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Abstract. We consider scheduling in the M/G/1 queue with unknown job sizes. It is
known that the Gittins policy minimizes mean response time in this setting. However, the
behavior of the tail of response time under Gittins is poorly understood, even in the large-
response-time limit. Characterizing Gittins’s asymptotic tail behavior is important because
if Gittins has optimal tail asymptotics, then it simultaneously provides optimal mean
response time and good tail performance. In this work, we give the first comprehensive
account of Gittins’s asymptotic tail behavior. For heavy-tailed job sizes, we find that Gittins
always has asymptotically optimal tail. The story for light-tailed job sizes is less clear-cut:
Gittins’s tail can be optimal, pessimal, or in between. To remedy this, we show that a modi-
fication of Gittins avoids pessimal tail behavior, while achieving near-optimal mean
response time.
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1. Introduction

Scheduling to minimize response time (also known as
sojourn time) of single-server queueing models is an
important problem in queueing theory, with applica-
tions in computer systems, service systems, and beyond.
In general, a queueing system will have a response time
distribution, denoted T, and there are a variety of metrics
that one might hope to minimize. There is significant
work on minimizing mean response time E[T], which is
the average response time of all jobs in a long arrival
sequence (Schrage 1968, Gittins 1989, Aalto et al. 2009,
Gittins et al. 2011).

Much less is known about minimizing the tail of
response time P[T > t], which is the probability that a job
has response time greater than a parameter ¢ > 0. In light
of the difficulty of studying the tail directly, theorists
have studied the asymptotic tail of response time, which is
the asymptotic decay of P[T > t] in the t — oo limit (Sto-
lyar and Ramanan 2001, Ntfez-Queija 2002, Borst et al.
2003, Boxma and Zwart 2007, Scully et al. 2020b). In this

work, we consider the preemptive M/G/1 queue and
ask the following question.

Question 1.1. Does any scheduling policy simulta-
neously optimize the mean and asymptotic tail of
response time in the M/G/1?

Our focus on the M/G/1, a classic, single-server
queueing model (Kendall 1953, Cox and Smith 1961,
Kleinrock 1976, Harchol-Balter 2013), is motivated by
its balance between modeling flexibility and analytical
tractability. The fact that the distribution of job sizes
(also known as service times) may be general is parti-
cularly important for modeling computer systems,
where the distribution can be far from exponential
(Peterson 1996, Crovella and Bestavros 1997, Harchol-
Balter and Downey 1997).

Prior work answers Question 1.1 when job sizes are
known to the scheduler. In this setting, the Shortest
Remaining Processing Time (SRPT) policy, which pre-
emptively serves the job of least remaining size,
always minimizes mean response time (Schrage 1968).
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However, SRPT’s tail performance depends on the job
size distribution.’

e If the job size distribution is heavy-tailed (roughly,
power-law; see Definition 4.1), then SRPT is tail-optimal,
meaning that it has the best possible asymptotic tail
decay (Definition 4.2).

e If the job size distribution is light-tailed (roughly,
subexponential; see Definition 5.2), then SRPT is tail-
pessimal, meaning that it has the worst possible asymp-
totic tail decay (Definition 5.3).

This answers Question 1.1 for known job sizes:
“yes, namely SRPT” in the heavy-tailed case, “no” in
the light-tailed case.

Unfortunately, in practice, the scheduler often does
not know job sizes, and, thus, one cannot implement
SRPT. Instead, the scheduler often only knows the job
size distribution. We study Question 1.1 in this unknown-
size setting.

The question of minimizing mean response time with
unknown job sizes was settled by Gittins (1989). He
introduced a policy, now known as the Gittins policy,
which leverages the job size distribution to minimize
mean response time. Roughly speaking, Gittins uses
each job’s age—namely, the amount of time each job has
been served so far—to figure out which job is most
likely to complete after a small amount of service, then
serves that job. For some job size distributions, Gittins
reduces to a simpler policy, such as First-Come, First-
Served (FCFS) or Foreground-Background (FB) (Aalto et al.
2009, 2011).

In the unknown-size setting, given that Gittins mini-
mizes mean response time, Question 1.1 reduces to the
following.

Question 1.2. For which job size distributions is Git-
tins tail-optimal for response time?

Unfortunately, the asymptotic tail behavior of Git-
tins is understood in only a few special cases.

e In the heavy-tailed case, Gittins has been shown to
be tail-optimal, but only under an assumption on the
job size distribution’s hazard rate (Scully et al. 2020b,
corollary 3.5).

e In the light-tailed case, Gittins sometimes reduces
to FCFS or FB (Aalto et al. 2009, 2011). For light-tailed
job sizes, FCFS is tail-optimal (Stolyar and Ramanan
2001, Boxma and Zwart 2007), but FB is tail-pessimal
(Mandjes and Nuyens 2005).

This prior work leaves Question 1.2 largely open.
We do not know whether Gittins is always tail-optimal
in the heavy-tailed case, or whether it is sometimes sub-
optimal, or even tail-pessimal. Moreover, we do not
understand Gittins’s asymptotic tail at all in the light-
tailed case, aside from when Gittins happens to reduce
to a simpler policy.

The prior work above does tell us an important fact: Git-
tins can be tail-pessimal. This prompts another question.

Question 1.3. For job size distributions for which Git-
tins is tail-pessimal, is there another policy that has
near-optimal mean response time while not being tail-
pessimal?

In this work, we answer Questions 1.1-1.3 for the
M/G/1 with unknown job sizes, covering wide clas-
ses of heavy- and light-tailed job size distributions.
The key tool we use to analyze Gittins’s asymptotic
response time tail is the SOAP (Schedule Ordered by
Age-based Priority) framework (Scully and Harchol-
Balter 2018, Scully et al. 2020b). SOAP gives a univer-
sal M/G/1 response time analysis of all SOAP policies,
which are scheduling policies where a job’s priority
level is a function of its age (Definition 3.1). Underly-
ing our Gittins results is a general tail analysis of
SOAP policies.

Our main contributions, which we describe in more
detail later (Sections 4 and 5), are as follows:

e Heavy-tailed case: We give a sufficient condition
under which an arbitrary SOAP policy is tail-optimal
(Section 7).

o Heavy-tailed case: We show that the above condi-
tion always applies to Gittins, implying that it is always
tail-optimal (Section 8).

o Light-tailed case: We characterize when an arbitrary
SOAP policy is tail-optimal, tail-pessimal, or in between
(Section 9).

o Light-tailed case: We spell out how the above char-
acterization applies to Gittins and show how to modify
Gittins to avoid tail pessimality (Section 10).

o General case: At the core of our modification of Git-
tins which avoids tail pessimality is a general result,
which states that slightly perturbing the Gittins rank
function only slightly affects its mean response time
(Theorem 5.10 and Online Appendix EC.2).>

The rest of the paper introduces definitions and
notation (Sections 3 and 6) and concludes with some
remarks about our motivating questions (Section 11).

2. Prior Work
2.1. Asymptotic Tail Analysis of Classic
Scheduling Policies

Because of their frequent occurrence, light-tailed job size
distributions have received a great amount of attention
by queueing theorists. The performance of policies
under light-tailed job sizes is generally measured in
terms of the decay rate of the response time tail. In this
sense, FCFS has proven to be optimal among all service
policies (Stolyar and Ramanan 2001). Conversely, Fore-
ground-Background Processor Sharing has the worst possi-
ble decay rate of the response time tail (Mandjes and
Nuyens 2005).

On the other hand, it is shown that heavy-tailed job
sizes can have a large impact on the performance charac-
teristics of the queue. For this reason also, heavy-tailed
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job sizes have been thoroughly investigated in the litera-
ture. For example, researchers have made the striking
observation that, contrary to the light-tailed case, FB is
optimal where FCFS has the worst possible response
time tail (Borst et al. 2003). This dichotomy between light
and heavy tails is not limited to FCFS and FB (Boxma
and Zwart 2007).

Other noteworthy literature highlighting both light
and heavy tails includes delicate asymptotic results for
a two-class priority policy (Abate and Whitt 1997) and
robust optimization using a limited PS policy (Nair et al.
2010).

With one exception, discussed in Section 2.3, the liter-
ature on this subject concerns only a few relatively sim-
ple policies. This paper considers policies in which the
priority of a job can vary essentially arbitrarily with its
age. This generality is needed to analyze the Gittins
policy, where a job’s priority can be nonmonotonic
(Aalto et al. 2011).

2.2. Impossibility of Universal Tail-
Optimal Scheduling

In light of the fact that both FCFS and FB can vary
between tail-optimal and tail-pessimal for different job
sizes, it is natural to ask whether there is a single policy
that is always tail-optimal. Wierman and Zwart (2012)
answer this question with an impossibility result,
showing that no policy is tail-optimal for both heavy-
and light-tailed job sizes, unless the policy has knowl-
edge of the size distribution X or learns X over time.

One might worry that this impossibility result con-
tradicts our results for Gittins, given that we show Git-
tins is always tail-optimal in the heavy-tailed case and
sometimes tail-optimal in the light-tailed case. The
reason there is no contradiction is that the Gittins
policy changes based on the size distribution. For
instance, there are some light-tailed distributions
where Gittins reduces to FCFS and some heavy-tailed
distributions where Gittins reduces to FB (Aalto et al.
2009).

2.3. Tail Optimality of Certain SOAP Policies in
the Heavy-Tailed Case

We mention particularly the relation between this
paper and the work of Scully et al. (2020b). Both this
paper and the prior work study the response-time tail
behavior of arbitrary SOAP policies, including the Git-
tins policy. There are two main factors that distinguish
this paper from the prior work.

e Scully et al. (2020b) only study heavy-tailed job
size distributions. In contrast, we study both the heavy-
and light-tailed cases.

e Scully et al. (2020b) show that Gittins is tail-optimal,
subject to a condition on the job size distribution’s hazard
rate (Scully et al. 2020b, corollary 3.5). However, their
analysis is not sharp enough to completely characterize

under which (heavy-tailed) job size distributions Gittins
is tail-optimal. In contrast, our analysis is sharper, allow-
ing us to identify Gittins’s tail performance under any
job size distribution.

With this said, Scully et al. (2020b) lay an important
technical foundation upon which we build to derive
our heavy-tailed results. See Section 4.3 for a more tech-
nical discussion of what aspects of their work we use
and what aspects we improve upon.

2.4. Beyond Asymptotic Tail Optimality

It is well known that FCFS has optimal tail decay rate
under light-tailed job sizes. However, decay rate is a rel-
atively crude tail performance measure, as it does not
take into account the constant (or nonexponential term)
in front of the exponent. Although this paper focuses
just on decay rates, we mention that, very recently, a
policy was introduced that has a better leading cons-
tant than FCFS (Grosof et al. 2021). An open question
remains of what is the best possible leading constant in
the response time tail. A by-product of our results—
namely, that FCFS is the only SOAP policy with optimal
decay rate—partially answers this question. Specifically,
it follows that no SOAP policy is tail-optimal up to the
leading constant.

2.5. Mean Response Time of Modified
Gittins Policies

A recent study (Scully et al. 2022, theorem 7.2) shows
that if one slightly modifies the prioritization rules of
SRPT, then the mean response time of the resulting
policy is only slightly worse than that of unmodified
SRPT (which is optimal in case job sizes are known). It
turns out, as shown in this paper, that essentially
the same result holds for an approximate version of
the Gittins policy, which can thus be seen as the
unknown-job-sizes counterpart of Scully et al. (2022,
theorem 7.2).2

3. Model, SOAP Policies, and the
Gittins Policy

We consider an M/G/1 queue with arrival rate A, job
size distribution X, and load p = AE[X]. For the tail of
the job size distribution, we write F(t) = P[X > t]. We
denote the maximum job size by Xmax = inf{t > 0| F(t)
=0}, allowing xmax = 00. We write T, for the M/G/1’s
response time distribution under policy n. We allow
policies to preempt jobs or share the processor without
any overhead or loss of work (i.e., the model is pre-
empt-resume).

Special attention is given in this paper to the Gittins
policy. It assigns each job a rank—namely, a priority—
based on the job’s age—namely, the amount of time the
job has been served so far. To analyze the Gittins policy,
we make use of the SOAP framework (Scully and
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Harchol-Balter 2018, Scully et al. 2018, 2020b), which
gives a response time analysis of the following broad
class of policies.

Definition 3.1. A SOAP policy is a policy n specified
by a rank function ry : [0,Xmax) — R. Policy 7t assigns
rank 7,(a) to a job at age a.* When the policy being dis-
cussed is clear from context, we often omit the sub-
script and simply write r(a). At every moment in time,
a SOAP policy serves the job of minimum rank, breaking
ties in FCFS order.”

Definition 3.2. The Gittins policy, denoted “Gtn” in
subscripts for brevity, is the SOAP policy with rank
function
__E[min{S,b} —a|S>a] . ['F(Hdt
n = inf = = —.
rom(@) =0t s s ] boa F(a) — F(b)

Note that the Gittins rank function depends on the job
size distribution X by way of F.

As is standard (Scully and Harchol-Balter 2018, Scully
et al. 2018 appendix B), we assume that rank functions
are piecewise-continuous and piecewise-monotonic, with
finitely many pieces in any compact interval for both
properties. This holds for Gittins under very mild condi-
tions on the job size distribution X. For example, Aalto
et al. (2011) show that the Gittins rank function is contin-
uous and piecewise-monotonic, provided that X is a
continuous distribution with continuous and piecewise-
monotonic hazard rate. However, our results are not
restricted to continuous job size distributions. Our
generic SOAP results require no additional assumptions
on X, and our Gittins results require only that X induces
a piecewise-continuous and piecewise-monotonic Git-
tins rank function, which can occur even if X is not
continuous.

4. Heavy-Tailed Job Sizes

In Section 4.1, we define which job size distributions
are heavy-tailed, and we give our criterion for tail opti-
mality in this scenario. The two main results in the
heavy-tailed case are presented in Section 4.2:

e Theorem 4.6 gives a sufficient condition for a
SOAP policy to be tail-optimal for heavy-tailed job
sizes.

e Theorem 4.7 shows that for heavy-tailed job sizes,
Gittins always satisfies this sufficient condition and is
thus always tail-optimal.

4.1. Background on Heavy-Tailed Job Sizes
Roughly speaking, the heavy-tailed job size distributions
we study are those that are asymptotically Pareto. The
specific class that we study, described below, is slightly
more general in that it also includes distributions whose
tails oscillate between Pareto tails of different shape
parameters.

Definition 4.1 (Heavy-Tailed Job Size Distribution). We
say a job size distribution X is nicely heavy-tailed if
Xmax = o0 and both of the following hold:

i. The tail F(-) is of intermediate regular variation
(Cline 1994), meaning

F(1+e)x) _ ,
elo ¥ Fx)

ii. There exist f>a >1 such that the upper and
lower Matuszewska indices of F(-) are in (—f, —a)
(Bingham et al. 1987, section 2.1). This implies that for
all sufficiently large x > x1,°

o)) <rtei=e() )

In informal discussion, we omit “nicely.” Although
the above definition includes all distributions with
power-law-like tail decay, it is noted that we do not
consider tails of a less heavy order, such as those of
the lognormal and Weibull distributions.

Definition 4.2 (Tail Optimality in Heavy-Tailed Case).
Consider an M/G/1 with nicely heavy-tailed job size
distribution X. We call a scheduling policy 7 tail-optimal
among preemptive work-conserving policies if

P[T, > t]
mm————=
= F((1 = p)t)

That is, tail optimality holds if large jobs have a response
time of approximately 1/(1 — p) times their size, which
is the best possible asymptotic tail decay in the heavy-
tailed case (Boxma and Zwart 2007, Wierman and Zwart
2012).

4.2. Results for Heavy-Tailed Case
Let us focus on a tagged job of size x. For determining
whether it will be delayed by other jobs, it is important
to know the worst (highest) ever rank that it will ever
have, as well as the ages at which other jobs will have
rank lower than that worst ever rank.

Definition 4.3. The worst ever rank of a job of size x is
defined by w, = sup_, _, ().

Definition 4.4.

i. A w-interval is an interval (b, ¢) with 0 < b < ¢ <
Xmax such that r(a) < w foralla € (b, ¢).

ii. A w-interval (b, c) is right-maximal if for all ¢’ > c,
the interval (b, ¢’) is not a w-interval. This is equivalent
to ¢ satisfying either 7(c) > w Or ¢ = Xmax. We define left-
maximal similarly, and we call a w-interval maximal if it
is both left- and right-maximal.
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Figure 1. (Color online) Illustration of Worst Ever Rank w,
(Purple Dotted Line) and Maximal w,-Intervals (Shaded
Orange Regions) for a SOAP Policy Given by Rank Function r
(Solid Cyan Curve)

rank r(a)

0 T age a

Note. A tagged job of size x always has rank w, or better, so if another
job has priority over the tagged job, that other job’s age must be in a
wy-interval.

Note that the tagged job of size x, no matter its age,
always has priority over jobs that have rank higher
than w,. Therefore, it can only be delayed by another
job if that other job’s age is in a w,-interval. See Figure 1
for an illustration. To ensure that the tagged job does
not wait too long behind other jobs, the w,-intervals
must be relatively short. We use the following condi-
tion to characterize the length of w,-intervals.

Condition 4.5. There exist C,0 € [0, ) and 1 € [max{1,
C+ 6}, co] such that the following hold for any w,-interval
(b, ¢) with b > x:

i. The wy-interval’s length is bounded by c¢—b < O
(b°x9).

ii. The w.-interval’s endpoint is bounded by ¢ < O(x").”

Note that to check that (i) and (ii) hold, it suffices to
consider only right-maximal w,-intervals.

At an intuitive level, we can think of Condition 4.5 as
saying the following about how much other jobs delay
the tagged job of size x:

e If C and O are small enough, then w,-intervals are
relatively short, so jobs of age greater than x cannot
delay the tagged job for too long. Figure 2 illustrates
the difference between the roles of C and 6 (see also
Section 4.3).

e If ) is small enough, then there are no w,-intervals
at sufficiently large ages, so jobs of sufficiently large
age cannot delay the tagged job at all.

Rank functions that satisfy Condition 4.5 do so for
many possible parameter values. For instance, if Condi-
tion 4.5 is satisfied with parameters (C,0,n), then it is
also satisfied for (C+06,0 —06+¢€,n+¢€) for all 6, >0.
But the idea is to find parameters that characterize a
SOAP policy’s rank function as tightly as possible
because, as our main result below shows, if the para-
meters are small enough, then the policy is tail-optimal.

Theorem 4.6. Consider an M/G/1 with any nicely
heavy-tailed job size distribution under a SOAP policy.
Condition 4.5 implies the policy is tail-optimal if its para-
meters satisfy

+_(179)+<a71
5

We can apply Theorem 4.6 to show that Gittins is tail-
optimal. Specifically, we will show that Gittins satisfies
Condition 4.5 with (=0, =1, and 1 = co. As such, it
achieves a value of zero on the left-hand side of (4.1),
so Gittins is tail-optimal, regardless of the values of
pza>1.

C+(O-1)

(4.1)

Theorem 4.7. The Gittins policy is tail-optimal for any
nicely heavy-tailed job size distribution.

4.3. Comparing Our Tail Optimality Condition to
That of Scully et al. (2020c)

Having formally stated our sufficient condition for tail
optimality in the heavy-tailed case, we may now com-
pare it in more detail to that of Scully et al. (2020b).
Their condition (Scully et al. 2020b, assumption 3.2)
and corresponding result (Scully et al. 2020b, theorem
3.3) are the same as our Condition 4.5 and Theorem
4.6, respectively, but restricted to the 6 =0 case. This
means, roughly speaking, that Scully et al. (2020b)
only look at the lengths between “peaks” of the rank

Figure 2. (Color online) llustration of Condition 4.5(i), with Examples Showing the Roles C and 0 Play

(a)

rank 7(a)

0 T T T age a

rank 7(a)

0 +— age a
0z

Notes. (a) Rank function with C =1 and 0 = 0. (b) Rank function with C = 0 and 6 = 1. Roughly speaking, one should think of C + 6 as characteriz-
ing how far apart different “peaks” of the rank function are, and one should think of C/(C + 0) as characterizing how “steep” the rank function is
between peaks. Both (a) and (b) have the same peaks, as reflected by (a) and (b) having the same value of C + 6. But the slopes are much steeper
in (a) than in (b), as reflected by the larger value of {/(C + 0) in (a) than in (b).
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function, without looking directly at the length of
w,-intervals. For instance, the prior condition would
treat the two rank functions shown in Figure 2 in the
same way, even though the w,-intervals are much lon-
ger in Figure 2(a) than in Figure 2(b).

Unfortunately, looking only at distances between
peaks of the rank function is not enough to prove Git-
tins’s tail optimality in the heavy-tailed case. For Git-
tins, it turns out that we cannot, in general, do better
than setting 1 = co. If we had to set 6 =0, then to make
Gittins satisfy Condition 4.5, it turns out that we
would need to set (=1, which is too large to satisfy
(4.1). But the Gittins rank function looks less like
Figure 2(a) and more like Figure 2(b): even though the
peaks can be far apart, there are “gentle slopes”
between them. Setting 6=1 and (=0 captures this
behavior, and this satisfies (4.1). Thus, our refining of
the sufficient condition of (Scully et al. 2020b, assump-
tion 3.2) is necessary to prove Gittins’s tail optimality
in the heavy-tailed case, at least for this SOAP-based
approach.

Underlying the tail optimality results of Scully et al.
(2020b) is a busy period analysis combined with asymp-
totic response time bounds. We make use of their busy
period analysis, which we distill into a simple statement
(Lemma 7.4), but we replace their asymptotic response
time bounds with a sharper analysis that accounts for
the 6 > 0 possibility (Sections 7.1 and 7.2).

Finally, we reiterate that whereas Scully et al. (2020b)
study only heavy-tailed size distributions, we also
study light-tailed job size distributions. Our results for
the light-tailed case are based on very different techni-
ques, reflecting fundamental differences between the
heavy- and light-tailed settings.

5. Light-Tailed Job Sizes

Similarly to the previous section, we first define the
class of light-tailed distributions and state the corre-
sponding tail-optimality criterion in Section 5.1. The
main results in the light-tailed case, presented in Sec-
tion 5.2, are summarized as follows:

e Theorem 5.5 classifies SOAP policies into tail-
optimal, tail-intermediate, and tail-pessimal for light-
tailed job sizes.

e Theorem 5.8 shows that for light-tailed job sizes,
Gittins can be any of tail-optimal, tail-intermediate, or
tail-pessimal.

e Theorem 5.10 shows that making a small change
to the Gittins rank function results in only a small
change to mean response time.

e Theorem 5.11 shows that for a wide class of light-
tailed job size distributions for which Gittins is tail-
pessimal, making a small change to Gittins’s rank func-
tion results in a tail-optimal or -intermediate policy with
mean response time arbitrarily close to Gittins’s.

5.1. Background on Light-Tailed Job Sizes

Definition 5.1. The decay rate of random variable V,
denoted d(V), is

i = i ~ BT,
That is, if the decay rate d(V) is finite, then P[V > ] =
exp(—d(V)t = o(t)). Higher decay rates thus corre-
spond to asymptotically lighter tails.

Roughly speaking, the light-tailed job size distribu-
tions we study are those with positive decay rate. Our
main tool for investigating the decay rate of a random
variable V is via its Laplace-Stieltjes transform L[V],
defined as

L[V](s) = E[exp(—sV)] € (0, 0].

Under mild conditions on V (Nakagawa 2005, 2007;
Mimica 2016), we can determine its decay rate in
terms of the convergence of its Laplace-Stieltjes trans-
form:

d(V) = —inf{s <0| L[V](s) < o0} (5.1)

The specific class of light-tailed job size distributions
we consider, described below, are those that allow us
to use (5.1) throughout this work (Online Appendix
EC.3). The class includes essentially all light-tailed dis-
tributions of practical interest, such as finite-support,
phase-type, and Gaussian-tailed distributions. In the
terminology of Abate and Whitt (1997), we consider
all “Class I” distributions.®

Definition 5.2 (Light-Tailed Job Size Distribution). Given a
job size distribution X, let

s* = inf{s <0| L[ X](s) < c0}.

We say that X is nicely light-tailed if s* = —oco or s* €
(—00,0) and L[X](s*) = c0. In informal discussion, we
omit “nicely.”

Definition 5.3 (Tail Optimality in Light-Tailed Case). Con-
sider an M/G/1 with nicely light-tailed job size distri-
bution X. We say a scheduling policy 7 is

o Log-tail-optimal if m maximizes d(T),

o Log-tail-pessimal if T minimizes d(T), and

o Log-tail-intermediate otherwise.

In each case, we mean minimizing or maximizing
over preemptive work-conserving policies. In infor-
mal discussion, we omit “log-.”

5.2. Results for Light-Tailed Case

We have seen that a job’s worst ever rank plays an
important role in the heavy-tailed setting. When the job
sizes are light-tailed, we are interested in the age at
which the rank function’s global maximum occurs.
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Definition 5.4. The worst age, denoted 4, is the earliest
age at which a job has the global maximum rank:

a* =inf{a € [0, xmax)| Vb € [0, xmax), 7(a) = 1(b)}.

If the rank function has no maximum, we define

a* = Xmax-

As an example, FCFS has a* = 0 because a job’s pri-
ority is the worst before it starts service. In contrast,
FB has a" = xm,x because a job’s priority gets strictly
worse with age.

We already know that FCFS and FB are tail-optimal
and tail-pessimal, respectively. The theorem below fills
in the gaps for all other SOAP policies, showing that
the performance of the response time tail is completely
determined by the worst age a".

Theorem 5.5. Consider an M /G /1 with any nicely light-
tailed job size distribution under a SOAP policy. Let Xmax
= inf{x > 0| P[X > x] = 0}. The policy is

o Log-tail-optimal ifa* =0,

o Log-tail-intermediate if 0 < a* < Xpmax, and

o Log-tail-pessimal if a* = Xmax.

To apply Theorem 5.5 to the Gittins policy, we need
to characterize how the job size distribution X affects
Gittins’s worst age a*.

Definition 5.6. We define two classes of distributions:
NBUE and ENBUE.

e We say X is New Better than Used in Expectation,
writing X € NBUE, if for all ages a € [0, ¥max),

E[X] > E[X —a|X >a].

e We say X is Eventually New Better than Used in
Expectation, writing X € ENBUE, if there exists ag €
[0, xmax) such that (X —ay| X > ag) € NBUE. Put another
way, X € ENBUE if there exists a9 € [0, Xmax) such that
for all a € [ag, Xmax),

E[X —ag| X >ag] ZE[X —a|X >a].

Remark 5.7. It is well known that the NBUE class
includes all distributions with (weakly) increasing haz-
ard rate. Similarly, one can show that the ENBUE class
includes all distributions with “eventually increasing”
hazard rate, meaning that the hazard rate is increasing
at all ages greater than some threshold ap < Xmax.

Results of Aalto et al. (2009, 2011) connect the clas-
ses NBUE and ENBUE to Gittins’s worst age a*, imply-
ing the following characterization.

Theorem 5.8. Consider an M/G/1 with any nicely light-
tailed job size distribution X. Gittins is

o Log-tail-optimal if X € NBUE,

o Log-tail-intermediate if X € ENBUE \ NBUE, and

o Log-tail-pessimal if X ¢ ENBUE.

More generally, Theorem 5.5 can imply an analogue
of Theorem 5.8 for other SOAP policies, whose rank
at age a is related to the expected remaining size
E[X — a|X > a], such as the SERPT policy (Remark 10.1).

The fact that Gittins can be log-tail-pessimal is
intriguing, considering that it is optimal for mean
response time and tail-optimal under heavy-tailed job
sizes. Fortunately, in most cases where Gittins is log-
tail-pessimal, slightly tweaking Gittins yields a log-tail-
intermediate policy without sacrificing much mean
response time performance.

Definition 5.9. A SOAP policy 7 is a g-approximate Git-
tins policy if there exists a constant >0 such that for
all ages a € [0, Xmax),

r7(a)
7Gmn(a)

€ [m, mq].

We may assume without loss of generality that m=1
because the policy 7’ with rank function ry(a)=
rr(a)/m has identical behavior to policy 7.

Theorem 5.10. Consider an M/G/1 with any job size dis-
tribution. For any q > 1 and any g-approximate Gittins pol-
. 9

icy m,

E[T=] < qE[Tcum]-

An important observation is that a g-approximate
Gittins policy has near-optimal mean response time
for g close to one. At the same time, changing the Git-
tins rank function even within a small factor g can
decrease the worst age, and therefore improve the tail
performance.

Theorem 5.11. Consider an M/G/1 with nicely light-
tailed job size distribution X ¢ ENBUE. Suppose that the
expected remaining size of a job at all ages is uniformly
bounded, meaning

sup E[X—a|X>a] < co.

a€[0, Xmax)

Then, for all € >0, there exists a (1 + €)-approximate Git-
tins policy that is log-tail-optimal or log-tail-intermediate.

As an example in which log-tail-pessimality may be
avoided, consider a hyperexponential job size X with
two different rates. That is, for i =1, 2, with probability
pi, the job size is sampled from an exponential with rate
u;. Here, p1,p» > 0 such that p; + p, =1, and we assume
without loss of generality that 1, > .

Because the hazard rate of a hyperexponential distri-
bution is decreasing, 7Gm is increasing. Therefore, Gittins
reduces to FB, so it is log-tail-pessimal. Fortunately,
though, E[X —a|X > a] < 1/u, for all ages a; hence, The-
orem 5.11 can be applied: for any g>1, the policy with



Downloaded from informs.org by [128.84.127.144] on 26 February 2024, at 08:14 . For personal use only, all rights reserved.

Scully and van Kreveld: The Gittins Policy’s Response Time Tail
Operations Research, Articles in Advance, pp. 1-18, © 2024 INFORMS

Figure 3. (Color online) The Rank Functions of the Gittins
Policy (Translucent Cyan Curve) and a g-approximate Gittins
Policy (Dotted Yellow-Green Curve) for a Hyperexponential
Distribution with Rates y; and p,

rank rg,(a)

T S

1/
0+ : age a

0 a

Notes. By Theorem 5.5, these have different tail asymptotics. The
Gittins rank function attains its supremum of 1/, in the a — oo limit,
so it is tail-pessimal. But the g-approximate Gittins rank function,
described in (5.2), attains its supremum at a finite age 4, so it is tail-
intermediate.

rank function

gram(a) ifa <a,
= 5.2
1@ { rGm(a) otherwise, 62

where 7 is such that grgm (@) = 1/, is a g-approximate
Gittins policy witha* =4 < oo. See Figure 3.

Although Theorem 5.11 implies that any approxima-
tion factor > 1 suffices to prevent log-tail-pessimality,
there is a tradeoff to be made when choosing q. Higher
values of g result in worse guarantees for the mean
(Theorem 5.10). But higher values of g lead to lower
values of a*, which, in turn, result in better tail decay
(Lemma 9.8). We leave exploring this tradeoff quantita-
tively to future work.

5.3. Proof Organization

The remainder of this paper is organized as follows.
Necessary background and notation on the SOAP
framework is given in Section 6. Then, we prove our
results for heavy tails, Theorems 4.6 and 4.7, respec-
tively, in Sections 7 and 8. Similarly, proofs of our
results for the light-tailed case are given in Sections 9
(Theorem 5.5) and 10 (Theorems 5.8 and 5.11). The
remaining main result, Theorem 5.10, requires substan-
tially more technical machinery for its proof, which is
why we defer it to Online Appendix EC.2. Finally, Sec-
tion 11 describes how our results answer the questions
posed in Section 1.

6. SOAP Notation

We use the following notations related to SOAP poli-
cies, which are standard in the literature (Scully and
Harchol-Balter 2018, Scully et al. 2018, 2020a,b). These
definitions are necessary for writing down and work-
ing with the response time formulas of SOAP policies.
All of these definitions are given in terms of a SOAP
policy with rank function r. Throughout, it will always
be clear from context which rank function is being
referred to.

Definition 6.1. The kth maximal w-interval is (bi[w],
cx[w]), where for all k > 1'°

bo[w] =0, bi[w] = inf{a > cp1[w]|r(a) < w},

colw] = inf{a > 0|r(a) > w},

celw] = inf{a > b [w]|r(a) > w}.

Additionally, let K[w] be the maximum k such that
bi[w] < Xmax. It may be that K[w] = co.

One may easily check that (bi[w], ¢ [w]) is indeed a
w-interval, with only one exception: it may be that
bo[w] = co[w] = 0, in which case the interval is empty
and, thus, not a w-interval. See Figure 1, whose shaded
orange regions are specifically the zeroth, first, and
second maximal w.-intervals for the pictured size x.

Definition 6.2. The kth w-relevant job segment is the ran-
dom variable

X[w] = max{0, min{X, ci[w]} — be[w]}.
For convenience, we define X;[w] = 0 for k > K[w].

The following lemma gives a convenient formula
for moments of relevant job segments.

Lemma 6.3 (Scully et al. 2020b, lemma 6.16).

c[w]

E[X[w]*!] = / (b + Dt — bi[w]F(hdt.

be[w]
Definition 6.4. For a job of size x, we define''

Yx = co[wx—], zy = Co[wy].

See Figure 4. Intuitively, v, is the earliest age at which
a job of size x attains its worst ever rank w,, and z, is
the earliest age at which the rank function exceeds w;.

Note that it may be that y, = x =z,. This occurs if
the rank function is strictly increasing at x, and x is a
“running maximum,” meaning r(a) < r(x) for all ages
a€[0,x).

Our final piece of notation is a generalization of a
job’s worst ever rank.

Definition 6.5. The worst future rank of a job of size x at
age a, written wy(a), is

wy(a) = sup r(b).

asb<x

Figure 4. (Color online) Illustration of y, and z, (Definition
6.4)

rank r(a)

0 T T T T age a
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Note that the worst ever rank is simply the worst
future rank at age zero—that is, w, = w,(0).

One can write a formula characterizing T(x), the
response time distribution of jobs of size x, in terms of
the notation from Definitions 6.2 and 6.5. We refer the
reader to Scully and Harchol-Balter (2018) and Scully
et al. (2018) for details, noting here one simple conse-
quence of that formula.

Lemma 6.6. Under any SOAP policy, the response time of
jobs of size x is stochastically increasing in x. That is, for all
X1 = xo > 0, we have T(xg) < T(x71).

7. Heavy-Tailed Job Sizes: Tail
Asymptotics of SOAP Policies

This section is devoted to proving Theorem 4.6, which
gives a sufficient condition for a SOAP policy to be tail-
optimal. Our first step is to invoke a result of Scully et al.
(2020b)."? Their result reduces the task of proving tail
optimality to a much simpler task—namely, bounding
various functions of moments of w,-relevant job seg-
ments. To state their result, we use a “polynomially
strict” version of little-o notation, which we write as o().

Definition 7.1. For p >0, the notation 0(x”) stands for
O(xP~¢) for some unspecified € > 0.

Condition 7.2. There exists q > f such that for all p €
©,9),

Klwy]

> EXi[w, "] < 6(). (7.1)

k=0

Condition 7.3.

X 1 X )
/0 1- /\E[Xo[wx(a)f]]da 27— 0 0(x).

Lemma 7.4 (Scully et al. 2020c). Consider an M/G/1
with nicely heavy-tailed job size under a SOAP policy.
Conditions 7.2 and 7.3 together imply tail optimality.

Our proof of Theorem 4.6 is thus based on verifying
Conditions 7.2 and 7.3.

Proof of Theorem 4.6. By Lemma 74, it suffices to
show that Condition 4.5 and (4.1) together imply Condi-
tions 7.2 and 7.3. We do so in Proposition 7.5 (see Sec-
tion 7.1), which handles Condition 7.2, and Proposition
7.8 (see Section 7.2), which handles Condition 7.3. O

7.1. Showing Condition 7.2
Our goal in this section is to prove the following.

Proposition 7.5. If (4.1) holds, then Condition 4.5 implies
Condition 7.2.

That is, we want to show (7.1) under certain condi-
tions. The first step is to compute the left-hand side of

(7.1), while assuming only Condition 4.5. The following
lemma does so, separating out the k=0 term because it
has a slightly different form.

Lemma 7.6. Suppose Condition 4.5 holds.
i. Forallp >0,

O(1) ifp<a-1

O(log x) fp=a-1
O(xmax{l,C+9}(P*”+1)) zf p>a— 1.

E[Xo[w.]""'] <

ii. Forallp >0,

Klw.] O(xOr+tr=atly if (p < a—1
E[Xi[w. )] < { O logx™)  if (p=a—1
k=1 O(x6p+r](<§p—a+1)) lf CP Sa—1.

The proof of Lemma 7.6 is largely computational, so we
defer it to Online Appendix EC.1.1.

Proof of Lemma 7.5. Our goal is to choose g > f such
that for all p € (0,9), (7.1) holds. Specifically, we choose

q:{“;l ifd>0

00 ifd <0,

where
.
d = left-hand side of (4.1)=C+ (0 —1)" — ﬂ

We have g > by (4.1), and an analogue of (4.1) holds
for all p € (0, )—namely,

+
(1-0) La- 1 .

p
By Lemma 7.6, it suffices to show that for all p € (0, 9),
both of the following hold:

C+(60-1)" - (7.2)

0 ifp<a-1
p>40 ifp=a-1
max{l,C+0}p—a+1) ifp>a-—1,

[see Lemma 7.6(i)]

Op+Clp—a+1 if(p<a-—-1

p>< Op if(p=a—1

Op+nlp—a+l) ifp>a—1.
[see Lemma 7.6(ii)]

Under the assumptions of Definition 4.1 and Condi-

tion 4.5, namely,
a>1, C>0, 6>0, and 7n>max{l,(+0},

(7.3)



Downloaded from informs.org by [128.84.127.144] on 26 February 2024, at 08:14 . For personal use only, all rights reserved.

10

Scully and van Kreveld: The Gittins Policy’s Response Time Tail
Operations Research, Articles in Advance, pp. 1-18, © 2024 INFORMS

this is equivalent to showing both of

a—1

max{1,C + 6} (1 — >+ <1, (7.4)

a—1 * a—1\"
0 — — — 1. 7.5
( p C) +T]<C p ) = #5)

We show below that both of these are implied by
(7.2). To reduce clutter, let

a—1
V= .
p
For (7.4), we compute
+ 1
74 =1-v) < max(LC16)
=[C+0 <1]v ([C+6>1]/\ [C-’C-iigl < v])

[by (7.3) = v > 0]

=[C+06 <1]v ([c+9>1]

C+@-1 -(1-9'
)

=[C+0 <1]v <[C+6>1]

A lC+(6—1)+—¥<v]>

[by (7.3) = n>C+0]
<=(7.2),

and for (7.5), we compute
75 =(C<vlal0—v+C < 1))
V(T2 V] A [0~ + 0T < 1])
=(([C<v]a[C+0-1 <))

C_1—(9<V])
n

[by (7.3) = > 0]
=([0=21]1A[C+0-1 < v])

C—19<V}>
n

v(KzﬂA

v<[9<1]/\

= (72). O

Remark 7.7. Note that in addition to (7.2) implying
(7.5), the reverse implication also holds. This suggests

that the precondition of Theorem 4.6, and in particular
(4.1), cannot be easily relaxed.

7.2. Showing Condition 7.3

Our goal in this section is to prove Proposition 7.8
below. It is applicable to proving Theorem 4.6 because
(4.1) implies its precondition.

Proposition 7.8. If C < 1 or ) < oo, then Condition 4.5
implies Condition 7.3.

Proof. The 7 < oo case follows from a result of (Scully
et al. 2020b, lemma 7.3), so we address only the C < 1
case. We first observe that for all p’ € [0,p], we have

T2 (fjg ;2. This means that Condition 7.3 holds
if

A?Hm—ﬁmww@—mm$6@) 7:6)

We can rewrite the integrand as

E[X] — E[Xo[wx(a)—]]

oo colwy(@)—]_
:/ F(t)dt—/ F(t)dt
0 0

< / O(t2)dt
colwy(a)—]

< O(colwy(a)~]"@Y).

[by Lemma 6.3]

[by Definition 4.1]

Of course, the integrand is also bounded above by
E[X], so

(fmm—ﬂ%WM%mm

< / xO(min{l,co[wx(a)f]_(“_l)})da. (7.7)
0

A job of size x attains its worst ever rank w, at age y.
This means that for all a < y,, we have wy(a) = wy,
which by Definition 6.4 implies co[wy(a)—] = yx. Split-
ting the integral in (7.7) at a=y, yields

Ammrﬂ%mw4Ma

“Omin{L, colws(@)—]"*})da

Yx
< / O(y; @ V)da +
0 Yx

<y> " 1 [ O(min{1,colwy(a)—]"“V}da.  (7.8)
Yx
Because y, < x and a > 1, it suffices to show that the
integral in (7.8) is 0(x).
The main remaining obstacle is bounding co[w(a)—].
We do so in Lemma 7.9, which states

alwdo-12 0 (29)"),
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for some x >2(a—1). Plugging this into (7.8) and
substituting u = x"¢(x — a) gives

/y jO(min{l,co[wx(a)—](“l) })da

X . x —a\ —(a=1)/x
< /0 O(mm{l, (x_c> })da
x Xl—C
< / O(1)da +xc/ O(u~ @ V/")dy
x—xt 1

= 0(x%) + O(xC+(17C)(1*(a*1)/K)).

Because C < 1 and (o —1)/x €(0,1/2], this is 0(x), as
desired. O

The following lemma bounds co[w,(a)—]. We defer
its proof to Online Appendix EC.1.1.

Lemma 7.9. Suppose Condition 4.5 holds, and let x =
2max{a —1,0}. Forall x > 0 and a € (yy, x),

colws(a) -2 Q((’“ x}”)”").

8. Heavy-Tailed Job Sizes: Gittins Is
Tail-Optimal

In this section, we prove Theorem 4.7—namely, that

Gittins is tail-optimal for heavy-tailed job sizes. Specifi-

cally, we will show that Gittins satisfies Condition 4.5

with

C=0, 6=1, and n=co.

This suffices because with the above values, (4.1) holds
for all B > a > 1, so Theorem 4.6 implies tail optimality.
In fact, Condition 4.5 holds trivially when 1= oo, so
only Condition 4.5 remains.

Our goal is thus show that for the Gittins rank func-
tion,13

any right-maximal w,-interval (b, c) with
b > x has length ¢ — b < O(x). 8.1)

In words, (8.1) says that whenever the Gittins rank
function dips below the worst rank a job of size x ever

Figure 5. (Color online) Ilustration of (8.1)

rank rge. (@)

O(z) O(z)  O(x)
— "~/ \—
7 \/v R
0 age a
0 T

Wy

Note. Any w,-interval (shaded orange regions)—namely, any interval
where the Gittins rank function (solid cyan curve) is better than the
worst ever rank w, of a job of size x—has length O(x).

has, it does so for an interval of length at most O(x). See
Figure 5.

8.1. The Time-Per-Completion Function

To make further progress, we need to consider the spe-
cific form of the Gittins rank function. One useful way
of thinking about the Gittins rank function uses the fol-
lowing definition (Aalto et al. 2009, 2011).

Definition 8.1. The time-per-completion function for a
given job size distribution S is defined for 0 < b < ¢ <
Xmax aS

_ E[min{S,c} —b|S>b] [ F(t)dt
P0O=""p5 < cls > 1] _F(Z) —F(o)

The intuition is that if we serve a job from age b until
either age ¢ or its completion, whichever comes first,
then we can interpret ¢(b, c) as

E[time spent serving job from

age b to age ]
E[1(job completes when served ’

P(b,c) =
from age b to age c)]

which is an expected amount of time over an expected
number of completions.

One can rewrite the Gittins rank function (Defini-
tion 3.2) in terms of ¢ (b, ¢) as

ram(a) = 1Cr>1£ P(a,c). (8.2)

That is, under Gittins, a job’s rank at age a is the best
possible time-per-completion ratio achievable on any
interval starting at age a.

How does using the time-per-completion function
help us show (8.1)? The key observation is that for the
Gittins rank function to be low over an interval (b, c),
a job must be relatively likely to complete during (b,
¢), which would imply that ¢(b, c) is also low. The fol-
lowing lemma, which we prove in Online Appendix
EC.2.2, formalizes this intuition.

Lemma 8.2. Under Gittins, for any right-maximal
w-interval (b, c), we have (b, c) < w.

We note that although many results similar to Lemma
8.2 have been shown in prior work (Aalto et al. 2009,
2011; Scully et al. 2020b), to the best of our knowledge,
Lemma 8.2 itself is new.

With Lemma 8.2 in hand, showing (8.1) amounts to

e Proving an upper bound on w,, and

e Proving a lower bound on ¢(b,c) for all right-
maximal w,-intervals (b, ¢).

The first of these follows simply from prior work:
Scully et al. (2020b, section 3.2) show that the Gittins rank
function is bounded by rgm(a) < O(a), which implies

wy= sup rem(@) < sup O@) < O(x). 8.3)

0<a<x 0<a<x
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It thus remains only to bound ¢(b, ¢) below. We begin
with a bound on ¢(b, ¢) from prior work.

Lemma 8.3 (Scully et al. 2021, lemma 6.8). For any nicely
heavy-tailed job size distribution and all ¢ > b > 0, the time-
per-completion function is bounded by

P(b,c) > Q (ZZ(C - b)> .
Combining (8.3) and Lemmas 8.2 and 8.3, we find that

for any right-maximal w,-interval (b, c),

c—b< g O(¢(b, c)) [by Lemma 8.3]

IA

g O(w,) [by Lemma 8.2]

IA

(1 + C;b) O(). [by (8.3)]

Therefore, to show (8.1) and thereby Theorem 4.7, it
suffices to show that

any right-maximal w,-interval (b, ¢)
with b > x has length ¢ — b < O(b). (8.4)

We could equivalently write ¢ < O(b), but the c —b <
O(b) form emphasizes the progress we have made rela-
tive to (8.1): we have weakened our goal from proving
an O(x) bound to an O(b) bound.

8.2. Bounding Lengths of w,-Intervals
There is one more fact from prior work that we need to
prove (8.4).

Lemma 8.4 (Scully et al. 2021, theorem 6.4). Under Git-
tins, vy, = O(x) and z, = O(x).

In general, (v, z,) is a right-maximal w.-interval, but
there can be plenty of other w,-intervals starting at
values greater than z,. How can we use Lemma 8.4 to
study such intervals? The key is to look not at y, and z,,
but at y, and z,, where u is some point inside the
w,-interval whose length we wish to bound.

Specifically, consider a right-maximal w,-interval
(b, ¢) with b > x and let u € (b,c) be an arbitrary size in
the interval. Figure 6 illustrates the relationship

Figure 6. (Color online) A w,-Interval (b, c) Contained Inside
(ur 2), Where u € (b, c) Is an Arbitrary Point in the w,-Interval

rank r(a)

T T T T 1 age a
T Yu b u cz,

between the interval (b, c), the worst ever rank w, of
size u, and the ages y,, and z, (Definition 6.4). The figure
suggests the following lemma, which is a slight gener-
alization of a result of Scully et al. (2020b, lemma 6.18).

Lemma 8.5. Under any SOAP policy, for any w.-interval
(b, ¢) with b > x and any u € (b, c),

Yu <b<c<zy

Proof. It is clear from Definition 6.4 that y, < u < z,.
It thus suffices to show that y, ¢ (b,c) and z, € (b,c).
Both steps use the fact that x < b < u implies w, < w,
(Definition 4.3).

We first show that z, ¢ (b,c). By Definition 4.4, the
rank function does not exceed w, over the interval (b,
c). But Definition 6.4 implies that every neighborhood
of z, contains a point whose rank is greater than w,,.
Because w, > w,, it must be that z,, ¢ (b, ¢).

If w,, > w,, then the argument that y, ¢ (b, c) is analo-
gous to that for z,. The difference is that this time,
Definition 6.4 implies that for all € > 0, every neigh-
borhood of y, contains a point whose rank is greater
than w, — e. Because w, — € > w, for small enough ¢, it
must be that v, ¢ (b, c).

If, instead, w, =w,, then y, =y,, and we can reason
more simply: Definition 6.4 implies y, < x, and we
have assumed x < b,soy, < b. O

Lemmas 8.4 and 8.5 combine to prove (8.4), from
which Theorem 4.7 follows.

Proof of Theorem 4.7. Let (b, ¢) be a right-maximal w,-
interval with b > x, and let u € (b, c). We compute

c—b< Z—”-é(c—b) [by Lemma 8.5]

u

< 0(1) -g(c —b) [by Lemma 8.4]

< O(¢(b,0)) [by Lemma 8.3]
< O(wy) [by Lemma 8.2]
< O(x). [by (8.3)]

The fact that ¢ — b < O(x) means that Gittins satisfies
Condition 4.5 with (=0, =1, and n = co. These obey
(4.1), so by Theorem 4.6, Gittins is tail-optimal. [

9. Light-Tailed Job Sizes: Tail
Asymptotics of SOAP Policies

In this section, we prove our main theorem for light-
tailed job sizes.

Theorem 5.5. Consider an M/G/1 with any nicely light-
tailed job size distribution under a SOAP policy. Let
Xmax = inf{x > 0|P[X > x] = 0}. The policy is

o Log-tail-optimal ifa* = 0,
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o Log-tail-intermediate if 0 < a* < Xpmax, and
o Log-tail-pessimal if @* = Xmax.

Proof. The result follows from Propositions 9.1, 9.2,
and 9.9, which we prove in the rest of this section. [

9.1. Tail-Optimal Case

Proposition 9.1. Consider an M/G/1 with any nicely
light-tailed job size distribution under a SOAP policy. The
policy is log-tail-optimal if a* = 0.

Proof. Suppose that a* = 0. In this case, because of the
FCFS tiebreaking (Definition 3.1), the oldest job in the
system always has priority over all other jobs. There-
fore, the SOAP policy is exactly FCFS, which is known
to be log-tail-optimal (Stolyar and Ramanan 2001,
Boxma and Zwart 2007). O

9.2. Tail-Pessimal Case

Mandjes and Nuyens (2005) show that the FB policy,
which has rank function r(a) =4, is log-tail-pessimal.
Their argument focuses on analyzing the response time
of very large jobs, showing that such jobs’ response
time tails have small decay rate. The fact that their
argument focuses on just the very large jobs suggests
that the essential property of FB is that it assigns the
largest rank at the largest ages. Our tail pessimality
result below shows this is indeed the case.

Proposition 9.2. Consider an M/G/1 with any nicely
light-tailed job size distribution under a SOAP policy. The
policy is log-tail-pessimal if a* = Xmax.

We prove Proposition 9.2 in Online Appendix
EC.1.2 by generalizing the proof that Mandjes and
Nuyens (2005) give for FB, making use of several of
their intermediate results along the way. We describe
the approach below, after which we present the proof.

Consider first the case where xp,« < 00, meaning
we could have a job of size xmax. Because a* = xmax,
jobs of size xmax complete at the end of the busy period
during which they arrive. This is the latest time a
job can complete under a work-conserving policy, so
A(T(Xmax)) = dmin, Where dp, is the minimal, and thus
pessimal, response time tail decay rate. If X has an
atom at Xmax, meaning that X = xmax occurs with posi-
tive probability, then d(T) = d(T(Xmax)) = Imin-

Of course, for general job size distributions X, it may
be that X = xma occurs with probability zero. This is
certainly the case if ¥max = 0. Therefore, to generalize
the argument above, instead of considering T(xmax), we
consider T(x) in the x — Xpay limit. Although d(T(x)) >
dmin for any fixed x < Xmax, we show that lim,_,,  d
(T(x)) = dmin. This means that for any € > 0, a positive
fraction of jobs experience decay rate less than dp, +€,
implying d(T) = dmin, as desired.

The last ingredient we need is notation for discussing
the M/G/1 and, in particular, busy periods. This is
because dpin turns out to be a busy period’s decay rate
(Mandjes and Nuyens 2005, corollary 6).

Definition 9.3.

i. We denote by B the distribution of an M/G/1
busy period length with arrival rate A and job size dis-
tribution X. More generally, we write B(u) for a busy
period with initial work u.

ii. We denote by B, the distribution of an M/G/1
busy period length with arrival rate A and truncated
job size distribution min{X,a}. More generally, we
write B,(u) for a such busy period with initial work .

iii. We denote by W the distribution of the total
amount of work inan M/G/1.

It is known that dmin = d(B) (Mandjes and Nuyens
2005, corollary 6), so proving Proposition 9.2 amounts
to showing lim,_,, d(T(x)) = d(B). To show this, we
first prove d(T(x)) < d(B,,), so it suffices to show
limy . d(B,,) =d(B). This follows from the known
fact that lim, . d(B,) =d(B) (Mandjes and Nuyens
2005, proposition 8) and additional computation. See
Online Appendix EC.1.2 for details.

9.3. Tail-Intermediate Case

We finally turn to the case where 0 < 4* < Xmax, Where
we will show that the corresponding SOAP policy is
log-tail-intermediate. We first simplify the problem of
analyzing an arbitrary SOAP policy with 0 < 4% < Xmax
to the problem of analyzing two policies, called Step
and Spike (Definition 9.4 and Figure 7), with similar
rank functions. We then bound the decay rates of Step
and Spike.

For brevity, we give only the key definitions and
lemma structure of the proof, building up to Proposi-
tion 9.9, which states the main result for the tail-
intermediate case. The proofs of the individual steps
are either largely computational or follow easily from
prior work, so we defer the proofs to Online Appendix
EC.1.2.

Definition 9.4. For a given value of 4" € (0, Xmax) and
r* >0, the Step and Spike policies are the SOAP policies
given by the following rank functions, which are illus-
trated in Figure 7:
rstep(a) =ril(a>a), rspike(a) =r'il(a=a).

We will compare the response time tail of a SOAP pol-
icy with 0 < 4" < xmax and r(a*) =7* to the response
time tails of Step and Spike for those values of a* and
r*. This comparison is possible because, as illustrated

in Figure 7, all three policies have qualitatively similar
rank functions."*



Downloaded from informs.org by [128.84.127.144] on 26 February 2024, at 08:14 . For personal use only, all rights reserved.

14

Scully and van Kreveld: The Gittins Policy’s Response Time Tail
Operations Research, Articles in Advance, pp. 1-18, © 2024 INFORMS

Figure 7. (Color online) Rank Functions of Multiple Policies for a Given Worst Age a* and Maximum Rank #*, Where

0<a" < Xmax

(a)

rank 7., (a) rank 7y (a)

(b)

(©)

age a 0+ .

age a
0 a*

Notes. (a) Rank of Step. (b) Rank of Spike. (c) Rank of generic policy. As shown in Lemma 9.5, for a fixed job size distribution and value of a*, (a)
the Step policy gives the worst possible tail decay, whereas (b) the Spike policy gives the best possible tail decay. This is because in (a), jobs of
age a* or greater have the worst possible rank 7, whereas in (b), jobs of age a* or greater have the best possible rank zero. Under (c), a generic

SOAP policy 7, jobs of age a* or greater have rank somewhere in between.

For the remainder of this section, we consider SOAP
policies © with 0 < 4" < Xmax and r(a*) = r*. We divide
jobs in two classes:

e Class 1, jobs of size at most a*; and

e Class 2, jobs of size greater than a”.

For each class i € {1,2}, let A”) be the arrival rate of
class i jobs, and let T be the response time of class i
jobs under policy 7.

It turns out that only class 2 jobs affect the asymp-
totic decay rate of response time. Moreover, it turns
out that the Step and Spike policies represent the
worst-case and best-case scenarios for class 2 jobs.
These facts, expressed in the following lemma, imply
that it suffices to analyze the response time decay rate
for class 2 jobs under Step and Spike.

Lemma 9.5. Let i be a SOAP policy with 0 < a* < Xmax-
We have

d(Ty) = d(T?) € [d(TE),), d(Ton ).
With Lemma 9.5 in hand, to show that 7w is tail-
intermediate, it suffices to show that both Step and

Spike are tail-intermediate by bounding d(ngp) and

d(TiIzJ)ike). We begin by characterizing ngp and Tii)ike in

terms of the M/G/1 concepts defined in Definition 9.3.

Lemma 9.6. The response time distributions of class 2 jobs
under Step and Spike are
Tiep =st Ba (W) + Br (X®),

step ™

Tii’)ike =5t Bo«(W) + B(a") + x®@ _ ar,

where X? = (X|X > a*) is the size distribution of class 2
jobs, and the random variables in each sum are mutually
independent.

Combining Lemmas 9.5 and 9.6 reduces the question
of analyzing the decay rate of 7t to analyzing the decay
rate of the busy periods in Lemma 9.6. We will see soon
that B, (W) is the dominant term, so both Step and
Spike have decay rate d(B,(W)). In order to prove that

B, (W) is indeed the dominant term, and in order to
bound its decay rate, we make heavy use of Laplace-
Stieltjes transforms (Section 5.1).

Recall from (5.1) that one can determine a random
variable’s decay rate by determining when its Laplace-
Stieltjes transform converges.'” We therefore introduce
notation to describe when a transform converges. For
functions f : R — R U {—o0, 00}, which diverge below a
certain value and converge above it, define

y(f) =sup{s € R: [f(s)| = co} =inf{s € R : |f(s)] < oo},

to be the value at which f switches from diverging to
converging. We can thus rewrite (5.1) as

d(V) = —y(LIV)). ©.1)

Because we will be working with Laplace-Stieltjes trans-
forms, we begin by recalling standard results for the
transforms of the quantities defined in Definition 9.3. Let

o7 (s) = s — A1 — L[X](s)),
0,1 (s) =s — A1 — L[min{X, a}](s).

We can define a partial inverse o of ! such that o(s) is
the greatest real solution to

a(s) =s+ AL — L[X](0(5))),

letting o(s) = —oo if there is no real solution. We define
0, similarly.

Standard M/G/1 results (Harchol-Balter 2013) express
the Laplace-Stieltjes transforms of random variables in
Definition 9.3 using ¢ and ¢,. Specifically, for any non-
negative random variable U,

LIBU)I(s) = L[U](a(s)),

cwie =T

L[B4(LD](s) = L[U](04(s)),
(9.2)
Therefore, to understand the decay rates of random

variables in Definition 9.3, we need to understand ¢,
o, and o,. Figure 8 illustrates 0 and 0! and some key
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Figure 8. (Color online) Illustration of 6! (Solid Green Curve) and Key Values Associated with It

o '(s)

........... I

so="7(0"") =7(L[X])

51 =v(L[W]) = least root of o~
ss=0(y(0)) = arsg>rsnin a='(s)
s3=7(0) =mino'(s)

s>s0

Notes. The partial inverse of 6~!—namely, c—corresponds to the branch going from the minimum of 6! to the right (orange highlight). As

shown in Lemma 9.7, we have sy < s1 < $; < 83.

values associated with them. We make frequent use of
relationships between these values and other proper-
ties of ¢ and 0!, which are summarized below.

Lemma 9.7. Consider an M/G/1 with nicely light-tailed
job size distribution X, and define

so=y(0") = p(LIX]),

o(y(0)) = arg min o (s),

S2

s1 = Y(L[W]) = least root of o™,
s3 = y(0) =min ¢ '(s).
$28¢

Then, as illustrated in Figure 8, the following hold:

i. 07 is convex on (sp, ), decreasing on (so, Sz), and
increasing on (sp, ©0);

il. sp <51 <5y <3 <0.

Analogous statements hold for o, for all a € (0, Xmax]-

Together, (9.2) and Lemma 9.7 give us the last ingre-
dients we need to compute the decay rate of T;. We
then show that this decay rate is neither optimal nor
pessimal.

Lemma 9.8. Let 7t be a SOAP policy with 0 < 4" < Xmax-
Then, the decay rate of its response time is

A(Tr) = —y(L[W]e0g).

Proposition 9.9. Consider an M/G/1 with any nicely
light-tailed job size distribution under a SOAP policy. The
policy is log-tail-intermediate if 0 < a* < Xmax.

10. Light-Tailed Job Sizes: Gittins Can Be
Tail-Optimal, Tail-Pessimal, or
in Between

Theorem 5.8. Consider an M/G/1 with any nicely light-
tailed job size distribution X. Gittins is

o Log-tail-optimal if X € NBUE,

o Log-tail-intermediate if X € ENBUE \ NBUE, and

o Log-tail-pessimal if X ¢ ENBUE.

Proof. By Theorem 5.5, it suffices to determine the
worst age a’. Combining the following two prior
results characterizes 4* in terms of whether X is in
each of NBUE and ENBUE.

e Aresult of Aalto et al. (2009, proposition 7) implies
a* = 0if and only if X € NBUE.

o Aresult of Aalto et al. (2011, proposition 9) implies
4" < Xmax if and only if X € ENBUE O

Theorem 5.11. Consider an M/G/1 with nicely light-
tailed job size distribution X ¢ ENBUE. Suppose that the
expected remaining size of a job at all ages is uniformly
bounded, meaning

sup E[X—a|X>a] < co.

a€[0, Xmax)

Then, for all € >0, there exists a (1 + €)-approximate Git-
tins policy that is log-tail-optimal or log-tail-intermediate.

Proof. Suppose E[X —a|X > a] is uniformly bounded.
Definition 3.2 implies

rom(a) < M =E[X—a|X>a],
F(a)

SO G (a) is also uniformly bounded. This means that
for any € > 0, there exists some sufficiently large age
a(e) such that increasing the rank at age a(€) < Xmax
from rgm(a(e)) to (1 + €)rgm(ale)) and leaving all other
ranks unchanged yields a new SOAP policy with
worst age a* = a(€). By construction, the new policy is a
(1+e)-approximate Gittins policy, and because its
worst age is 4° < Xmax, Theorem 5.5 implies it is log-
tail-optimal or log-tail-intermediate. O

Recall from Theorem 5.10 that a (1 + €)-approximate
Gittins policy achieves mean response time within a
factor of 1+ € of optimal. We defer its proof to Online
Appendix EC.2. This means that Theorem 5.11, whose
precondition applies to nonpathological light-tailed job
size distributions, gives a non-tail-pessimal policy with
near-optimal mean response time.
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Remark 10.1. The Shortest Expected Remaining Proces-
sing Time (SERPT) policy, which has rank function
rserpr() = E[X —a| X > a], is sometimes considered as
a simpler alternative to Gittins (Scully and Harchol-
Balter 2018, Scully et al. 2018, 2020a). Our results
imply that SERPT has the same M/G/1 tail optimality
properties as Gittins for the class of job size distribu-
tions we consider.

e Scully et al. (2020c) show that SERPT is always
tail-optimal in the heavy-tailed case, which matches
what we show for Gittins.

e Theorem 5.5 and Definition 5.6 imply that in the
light-tailed case, SERPT is tail-optimal, tail-intermediate,
and tail-pessimal under the same conditions as we show
for Gittins in Theorem 5.8. In fact, one can show a stron-
ger property: SERPT’s and Gittins’s response time distri-
butions have the same decay rate. This follows from the
fact that SERPT and Gittins have the same worst age a*,
as argued in the proof of Theorem 5.8.

11. Conclusion

In this paper, we have characterized the asymptotic tail
performance of the response time in an M/G/1 queue
under very broad conditions—namely, for every SOAP
policy and for both heavy- and light-tailed job size distri-
butions. In the heavy-tailed case, we characterize tail-
optimal policies by a sufficient condition on the rank
function (Theorem 4.6). This condition holds for a wide
range of SOAP policies, and specifically for the Gittins
policy (Theorem 4.7), providing the first proof of its tail
optimality under general conditions. In the light-tailed
case, we classify policies’ performance as tail-optimal,
tail-pessimal, or tail-intermediate. We show that the per-
formance of a SOAP policy depends on the age at which
the maximal rank is attained (Theorem 5.5). It turns out
that the Gittins policy may belong to any of the three cat-
egories, depending on the job size distribution (Theorem
5.8). Finally, when Gittins has pessimal tail performance,
boundedness of the expected remaining job size implies
that there exists a slight modification of Gittins that has
optimal or intermediate tail, while maintaining near-
optimal mean response time (Theorem 5.11).

11.1. Returning to the Motivating Questions
We conclude by returning to Questions 1.1-1.3, restated
below for convenience.

Question 1.1. Does any scheduling policy simulta-
neously optimize the mean and asymptotic tail of
response time in the M/G/1?

Question 1.2. For which job size distributions is Git-
tins tail-optimal for response time?

Question 1.3. For job size distributions for which Git-
tins is tail-pessimal, is there another policy that has

near-optimal mean response time while not being tail-
pessimal?

Our characterization of Gittins’s tail asymptotics
(Theorems 4.7 and 5.8) answers Question 1.2, and our
modification in the case where Gittins is tail-pessimal
(Theorem 5.11) answers Question 1.3 affirmatively. This
leaves only Question 1.1. In cases where we have
shown that Gittins is tail-optimal, the answer is clearly
affirmative. We might hope to conclude that the answer
is negative in cases where we have shown that Gittins
is tail-pessimal or tail-intermediate, but the situation is
still slightly unclear. The remaining ambiguity is due to
the fact that we have only considered FCFS tiebreaking
when two jobs have the same rank (Definition 3.1), as
we explain in more detail below.

The Gittins policy minimizes mean response time
with arbitrary tiebreaking between jobs of the same rank
(Gittins 1989, Gittins et al. 2011, Scully and Harchol-
Balter 2021). Moreover, these proofs can be extended to
show that any “non-Gittins” policy is strictly suboptimal
for mean response time, where a “non-Gittins” policy
is one that for a nonvanishing fraction of time serves a
job other than one of minimal Gittins rank. Therefore,
to fully answer Question 1.1, one would have to con-
sider Gittins under arbitrary tiebreaking rules. We con-
jecture that using a different tiebreaking rule cannot
improve the asymptotic decay rate of Gittins’s response
time in the light-tailed case.

Finally, we note that we have, of course, only
answered Questions 1.1-1.3 for the classes of heavy-
and light-tailed job size distributions that we consider
in this work (Definitions 4.1 and 5.2). Practically speak-
ing, we believe the classes of distributions we consider
are likely broad enough to draw useful conclusions. But
it remains an open question whether we may extend
our theory to broader classes of distributions. In partic-
ular, it seems likely that our proofs may hold mostly
unchanged for additional light-tailed job size distribu-
tions, as discussed in Online Appendix EC.3.3.

Acknowledgments

The authors thank Adam Wierman, Onno Boxma, and Jan-
Pieter Dorsman for helpful discussions. The authors also
thank the anonymous referees for helpful comments that
significantly improved the presentation. Z. Scully conducted
this research in part while a graduate student at Carnegie
Mellon University, in part while visiting the Simons Insti-
tute for the Theory of Computing, and in part while a Foun-
dations of Data Science Institute postdoc at Harvard and
MIT.

Endnotes

' Although we are referring to the job size distribution, we should
clarify that here we are still discussing scheduling with known job
sizes, specifically SRPT. But, starting shortly, we will shift attention
to the case where job sizes are unknown, but we still know the job
size distribution from which job sizes are drawn.
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2During the review process, a generalization of this result was
shown by Scully (2022, chapter 16).

3 In fact, both results are special cases of a more general result. See
Scully (2022, chapter 16) for details.

4 The full SOAP definition is more general (Scully and Harchol-
Balter 2018, Scully et al. 2018), but the given definition suffices for
our unknown-size setting.

5 We give some brief remarks on other tiebreaking rules in Section 11.1.

8 We formally define the O(-), Q(-), and ©(-) notations as follows.
Suppose Xi,...,x, are nonnegative variables. The notation O(f(x;,
...,Xx,)) stands for an unspecified expression g(xi,...,x,)>0 for
which there exist constants C,yq, ...,y > 0 such that for all x; >y,
..o, Xy > Yy, we have g(x1,...,x,) < Cf(x1,...,%,). The Q(-) notation is
the same, but with the inequality reversed, and the ©(-) notation
indicates that both inequalities hold, likely with different values for
the constants. For all of these notations, the constants may depend
on the job size distribution X.

7 This is trivially satisfied when 1 = co.

8 Our results can be generalized to some “Class II” distributions
(Abate and Whitt 1997), which are also light-tailed. We comment on
this in Online Appendix EC.3.3. However, working with Class II
distributions generally requires additional regularity or smoothness
assumptions (Abate and Whitt 1997, section 5), so for simplicity of
presentation, we focus on Class I distributions.

9 This is a special case of a more general result (Scully 2022, chapter
16), which appeared while this work was in revision.

%1n the infimum expressions below, all sets of ages are implicitly
assumed to be subsets of [0, Xmax), and the infimum of an empty set
is taken to be Xmax.

“_n

" Here and throughout, the postscript denotes the limit from
the left of a right-continuous function with left limits. In this case,
colwy—] =lime o co[wy — €].

12 Although Scully et al. (2020b) do not explicitly state this result—
namely, our Lemma 7.4—they prove it as an intermediate step
toward another result (Scully et al. 2020b, section 4).

13 Recall from Definition 4.4(ii) that a w-interval (b, ¢) is right-
maximal if, roughly speaking, c is as large as possible for a w-interval
starting at b.

¥ The choice of 7* does not actually affect the scheduling decisions
of the Step and Spike policies, but it is convenient in discussion for
all three rank functions to have the same maximum.

5 The validity of (5.1) for the light-tailed distributions we consider
rests on the assumptions we make in Definition 5.2. See Online
Appendix EC.3 for details.
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EC.1. Deferred Proofs for Tail Asymptotics of SOAP Policies
EC.1.1. Proofs for Heavy-Tailed Job Sizes
LEMMA 7.6. Suppose Condition 4.5 holds.

(i) Forall p >0,

O(1) ifp<a-—1
E[X[w,]P] < O(logz) ifp=a—1
O(xmax{l,c+6}(p—a+l)) lfp >a—1.

(ii) For all p >0,

K[ws] O(xfrtep—atl) if(p<a-—1
> E[Xi[w, )] < { 02 log z7) if(p=a—1
k=1

O(zf%+n(p=e+)) if (p>a — 1.

Proof. We first show (i). Because (x, ¢p[w,]) is a w,-interval, Condition 4.5 implies

colw,) — = 0O(z*?). (EC.1.1)
We compute
E p+1 / p +1) th( t)dt [by Lemma 6.3]
O(wmax{l C+9}
< / O(tP=*)dt [by Definition 4.1 and (EC.1.1)]
0
ifp<a-—1
logx ifp=a-1

pmax{1,(+0}(p— a+1)) ifp>a—1,

thus proving (i).
We now show (ii), following a similar argument but with a more involved computation. Note that

Definitions 6.1 and 6.5 together imply

by[w,] >z forall k> 1. (EC.1.2)
We compute
Klwg] K(we) cp[wa] .
Z E[X; p+1 / (p+1)(t — b [w,])PF(t)dt [by Lemma 6.3]
k=1 k=1 Y bklwz]
K[wz] Ck [wfﬂ]

< (p+1)(cp[ws] — bk[ww])p/b F(t)dt [by (EC.1.2)]

k= & [wa]

[
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Klwg] cp[wz]
< O (2% - b.[w,]°P) / O(t™)dt [by Definition 4.1 and Condition 4.5]
k=1 by [wa]
Klws] cx [wa]
<> 06 [ oyt
k=1 by [we)
CK[wg] [we]
<0(z%) / O(tP=)dt [by (EC.1.2)]
JL-O(axc")
< O(x) / O(tP=*)dt [by Condition 4.5]
O(zfPFep=atl) if(p<a-—1
=4 O(z%logx") if(p=a—1
O(xfrtnCr=at)y if (p>a —1,
thus proving (ii). J

LEMMA 7.9. Suppose Condition 4.5 holds, and let k = 2max{« — 1,0}. Forall x >0 and a € (y,, ),

(()7)

Proof. Because x > 6 > 0, by Condition 4.5 and (EC.1.2), for all w > (0 and £ > 1,

bl T\ A
UEQ((W> ) (EC.1.3)

We now plug in u = ¢y[w, (a)—] and make the following observations.

v

co[wq(a)—]

* By Definition 6.1, we know u = ¢y[w,(a)—] is the earliest age at which a job has rank at least w,(a),

S0 w,, = w,(a).

* By Definition 6.5, a job’s rank is at most w,,(a) between ages a and z, so there exists & > 1 such that
bplw,(a)] <a <z <cplwg(a)l.

In particular, = > by [w,(a)] and z — a < ¢;[w,(a)] — by [w,(a)].

Applying these observations to (EC.1.3) with u = ¢[w,(a)—] yields the desired bound. O

EC.1.2. Proofs for Light-Tailed Job Sizes
PROPOSITION 9.2. Consider an M/G/1 with any nicely light-tailed job size distribution under a SOAP
policy. The policy is log-tail-pessimal if a* = Ty

Proof. Since no work-conserving policy has response time decay rate lower than a busy period’s decay
rate d(B) (Mandjes and Nuyens, 2005, Corollary 6), it suffices to show d(7") < d(B).
Recall that y,. denotes the (first) age of the maximum rank in the interval [0, x]. Since T'(x) is stochastically

increasing in = (Lemma 6.6), it holds that P[T'(x) > t| > P[T'(y.) > t] for all ¢ > 0. Additionally we have
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that P[T(y,) > t] > P[Trs(y.) > t] for all ¢,x > 0, where Tgg(x) is the response time for a job of size z
under FB. The reason for this last inequality is that a job of size y, must wait for all other jobs to receive up

to 1, units of service before completing.! As a result, (Mandjes and Nuyens, 2005, Proposition 8) implies
d(T(x)) <d(T(y.)) < d(Trs(y.)) = d(B,, ).

Additionally, up to its last line the proof of (Mandjes and Nuyens, 2005, Lemma 9) is valid for arbitrary

service policies. If xy > 0 is such that P[X > x| > 0, we thus find

d(T) < P[X > 2] / " AT (@) dF ()

zo

<P[X >z / d(B,,)dF(z). (EC.1.4)

Our goal is to show d(T") < d(B), or equivalently d(T") < d(B) + ¢ for all € > 0. By (EC.1.4), it suffices
to show that lim, ,, . d(B,,) = d(B). It is shown in (Mandjes and Nuyens, 2005, Lemma 10) that
lim, .. d(B,)=d(B), so our task is to show that the limit still holds with y, instead of x.

Consider arbitrary £ > 0. Because lim,_, ., d(B,) = d(B), there exists x, > 0 such that |d(B,) —d(B)| < e
for all x > zo. Because a* = &y, there exists z; > xq such that y,, = x1, and thus \d(Byxl) —d(B)|<e.
But d(B,,) is decreasing in z, because y, is increasing in x, and B, is stochastically increasing in x.
We conclude that for all x > x;, we have |d(B,,) — d(B)| < €. Our choice of ¢ > 0 was arbitrary, so
lim, ... d(B,,)=d(B), as desired. O

LEMMA 9.5. Let 7 be a SOAP policy with 0 < a* < Ty .. We have

d(T,) = d(T?) e [d(T?

step

), d(TE))].

Proof. Clearly, T, is a mixture of 7! and T¥). Lemma 6.6 implies 7*) >, TV, implying d(T}.) = d(T?).

The same reasoning applies to Step and Spike. The lemma thus follows if we can show

T < T? <, T (EC.1.5)

spike —

The comparison in (EC.1.5) follows from a key fact from the SOAP analysis (Scully and Harchol-Balter,
2018) called the Pessimism Principle, which states that the response time of a particular job J is unaffected if,
instead of following the usual rank function, job J follows its worst future rank function (Definition 6.5). The
intuition is that any jobs that will get served ahead of job J in the future may as well be served ahead of it

right now.

! One can give a more formal proof of the inequality using the SOAP analysis (Scully and Harchol-Balter, 2018).
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WAL Wetep o (@) WAL Wepie o (@) w.fr w, . (a)
r* ----‘--E r* ----1 r* -----:...
: : i
N | ] N N
0+ — age a 0+ ey agea 0 T age a
0 a* T 0 a* x 0 a* T
(a) Worst future rank of Step. (b) Worst future rank of Spike. (c) Worst future rank of generic policy.

Figure EC.1 Worst future rank functions (Definition 6.5, abbreviated w.f.r., dotted magenta curves) of the policies shown in
Figure 9.1, with the original rank functions (translucent cyan curves) for reference. We show the worst future rank

functions for a class 2 job of size z > a™.

We illustrate in Figure EC.1 the worst future rank under Step, Spike, and 7. Notice that, for any size

T > a*, we have
a€l0,a"] = 77 =Wspiker(a) =Wr (@) = Wetep (@) =77,

ac(a",x) = 0=Wspikes(a) < Wy ,(a) < Wspep(a) =1"
The Pessimism Principle says that we can compute a particular job J’s response time by imagining that it
always has its worst future rank. Increasing a job’s rank can only increase its response time, so the above

worst future rank comparisons imply that for all z > a*,
ﬂpike (SC) Sst T7r (ﬂj‘) Sst ,I;tep (SU)

The desired (EC.1.5) follows because class 2 jobs are those of size greater than a*. O

LEMMA 9.6. The response time distributions of class 2 jobs under Step and Spike are

T(2) =y By (W) + By» (X(2))7 T(2)

step spike

=g Bo (W) + Bge(a®) + X® —q*.

where X?) = (X | X > a*) is the size distribution of class 2 jobs, and the random variables in each sum are

mutually independent.

Proof. This result follows easily from the SOAP analysis (Scully and Harchol-Balter, 2018). For complete-
ness, we sketch the main ideas of how the SOAP analysis applies to Step and Spike. Consider a class 2

job J.

* Under Step, job J always has worst future rank * (Figure EC.1(a)). Job J is thus delayed by any jobs

present when it arrives, plus the pre-age-a* portion of any jobs that arrive while it is in the system.

* Under Spike, job J has worst future rank 7* only until age a* (Figure EC.1(a)). Job J is thus delayed by
any jobs present when it arrives, plus the pre-age-a* portion of any jobs that arrive before it reaches

age a*. Once job J reaches age a*, its worst future rank is 0, so no further arrivals delay it.
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The reason in both cases for looking at the pre-age-a* portion of new arrivals is because at age a*, those new
arrivals reach rank r*, and thus job J has priority over them due to FCFS tiebreaking (Definition 3.1).

The delay due to jobs present when job J arrives corresponds to the W in each formula, and the delay
due to new arrivals corresponds to the B, (-) uses. The difference between the formulas is due to the fact
that under Step, new arrivals delay job J until it completes, whereas under Spike, new arrivals delay job J
only if they arrive before it reaches age a*, with the last X(? — a* portion of job J’s service occurring

uninterrupted. 0

LEMMA 9.7. Consider an M/G/I with nicely light-tailed job size distribution X, and define

so=1(0™) = 4(£IX]), 2= 0(3(0) = argming ™ (5),
8250
51 =~(L[W]) =least root of o, s3=7(0) = niin o !(s).
$>s0

Then, as illustrated in Figure 9.2, the following hold:
(i) o=t is convex on (sy,00), decreasing on (s¢, s2), and increasing on (sy,00);
(ii) sg < 81 < 89<83<0.

Analogous statements hold for o, for all a € (0, Zyax)-

Proof. We prove the statement just for o, as the argument for o, is analogous. The illustration in Figure 9.2
may provide helpful intuition for the arguments that follow.
We begin by observing some general properties of o~ !. Because £[X] is convex on (sg,00), so is o'

This, along with the definition of s,, implies (a). The slope of o1 at zero is
(@) (0) =1+ AL[X](0)=1-pe(0,1),

and by Definition 5.2, we have 07! (s¢) = oo > 0. Additionally, Definition 5.2 implies s, < 0. This means
o~ ! is negative on a finite nonempty interval, namely (s;,0), and nonnegative outside that interval.

We can now show the inequalities in (b).
e 50 < 51: Because |07 (s1)] =0 < oo, we have so =(07!) < s;. But 07 (s9) > 0, 0 S0 # 1.
* s3 < 0: Because o~ is negative on some interval, its global minimum is negative.
* 51 < $y: Because s3 =0 *(s5) < 0, we must have s, € (s1,0).
* sy < s3: Because 0! is convex with o~!(0) =0 and (¢~ 1)(0) € (0,1), we have sy < o *(s3). O
In some of the proofs below, we use the fact that for sums of independent random variables U,V > 0, (9.1)
implies
dU+V)=—y(L[U+V])
= —max{y(L[U]),7(£[V])}
=min{d(U),d(V)}. (EC.1.6)
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This is also shown by Mandjes and Nuyens (2005, Lemma 3) without relying on (9.1).

LEMMA 9.8. Let m be a SOAP policy with 0 < a* < Xpax. Then the decay rate of its response time is
d(T) = —y(L[W]oog,x).
Proof. Combining Lemmas 9.5 and 9.6, we have
d(Ty) € [d(Bu=(W)),d(Bu (W) + B« (X@))].
By (9.1) and (9.2), the lower bound is
d(Ba=(W)) = =y(L[W] 0 0g+).

We aim to show that the upper bound matches this. Applying (9.1), (9.2), and (EC.1.6) to the upper bound,
we see that it suffices to show

Y(L[X P 0 04) <Y (LIW] 0 0gx).
Lemma EC.1.1, which we state and prove below, implies the above if v(L[X ?)]) < ~(L[W]), which in turn
is implied by Lemma 9.7(ii) and the fact that v(L[X ®]) = v(L[X]). O

The following lemma, which is used in the proof above, relates v (f o o) to y(f), thus relating the decay

rate of a busy period to the decay rate of its initial work.

LEMMA EC.1.1. Let f: R — R U {—00,00} be a function for which v(f) is well defined and finite.
Then ~(f o o) is finite, and

Y(foo) =0 (max{y(f),o(v(c))})
_ {0‘1(v(f)) i£1(f) > o(1(0)

~(o) otherwise.

In particular, ¥(f o o) is a nondecreasing function of ~y(f). Analogous statements hold for o, for all

a € [0, Zpax)-

Proof. We prove the statement just for o, as the proof for o, is analogous. There are two reasons f(o(s))

can be infinite:
* We can have o (s) infinite, which happens if and only if s < y(0).

* We can have o(s) finite but f(o(s)) infinite, which happens if —co < o(s) < v(f) and only if
—o0 < o(s) <7(f)-
Recalling that o(y(o)) is the minimum finite value o (s) can take on (see Figure 9.2), we see that the latter
reason can occur for some s > (o) if and only if o(y(0)) < v(f), implying the desired formula.

The finiteness of v( f o o) follows from finiteness of o~ ((f)) when v(f) > (o), which by Lemma 9.7(ii)
includes all cases when y(f) > o((o)). The monotonicity of y(f o) in y(f) follows Lemma 9.7(1). [
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PROPOSITION 9.9. Consider an M/G/1 with any nicely light-tailed job size distribution under a SOAP
policy. The policy is log-tail-intermediate if 0 < 6™ < Tpax-

Proof. The optimal decay rate is that of FCFS. A special case of a result of Stolyar and Ramanan (2001,
Theorem 2.2), together with (9.1) and (EC.1.6) implies this is
d(Trcrs) = d(W + X) =d(W) = —y(L[W]).

The pessimal decay rate is that of FB. A result of Mandjes and Nuyens (2005, Theorem 1) states
d(Trp) = d(B). Together with (9.1) and (9.2) and Lemma EC.1.1, this implies

d(Trp) = d(B) = —v(L[X]c0)
=—y(0)=—y(L[W]o0).
Above, we use the fact that v(L[X]) < v(L[W]) < o(y(o)), as shown in Lemma 9.7(ii), when applying
Lemma EC.1.1.

Having computed the optimal and pessimal decay rates in Lemma 9.8, it suffices to show that in the

0 < a* < Tmax case, we have
VLW]) <v(L[W]eoax) <y(L[W]e0),
which we may rewrite as
V(LW]oay) <y(L[W]o o) <Y(LIW]oOup,)-

Lemma EC.1.2, which we state and prove below, implies v(L[W] o g,,) is strictly increasing in a. Therefore,

the above holds if 0 < a* < Z,.x, as desired. J

It remains only to prove the strict monotonicity of v(L[W]o o,) in a. We prove a more general statement

below.
LEMMA EC.1.2. Let f: R — RU{—00,00} be a function for which v(f) <0, and let 0 < a < b < Tyyax.
Then
Y(fooa) <v(foow).
Proof. We begin by comparing o, (s) with o, () for all s < 0, computing?
a<b

= min{X,a} < min{X, b}

= Lmin{X,a}|(s) < L[min{X,b}|(s)

= o (s) <oyl (s). (EC.1.7)

a
2 Two clarifications about the computation below. First, the notation U <g; V means that P[U > t] < P[V > t] for all ¢ € R, and the
set of ¢ € R such that P[U > ¢] < P[V > ¢t] has positive Lebesgue measure. Second, because a < oo, the left-hand sides of the last
two steps are always finite for all s < 0.
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There are two important implications of (EC.1.7). The first implication is that the global minimum of o, ' is

less than that of o, '. But these global minima are (o) and ~(07,), respectively (see Figure 9.2), so

Y(0a) <(00)- (EC.1.8)

This means o, (s) is finite whenever ,(s) is. This contributes to the second implication of (EC.1.7): by
Lemma 9.7(1),
04(s) >op(s) forall s € [y(ay),0). (EC.1.9)

Note that f(c,(s)) diverges only if s < v(0,) or a,(s) <~(f), while f(o,(s)) diverges if s < v(0}) or
op(s) < v(f). Therefore, (EC.1.8) and (EC.1.9) together imply that there exists a value of s such that
f(ou(s)) diverges while f(o,(s)) does not. O

EC.2. Properties of the Gittins Policy via the “Gittins Game”

The goal of this section is to prove two key remaining properties of the Gittins policy, Theorem 5.10
and Lemma 8.2. To prove both of these properties, we will use a different perspective on the Gittins policy
called the “Gittins game” (Scully et al., 2020a). The Gittins game gives an alternative way to define the
Gittins rank function. While it is less direct than the definitions we have used so far (Definitions 3.2 and 8.1),
the intermediate steps it introduces turn out to be crucial for proving Theorem 5.10 and Lemma 8.2.

Aside from Theorem 5.10 and Lemma 8.2, most of the definitions and results in this section are due
to Scully et al. (2020a), who actually study a much more general job model than ours. For simplicity, we
restate the key definitions and results in our setting. However, the statements and proofs of Theorem 5.10

and Lemma 8.2 are straightforward to translate to the more general job model of Scully et al. (2020a).

EC.2.1. The Gittins Game

The Gittins game is an optimization problem. Its inputs are a job at some age b and a penalty w. During the
game, we serve the job for as long as we like. If the job completes, the game ends. At any moment before the
job completes, we may choose to give up, in which case we pay the penalty w and the game immediately
ends. The goal of the game is to minimize the expected sum of the time spent serving the job plus the penalty
paid.

We can think of the Gittins game with penalty w as an optimal stopping problem whose state is the age b
of the job. Standard optimal stopping theory (Peskir and Shiryaev, 2006; Shiryaev, 2008) implies that the
optimal strategy thus has the following form: serve the job until it reaches some age ¢ > b, then give up. A
possible policy here is never giving up, which is represented by ¢ = oco.

Suppose we start serving a job at age b and stop if it reaches age c. The expected amount of time we spend
serving the job is

service(b, ¢) = E[min{S,c} | S > b :/ —=dt,
b
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and the probability the job finishes before reaching age b is

done(b,c) =P[S<c|S>b=1—=

We can write the time-per-completion function as (b, ¢) = service(b, c)/ done(b, ¢) (see Definition 8.1).
Suppose we employ the stop-at-age-c policy in the Gittins game starting from age b with penalty w. The

expected cost of the Gittins game with this policy is
game(w; b, ¢) = service(b, ¢) + w(1 — done(b, c))
The optimal cost of the Gittins game is therefore
game™(w;b) = irzlggame(w; b,c).
The lemma below follows immediately from the definition of game*(w;b) as an infimum of game(w; b, ¢),
each of which is a linear function of w (Scully et al., 2020a, Lemmas 5.2 and 5.3).
LEMMA EC.2.1. For all ages b, the optimal cost game* (w; b) is increasing and concave as a function of w.

Because giving up immediately is always a possible policy, it is also bounded above by game*(w;b) < w.

EC.2.2. Relating the Gittins Game to the Gittins Rank Function

The Gittins game is intimately connected to the Gittins rank function, and it is this connection that is
important for proving Lemma 8.2. The following lemmas state two such connections. They are the same or
very similar to many previous results in the literature on Gittins in the M/G/1 (Aalto et al., 2009; Gittins,

1989; Gittins et al., 2011; Scully et al., 2020a, 2018a), but we sketch their proofs for completeness.

LEMMA EC.2.2. The Gittins rank function can be expressed in terms of the Gittins game as

r(a) =inf{w > 0| game*(w;a) < w}

=max{w > 0| game*(w;a) = w}.

Proof. The infimum and maximum are equivalent by Lemma EC.2.1. The infimum is equal to the rank

r(a) =inf.-, ¢(a,c) because, by the fact that we can write game(w; b, ¢) as
game(w; b, c) =w — (w— (b, c)) done(b, ¢), (EC.2.1)

we have game(w; b, ¢) < w if and only if (b, c) < w.? O

3 Recall that done(b, ) € [0, 1] and that if done(b, ¢) = 0, then ¢ (b, ¢) = oo (Definition 8.1).
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LEMMA EC.2.3. In the Gittins game with penalty w with the job currently at age a, it is optimal to continue

serving the job if and only if r(a) < w,* and it is optimal to give up if and only if r(a) > w.
g lnej Y P 8 D y

Proof. Giving up incurs cost w, so by the maximum in Lemma EC.2.2, it is optimal to give up if and only if
r(a) > w. This means it is optimal to continue serving the job if r(a) < w. The fact that serving is optimal in
the r(a) = w edge case follows from the fact that if ¢(a, c) = w for some ¢ > a,’ then by (EC.2.1), we have

game(w;a,c) =w. O

We are now ready to prove Lemma EC.2.3, which we restate below. Recall that a w-interval is one in
which the Gittins rank is bounded above by w. The key to the proof is that Lemma EC.2.3 relates w-intervals

to optimal play the Gittins game.
LEMMA 8.2. Under Gittins, for any right-maximal w-interval (b, c), we have p(b,c) < w.

Proof. Consider playing the Gittins game starting from age . By Lemma EC.2.3, giving up if the job reaches
age c is an optimal policy. Specifically, because (b, ¢) is a w-interval, it is optimal to continue serving the job
until at least age ¢, and because the w-interval is right-maximal, it is optimal to give up if the job reaches age ¢
(which never happens if ¢ = ,,,,,). This means game*(w;b) = game(w; b, ¢). Combining Lemma EC.2.1

and (EC.2.1) implies ¢(b,c) < w. O

We note that Lemma 8.2 is similar, but not identical, to properties of Gittins in the M/G/1 studied by Aalto
et al. (2009, 2011). Related properties have also been shown for versions of Gittins in discrete-time settings

(Dumitriu et al., 2003; Gittins, 1989; Gittins et al., 2011).

EC.2.3. Relating the Gittins Game to Mean Response Time

It remains only to prove Theorem 5.10, which bounds the mean response time of g-approximate Gittins
policies. To do so, we use a result of Scully et al. (2020a) that relates the Gittins game to a system’s mean

response time.
DEFINITION EC.2.4. Let r: [0, 1) — R be the rank function of some SOAP policy, and let w € R.

(i) The (r,w)-relevant work of a job is the amount of service the job requires to either complete or reach

rank at least w according to 7, meaning reaching an age a satisfying r(a) > w.

(ii) The (r,w)-relevant work of the system is the total (r, w)-relevant work of all jobs present. We denote
the steady-state distribution of (r, w)-relevant work under policy 7 by W, (r,w). Note that r need not

be the rank function of policy 7.

4 Strictly speaking, it is optimal to continue serving the job if and only if the rank is upper bounded in a “forward neighborhood”
of a, meaning there exists € > 0 such that for all § € [0,¢), we have r(a + ¢) < w. For non-pathological job size distributions, this
holds in the r(a) < w case (Aalto et al., 2011), so it only needs to be checked when r(a) = w.

> The ¢ > a restriction is why we need the rank to be bounded not just at @ but in a forward neighborhood of a.
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The (rqm, w)-relevant work of a job is related to the Gittins game via Lemma EC.2.3: it is the amount of
time we would serve the job when optimally playing the Gittins game with penalty w. It turns out that mean

(ram, w)-relevant work directly translates into mean response time.

LEMMA EC.2.5 (Scully et al. (2020a, Theorem 6.3)). Under any nonclairvoyant scheduling policy =, the

mean response time can be written in terms of (rgn,w)-relevant work as

ﬂ— )\ / Tth,'UJ)] dw

With Lemma EC.2.5 in hand, the proof of Theorem 5.10, restated below, reduces to bounding the mean

amount of (7q,, w)-relevant work under g-approximate Gittins policies.

THEOREM 5.10. Consider an M/G/1 with any job size distribution. For any q > 1 and any g-approximate
Gittins policy %
E[Tﬂ'] S QE[Tth]'

Proof. Recall from Definition 5.9 that we may assume 7, (a)/rqwm(a) € [1,q] for all ages a without loss of

generality. We will prove
E[W‘ﬂ' (rthy W)] S E[WW (Tﬂ'a qw)] S E[Wth(rtha W)], (EC22)

from which the theorem follows by the computation below:

1 [ E[W, n
E[T,T] = X / [(QZQGtw)] dw [by Lemma EC.2.5]
0
1 [E
<< / Wou(rem qw)] 4, [by (EC.2.2)]
A Jo w?
1 [ EWgin W'
- /\/o | Gtw%;)tz Dl a1 [by substituting w’ = qu]
= qE[Tth]- [by Lemma EC.2.5]

To show the left-hand inequality of (EC.2.2), it suffices to show that an arbitrary job’s (rq,, w)-relevant
work is upper bounded by its (7., qw)-relevant work (Definition EC.2.4). This is indeed the case: 7g,(a) < w
implies 7 (a) < gram(a) < qw, so the job will reach rank w under Gittins after at most as much service as it
needs to reach rank qw under 7.

To show the right-hand inequality of (EC.2.2) we use a property of SOAP policies due to Scully and
Harchol-Balter (2018, proof of Lemma 5.2). The property implies that for any rank w and SOAP policy T,
we can express E[W,.(r,,w)] in terms of just the job size distribution X, arrival rate A, and the set of ages

Ay lw] ={a € [0, Zmax) | 7x(a) < w}.” In particular, for any fixed job size distribution, arrival rate, and

® This is a special case of a more general result (Scully, 2022, Chapter 16), which appeared while this work was in revision.

7 Scully and Harchol-Balter (2018) actually focus on E[Wy (rr, w+)] = lim,y/ |, E[Wx (rx,w’)] as opposed to E[Wy (rx,w)], but
the same reasoning applies to E[W (rr, w+)].
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rank w, E[W, (r,,w)] is a nondecreasing function of A, [w], where we order sets by the usual subset partial
ordering. We have r(a) > ran(a), which means A, [w] C Ag,[w], which implies the right-hand inequality

of (EC.2.2), as desired. O

We note that one can use the techniques of Scully et al. (2018b) to generalize the statement and proof of
Theorem 5.10 beyond SOAP policies. It turns out that Theorem 5.10 still holds even if we allow g-approximate
Gittins policies to adversarially assign ranks to jobs, provided that the assigned ranks are still within a

factor-q window around the rank Gittins would assign.

EC.3. Relationship Between Decay Rate and Laplace-Stieltjes Transform

The goal of this appendix is to justify our computation of decay rates (Definition 5.1) by means of Laplace-
Stieltjes transform convergence (Section 9.3). Our specific goal is to justify our use of (9.1), which states
d(V) = —~(L[V]). As a reminder,

d(V) = lim —logP[V'>1]

t—o0 t

V(f) =inf{s € R [|f(s)] < oo}

Y

EC.3.1. Sufficient Condition for Computing Decay Rates

Our main tool for translating between d(V') and v(L[V]) is a result of Mimica (2016), restated as
Lemma EC.3.2 below, which gives a sufficient condition for d(V') = —v(L[V]). The result rests on the

following definition.

DEFINITION EC.3.1. We say a function f: R — RU {—o00, 00} is regularly varying from the right at s*

with negative index, or simply “regularly varying at s*”, if there exists « > 0 such that for all ¢ > 0,

. f(s*4es)
ENEEN I

In particular, f having a pole of finite order at s* suffices.

It turns out being regularly varying at the singularity is the condition we need to express decay rate in

terms of Laplace-Stieltjes transform convergence.

LEMMA EC.3.2 (special case of Mimica (2016, Corollary 1.3)). Ler V be a non-negative random variable
with v(L][V]) > —oc. If either L[V'| or L]V is regularly varying at v(L[V]), then
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EC.3.2. Showing the Sufficient Condition for Computing Decay Rates Holds

It remains to show that the precondition of Lemma EC.3.2 holds whenever we apply (9.1) in Section 9.3. It
turns out that all of the Laplace-Stieltjes transforms to which we apply (9.1) have a common form, so we will
show that Lemma EC.3.2 applies to all functions of that form. To describe the form, we need the following

definition.
DEFINITION EC.3.3. Consider an M/G/1 with arrival rate A, job size distribution X, and load p = \E[X].

(i) We define the function
ox'(s) =s5— A1 - L[X](s)).

Note that o' (s) = oo if and only if £[X](s) = oo.

(ii) We define ox to be the the inverse of o', choosing the branch that passes through the origin. That is,

for s > inf, o' (1), we define o x (s) to be the greatest real solution to
ox(s)=s+A1-L[X](ox(s)))-

If s < inf, o' (r), then no such solution exists, so we define o x (s) = —oc0.

(iii)) We define the work-in-system transform

cwy(s) = S0=2).

ox' ()
Note that all of the above definitions depend on both A and X, However, because the following discussion
considers a fixed arrival rate A\ and varies only the job size distribution X, we keep A implicit to reduce

clutter. Additionally, we assume in all uses of the above definitions that p < 1.

One may recognize the functions defined in Definition EC.3.3 as core to the theory of the M/G/1 with job
size distribution X (Harchol-Balter, 2013).

* The work-in-system transform is, as suggested by its name, the Laplace-Stieltjes transform of the

equilibrium distribution Wy of the total workload in the M/G/1.

* The function o x is related to busy periods in the M/G/1. Specifically, the length of a busy period started
by initial workload V" has Laplace-Stieltjes transform L[V](ox(s)).

It turns out that throughout Section 9.3, all of the Laplace-Stieltjes transforms to which we apply (9.1)
are of the form L[Wx] or L|Wx] o gy, the latter meaning s — L[Wx](oy (s)), for nicely light-tailed job
size distributions X and Y (Definition 5.2). Specifically, X is the system’s job size distribution, and Y is
either X or a truncation min{ X, a*}. Therefore, to justify the uses of (9.1) using Lemma EC.3.2, it suffices

to prove Propositions EC.3.4 and EC.3.5 below.?

8 While Definition EC.3.3 assumes a single arrival rate A, Proposition EC.3.5 easily generalizes to the case where L[Wx] and oy are
defined using different arrival rates.
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PROPOSITION EC.3.4. For any nicely light-tailed job size distribution X,
(i) 7(L[Wx]) € (=00,0); and
(ii) LIWx] has a first-order pole at v(L[Wx]), so it is regularly varying at y(L[Wx]).
PROPOSITION EC.3.5. For any nicely light-tailed job size distributions X and Y,
(i) v(L[Wx]ooy) € (—00,0), and
(ii) either L[Wx] ooy or (L[Wx]ooy)" is regularly varying at v(L[Wx] o oy).

Our approach is as follows. We first prove Proposition EC.3.4. We then prove a lemma characterizing o x,

which we use in conjunction with Proposition EC.3.4 to prove Proposition EC.3.5

Proof of Proposition EC.3.4. Recall from Definition EC.3.3 that £[Wx](s) = s(1 — p)/o %' (s), so we focus
on oy'. Because £][X] is a mixture of exponentials, o' is convex, so it has at most two real roots. It is
well-known that under the assumption on X made in Definition 5.2, a;(l has a first-order root at 0 and
a negative first-order root (Abate and Whitt, 1997; Mandjes and Nuyens, 2005), the latter of which is
v(L[Wx]), but we give a brief proof for completeness. One can compute oy’ (0) =0 and (o5")'(0) =1 — p,
so o' has a first-order root at 0. Definition 5.2 implies £][X](v(£[X])) = oo, so o' (7(£[X])) = cc. This
means o' has another first-order root in (y(£[X]),0). O

LEMMA EC.3.6. For any nicely light-tailed job size distribution X,
(i) v(ox) € (—00,0);
(ii) ox(vy(ox)) € (—00,0); and
(iii) there exist Cy,Cy > 0 such that in the s | 0 limit,
ox(v(ox)+s)=ox(v(0x)) + CoVs £ O(s),
C
P1(ox) +9) = L),
so o'y is regularly varying at y(ox).
Proof. As in the proof of Proposition EC.3.4, we again use the fact that o' is convex, has roots at a
negative number and at zero, and is negative between its roots. Specifically, this fact implies that o3 has a
finite negative global minimum. By Definition EC.3.3, this minimum is (o x ), and the value at which the
minimum is attained is o x (7y(ox)) proving (i) and (ii).
It remains only to prove (iii). The fact that Laplace-Stieltjes transforms are analytic in the interior of their

domains of convergence implies that o' can be written as a Taylor series about (o x ) whose first nonzero

coefficient is quadratic, i.e. for some constant K > 0,

ox'(s)=Ks*+0(s%).
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An extension of the Lagrange inversion theorem (DLMF, §1.10(vii)) implies that the inverse of 0')_(1, namely
o x, may thus be written in the desired form. The desired form for ¢y, which completes (iii), then follows

from

(0x")(s) =2Ks £ 0O(s?),

, _ 1
)= o (9 -

Proof of Proposition EC.3.5. There are three cases to consider:
* VLWx]) > oy (v(ov)),
* Y(L[Wx]) <oy(v(oy)), and
* Y(LWx]) =y (v(ov)).

For an intuitive grasp of these cases, it is helpful to imagine decreasing s starting at s = 0, tracking the
behavior of L[Wx]|(oy(s)) as s decreases.

If v(L[Wx]) > oy(y(oy)), then at some point before s = s* reaches 7y(oy ), meaning for some
s* € (—v(oy),0), we have v(L[Wx]) = oy (s*). This means y(L[Wx] o oy ) = s*. The Lagrange inversion
theorem (DLMF, §1.10(vii)) and the fact that s > y(oy ) imply that oy can be linearly approximated near s*,
so the result follows from Proposition EC.3.4.

If v(L[Wx]) < oy (7v(oy)), then in contrast to the previous case, s reaches y(oy ), the last point at which
oy (s) is finite, before o (s) reaches the pole of L[WW,]. This means y(L[Wx] ooy ) =(oy) Similarly to the
previous case, we can linearly approximate L£[W,] near v(oy ), so the result follows from Lemma EC.3.6.

If v(L[Wx]) = oy (y(oy)), then roughly speaking, both of the previous cases’ events happen simulta-
neously: just as s reaches y(oy ), the last point at which oy (s) is finite, oy (s) reaches the pole of L[Wx].
Combining Proposition EC.3.4 and Lemma EC.3.6 implies that in the s | 7(oy) limit, we can approximate

LIWx](oy(s)) as

KO K1
LIWx](0y (1(5) = —0 £ O(1) = ———— £ O(1)
oy ((5)) P
for some constants K, K; > 0, from which the result follows. J

EC.3.3. Expanding the Definition of Nicely Light-Tailed Job Size Distributions

The class of light-tailed distributions we consider in Definition 5.2, namely what Abate and Whitt (1997)
call “Class I’ distributions, is well behaved enough for Propositions EC.3.4 and EC.3.5 to hold. More
generally, our results apply to any job size distribution with positive decay rate for which one can show
Propositions EC.3.4 and EC.3.5. In particular, this includes many distributions that Abate and Whitt (1997)
call “Class II”. These are job size distributions X such that L[X](v(L[X])) < cc.
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In order to prove Propositions EC.3.4 and EC.3.5 for Class II job size distributions, one would need
to assume a regularity condition. We believe it would suffice to assume that £[X ] is regularly varying at
~(£[X]). The main change to the proofs would be additional casework. For example, it may be that £[Wx]
still has a first-order pole, or it may be that it diverges without a pole because £[X] does. See Abate and
Whitt (1997) and references therein for additional discussion.

More generally, it likely suffices to assume that some higher-order derivative £[X]™ is regularly varying
at y(L[X]), as the result of Mimica (2016, Corollary 1.3) we use applies to higher derivatives as well. Other

results of Mimica (2016) may allow one to relax the assumption even further.
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