yS)] follows from (2.2).

2.2 Scheduling model and what information the scheduler has

We consider both nonpreemptive scheduling, where once a job begins service, it will complete
without interruption, and preemptive scheduling, where jobs may be paused in the middle of service.
In the latter case, we assume a standard preempt-resume model in which jobs may be paused and
resumed without delay, overhead, or loss of progress.

We wish to study both the full-information setting, in which the scheduler learns each job’s
exact size (aka service time) when it arrives; as well as partial-information settings, in which the
scheduler has some limited but incomplete information about job sizes. For instance, perhaps there
are two types of arrivals, each with its own size distribution, but we do not know the size of any
particular job.

To capture a wide range of information settings, we use the flexible label-size pair model from
recent work on M/G/1 scheduling [34, 38]. In this model, each job has an ii.d. pair (L, S) of a label L
and size S. The space of possible labels, denoted I, can be arbitrary, and there may be an arbitrary
joint distribution between labels and sizes. For example:

e To model known job sizes, let . = R, and L = S.
— We call this case the full-information setting.
e To model a scenario with two types of jobs A and B, where job types are known but job
sizes are unknown, let I. = {A, B}, and define the joint distribution such that, for instance,
(S| L = A) is the size distribution of type A jobs.
— We call any case where L # S with positive probability, of which the above is one example,
the partial-information setting.
Of course, one can imagine more complicated label-size pair distributions. As a final example,
perhaps some jobs are labeled with their exact size, while others are labeled only type A or type B.
This can be modeled using . = Ry U {A,B}.

We assume that the scheduler has access to each job’s arrival time and label, but that it has
no information about each job’s size beyond what can be deduced from its label. That is, if a job
is labeled [, the scheduler knows its size is distributed as (S | L = I), but it does not learn the
realization until the job is complete.

4The limits below may not exist, so strictly speaking, we should define lower and upper constants using lim inf;_,«, and
lim sup,_,, in place of lim;_,. But the limits exist for all policies we consider, so we omit this additional complexity.

SIf there is no information at all to distinguish different jobs from one another, then, at least among nonpreemptive
policies, there is no way to improve upon FCFS, due to Ticps being minimal in the convex order [41]. Investigating whether
preemptive policies could improve upon FCFS in this setting is an interesting future direction.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 2, Article 27. Publication date: June 2024.

27:10 George Yu and Ziv Scully

2.3 Defining the Boost family of policies

We introduce a new scheduling policy called Boost. Strictly speaking, Boost is a family of scheduling
policies, where an instance of the family is determined by a boost function b : I. — R,.° The boost
function maps each label [€ IL to a quantity b([) called the boost of a job with label I.

Boost operates as follows. Suppose a job with label [/ has arrival time a. We define the job’s
boosted arrival time to be a — b(I). Boost uses the same basic rule with any boost function: prioritize
jobs in order from least to greatest boosted arrival time.” As a trivial example, choosing b(l) = 0
reduces Boost to FCFS.

One can define preemptive or nonpreemptive versions of Boost. The preemptive version makes
scheduling decisions continuously, always serving the job of least boosted arrival time. The non-
preemptive version, after it serves the first job in each busy period, makes scheduling decisions
whenever a job completes, each time choosing the job of least boosted arrival time. One can also
define intermediate versions where a job may be preempted by some, but not necessarily all, arrivals
with lower boosted arrival time.

All of our theoretical results hold for the preemptive, nonpreemptive, and intermediate versions
of Boost (Remark 3.4). As such, we leave the exact preemption rule unspecified throughout our
theoretical results. But for concreteness, the reader may safely imagine that nonpreemptive Boost
is used throughout, and we use nonpreemptive Boost in our simulations (Section 6).

There is one family of boost functions that is especially important, as they result in strong tail
optimality.

Definition 2.3. For any 6 > 0, the 6-Boost policy for label-size pair distribution (L, S) is the
version of Boost with the following boost function, which we call the 8-optimal boost function:
1 E 0S) | L=1
bl — *1og LGS 1 L=11_
0 Elexp(6S) | L=1] -1
While the definitions of §-Boost and by depend on the label-size pair distribution (L, S), we leave
this implicit in our notation.

The y-Boost policy alluded to in Section 1 is simply 8-Boost with 8 = y. In the full-information
case where L = S, we have E[exp(yS) | L = s] = exp(ys), and so b, reduces to the formula in (1.2).

We use the name “Boost” when referring to a version with generic boost function b, and we use
the name “0-Boost” when referring to a version using the 0-optimal boost function by, with 6 =y
being the most important case.

If one uses an overly aggressive boost function, such as boosting small jobs too much, then Boost
may not be weakly tail-optimal, let alone strongly tail-optimal. Our results (Theorem 3.1) show
that as long as

E[b(L)(exp(yS) — 1)] < oo, (2.4)
then Boost is indeed weakly tail-optimal. There are two important special cases where (2.4) holds.

e It always holds if one uses the y-optimal boost function b, (Lemma 5.3).

e In the full-information case where L = S, one can show using finiteness of E[exp(yS)] that
(2.4) holds if b(s) < O(1/s) in the s — 0 limit and b(s) < O(1) in the s — oo limit. The
intuition behind why we need such a condition is that if small jobs have too large of a
boost, then each large job could be overtaken by so many small jobs that we lose weak tail
optimality.

®One can in principle allow negative boosts, but we focus our analysis on the case where boosts are always nonnegative.
"To clarify, at any moment in time, Boost is only aware of jobs whose arrival time a is in the past. There may be jobs that

will arrive in the future with boosted arrival time a — b(!) in the past. But Boost is not aware of these jobs yet and will not
serve them prior to their arrival. Boost thus does not require knowledge of future arrival times to implement.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 2, Article 27. Publication date: June 2024.

Strongly Tail-Optimal Scheduling in the Light-Tailed M/G/1 27:11

To reduce clutter, we let B = b(L) be the boost of a random job, meaning we have a joint
distribution of boost-size pairs (B, S). We write By when using the 8-optimal boost function by.

2.4 Lower bounding tool: “cheating” version of Boost

In order to prove that y-Boost is strongly tail-optimal, we need a lower bound on the possible tail
constant C, (Section 2.1) achievable by any policy 7. Our main tool for doing so is to define a
“cheating” version of Boost, which we call Cheat.

Like Boost, Cheat is defined by a boost function b, it assigns each job a boosted arrival time in
the same way, and it also prioritizes jobs in order from least to greatest boosted arrival time. The
difference is that we allow Cheat to serve arrivals from the future. Specifically, we allow Cheat to
serve any job that will arrive in the current busy period, where a busy period is a maximal interval
of time during which the server is busy [22].2

We can view Cheat as being essentially the same policy as Boost for a modified “cheating” M/G/1,
which differs from the standard M/G/1. To describe the cheating M/G/1, we distinguish between a
job’s arrival time, which is the time it arrives in the standard system, and a job’s release time, which
is the earliest moment in time at which a job is allowed to be served by the scheduler.

o In the standard M/G/1, a job’s release time is its arrival time.
e In the cheating M/G/1, a job’s release time is the start of the busy period containing its arrival
time.
In the cheating M/G/1, we still define a job’s response time to be its departure time minus its arrival
time. The difference is that a job’s departure time may now be less than its arrival time plus its size,
so a job’s response time may be less than its size, or even negative.

To clarify, for a given arrival sequence, the standard and cheating M/G/1 systems have the same
busy periods. That is, one can imagine first deciding what the busy periods are using the standard
M/G/1, and then “retroactively” moving release times to construct the corresponding cheating
M/G/1. Note that this implies the cheating M/G/1 is ergodic, because it inherits the renewal cycles
of the standard M/G/1.

With the above distinction in mind, strictly speaking, Cheat is best thought of as the same policy
as Boost but for a modified system, namely the cheating M/G/1, as opposed to a different scheduling
policy for the standard system. But for the purposes of notation, we treat it like a different scheduling
policy. For instance, we denote the response time distribution of Cheat by Tcpeat. As a reminder,
due to how the cheating system works, we can have Tcpear < 0 with positive probability.

We define 6-Cheat analogously to 6-Boost (Definition 2.3), namely as the version of Cheat using
the -optimal boost function by. The significance of §-Cheat is that, as we show in Theorem 4.3,
E[exp(0Ty-cheat)] < E[exp(6T;)] for any policy 7 for the standard M/G/1.

3 ANALYSIS OF BOOST’S TAIL CONSTANT

In this section, we analyze the tail constants of Boost and Cheat in terms of the boost function b
and the system model parameters, namely A and (L, S).

Our main result is the following characterization of Cpoost and Ccheat. Interestingly, we find that
cheating has no effect on the tail constant. See Section 3.3 for the proof.

THEOREM 3.1. Consider an M/G/1 with class I job size distribution, and consider the Boost policy
with a fixed boost function b. If (2.4) holds, then Boost and Cheat both have tail constant

CBoost = Ccheat = CwE|exp(y(S — b(L)))| exp(AE[b(L) (exp(yS) — 1)]).
In particular, Cpoost < 00, s0 Boost is weakly tail-optimal.

8This definition is assuming a non-idling scheduling policy, where all such policies lead to the same notion of busy periods.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 2, Article 27. Publication date: June 2024.

27:12 George Yu and Ziv Scully

3.1 Approach: tagged job analysis

To derive the tail constants of Boost and Cheat, we require bounds on Tpest and Tcheat- We obtain
these by considering a pair of M/G/1 systems, one standard and one cheating, experiencing the
same arrival process. The only difference is that the release times in the standard M/G/1 coincide
with arrival times, whereas in the cheating M/G/1, all jobs in a given busy period have release time
at the start of the busy period (Section 2.4). We assume both systems are stationary processes.

We use a tagged job analysis [22], which is a common technique in analyzing complex scheduling
policies [9, 11, 12, 17, 18, 21, 34, 36, 38, 43, 45]. A typical tagged job analysis uses the observation
that, due to the “PASTA” property of Poisson arrivals [47], to analyze a policy 7’s response time
distribution T, we can analyze the response time of a single “tagged” job which arrives at an
arbitrary time, such as time 0. We then interpret T,; as the random response time the tagged job
experiences. There are three independent sources of randomness that contribute to T;:

e The tagged job’s label-size pair, which is drawn from (L, S).

o Aspects of the M/G/1’s state, such as its work W, at time 0, which is drawn from the system’s
stationary distribution.

e Arrivals that occur after time 0.

In our approach, instead of assuming without loss of generality that the tagged job’s arrival
time is time 0, we assume the boosted arrival time is time 0. The tagged job’s response time is still
determined by the same three sources of randomness listed above. However, the interpretation of
the latter two sources changes, e.g., some of the arrivals after time 0 arrive before the tagged job.

The only subtlety to check is that the system state at time 0, and in particular the work W, still
has the stationary distribution. This is indeed the case. Consider the stationary work process W;
as a function of time ¢ € R. The key observation is that the tagged job’s boost is independent
of its arrival time. So if the tagged job arrives at time a and has boost B = b(L), the work at the
boosted arrival time W,_p is distributed according to the stationary distribution, because {W; };<,
is stationary and independent of B. As such, we can imagine a — B = 0 without loss of generality.
One can use the framework of Palm calculus [4] to formalize this argument.

To summarize our approach and notation:

e We analyze the response time of a tagged job with boosted arrival time 0.
— Abusing notation slightly, we write L, S, B = b(L), and T}, for the tagged job’s label, size,
boost, and response time under policy .
— This means the tagged job’s arrival time is B.
e The amount of work in the (standard) M/G/1 at time 0, denoted W, is distributed according
to the standard stationary work distribution [22].
— We follow the convention that W does not include the tagged job’s size S.
o After time 0, new Poisson arrivals occur at rate A with iid label-size pairs.
— To avoid ambiguity, when we need to discuss the label, size, and boost of a generic future
arrival, we write L, S, and B’ instead of (the identically distributed) L, S, and B.
— We call these arrivals “new” because their arrival times are after time 0, even if their arrival
times are before the tagged job’s arrival time B.

3.2 Bounding Boost’s response time using crossing work

A critical step in bounding both Tepear and Tgoost is quantifying how much arriving work will “boost
past” the tagged job, which we define formally below. We also define the complementary quantity
for the arriving work that doesn’t boost past the tagged job.

Definition 3.2.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 2, Article 27. Publication date: June 2024.

Strongly Tail-Optimal Scheduling in the Light-Tailed M/G/1 27:13

(a) The crossing work arriving in (0, u), denoted V (u), is the amount of work due to jobs that
have arrival time in (0, u) and boosted arrival time in (—co, 0].

(b) The non-crossing work arriving in (0, u), denoted V(u), is the amount of work due to jobs
that have arrival time in (0, u) and boosted arrival time in (0, c0).

For example, V(o) is all the work that “boosts past” time 0, meaning arriving after 0 but having
boosted arrival time before 0. On the other extreme, V(0) is simply 0.

Understanding the amount of crossing work that the tagged job experiences is key to under-
standing the response time of the tagged job under Boost. However, the exact crossing work is
difficult to compute, as it depends on the amount of work W at the tagged job’s boosted arrival
time, its size, as well as the sizes and labels of future arrivals. In particular, jobs with boosted arrival
time before time 0 may still depart after the tagged job, if their arrival times are late enough. Under
Cheat, since the release time of all jobs is the beginning of the busy period, the crossing work is
given by V(Z), where Z is the random time denoting the end of the busy period. But Z in turn
depends on the same arrivals that V(Z) is counting, making this a hard quantity to analyze.

Due to these difficulties, instead of computing crossing work exactly, we find bounds on Tpyest
and Tcpeat Which are good enough for computing Cpoost and Ccheat-

LeEMMA 3.3. The tagged job’s response times under Boost and Cheat are both lower-bounded by
Tgoosts Icheat =2 W =B+ V(W) +5
and, for all u > 0, upper-bounded by
T8oost> Tcheat < (W — min{B, u})* + V(c0) + S + V(u) 1(W < min{B, u}).

Proor. We first recall our conventions from Section 3.1. The tagged job’s boosted arrival time
is 0, true arrival time is B, and departure time is T,; + B. There is W work in the system at time 0.

We first treat both bounds on Tpoost before handling both bounds on Tcheat. For Tpoost, We analyze
the work done by the server between the tagged job’s boosted arrival time 0 and its departure
time Tgoost + B. Both the lower and upper bounds use the fact that the server must complete the
following work between 0 and Tpoost + B:

e W from work present at time 0. This must be completed because all the work present at time 0
has priority over the tagged job. This is because their arrival times, and thereby boosted
arrival times, are earlier than 0.

o S from the tagged job itself.

e Some additional work from new arrivals that occur after time 0.

The main task is thus to bound the work from new arrivals.

Lower bound on Toost- By the first bullet above, work on W must complete before the tagged job
can enter service. Therefore, it cannot enter service before time W. In this time, there is at least
V(W) work from new arrivals that will have priority over the tagged job. Adding the required
components, we have Tpoost + B = W + V(W) + S, as desired.

Upper bound on Tgoos. First, observe that decreasing the tagged job’s boost from B to B =
min{B, u} can only increase its response time, so it suffices to analyze the case with this reduced
boost. In the remainder of this argument, B plays the role of B.

We first consider the fully preemptive case, in which the tagged job has priority over all jobs
with boosted arrival time later than 0. In addition to the required completions of W and S before
the tagged job’s departure, it will need to complete at most V(oo) from new arrivals that occur
after time 0.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 2, Article 27. Publication date: June 2024.

27:14 George Yu and Ziv Scully

However, we must also account for time the server spends idle. No idling occurs after the tagged
job arrives, but the server may be idle for some time during [0, B]. This idle time is at most (B— W)™,
so in the fully preemptive case,

Thoost + B < W+ V(c0) + S+ (B— W)*. (3.1)

We now turn to the case where the server is not fully preemptive. The only change to the
argument is that the tagged job may also have to wait for the remaining work of a lower-priority
job, if one is in service when the tagged job arrives at time B. If there is such a job, let R be its
total size, and otherwise, let R = 0. It is clear that the tagged job’s departure time is at most the
right-hand side of (3.1) plus R. We bound R with two observations:

e If W > B, then at time B when the tagged job arrives, the server is still working on jobs with
priority over the tagged job, either from W or from new arrivals. This means R > 0 only if
W <B.
e If R > 0, then a job with boosted arrival time after 0 is in service at time B. The job’s true
arrival time is therefore in (0, B), so R < V(B) < V(u) (Definition 3.2).
Combining these observations implies

R < V(u) 1(W < B).
Adding this to the fully preemptive bound in (3.1) yields
Tioost + B < W+ V(co) + S+ (B—W)* +V(u) L(W < B),
which rearranges to the desired bound.

Lower bound on Tcpeqat- Recall throughout that W refers to the amount of work in the standard
M/G/1 at time 0, whose busy periods affect the release times in the cheating M/G/1 (Section 2.4). We
will show that the tagged job cannot begin service before at least time W + V (W), which implies
the desired bound. To do this, we first analyze the busy period related to W, the work present at
time 0 in the system. This work belongs to a busy period, which we call BP, that started at time
—A < 0. Let U be the amount of work from jobs with arrival time in [—A, 0). Then we have

U-A=W.

Therefore, the server will be busy during [-A, —A + U] = [—A, W]. As such, at least V(W) work
from new arrivals will arrive during [0, W]. This means there is at least U + V(W) total work in
the busy period with boosted arrival time at most 0.

There are now two cases to consider for the tagged job. First, suppose the system is busy for
all of [0, B]. Then the tagged job belongs to the same busy period BP as described above. In this
period we know that there is at least U + V(W) total work with priority over the tagged job, so it
cannot begin service prior to

—A+U+V(W)=W+V(W).

Second, suppose that the system becomes idle at some time in [0, B]. This means that the tagged
job belongs to a busy period after BP. Therefore the tagged job’s release time, which is the earliest
it can enter service, must be after the end of BP. But we know that BP ends at the earliest at
-A+U + V(W) =W +V(W), so the tagged job’s release time must be at least W + V(W).

Upper bound on Tcpeqat. First, as in the Tpoost upper bound, we reduce the tagged job’s boost to
B = min{B, u}. We then imagine a variant of Cheat that treats the tagged job especially poorly,
forcing it to begin service at no earlier than its arrival time B. This clearly only increases the tagged
job’s response time. From here, the reasoning from the fully preemptive Tgoost upper bound also
applies to Tcheat-]

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 2, Article 27. Publication date: June 2024.

Strongly Tail-Optimal Scheduling in the Light-Tailed M/G/1 27:15

Remark 3.4. The proof of Lemma 3.3 above works regardless of whether we are considering a
preemptive, nonpreemptive, or intermediate version of Boost. As such, our results apply regardless
of the precise preemption rule used.

Lemma 3.3 allows us to bound both Tpyost and Tepear With quantities that only depend on the
standard M/G/1. It then suffices to show that the lim inf and lim sup of the lower and upper bounds,
respectively, converge to the same number, namely the expression given in Theorem 3.1. To do so,
we require that the crossing work terms in our bounds have finite moment generating function.
This holds under our assumption (2.4), which says, roughly speaking, that the boost isn’t too large
for too many labels.

LEmMMA 3.5. If (2.4) holds, then for allu € Ry U {oo},
Elexp(0V (u))] = exp(/lE[(exp(HS’) -1) min{B’,u}]) < o0

ProoFr. We can consider each new arrival to be a triple (b’, s, t) representing its boost b’, size s’,
and arrival time ¢. Let X be the random set of triples corresponding to arrivals after time 0. We can
write the crossing work V' (u) as

V) = Z s'1(t < min{b’,u}).

(b,s".1)eX

To compute E[exp(0V (u))], we use Campbell’s theorem [25, Section 3.2] for the Laplace functional
of a Poisson point process. In our case, the point process is X, and its intensity measure is

(B xS xdt) =P[B € 8,5 € S| Adt.

Campbell’s theorem and a brief computation involving Tonnelli’s theorem then imply®

E[exp(0V (u))] = exp(/ (exp(0s’L(t < min{b’,u})) — 1) p(d(¥’,s’, t)))
(/ (exp(0s’) — 1) 1(¢ < min{d’, u}) p(d(¥’,s’ t)))

= exp([(exp(6S’) — 1) 1(¢ < min{B’,u}) Adt])
= exp(AE[(exp(QS) — 1) min{B’, u}] O
3.3 Tail Constant of Boost
ProoFr oF THEOREM 3.1. Let 7 be one of Boost or Cheat, and let the claimed tail constant be
C= CWE[exp(y(S - B))] exp(AE[B(exp(yS) - 1)]) = CWE[exp(y(S - B))] E[exp yV (o0)],
where Lemma 3.5 implies the second equality. We will show C, = C. By Lemma 3.3, for all u > 0,
E[exp(0T,)] > E[exp(0(W — B+ V(W) +5))],
E[exp(0T;)] < E[exp(@((W —min{B,u})* + V(c0) + S+ 1 (W < min{B, u})V(u)))]
Equation (2.3) thus implies
YCx 2 liminf (y - O)E[exp(6(W — B+ V(W) +3))].
-y
yCr < limsup (y — 0)E[exp(6((W — min{B,u})* + V(c0) + S + L(W < min{B,u})V(u)))].
9—))/
9The precondition of Campbell’s theorem [25, Section 3.2] is satisfied when the right-hand-side expression is finite, as

exp(0s’1(¢t < minbd’,u)) — 1> 05’1 (¢ < min(b’,u)).

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 2, Article 27. Publication date: June 2024.

27:16 George Yu and Ziv Scully

It thus suffices to show that the lower bound is at least yC, and that the infimum over u of the

upper bound is at most yC.
We first analyze the lower bound yCj. For all w > 0, we have

lirgn_j)r/lf (y - O)E[exp(0(W - B+ V(W) +5))]
> liminf (y - O)E[exp(8(W — B+ V(W) +S)L(W > w)]
> liminf (y — O)E[exp(8(W = B+V(w) + SHL(W > w)]
= liminf (y — O)B[exp(OW)L(W > w)] E[exp(6(S = B))] Elexp(0V (w))]
= yCwE[exp(y(S — B))] E[exp(yV(w))],

where the last step follows from (2.1). Since this holds for all w, it also holds in the w — oo limit.
The monotone convergence theorem implies the limit is yC, as desired.
We now turn to the upper bound on yC,,. We have

limsup (y - 0)E[exp(9((W —min{B,u})* + V(c0) + S + V(u) 1(W < min{B, u})))]
60—y

= lim sup (y — 0)E[exp(6(W — min{B, u} + V(c0) +5)) 1(W > min{B, u})]
0—y
+ lim sup (y — 9)E[exp(9(V(oo) +S+V(u)) L(W < min{B, u})]
0—y
< limsup (y — 0)E[exp(6(W — min{B, u} + V(o) +S))] (3.2)
0—y

+ limsup (y — 9)E[exp(€(V(oo) +S+ V(u)))] (3.3)
0—y

We now compute the limits in (3.2) and (3.3). We first show the limit in (3.3) vanishes, then we
show the limit in (3.2) has the desired value.
Let A(u) = V(u) + V(1) > V(u) be the total amount of work that arrives during (0, u). The limit

in (3.3) is bounded by

limsup (y — H)E[exp(O(V(oo) +S+ V(u)))]

60—y

= lim sup E[exp(0V (c0))] E[exp(0S)] E[exp(0V (u))]
60—y

< limsup (y — 6)E[exp(8V(0))] E[exp(6S)] E[exp(6A(u))]
60—y

< 111;1 sup (y — O)E[exp(yV (c0))] E[exp(yS)] E[exp(yA(u))]

-Y
= 0,

where the second line holds by independence of V(-), V(-), and S; and the second-to-last line is
possible because all three of the factors are finite.
e E[exp(yS)] is finite by the definition of y.
e E[exp(yV(e0))] is finite by (2.4) and Lemma 3.5.
e Elexp(yA(u))] = exp(Au(E[exp(yS)] — 1)) = exp(yu), by a standard M/G/1 result [22] and
the definition of y.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 2, Article 27. Publication date: June 2024.

Strongly Tail-Optimal Scheduling in the Light-Tailed M/G/1 27:17

Because the limit in (3.3) vanishes, yC,; is at most the limit in (3.2), so
YCr < limsup (y — 6)E[exp(6(W — min{B, u} + V(o) + 5))]
60—y
= limsup (y — 0)E[exp(0W)] E[exp(0(S — min{B, u}))] E[exp(0V (c0))]
00—y
= yCwE[exp(y(S — min{B, u}))] E[exp(yV(e0))],

where the last step follows from (2.1). Because this holds for any u, it holds in the # — co limit.
The monotone convergence theorem implies the limit is yC, as desired. O

4 A BATCH SCHEDULING PROBLEM RELATED TO TAIL OPTIMALITY

In this section we show that 6-Cheat minimizes E[exp (0T})] in the full-information case. The key
idea is that in this case, we can treat each busy period as a finite batch of jobs on which to minimize
a cost function which corresponds to E[exp(67T;;)]. We start by defining what a batch is and what
the cost function is.

Definition 4.1. A batch instance I = {(ay,s1),--.,(an,Sy)} is a finite batch of pairs of arrival
times and job sizes.

Definition 4.2. The 0-cost of policy & on batch instance 7 = {(ai, s1), ..., (an, Sn)} is

Kn(0,1) =) Elexp(0Tz)] =) Elexp(0(Dri — a;))],
i=1 i=1

where D, ; is the departure time of job i under policy . The expectation is over any randomness
in the policy.

We now show that 8-Cheat minimizes 8-cost across any finite batch of jobs, across all preemptive
policies, and that this in turn minimizes E[exp(0T;)].

THEOREM 4.3. In the full-information setting, the 0-Cheat policy minimizes 0-cost. Specifically, for
any batch instance I,
KH—Cheat(es I) = mni_n Kﬂ(es I): (41)

and therefore
E[exp(0Tp-chear)] < inf E[exp(0Ty)]. (4.2)

Proor. We first show (4.1), namely that §-Cheat minimizes §-cost for any batch instance 7.

This can be seen by observing that §-Cheat serves jobs in 7 in the same order as the Weighted
Discounted Shortest Processing Time policy (WDSPT), which is known to minimize 0-cost for any
batch instance 7. This is because boosted arrival time a; — by(s;) is a monotonic function, namely
1/0 times the negative log, of WDSPT’s priority index:
1
0
The proof is an interchange argument identical to that of Pinedo [33, Theorem 3.1.6], with the
signs for the discount rate and objective flipped. Specifically, with negative discounting, we define
discounted completion time as exp(6D;) — 1 instead of 1 — exp(0D;) to keep the sign positive.

Having shown (4.1), we now turn to (4.2). The key idea is to consider busy periods as batch
instances. Specifically, by renewal-reward theorem [8, Theorem 10.2.15],

Blexp(OT)] =~z

a; — by(s;) = —= log|exp(—0a;) exp(0s;)

exp(0s;) — 1)

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 2, Article 27. Publication date: June 2024.

27:18 George Yu and Ziv Scully

where 8 is a random batch instance corresponding to an M/G/1 busy period, and | 8] is the number
of jobs in the instance. The intuition is that the average 0-cost per job is the expected total 0-cost
of all jobs in a busy period, namely E[K (6, 8)], divided by the expected number of jobs in a busy
period, namely E[|8]]. But E[|B]] = # is the same under all scheduling policies, so
E[Kp-cheat (6, B)]
E[exp(0Tp-cheat)] = ——cheat % 2/
[exp(6Tp-cheat)] E[|B[]
_ E[min, K, (6, B)]
E[|8]]
E[K,(60, 8B
< inf ElK:(0.B)]
=~ E[|B]]
= inf E[exp(0T,)]. O
T

Remark 4.4. While Theorem 4.3 treats only the full-information setting, an analogue of (4.1) holds
in the partial-information setting. The optimality is relative not to all policies, but nonpreemptive
policies that have access to only labels and arrival times. However, (4.1) no longer implies (4.2) in
the partial-information setting. See Appendix B for details.

5 PROOF OF BOOST’S STRONG TAIL OPTIMALITY

In this section, we prove strong tail optimality of y-Boost in the full-information setting. We do so
by computing an explicit lower bound on the optimal tail constant, namely C* from Theorem 5.1
below, and showing that C} poost = C*. The fact that C* is a lower bound on the optimal tail constant
in the full-information case follows from Theorem 4.3.

THEOREM 5.1. Consider an M/G/1 with class I job size distribution with a fixed label-size pair
distribution (L, S), and let

-0
C* = liminf Y—E[exp(@Tg_Cheat)].
9—>y }/

(a) The tail constant of y-Boost is
Cy-Boost = C* = CwE[exp(yS) — 1] exp(AE[by (L) (exp(yS) — 1)]). (5.1)
(b) In the full-information setting, namely when L = S, y-Boost is strongly tail-optimal.

Remark 5.2. While the strong tail optimality result is only for the full-information setting, the
definition of C* and the fact that C,.poost = C* extend to the partial-information setting. Of course,
the details of what the labels are affects the value of C*, with the minimum occurring for the
full-information setting.

However, based on Remark 4.4, we conjecture that in the partial-information setting, C* is (a
lower bound on) the optimal tail constant achievable with nonpreemptive policies that have access
to only labels and arrival times. Theorem 5.1 would then imply that y-Boost achieves this optimal
tail constant. As evidence for this conjecture, we show in Appendix C that y-Boost outperforms all
other versions of Boost, and we show in Appendix D that y-Boost outperforms Nudge-M.

Before proving Theorem 5.1, we introduce some notation for working with the 6-optimal boost
function, analogous to the notation used in Section 3:
e Recall that by is the boost function given in (1.2).
o We write By = by(L) to mean the boost of the tagged job using boost function bg.
- Similarly B = bg(L’) is the boost of a generic future arrival.
e We write Vy(u) to refer to the crossing work using boost function by.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 2, Article 27. Publication date: June 2024.

Strongly Tail-Optimal Scheduling in the Light-Tailed M/G/1 27:19

Recall that for the constant to be well-defined, we require the crossing work V(co) to have finite
moment generating function. By Lemma 3.5, this amounts to showing (2.4). We therefore first show
that (2.4) holds for the y-optimal boost function b,.

LEMMA 5.3. For all 6 > 0, for all labels 1 € I,

E[Bj(exp(6S") - 1)] < é

In particular, taking 6 = y implies the y-optimal boost function satisfies (2.4).

Proor. Plugging in Bj = bp(L’) (Definition 2.3) and rearranging, it suffices to show that with
probability 1,
E[exp(6S’) | L']
E 0s") | L'] - 1)1
(Elexp(65") | L'] - 1) log Elexp(65) | L'] - 1

Letting x = E[exp(0S’) | L’] — 1, this holds because x log(1+ 1/x) < 1 for all x > 0. O

<1 (5.2)

Given Lemma 5.3, we can now employ Theorem 3.1 and Lemma 3.3. The last ingredient we need
to prove Theorem 5.1 is to understand how the 8-optimal boost function compares to the y-optimal
boost function. We observe below that as a function of 6, the 8-optimal boost is actually monotonic,
with larger 0 yielding smaller boosts.

LEMMA 5.4. For all labels | € 1L, both by (1) and 0by(l) are decreasing as functions of 6 > 0.

Proor. It suffices to prove that 0by (1) is decreasing, which follows from writing it as

Obg(l) = —log(l -

1
E[exp(0S) | L =1]) -

Proor oF THEOREM 5.1. We first note that the expression on the right-hand side of (5.1) follows
from Theorem 3.1 and plugging in Definition 2.3 with € = y. Specifically, the second factor from
Theorem 3.1 simplifies to

E[exp(y(S - By))] = E[E[exp(yS) | L] exp(—yby(L))]

5| Elexp(rs) 1) BRI LY
=E[exp(yS)] — 1.

Also, note that in the full-information setting, C* < C, for all policies 7, so strong tail optimality is
implied by Cygoost = C*.

It thus remains only to compute C* to confirm that Cy poost = C*. To do so, we consider a system
using the 0-Cheat policy, bound E[exp(0Tp.cheat)], then compute the 6 — y limit. We use the
analysis from Section 3.1 with boost function by (Definition 2.3).

From Lemma 3.3, we have Ty_cheat = W — By + V(W) +S. We can lower bound this further using
Lemma 5.4: if we were to change other jobs’ boosts from By to Bj, it would only improve the tagged
job’s response time. This means Vp(w) > V, (w) for all w > 0, so

To-Cheat = W — Bg + VY(W) +S.

Therefore, for all w > 0,
E[exp(0Tp-cheat)] > E[exp(6(W — By + V(W) +5))|
> E[exp(0(W — By + V, (W) +5)) L(W > w)]
> E[exp(0(W — Bg + Vy(w) +5)) L(W > w)]
=E[exp(6W) L(W > w)] E[exp(6(S — Bg))] E[exp(6V (w))].

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 2, Article 27. Publication date: June 2024.

27:20 George Yu and Ziv Scully

Taking the § — y limit and applying the monotone convergence theorem, which applies thanks to
the monotonicity of 0By (Lemma 5.4), yields

llgl_}’l;lf ()/ - Q)E[CXP(GTG—Cheat)]
> lifgninf (y — O)E[exp(OW)L(W > w)] E[exp(0(S — By))] E[exp(0V, (w))]
-y

= gim (y — O)E[exp(W) 1 (W > w)]) (éim Elexp(0(S — Bg))]) (gim E[exp(0V,(w))]
-y -y -y
= yCwE[exp(y(S — By))|E[exp(yVy (w))], (5.3)
where the second line follows from (2.1) and the fact that

gim (y — O)E[exp(OW) T(W < w)] < gim (y — 0) exp(yw) = 0.
-y -y

Finally, as in the proof of Theorem 3.1, we observe that because (5.3) holds for all w, it holds in the
w — oo limit, yielding

C* > CwE[exp(y(S — By)) |E[exp(yV; (0))].

The right-hand side is exactly the tail constant C} oot from Theorem 3.1, so C* > Cypoost-

It remains only to show C* < C} poost- In the full-information setting, this is immediate from
Theorem 4.3, which implies C* < C, for all policies 7. In the partial-information setting, Theorem 4.3
does not apply, but by following essentially the same steps as the upper bound in Theorem 3.1, we
obtain

yC* < éim (y - G)E[exp(GW)]) (éim E[exp(0(S — min{By, u}))]) (éim E[exp(0Vy(c0))]
-y -y -y
= yCwE[exp(y(S — min{By, u}))] E[exp(yV} (e0))].

This becomes yCy Boost in the u — oo limit, as desired. The main difference from Theorem 3.1 is
that the second and third limits above involve a boost function that varies with 8. We compute the
second limit with Lemma 5.4 and the monotone convergence theorem, and we compute the third
limit with Lemma 3.5 and the bounded convergence theorem, which applies thanks to (5.2). O

6 SIMULATIONS

We have shown that y-Boost achieves strong tail optimality, which is an asymptotic property.
However, there remain unanswered questions about y-Boost that are important to practitioners.
In this section, we explore the questions below via simulations. We focus by default on the full-
information setting, but we address some partial-information settings in the last two questions.
o (Section 6.1) How well does y-Boost perform in practical regimes? Does it do as well as one
would predict from its tail constant Cy poost?
o (Section 6.2) How does y-Boost compare to Nudge and SRPT?
e (Section 6.3) In what settings does y-Boost offer the largest benefit? What role does the
variance of the job size distribution play?
o (Section 6.4) Is y-Boost robust to misspecification, such as being given the wrong value of y
or noisily estimated job sizes?
e (Section 6.5) How well does y-Boost perform in the partial-information setting, where we
have much coarser information about jobs’ sizes?

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 2, Article 27. Publication date: June 2024.

Strongly Tail-Optimal Scheduling in the Light-Tailed M/G/1 27:21

p =05 p=0.95

0.7 0.7
=} =]
= 0.67 = 0.6
< 5]
24 ~
k] 0.5 = 0.5
R R A N . <
5 04 5 04
> >
[} [P P PPPPPRNANNE T 1. & 2w oS o o g St N S PP
8,031 8.03
E —e— Hyperexponential ._E< Hyperexponential
ﬁ 0.2 —&— Exponential E 02 Exponential
&= 01 Bounded Lomax = 01 Bounded Lomax

------------------------------ ~—4— Uniform Uniform
0.0-—* T r r T T r 0.0-—* T T T T T T T T
0 5 10 15 20 25 30 0 25 50 75 100 125 150 175 200
Response time Response time

Fig. 6.1. Empirical TIR of y-Boost over FCFS for several job size distributions S, each with mean E[S] = 1, at
loads p = 0.5,0.95. See Fig. 1.2(a) for p = 0.8. We use the same distributions as Grosof et al. [21, Fig. 2], which
are: Uniform(0,2), Exponential, Hyperexponential with branches drawn from Exp(2) and Exp(1/3) and first
branch probability 0.8, and BoundedLomax with shape parameter @ = 2 and upper bound 4. The asymptotic
TIR is computed with Theorem 3.1 and plotted as a same color dotted line for each distribution. Simulations
run with 50 million arrivals.

6.1 Boost in the full-information setting

In Fig. 6.1, we evaluate the performance of the optimal boost policy on common distributions by
looking at the empirical Tail Improvement Ratio (TIR) with respect to FCFS, that is, by looking
at TIR(t) = 1 = P[T,Boost > t]/P[Trcrs > t]. Boost’s performance improves upon FCFS’s across a
variety of job size distributions and loads. In all tested distributions, y-Boost achieves asymptotic
performance equivalent to the TIR that our theory suggests. Moreover, these improvements can
be significant: y-Boost improves the tail constant in the Exponential case by roughly 30%, and
improvements exceed 50% for the Hyperexponential distribution case. Another observation of note
is that across all loads and distributions, not only does y-Boost achieve the asymptotic performance
suggested by theory, it also improves stochastically over FCFS, meaning TIR(t) > 0 for all t > 0,
not just the ¢ — oo limit. Moreover, in many cases the “pre-asymptotic” improvement actually
exceeds the asymptotic TIR.

6.2 Boost compared to other policies

We evaluate the performance of boost policies against other policies, namely against Nudge, which
is known to have better stochastic performance than FCFS, and SRPT, which is tail-pessimal for
Class I distributions. In Figs. 1.2(b) and 6.2, we compare the TIR for all three policies. Following
best practices from Grosof et al. [21, Fig. 2, Section 9], we set the small-large threshold for Nudge
to be at E[S], with no medium or extra-large split, and examine performance under a variety of
common job size distributions. We find that y-Boost has larger asymptotic TIR than Nudge and
SRPT across all tested job size distributions. Moreover, y-Boost is stochastically better than Nudge
across the distributions tested.

6.3 Variation matters: how CoV affects asymptotic performance

What is important when scheduling for the tail in distributions? If job size distributions are highly
variable, tail-pessimal policies for class I distributions that are optimal for heavy-tailed distributions
may still perform well for all but the highest tail percentiles. In particular, SRPT demonstrates strong
performance for all but the highest tail percentiles. Therefore, while y-Boost is asymptotically

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 2, Article 27. Publication date: June 2024.

27:22 George Yu and Ziv Scully

p = 0.8, Hyperexponential p = 0.8, Uniform

0.7 0.7
—— Boost —e— Boost
o 067 Nudge-M o O Nudge-M
b= —+— Nudge-K = —4+— NudgeK
E 0.5 Nudge f - Nudge
g —+— SRPT g —+— SRPT
g 04 g 0.
4 5
%0.3* g .
£, £,
= =
= = oo
0.1
vvvvvvvvvvvvvvvvvvvvvvvvvvvvvv A A A Ak
0.0 : : : : . : . |
0 10 20 30 40 50 60 70 15 20
Response time Response time

Fig. 6.2. Comparison of empirical TIR of y-Boost against FCFS and Nudge, for two job size distributions, each
with mean 1, and with the same settings as in Grosof et al. [21, Fig. 2]. The left is Hyperexponential with
branches drawn from Exp(2) and Exp(1/3), with first branch probability 0.8 and the right is Uniform(0,2). See
Fig. 1.2(b) for exponential. In each plot, the dotted horizontal line represents y-Boost’s asymptotic TIR for
the respective distribution. For Hyperexponential, we set K to the optimal value of 8 for Nudge-K/M, with
type-1 and type-2 jobs set to jobs coming from the Exp(2) and Exp(1/3) branches respectively. (Nudge-K does
perform slightly better than Nudge in this case, though this is barely visible on the plot.) For Uniform, we use
the same small-large split as Nudge, where type-1 jobs are small (smaller than the mean of the distribution)
and type-2 jobs are large, and set K to the optimal value of 3 for Nudge-K/M. Simulations run with 50 million
arrivals.

CoV? =385 CoV? = 20.25

T 1.00 T

1=
S

—8— Boost
—+— SRPT

—e— Boost
—+— SRPT
===- Boost tg.99
—-—- SRPT tg.00
Boost £9.999

.~ —= SRPTfoom
i

4
o
&

o
o
S

| ---- SRPTtpg |
i

o
%
B

|

|
o
%
X

Tail Improvement Ratio
z

Tail Improvement Ratio
s o
a 38

—:— Boost t(.999
—— SRPT tg.99

I
9
a

o
=
=

4
o
&

i

i

!

! 0.651
i

i

0.60 : : : - ; . . - : : : :
0 25 50 75 100 125 150 175 200 200 300 400 500
Response time Response time

Fig. 6.3. A comparison of y-Boost and SRPT at high CoV. In both plots, the distributions considered are
Hyperexponential, mean 1 distributions. For CoV? = 8.5, we choose parameters Exp(4), Exp(1/6), and a
first-branch probability of p = 20/23. For CoV? = 20.25 we choose parameters Exp(8), Exp(1/12), and a
first-branch probability of p = 88/95. Load is p = 0.8. Dashed vertical lines mark the #; 99 response times
of the two policies, and dash-dotted vertical lines mark the #y 999 response time. The dotted horizontal line
represents the theoretical asymptotic TIR for y-Boost. Observe how SRPT has lower t(99 response time but
higher t9.999 response time than y-Boost. Simulations run with 50 million arrivals.

optimal, a practitioner’s choice of policy depends on how sensitive they are to tail response times
and the properties of the job size distribution they face. In particular, one may care about tail
percentiles that are “pre-asymptotic”. In Fig. 6.3, we show how this “pre-asymptotic” performance
can depend on the variability of the job size distribution. The main takeaway is that for job size

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 2, Article 27. Publication date: June 2024.

Strongly Tail-Optimal Scheduling in the Light-Tailed M/G/1 27:23

0.40 05

o
w
&

035

ol
w
S

030

e
o
a

I
o
S

0.25

=
@
o

0.20

Tail Improvement Ratio
°
>

Tail Improvement Ratio

0.15

4
o
&

2
o
S

0.0

0 5 10 15 2 25 30 35 0 5 10 15 20 25 30 35
Response time Response time

(a) Sensitivity to misspecified y. (b) Sensitivity to noisy size estimates.

Fig. 6.4. Performance of y-Boost with different types of noise. Job size distribution is Exponential with
mean 1, with p = 0.8. (a) We plot the performance with misspecified y. The theoretical asymptotic TIR is
shown as a dotted horizontal line. We consider a range of [y/2, 2y], where the optimal y = 0.2. Observe that
underestimating y leads to significantly worse TIR compared to overestimating y. (b) We plot the performance
with noisy job size estimates. The noise is multiplicative and drawn i.i.d. for each job from a LogNormal
distribution with mean 0 and some standard deviation. We consider noise levels (i.e. standard deviations)
ranging from 0 to 0.5. While performance is degraded from the theoretically optimal TIR as more noise is
added, at 0.5, the TIR is still above 20%. In both (a) and (b), simulations run with 50 million arrivals.

distributions with high variability, SRPT has great performance unless one cares about extremely
high threshold (e.g. ty.999) response times.

6.4 Robustness of Boost

y-Boost sets a job’s boost using its arrival time, size, and the decay rate parameter y for the job size
distribution. In practice, one might only have access to noisy estimates of the job size distribution
and of the job sizes.

If one does not know the exact job size distribution, then the parameter y may be misspecified.
In this case, our takeaways suggest that one can conservatively set the decay rate parameter y
higher than estimated to maintain good performance. For clarity, we denote the optimal policy as
y-Boost, and assume that we set the parameter y based on our noisy information. We can see in
Fig. 6.4(a) that using a conservative overestimate of the parameter, namely setting y > y, has good
performance. While y < y can still have good performance near y, setting too low of a parameter
leads to a faster decay in performance than setting too high of a parameter.

If one only has noisy estimates of the job sizes, using these estimates directly provides still good
performance. In Fig. 6.4(b) we examine the sensitivity of y-Boost to noise in the labels. Using the
noisy size as input to the boost policy maintains good performance, with TIR above 20%.

6.5 Boost in the partial-information setting

In this section, we consider the case when job sizes are unknown, and one may only have coarse
information, such as the class, of incoming jobs or rough thresholds on job sizes. We find that, as
with the full-information setting, y-Boost demonstrates good practical performance, attaining the
asymptotic TIR suggested by theory.

In Fig. 6.5 we evaluate the performance of the optimal boost policy in one such limited-information
setting. We consider the case where jobs can be type-1 or type-2, where each type has a different

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 2, Article 27. Publication date: June 2024.

27:24 George Yu and Ziv Scully

E[X,]/E[X:] =2 E[X,;)/E[X1] =5

—e— Boost

—e— Boost
Nudge-M

—4— Nudge-K |
Nudge

Tail Improvement Ratio
Tail Improvement Ratio

0.00
0 5 10 15 20 25 30 0 5 0 15 20 25 30 35 40
Response time Response time

Fig. 6.5. Comparison of y-Boost’s performance to Nudge-K’s and Nudge-M’s performance in the two-class
partial-information setting. The mean of the job size distribution is 1, and, following the settings in Van Houdt
[45, Fig. 1], we set the load to be p = 0.75 and consider the case where both type-1 and type-2 jobs come
from Exponential distributions and the probability of drawing from either branch is 1/2. On the left, we
consider the case where the ratio of the means type-2/type-1 is 2; on the right it is 5. The more separable the
means are, the better the performance of y-Boost becomes. In both cases, the asymptotic TIR of the optimal
boost, represented by the dotted line, is better than that of both Nudge-K and Nudge-M. In both cases we
set the optimal value of K for the Nudge policies (K = 3 in the first setting and K = 5 in the second setting).
Simulations run with 50 million arrivals.

distribution, and consider Nudge-K and Nudge-M for K in the setup from Van Houdt [45, Fig. 1].
We also extend this to the case where the distributions of the two job types are further separated.
We find that performance increases the more distinguishable the distributions of the two job types
are. We also find that under these settings, y-Boost has better performance than both Nudge-K and
Nudge-M.

7 CONCLUSION

In this work, we introduce the Boost family of scheduling policies, which provide a simple new
approach to balancing the tradeoff between prioritizing short jobs and prioritizing jobs that have
been waiting a long time. We prove that a policy in this new family, called y-Boost, is a strongly
tail-optimal scheduling policy for the M/G/1 with light-tailed job size distributions, resolving a
long-standing open problem in queueing theory. Our simulations show that in addition to achieving
a theoretical milestone, y-Boost has excellent practical performance.

Our results on Boost reveal many promising future directions, some of which we outline below.

7.1 Settings beyond the full-information M/G/1

The most direct question prompted by our results is: what policy is strongly tail-optimal in the
partial-information setting? We believe that y-Boost is the desired policy if one further restricts
attention to nonpreemptive policies. But if one allows preemption, it is less clear what to do. For
minimizing mean response time in the M/G/1, it is known that the Gittins policy [16] is optimal
for a wide variety of preemptive partial-information settings [35, 37]. Moreover, versions of the
Gittins policy exist for the batch relaxation [33] with discounting. Perhaps a version of Boost based
on the Gittins policy is needed for the preemptive partial-information setting.

Boost is also a natural candidate for systems beyond the M/G/1. One important direction would
be multiserver systems. Recent results have shown that simple priority policies for optimizing

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 2, Article 27. Publication date: June 2024.

Strongly Tail-Optimal Scheduling in the Light-Tailed M/G/1 27:25

mean response time in the M/G/1 generalize well to a wide variety of multiserver systems [17-
20, 24, 34, 35]. Can we leverage similar techniques to analyze Boost in the M/G/k or dispatching
settings? Similarly, one could ask about non-Poisson arrival processes. We suspect that y-Boost is
also strongly-tail optimal in models like the G/G/1 with light-tailed job sizes, as long as we still
have P[Tgcrs > t] ~ Cpcrs exp(—yt).

7.2 Metrics beyond the tail constant

One could reexamine the metric or metrics being optimized. We now know how to minimize mean
response time, namely using SRPT, and the tail constant, namely using y-Boost. Can we characterize
the Pareto frontier of achievable means and tail constants, and can we design policies to achieve
the entire frontier? Because the tail constant is a purely asymptotic notion, we conjecture that, at
least theoretically, it is possible to design a policy with mean response time arbitrarily close to
SRPT’s and tail constant arbitrarily close to y-Boost’s. But whether such a policy would have good
tail performance in practice remains to be seen.

Other important metrics arise in systems with multiple priority classes, where we want to promise
better performance to better priority classes. Can we design policies to optimize a weighted tail
constant, meaning a convex combination of each class’s tail constant? It seems likely that reducing
to a weighted batch problem would yield a version of y-Boost that accounts for the weights.

But what if we also want to balance a tradeoff between the decay rates of the different classes’
response times? This seems like a more challenging problem, but we expect it to be important for
settings where the top priority classes must have very low response times. The results of Stolyar and
Ramanan [44] show how to balance decay rates optimally using what is essentially an accumulating
priority policy [11, 12, 43], albeit in a slightly weaker sense than our Definition 2.2. Combining
Boost with accumulating priority thus seems like a promising direction for further exploration.

7.3 Boost in practice

We are excited about the potential of deploying Boost in real-world computer systems, due to
its promising simulation performance and simplicity of implementation. The simplicity angle is
especially important in high-performance environments such as network switches. Boost fits into
the recently proposed Priority-In, First-Out (PIFO) scheduling abstraction [42]. One question is
whether Boost is amenable to being approximated using methods like SP-PIFO [3], which would
allow it to be deployed more easily on common network hardware.

Another question is how to determine y in practice, given that the job size distribution may
be unknown, or may change over time. We suspect that the best way to obtain y in practice is to
directly measure the empirical decay rate of the work distribution. This seems feasible to do in
many computer systems, and it seems simpler than trying to estimate the full job size distribution.
Our simulations show that Boost is robust to some misspecification of y, so such an empirical
estimate would likely suffice.

Of course, computer systems are just one of many domains where one might consider deploying
Boost. Different domains have different prioritization needs, which could be met by different boost
functions. It is worth highlighting that Boost is weakly tail-optimal for any boost function satisfying
the relatively mild condition of (2.4). Even jobs that receive zero boost experience weakly optimal
response time tail. This means that for systems with light-tailed job sizes, Boost offers a flexible
framework for priority scheduling without sacrificing tail performance.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 2, Article 27. Publication date: June 2024.

27:26 George Yu and Ziv Scully

ACKNOWLEDGMENTS

We thank Isaac Grosof, Benny Van Houdt, and David Shmoys for helpful discussions. This work
was supported by the National Science Foundation under grant nos. CMMI-2307008, DMS-2023528,
and DMS-20224438.

REFERENCES

[1] Joseph Abate, Gagan L. Choudhury, and Ward Whitt. 1994. Waiting-Time Tail Probabilities in Queues with Long-Tail
Service-Time Distributions. Queueing Systems 16, 3-4 (Sept. 1994), 311-338. https://doi.org/10.1007/BF01158960
[2] Joseph Abate and Ward Whitt. 1997. Asymptotics for M/G/1 Low-Priority Waiting-Time Tail Probabilities. Queueing
Systems 25, 1 (June 1997), 173-233. https://doi.org/10.1023/A:1019104402024
[3] Albert Gran Alcoz, Alexander Dietmiiller, and Laurent Vanbever. 2020. SP-PIFO: Approximating Push-in First-out
Behaviors Using Strict-Priority Queues. In 17th USENIX Symposium on Networked Systems Design and Implementation
(NSDI 2020). USENIX Association, Santa Clara, CA, 59-76. https://www.usenix.org/conference/nsdi20/presentation/
alcoz
[4] Francois Baccelli and Pierre Brémaud. 2003. Elements of Queueing Theory: Palm Martingale Calculus and Stochastic
Recurrences (2 ed.). Number 26 in Stochastic Modelling and Applied Probability. Springer, Berlin, Germany. https:
//doi.org/10.1007/978-3-662-11657-9
[5] Nicholas H. Bingham, Charles M. Goldie, and Jef L. Teugels. 1987. Regular Variation. Number 27 in Encyclopedia of
Mathematics and Its Applications. Cambridge University Press, Cambridge, UK.
[6] Sem C. Borst, Onno J. Boxma, Rudesindo Nufez-Queija, and Bert Zwart. 2003. The Impact of the Service Discipline on
Delay Asymptotics. Performance Evaluation 54, 2 (Oct. 2003), 175-206. https://doi.org/10.1016/S0166-5316(03)00071-3
[7] Onno J. Boxma and Bert Zwart. 2007. Tails in Scheduling. ACM SIGMETRICS Performance Evaluation Review 34, 4
(March 2007), 13-20. https://doi.org/10.1145/1243401.1243406
[8] Pierre Brémaud. 2020. Probability Theory and Stochastic Processes. Springer, Cham, Switzerland. https://doi.org/10.
1007/978-3-030-40183-2
[9] Nils Charlet and Benny Van Houdt. 2024. Tail Optimality and Performance Analysis of the Nudge-M Scheduling
Algorithm. arXiv:2403.06588 [cs, math] http://arxiv.org/abs/2403.06588
[10] Yan Chen and Jing Dong. 2021. Scheduling with Service-Time Information: The Power of Two Priority Classes.
arXiv:2105.10499 [cs, math] http://arxiv.org/abs/2105.10499
[11] Val Andrei Fajardo and Steve Drekic. 2015. Controlling the Workload of M/G/1 Queues via the g-Policy. European
Journal of Operational Research 243, 2 (June 2015), 607-617. https://doi.org/10.1016/j.ejor.2014.12.036
[12] Val Andrei Fajardo and Steve Drekic. 2017. Waiting Time Distributions in the Preemptive Accumulating Priority
Queue. Methodology and Computing in Applied Probability 19, 1 (March 2017), 255-284. https://doi.org/10.1007/s11009-
015-9476-1
[13] Eric J. Friedman and Shane G. Henderson. 2003. Fairness and Efficiency in Web Server Protocols. ACM SIGMETRICS
Performance Evaluation Review 31, 1 (June 2003), 229-237. https://doi.org/10.1145/885651.781056
[14] Eric J. Friedman and Gavin Hurley. 2003. Protective Scheduling. Technical Report 1373. Cornell University, Ithaca, NY.
11 pages. https://hdLhandle.net/1813/9250
[15] Bezalel Gavish and Paul J. Schweitzer. 1977. The Markovian Queue with Bounded Waiting Time. Management Science
23,12 (Aug. 1977), 1349-1357. https://doi.org/10.1287/mnsc.23.12.1349
[16] John C. Gittins, Kevin D. Glazebrook, and Richard R. Weber. 2011. Multi-Armed Bandit Allocation Indices (2 ed.). Wiley,
Chichester, UK.
[17] Isaac Grosof. 2023. Optimal Scheduling in Multiserver Queues. Ph.D. Dissertation. Carnegie Mellon University,
Pittsburgh, PA. https://isaacgl.github.io/assets/isaac-thesis.pdf
[18] Isaac Grosof, Ziv Scully, and Mor Harchol-Balter. 2018. SRPT for Multiserver Systems. Performance Evaluation 127-128
(Nov. 2018), 154-175. https://doi.org/10.1016/j.peva.2018.10.001
[19] Isaac Grosof, Ziv Scully, and Mor Harchol-Balter. 2019. Load Balancing Guardrails: Keeping Your Heavy Traffic on the
Road to Low Response Times. Proceedings of the ACM on Measurement and Analysis of Computing Systems 3, 2, Article
42 (June 2019), 31 pages. https://doi.org/10.1145/3341617.3326157
[20] Isaac Grosof, Ziv Scully, Mor Harchol-Balter, and Alan Scheller-Wolf. 2022. Optimal Scheduling in the Multiserver-Job
Model under Heavy Traffic. Proceedings of the ACM on Measurement and Analysis of Computing Systems 6, 3, Article 51
(Dec. 2022), 32 pages. https://doi.org/10.1145/3570612
[21] Isaac Grosof, Kunhe Yang, Ziv Scully, and Mor Harchol-Balter. 2021. Nudge: Stochastically Improving upon FCFS.
Proceedings of the ACM on Measurement and Analysis of Computing Systems 5, 2, Article 21 (June 2021), 29 pages.
https://doi.org/10.1145/3460088

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 2, Article 27. Publication date: June 2024.

https://doi.org/10.1007/BF01158960
https://doi.org/10.1023/A:1019104402024
https://www.usenix.org/conference/nsdi20/presentation/alcoz
https://www.usenix.org/conference/nsdi20/presentation/alcoz
https://doi.org/10.1007/978-3-662-11657-9
https://doi.org/10.1007/978-3-662-11657-9
https://doi.org/10.1016/S0166-5316(03)00071-3
https://doi.org/10.1145/1243401.1243406
https://doi.org/10.1007/978-3-030-40183-2
https://doi.org/10.1007/978-3-030-40183-2
https://arxiv.org/abs/2403.06588
http://arxiv.org/abs/2403.06588
https://arxiv.org/abs/2105.10499
http://arxiv.org/abs/2105.10499
https://doi.org/10.1016/j.ejor.2014.12.036
https://doi.org/10.1007/s11009-015-9476-1
https://doi.org/10.1007/s11009-015-9476-1
https://doi.org/10.1145/885651.781056
https://hdl.handle.net/1813/9250
https://doi.org/10.1287/mnsc.23.12.1349
https://isaacg1.github.io/assets/isaac-thesis.pdf
https://doi.org/10.1016/j.peva.2018.10.001
https://doi.org/10.1145/3341617.3326157
https://doi.org/10.1145/3570612
https://doi.org/10.1145/3460088

Strongly Tail-Optimal Scheduling in the Light-Tailed M/G/1 27:27

[22] Mor Harchol-Balter. 2013. Performance Modeling and Design of Computer Systems: Queueing Theory in Action. Cambridge
University Press, Cambridge, UK.

[23] Mor Harchol-Balter, Bianca Schroeder, Nikhil Bansal, and Mukesh Agrawal. 2003. Size-Based Scheduling to Improve
Web Performance. ACM Transactions on Computer Systems 21, 2 (May 2003), 207-233. https://doi.org/10.1145/762483.
762486

[24] Yige Hong and Ziv Scully. 2024. Performance of the Gittins Policy in the G/G/1 and G/G/k, with and without Setup
Times. Performance Evaluation 163, Article 102377 (Jan. 2024), 26 pages. https://doi.org/10.1016/j.peva.2023.102377

[25] J. F. C. Kingman. 1993. Poisson Processes. Number 3 in Oxford Studies in Probability. Oxford University Press, Oxford.

[26] Aryeh Kontorovich and Iosif Pinelis. 2019. Exact Lower Bounds for the Agnostic Probably-Approximately-Correct (PAC)
Machine Learning Model. The Annals of Statistics 47, 5 (Oct. 2019), 2822-2854. https://doi.org/10.1214/18- A0S1766

[27] Jan Karel Lenstra and David B. Shmoys. 2020. Elements of Scheduling. arXiv:2001.06005 [cs] http://arxiv.org/abs/2001.
06005

[28] Andrea Marin, Sabina Rossi, and Carlo Zen. 2020. Size-Based Scheduling for TCP Flows: Implementation and
Performance Evaluation. Computer Networks 183, Article 107574 (Dec. 2020), 15 pages. https://doi.org/10.1016/j.
comnet.2020.107574

[29] Jayakrishnan Nair, Adam Wierman, and Bert Zwart. 2010. Tail-Robust Scheduling via Limited Processor Sharing.
Performance Evaluation 67, 11 (Nov. 2010), 978-995. https://doi.org/10.1016/j.peva.2010.08.012

[30] Rudesindo Nuiiez-Queija. 2002. Queues with Equally Heavy Sojourn Time and Service Requirement Distributions.
Annals of Operations Research 113, 1/4 (July 2002), 101-117. https://doi.org/10.1023/A:1020905810996

[31] Misja Nuyens, Adam Wierman, and Bert Zwart. 2008. Preventing Large Sojourn Times Using SMART Scheduling.
Operations Research 56, 1 (Feb. 2008), 88-101. https://doi.org/10.1287/opre.1070.0504

[32] Misja Nuyens and Bert Zwart. 2006. A Large-Deviations Analysis of the GI/GI/1 SRPT Queue. Queueing Systems 54,
2 (Oct. 2006), 85-97. https://doi.org/10.1007/s11134-006-8767-1

[33] Michael Pinedo. 2016. Scheduling: Theory, Algorithms, and Systems (5 ed.). Springer, Cham, Switzerland.

[34] Ziv Scully. 2022. A New Toolbox for Scheduling Theory. Ph. D. Dissertation. Carnegie Mellon University, Pittsburgh, PA.
https://ziv.codes/pdf/scully-thesis.pdf

[35] Ziv Scully, Isaac Grosof, and Mor Harchol-Balter. 2020. The Gittins Policy Is Nearly Optimal in the M/G/k under
Extremely General Conditions. Proceedings of the ACM on Measurement and Analysis of Computing Systems 4, 3, Article
43 (Nov. 2020), 29 pages. https://doi.org/10.1145/3428328

[36] Ziv Scully and Mor Harchol-Balter. 2018. SOAP Bubbles: Robust Scheduling under Adversarial Noise. In 56th Annual
Allerton Conference on Communication, Control, and Computing. IEEE, Monticello, IL, 144-154. https://doi.org/10.
1109/ALLERTON.2018.8635963

[37] Ziv Scully and Mor Harchol-Balter. 2021. The Gittins Policy in the M/G/1 Queue. In 19th International Symposium on
Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt 2021). IFIP, Philadelphia, PA, 248-255.
https://doi.org/10.23919/WiOpt52861.2021.9589051

[38] Ziv Scully, Mor Harchol-Balter, and Alan Scheller-Wolf. 2018. SOAP: One Clean Analysis of All Age-Based Scheduling
Policies. Proceedings of the ACM on Measurement and Analysis of Computing Systems 2, 1, Article 16 (April 2018),
30 pages. https://doi.org/10.1145/3179419

[39] Ziv Scully and Lucas van Kreveld. 2024. When Does the Gittins Policy Have Asymptotically Optimal Response Time
Tail in the M/G/1? Operations Research 72, 2 (Feb. 2024). https://doi.org/10.1287/opre.2022.0038

[40] Ziv Scully, Lucas van Kreveld, Onno J. Boxma, Jan-Pieter Dorsman, and Adam Wierman. 2020. Characterizing Policies
with Optimal Response Time Tails under Heavy-Tailed Job Sizes. Proceedings of the ACM on Measurement and Analysis
of Computing Systems 4, 2, Article 30 (June 2020), 33 pages. https://doi.org/10.1145/3392148

[41] J. George Shanthikumar and Ushio Sumita. 1987. Convex Ordering of Sojourn Times in Single-Server Queues:
Extremal Properties of FIFO and LIFO Service Disciplines. Journal of Applied Probability 24, 3 (Sept. 1987), 737-748.
https://doi.org/10.2307/3214103

[42] Anirudh Sivaraman, Suvinay Subramanian, Mohammad Alizadeh, Sharad Chole, Shang-Tse Chuang, Anurag Agrawal,
Hari Balakrishnan, Tom Edsall, Sachin Katti, and Nick McKeown. 2016. Programmable Packet Scheduling at Line
Rate. In Proceedings of the 2016 ACM SIGCOMM Conference (SSIGCOMM 2016). ACM, Florianopolis, Brazil, 44-57.
https://doi.org/10.1145/2934872.2934899

[43] David A. Stanford, Peter Taylor, and Ilze Ziedins. 2014. Waiting Time Distributions in the Accumulating Priority
Queue. Queueing Systems 77, 3 (July 2014), 297-330. https://doi.org/10.1007/s11134-013-9382-6

[44] Alexander L. Stolyar and Kavita Ramanan. 2001. Largest Weighted Delay First Scheduling: Large Deviations and
Optimality. The Annals of Applied Probability 11, 1 (Feb. 2001), 1-48. https://doi.org/10.1214/a0ap/998926986

[45] Benny Van Houdt. 2022. On the Stochastic and Asymptotic Improvement of First-Come First-Served and Nudge
Scheduling. Proceedings of the ACM on Measurement and Analysis of Computing Systems 6, 3 (Dec. 2022), 1-22.
https://doi.org/10.1145/3570610

=

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 2, Article 27. Publication date: June 2024.

https://doi.org/10.1145/762483.762486
https://doi.org/10.1145/762483.762486
https://doi.org/10.1016/j.peva.2023.102377
https://doi.org/10.1214/18-AOS1766
https://arxiv.org/abs/2001.06005
http://arxiv.org/abs/2001.06005
http://arxiv.org/abs/2001.06005
https://doi.org/10.1016/j.comnet.2020.107574
https://doi.org/10.1016/j.comnet.2020.107574
https://doi.org/10.1016/j.peva.2010.08.012
https://doi.org/10.1023/A:1020905810996
https://doi.org/10.1287/opre.1070.0504
https://doi.org/10.1007/s11134-006-8767-1
https://ziv.codes/pdf/scully-thesis.pdf
https://doi.org/10.1145/3428328
https://doi.org/10.1109/ALLERTON.2018.8635963
https://doi.org/10.1109/ALLERTON.2018.8635963
https://doi.org/10.23919/WiOpt52861.2021.9589051
https://doi.org/10.1145/3179419
https://doi.org/10.1287/opre.2022.0038
https://doi.org/10.1145/3392148
https://doi.org/10.2307/3214103
https://doi.org/10.1145/2934872.2934899
https://doi.org/10.1007/s11134-013-9382-6
https://doi.org/10.1214/aoap/998926986
https://doi.org/10.1145/3570610

27:28 George Yu and Ziv Scully

[46] Adam Wierman and Bert Zwart. 2012. Is Tail-Optimal Scheduling Possible? Operations Research 60, 5 (Oct. 2012),
1249-1257. https://doi.org/10.1287/opre.1120.1086

[47] Ronald W. Wolff. 1982. Poisson Arrivals See Time Averages. Operations Research 30, 2 (1982), 223-231. http:
/[www.jstor.org/stable/170165

[48] Bert Zwart and Onno J. Boxma. 2000. Sojourn Time Asymptotics in the M/G/1 Processor Sharing Queue. Queueing
Systems 35, 1/4 (2000), 141-166. https://doi.org/10.1023/A:1019142010994

A STRONG TAIL OPTIMALITY FOR HEAVY-TAILED JOB SIZE DISTRIBUTIONS
In this appendix, we show that many scheduling policies that are known to be weakly tail-optimal
in an M/G/1 with heavy-tailed job size distribution are, in fact, strongly tail-optimal. This confirms
conjectures by Boxma and Zwart [7] and Wierman and Zwart [46].

The specific class of heavy-tailed distributions we consider are regularly varying distributions
[5]. These are the distributions S such that there exists a constant —a such that for all k > 0,

P[S > kt]

lim =k, (A1)

t—oo P[S > t]
The constant —« is called the index of regular variation of S. For the rest of this appendix, we
consider an M/G/1 with regularly varying job size distribution S with index —a.
There are a number of results showing that under various scheduling policies 7,

P[T; > t]

tli_}nolo Ps> =i =1, (A.2)

where p = AE[S] is the system load. Policies 7= which satisfy (A.2) include classic policies like
Processor Sharing, Shortest Remaining Processing Time, and Least Attained Service [7, 30, 31, 48];
as well as more complex policies like Shortest Expected Remaining Processing Time, Randomized
Multi-Level Feedback, and the Gittins policy [39, 40].

Motivated by (A.1) and (A.2), let

Cp = lim — x>t
TS PS> (1-p)t]

Because a job’s response time is at least its size, by (A.1), we have C, > (1— p)“ for all policies. Any
policy 7 satisfying (A.2) has C,; = 1 and is thus weakly tail-optimal. The question is whether any
policy can achieve C,; < 1. Below, we use a result of Wierman and Zwart [46] to answer negatively.

THEOREM A.1. Consider an M/G/1 whose job size distribution has regularly varying tail. Any
scheduling policy whose response time distribution satisfies (A.2) is strongly tail-optimal, and thus
inf,C,=1.

Proor. Fix a scheduling policy 7. The key is a result of Wierman and Zwart [46] which gives a
necessary condition to have C,; < co. We show that the condition also implies C,; > 1, as desired.

We first state a version of the necessary condition. Consider a tagged job arriving at time 0, and
let R, (t) be the total time during [0, t] for which 7 serves jobs that arrive after the tagged job. If
C; < oo, then for all § > 0 [46, Proposition 1],

tlggop[R,,(t) >(p-8t|S>1-p+dt] =1. (A3)

Notice that R, (t) > (p—8) and S > (1 — p + d)t together imply R, (¢) + S > t. When this occurs,
the tagged job does not receive enough service to complete by time ¢, so its response time satisfies

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 2, Article 27. Publication date: June 2024.

https://doi.org/10.1287/opre.1120.1086
http://www.jstor.org/stable/170165
http://www.jstor.org/stable/170165
https://doi.org/10.1023/A:1019142010994

Strongly Tail-Optimal Scheduling in the Light-Tailed M/G/1 27:29

T > t. Therefore, for any § > 0,
1= tlim P[R,T(t) > (p—9o)t | S>(1-p +5)t]
< lim P[T; > t[S> (1-p+0)t]
m P[T, > t]
t—eo P[S > (1 - p+0)t]
1-p+6* .. P[T, > t]
= lim ,
1-p t—o0 P[S > (1 - p)t]

where the last line follows from (A.1). Taking the § — 0 limit then implies all policies have

Cr > 1. The fact that inf,; C,; = 1 follows from the fact that multiple policies 7 achieve C, = 1
[7, 30, 31, 39, 40, 48] O

IA

We further conjecture that the regularly varying requirement on S can be relaxed to requiring S
be intermediate regularly varying, namely

lim sup lim su PIS > 1] =1
S0l o P[S > (1-0)1]
This property suffices for the computation in our proof above, and it suffices for many of the prior
works showing C, = 1 for various policies 7 [30, 39, 40]. The only step of the proof that requires
(non-intermediate) regular variation is (A.3), the result of Wierman and Zwart [46, Proposition 1].
If their result could be generalized to give the same necessary condition for C, < oo even when S
is intermediate regularly varying, it would imply inf,; C, = 1 in that setting, too.

B REDUCTION TO THE BATCH SCHEDULING PROBLEM FOR UNKNOWN SIZES

In this section, we extend the batch reduction to the case of unknown sizes with only size-label
information for jobs. Specifically, we expand the definitions from Section 4 and show how the
unknown-size case differs from the known size case.

Definition B.1. A batch instance I = ((a1,11), ..., (an,Iy)) is a finite batch of arrival times and
labels.

Unlike the batch instance in Section 4, which consists of fully deterministic arrival time, job size
pairs, we additionally need to define a job size model, which describes the distribution of job sizes
given instance information.

Definition B.2. A job size model S is a function that maps batch instances 7 = ((al, h),...,(an, ln))
to a joint distribution (Sy,...,Sy,) on job sizes.

We consider two job size models. The first model is Si,q, which is the model where the joint dis-
tribution of job sizes for an instance 7 is simply the product of the conditional distributions (S | [;).
That is,

(Sina (1)), ~ (S | 1), (Sina(7)); independent of (Smd(f))j ifi # j.

The second job size model is the busy period model Spysy. Spusy maps from batches to joint
distributions of job sizes in the following way. Let BP denote the busy period distribution, where
the triples (A;, L;, S;) ~ BP. Then Syyugy is a mapping such that if 8 is a random variable (4;, L;),
then (8B, Spusy (B)) ~ BP. That is, the joint distribution of sizes conditional on the batch instance
coming from a busy period is also distributed such that it makes the triple distributed with the busy
period distribution.

We can now define the cost function given a batch and job size model.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 2, Article 27. Publication date: June 2024.

27:30 George Yu and Ziv Scully

Definition B.3. The 6-cost of a policy r for an instance 7 under a given job size model S is given
by

Ke(0,1,8) =) Elexp(0(Dyr; - a;))],
i=1
where the expectation is over the joint job size distribution S(Z) and any randomness in the policy.

Under the job size model Sing, we have the following optimality result:

THEOREM B.4. For any batch instance I = ((a;, li))?zl, the 0-Cheat policy minimizes K; (0, I, Sing)
in the nonpreemptive batch scheduling problem. Specifically, for any nonpreemptive policy = under
this job size model,

K@—Cheat(G, I, Sind) < min Kn’(g; I, Sind) .
b3

Proor. We observe that §-Cheat serves jobs in 7 in the same order as the Weighted Discounted
Shortest Expected Processing Time (WDSEPT) rule, with the weights equal to exp(—6a;) and
negative discount rate —0 for each job i. This is because boosted arrival time a; — bg(l;) is a
monotonic function, namely the negative log, of WDSEPT’s priority index:

E[exp(05) | L =]
[exp(0S) |L=15]-1)
The proof is an interchange argument identical to that of Pinedo [33, Theorem 10.1.3], with the

signs for the discount rate and objective flipped. Specifically, with negative discounting, we define
discounted completion time as exp(6D;) — 1 instead of 1 — exp(6D;) to keep the sign positive. O

1
a; —bg(l;) = ~3 log exp(—Ga,-)E

In Theorem 4.3, we concluded that 8-Cheat’s optimality for all batch instances could be translated
to a bound in the M/G/1. Why does this not work in Theorem B.4? The issue is that our optimality
argument in the M/G/1 relies on sampling instances from busy periods. In particular, letting 8
be the random batch instance resulting from a busy period, by reasoning to that in the proof
Theorem 4.3, we have
E [K,,(Q, B, Sbusy)]

18] ’
where the expectations on the right-hand side are over the distribution of 8. The key difference is
that the job size model is Spusy, not Sind, so Theorem B.4 does not apply.

Why is there not a similar issue in the full-information case? Because when a job’s size is its
label, the instance I already contains all the job size information. In particular, Sina(Z) = Spusy (1)
for all instances J, with both models simply yielding a deterministic vector of sizes extracted from
the labels in the instance 7.

E[exp(0T,)] =

C OPTIMIZING THE BOOST FUNCTION IN THE PARTIAL-INFORMATION SETTING

In this appendix, we show that in the partial-information setting, y-Boost has a lower tail constant
than Boost with any other boost function:

Cy—Boost < CBoost .

To keep the argument simple, we assume a finite set of labels I. = {1, ..., n}. The result can be
generalized to arbitrary sets of labels using a calculus of variations argument.
For brevity, we adopt the notation

pi=P[L=i], b; = b(i), si = E[exp(yS) | L = i].

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 2, Article 27. Publication date: June 2024.

Strongly Tail-Optimal Scheduling in the Light-Tailed M/G/1 27:31

Choosing a boost function amounts to choosing a vector of boosts (by,...,b,). To make the
dependence of Cpoost 01 the b; explicit, we let

C(bl’ e bn) = Cgoost-
By Definition 2.3, we can write Cypoost = C(b], ..., b},), where

Si

b} = llog .
Y si—1
Optimality of y-Boost among Boost policies amounts to showing that (b7,...,b}) is a minimizer
of C(-). To show this, it suffices to show the following two claims:
e (C(-) is convex.
o VC(b3,...,b}) =0.
We start with convexity of C(-). Writing p; = P[L = i], we can rewrite the tail constant from
Theorem 3.1 as

C(bl, Ceey bn) = Cw(Z pisi exp(—ybl)) exp(z Ap,-bi(si — 1))

i=1 i=1

n n
= CW Zpisi exp(—ybi + Z Apjbj(Sj — 1))
i=1 =1
We observe that C(-) a sum of compositions of linear functions with exp, so it is convex. In fact,
C(-) is log-convex, because it is a product of a mixture of log-convex functions, which is log-convex
[26, proof of Lemma A.3], and another log-convex function.
To show the gradient at (b7, ..., b}) is zero, we take the derivative of C(by, ..., b,) with respect
to by, obtaining

a n . n
a—bkC(bl, ..bp) =Cw Zpisi(/lpk(sk -1)—yl(i=k)) exp(—ybi + Z/lpjbj(sj - 1)).

i=1 j=1

This derivative is zero if and only if

Api(se = 1))" pisi exp(—yb) = ypisi exp(=yby).

i=1

Plugging in b; = b} and noticing s; exp(—yb]) = s; — 1, it suffices to show

Azn:pi(si —=y
i=1

But the right-hand is A(E[exp(yS)] — 1), so this is simply the definition of y from (2.2).

D COMPARISON OF NUDGE-M AND BOOST TAIL CONSTANTS

In this appendix, we show that the y-Boost policy for unknown job sizes with two labels is state-
of-the-art among policies for this setting. Specifically, we compare to the known state-of-the-art,
Nudge-M [9], and show that for any choice for the parameter K, there is a Boost policy which
achieves a better tail constant. In particular, this means that the optimal Boost policy in this setting,
namely y-Boost (see Appendix C), has better tail constant than the optimal Nudge-M policy.
Recall that Nudge-M partitions the jobs into type-1 and type-2 jobs, allowing any type-1 job to
pass any type-2 job that has arrived as one of the last M jobs. This can be thought of as the setting
where each job is given label 1 or label 2, and a scheduling decision is made based on this label.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 2, Article 27. Publication date: June 2024.

27:32 George Yu and Ziv Scully

From here onward we will refer to type-1 jobs as jobs with label 1 and type-2 jobs as jobs with
label 2.

For brevity, we adopt the notation

p1 ZP[LZI], pzZP[LZZ],
s;=E[e" | L=1], s; =E[e" | L =2], s = E[e"],
by = b(1), b, = b(2).

Note that with just two labels, p, = 1 — p;. We assume both p; and p; are nonzero.
The tail constant of Nudge-M for any choice of parameter K is given by rewriting the expression
in Charlet and Van Houdt [9, Theorem 1] as

CNudge- S s1 +
N g M = lﬂ (pl 1 KPZ) PZ 2 (p131 +p2) (Dl)
Crcrs $ s

Recall that the tail constant of Boost is given by
CBoost _ lE[eY(S_B)]E[eYV].
Crcrs 8
Under the two-label case above, the term E[e"(®~B)] can be written as
E[e" ")) = pE[e"® | L =1]e"" + p,E[e"® | L= 2]
= plsle_ybl +p252€_yb2,
where by and b, are, respectively, the boosts given to jobs of label 1 and label 2. The crossing work
can be similarly written, using Lemma 3.5, as the sum of an arrival stream of label-1 jobs and of
label-2 jobs, i.e., as
E[e"V] = exp(Ap1b1E[e"S — 1| L = 1] + ApoboE[e?® — 1| L = 2])
= exp(/lpl(bl - bg)(31 - 1) + Ang[eYS - 1])
= exp(Ap1(b1 — by)(s1 — 1) +yby).
The tail constant for Boost can thus be written as
Choost 1
oot - ‘(1’131€_Yb1 + pasze™"?) exp(Ap1 (by — b2) (s1 = 1) + vby)
Crcrs

(plSl by 22 b2t) exp(Ap1 (b1 — b2)(s1 — 1)).
s

Consider an arbitrary K for Nudge-M. For such an K, consider by — by such that

Klog(s)

bl - bz = (DZ)

There are many boost functions that satisfy this, e.g. b; = Klof(s) and b, = 0.
For a boost function satisfying (D.2), we observe that sX = e?(?1=b2) Using this observation, we
can rewrite the expression in (D.1) as
CNudgeM _ pis1 (p1s1 + p2)X Pz 2
P i S M S +
CFCFS s eY(bl_bZ) (p131 Pz)
s
= (%e_”b‘_bﬁ + T)(Pm +p2)*

S S:
= (%e—y(h—bz) + %)(1 +p1(31 - 1))K

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 2, Article 27. Publication date: June 2024.

Strongly Tail-Optimal Scheduling in the Light-Tailed M/G/1 27:33

0.25 1
-2 020
5]
~
I
o 0.157
&
o
2
= 0.10 i
o
é —e— LabelBoost
T"d‘ 0.05 1 —4— SuboptBoost
= Nudge-M
0,004 ¢ Nudge
0 5 10 15 20 25 30 35

Response time

Fig. D.1. Empirical TIR of y-Boost’s performance compared to the Nudge-M policy in the two-label setting.
Parameters are set to match those of Charlet and Van Houdt [9, Fig. 5]: label-1 and label-2 jobs are both
exponential, with E[X32]/E[X1] = 4, the probability of a label-1 job p; = 2/3, arrival rate A = 0.7. For Nudge-M,
we use the optimal parameter K = 5. Observe that both y-Boost, denoted as LabelBoost, and Boost with
b1 —by = w, denoted as SuboptBoost, outperform Nudge-M.

Therefore, to compare the tail constant of Boost and that of Nudge-M, it suffices to compare the
expressions exp(Ap1 (b — b2)(s1 — 1)) and (1 + p;(s; — 1))K. We rewrite the first expression as

Y (b1 = ba)p1(sy — 1))

s—1

P1(s1-1)

=exp(y(by —by)) 71,

exp(Ap1(by — by)(s1 — 1)) = exp(

and rewrite the second expression as

log(e¥ (P1=02))

(1+pi(si — 1)) = (1 +pi(si - 1)) =O
(IOg(l +pi(s1 — 1)) log(eY(bl_bZ)))
= exp
logs

log(1+py (s1-1))

= exp(y(by — by)) 0e(+G-1)

Finally, we observe that

1(s1-1) log(1+py (s1-1))
s—1

exp(y(by — b)) "5 < exp(y(by — by)) lEls D)

sinces —1 > pi(s—1) and bg(+x) is monotonically decreasing in x. This shows that for any K,
Boost with b; — b, = w performs better than Nudge-M, implying that the optimal Boost policy,

namely y-Boost (Appendix C), performs better than the optimal Nudge-M policy.

Received January 2023; revised April 2024; accepted April 2024

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 2, Article 27. Publication date: June 2024.

	Abstract
	1 Introduction, background, and key ideas
	1.1 Background on weak and strong tail optimality
	1.2 Obstacle: prioritizing short jobs without delaying long jobs
	1.3 Nudge: a promising but limited first step
	1.4 Our answer: Boost
	1.5 Key idea: relate strong tail optimality to an easier scheduling problem
	1.6 Technical challenge: translating from the batch relaxation to the M/G/1
	1.7 Contributions

	2 System model and Boost policies
	2.1 Asymptotic tails
	2.2 Scheduling model and what information the scheduler has
	2.3 Defining the Boost family of policies
	2.4 Lower bounding tool: ``cheating'' version of Boost

	3 Analysis of Boost's Tail Constant
	3.1 Approach: tagged job analysis
	3.2 Bounding Boost's response time using crossing work
	3.3 Tail Constant of Boost

	4 A batch scheduling problem related to tail optimality
	5 Proof of Boost's Strong Tail Optimality
	6 Simulations
	6.1 Boost in the full-information setting
	6.2 Boost compared to other policies
	6.3 Variation matters: how CoV affects asymptotic performance
	6.4 Robustness of Boost
	6.5 Boost in the partial-information setting

	7 Conclusion
	7.1 Settings beyond the full-information M/G/1
	7.2 Metrics beyond the tail constant
	7.3 Boost in practice

	Acknowledgments
	References
	A Strong tail optimality for heavy-tailed job size distributions
	B Reduction to the batch scheduling problem for unknown sizes
	C Optimizing the boost function in the partial-information setting
	D Comparison of Nudge-M and Boost tail constants

