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Abstract
In this paper, we present MixRep, a simple and effective data
augmentation strategy based on mixup for low-resource ASR.
MixRep interpolates the feature dimensions of hidden repre-
sentations in the neural network that can be applied to both the
acoustic feature input and the output of each layer, which gener-
alizes the previous MixSpeech method. Further, we propose to
combine the mixup with a regularization along the time axis of
the input, which is shown as complementary. We apply MixRep
to a Conformer encoder of an E2E LAS architecture trained
with a joint CTC loss. We experiment on the WSJ dataset and
subsets of the SWB dataset, covering reading and telephony
conversational speech. Experimental results show that MixRep
consistently outperforms other regularization methods for low-
resource ASR. Compared to a strong SpecAugment baseline,
MixRep achieves a +6.5% and a +6.7% relative WER reduction
on the eval92 set and the Callhome part of the eval’2000 set.
Index Terms: End-to-end Speech Recognition, Low-resource,
Mixup, Hidden Representations, Data Augmentation

1. Introduction
Deep learning research has fueled many recent advancements
toward solving the automatic speech recognition (ASR) task.
The end-to-end (E2E) ASR [1, 2, 3] predicts the textual output
from the time-frequency input by a deep stack of convolutional
neural networks (CNN) [4], recurrent neural networks (RNN)
[5], or attention layers [6]. The large modeling capacity of the
E2E ASR model helps learn a direct mapping from the input to
the output sequence effectively, as shown in many works [7, 8].
While large models are powerful to achieve impressive perfor-
mance [9] given a sizeable training set, they tend to memorize
examples and become overly confident with incorrect predic-
tions [10, 11]. For low-resource scenarios, overfitting becomes
an issue [12, 13] with other challenges like diverse acoustic
variations [14, 15] and language mismatch [16, 17].

Data augmentation is one effective way to expand the train-
ing data and make models generalize [18, 19]. Developed tech-
niques for ASR create multiple views of the original speech [20]
by applying vocal tract length normalization [21], reverberation
[22], and tempo variations [20]. Advanced methods synthesize
speech directly using the state-of-the-art text-to-speech [23] and
voice conversion [24] models, which is shown beneficial for
low-resource distant talks [25]. Other methods like SpecAug-
ment [26] randomly crops and modifies the input spectrogram
like images along both time and frequency dimensions. Fea-
ture mixup [10, 11] is another angle to create artificial exam-
ples by exploring the input space through interpolation, where
a mixup refers to the convex combination of two training fea-
tures. One recent work of ASR studies the mixup between mel-

spectrograms of two utterances and trains the E2E model to pre-
dict both reference texts from the mixed feature [27].

Since the hidden representation space of an ASR model
can encode information (e.g. phoneme, word, and semantics)
more abstract than the acoustic features at the input [28, 29],
we reason performing the mixup of hidden representations is
beneficial. As shown in the previous study [11], the mixup
performed at deep layers of a model has regularization effects
on the representations. It reduces variations in the dimensions
that encode redundant information and also smooths the clas-
sification boundaries among representations, which alleviates
over-confident predictions for adversarial or ambiguous input.
For E2E speech recognition, we hypothesize such regularization
would improve the overall learning as the speech input contains
many variations caused by low-dimensional factors such as con-
tent, speakers, and channels [30].

In this study, we propose a data augmentation method
for low-resource ASR based on representation mixup, named
MixRep. The contribution of this work is as follows,
1. A data augmentation strategy using the mixup of hidden rep-

resentations for low-resource speech recognition 1

2. Highlight of the complementary regularization on both time
and frequency (feature) dimensions for mixup methods

3. Investigation of other techniques, e.g. SpecAugment [26] and
MixSpeech [27], and their comparison to MixRep

2. Related Work
The concept of input mixup [10] has been successfully applied
to classification tasks because the labels are one-hot and easy
for interpolation, e.g. pictures [31], acoustic scenes [32], speak-
ers [33], etc. For ASR acoustic model training [34], the mixup
is conducted for the HMM state labels aligned to the speech
input. For tasks with label sequences of different lengths, the
mixup of training losses is used instead, e.g. for the E2E model
training in speech recognition [27] or machine translation [35].
The Manifold Mixup [11] extends input mixup to the hidden
representations of a deep neural network, which is the focus of
our study. For speech input, this has only been previously stud-
ied for sound classification [36] and one recent work on speech
translation [37], where the latter applies mixup to representa-
tions from two modalities and does not consider a mixup of
target sequences. Unlike previous work, we investigate the ap-
plication of Manifold Mixup to train an E2E ASR model. We
intend to learn the behavior of different layers, so we do not
search layer combinations as extensively as done in [36]. Our
approach is similar to the MixSpeech [27] method but extends
it and explores the combination of techniques.

1https://github.com/jiamin1013/mixrep-espnet
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3. Method
In this section, we first review the mixup [11] concept. We then
explain the MixSpeech method [27] that applies mixup to E2E
ASR. Finally, we describe our proposed method which extends
the speech mixup to the hidden representation, and mention its
regularization effect on the feature dimension.

3.1. Manifold Mixup

The Manifold Mixup [11] is a generalized version of the input
mixup [10] that allows representation ouput from any layer of
a neural network model to be linearly interpolated (i.e. mixup).
For an arbitraryK-layers model, we denote fn,k(·) the underly-
ing function that processes data from the n-th layer input to the
k-th layer output, where n = 0 is the model input and f0,0(·) is
the identity function. Suppose a supervised learning task has in-
put featuresX and one-hot labels Y , the Manifold Mixup trains
the model by mixing up the hidden representations and labels,

Rk = λ ∗ f0,k(Xi) + (1− λ) ∗ f0,k(Xj), (1)
Ymix = λ ∗ Yi + (1− λ) ∗ Yj , (2)
Lmix = L(fk,K(Rk), Ymix), (3)

where λ ∈ [0, 1] ∼ Beta(α, α) with α ∈ (0,∞) and i and
j denote two training examples. The interpolation results in
a new training example represented by the hidden dimensions
of the model, thus it is an effective data augmentation method.
We note the input mixup [10] becomes a special case of the
Manifold Mixup [11] when n and k are both 0.

3.2. MixSpeech: Input Mixup

MixSpeech [27] is a data augmentation method developed for
E2E ASR training based on the input mixup [10]. For a pair
of utterances, this method mixes up acoustic features of these
utterances in the frequency dimensions frame-by-frame. Be-
cause speech input and text output have different lengths with
the alignment unknown, mixing two word labels at the same
position does not correspond to a simultaneous time when both
words are spoken. So, the MixSpeech interpolates the losses of
recognizing each textual label sequence instead.

3.3. MixRep: Hidden Representation Mixup

We propose MixRep to create artificial examples during train-
ing by mixing hidden representations of an E2E ASR model,
inspired by the previous methods [11, 27]. Reusing Rk defined
in Equation 1, MixRep interpolates sampled utterances i and j
frame-by-frame by their respective output from the k-th layer
of a model. For the textual label sequences Y , MixRep trains
the model to optimize the following loss,

LmixRep = λ ∗ L(fk,K(Rk), Yi)

+ (1− λ) ∗ L(fk,K(Rk), Yj),
(4)

where k is drawn uniformly from a set of eligible layers S on
each forward pass. When k = 0, since the hidden represen-
tations are mel-spectrograms from the input, MixRep naturally
extends the MixSpeech [27] method. We present the detailed
steps of our proposed method in Algorithm 1.

One key aspect of the mixup methods [10, 11] is their reg-
ularization benefits on the feature dimension, aside from data
augmentation. By making the interpolation weight in the mixup
of features and that of the reference labels match, the method
constructs a linear association between the input and output

Algorithm 1 Hidden Representation Mixup (MixRep)

1: Given a subset S ∈ {0, 1, . . . ,K}, a beta coefficient α, a
pre-processing function m(·)

2: procedure MIXUP(x, y, λ)
3: get batchSize from x
4: indArr← shuffle list [0, 1, . . . , batchSize− 1]
5: x← λ ∗ x+ (1− λ) ∗ x[indArr, :] // interpolation
6: ỹ ← y[indArr, :]
7: return x, ỹ
8: end procedure
9: for each batch do
10: λ ∼ Beta(α, α) // sample an interpolation weight
11: k ∼ Uniform(S) // sample a layer index
12: x← batch
13: for (index, layer) in layers do
14: if index = k then
15: x, ỹ ← MIXUP(x, y, λ)
16: end if
17: if index = 0 then
18: x← m(x) // for masked-based preprocessing
19: end if
20: x← layer.forward(x)
21: end for
22: backward loss← λ ∗ L(x, y) + (1− λ) ∗ L(x, ỹ)
23: end for

space of the neural network [10]. For Manifold Mixup [11],
the linearity is constructed for the hidden representation space.
This has shown to regularize the feature dimensions of the hid-
den representations by capturing salient low-dimensional vari-
ations and enforcing smooth classification boundaries for pre-
dictions made on the representations. Because MixRep regular-
izes the representation space but speech contains both time and
frequency information, we propose the following two configu-
rations of the MixRep method:

• Basic: does not apply any regularization along the time
axis of the input, similar to [27]

• Time enhanced: applies regularization along the time
axis of the input (e.g. time masking or warping, etc.).

To explore the Time enhanced approach, we investigate apply-
ing regularization to the input (line 18 of Algorithm 1). For
deep layers of the model (a large k), the representation encodes
much information due to a large receptive field. Masking rep-
resentations at a deep layer then impacts performance since the
masked content can be hardly recovered by the limited model-
ing capacity which follows. In order to recognize the missing
content from masking, applying time regularization to the input
is effective for helping the following attention-based layers to
learn strong representation that captures meaning than fine de-
tails from the input. We consider it is crucial for MixRep since
a good hidden representation space needs to be established.

4. Experimental Setup
To examine the effectiveness of MixRep, we conduct experi-
ments on ASR benchmarks that evaluate speech from reading
newspapers or conversations over the telephone. For the Con-
former architecture illustrated in section 4.2, we mix representa-
tions from the output of an encoder layer (i.e. after the final Lay-
erNorm [38]) and use the original positional encoding without
mixup. We establish SpecAugment [26] as our baselines, which
randomly and partially masks out time and frequency content
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from the input. By mixing the input acoustic feature, we recre-
ate the MixSpeech [27] method. For fair comparisons, we test
both the Basic and Time enhanced configurations of these meth-
ods in our experiments. We then apply the best configuration to
mix representations and compare the performance of MixRep
to the SpecAugment baseline and the effective MixSpeech.

4.1. Datasets

The Wall Street Journal (WSJ) [39] and Switchboard (SWB)
[40] datasets are investigated in our study. The WSJ dataset in-
cludes read speech with transcripts drawn from the newspaper.
The data is partitioned into 81 hours of training speech (si284),
1 hour for development (dev93), and 0.7 hour for evaluation
(eval92). The SWB dataset contains spontaneous speech from
two sides of a conversation over the telephone line. To simu-
late a low-resource setup, we randomly sample the training data
into two subsets totaling 40 hours and 80 hours. We use the
single-fold train split without any speed or noise perturbation.
We use the eval’2000 (LDC2002S09) dataset as evaluation for
SWB, where there are Switchboard (swb) and Callhome (chm)
parts that are unseen from the SWB training/validation set.

4.2. E2E ASR model

For ASR experiments, we follow recipes provided in the ES-
Pnet toolkit [41] to train an E2E ASR model for each dataset,
which is further referred to as the Default setup. Our models
use the listen, attend, and spell (LAS) architecture [1] that in-
clude the Conformer encoder [38] and the Transformer [42] de-
coder. We extract 80 mel-filterbanks and 3-dimensional pitch
features. The input is then passed through an optional SpecAug-
ment [26], followed by 2D-CNNs with a downsampling factor
of 4. The SpecAugment uses time warping with a window size
of 5, two frequency masks with F = 30, and two time masks
with T = 40, unless otherwise stated. The encoder has 12 lay-
ers. The decoder has 6 layers and connects to a softmax layer
followed by the cross-entropy (CE) loss. The model is trained
jointly by Ljoint = α ∗ Lctc + (1 − α) ∗ Lce [43], where α
is set to 0.3 in our study. The label smoothing weight is 0.1.
The model dimension is 256. The attention modules have 4 at-
tention heads and 2048 linear units with a dropout p = 0.1.
We use the warmup learning rate scheduler for all datasets. The
learning rate of WSJ peaks at 0.005 after 30k steps and that of
SWB peaks at 0.006 after 25k steps. We use character as output
to train the WSJ model and byte-pair-encoding (bpe) with 2000
subword units 2 for the SWB model. The number of elements
in a batch is 2.5M for WSJ and 10M for SWB. The gradients
accumulation is 6 times. We use a CNN kernel size of 15 for
WSJ and 31 for SWB. The WSJ is trained for 150 epochs and
300 epochs for SWB. Both experiments finish in 1 day using
two or four 2080Ti GPUs.

4.3. Parameters of MixRep

We use the beta distribution with a coefficient α = 2 for all ex-
periments using MixRep. This corresponds to a convex-shaped
probability distribution with mean equals 0.5 (i.e. E[λ] = 0.5)
and about half of the probability mass (56%) falls between 0.3
and 0.7. Following MixSpeech [27], we also use τ = 0.15
for WSJ (means 15% data of a batch uses the mixup), but we
find τ = 0.45 to be more suitable for SWB. Since searching
all subsets of the layers in the ASR encoder is infeasible (i.e.

2The bpe model is obtained from texts in full SWB training

212 = 4096 combinations), we employ the following heuristic:
we first apply MixRep to every single layer of the ASR encoder
and gather its performance; we then test the set S containing
the best-performing layer and the input layer. We report every
single-layer performance in section 5.4.

5. Results
5.1. Baselines and Previous Methods

Because the ESPnet default setting includes the SpecAugment,
we expect it to be the best and make it the baseline. To make
a fair comparison to the Time enhanced configuration, we in-
vestigate turning off frequency masking for SpecAugment. The
original MixSpeech is applied to the Transformer model, so we
recreate their method for the Conformer model. The results of
these systems are illustrated in Table 1.

Table 1: WER of baselines and previous methods. T and F re-
fer to SpecAugment regularization along the time and frequency
fimension, respectively. Default setup is explained in Section 4.

Dataset Model T F With LM (%) No LM (%)
dev eval dev eval

WSJ

Transformer
Espnet [41] ✓ ✓ 7.4 4.9 - -
MixSpeech [27] ✗ ✗ - 4.7 - -

Conformer
Default ✓ ✓ 7.1 4.7 11.2 8.9
Default ✓ ✗ 6.2 4.3 10.4 7.7
+ MixSpeech (Ours) ✗ ✗ 6.8 4.5 10.7 8.4
+ MixSpeech (Ours) ✓ ✗ 6.3 4.2 9.8 7.5

SWB 40hr

Conformer
Default ✓ ✓ - - 21.3 34.1
Default ✓ ✗ - - 18.5 31.6
+ MixSpeech (Ours) ✗ ✗ - - 20.7 33.0
+ MixSpeech (Ours) ✓ ✗ - - 18.9 30.6

SWB 80hr

Conformer
Default ✓ ✓ - - 13.5 23.3
Default ✓ ✗ - - 13.2 23.3
+ MixSpeech (Ours) ✗ ✗ - - 14.7 25.2
+ MixSpeech (Ours) ✓ ✗ - - 13.0 22.6

From Table 1, we can observe the frequency content from
the input is critical for low-resource setups. Comparing the
SpecAugment configurations within the default setups, turn-
ing off frequency masking improves performance overall. This
shows less significantly in the SWB 80hr setup (the model still
improves on the in-domain set, but stagnates on the out-of-
domain one). Comparing ourMixSpeech setups, we observe the
benefit of regularization on the time axis for the mixup. There
is at least 7% relative improvement on the evaluation sets across
all datasets, which verifies our hypothesis on the benefits of reg-
ularization on the time axis for mixup-based methods (see Sec-
tion 3.3). Finally, we turn off frequency masking in baselines
and use Time enhanced configuration for MixRep.

5.2. Read English speech

We compare MixRep to the best baseline and the input mixup
for read English ASR. The results of MixRep applied at each
layer are displayed in Figure 1. The experimental results are
illustrated in Table 2.

From Figure 1, we observe mixing up in the deep layers
(layer 7 to 10) gives good improvements over the baseline. This
finding somewhat corresponds to the previous study [28], which
finds middle to deep layers of a CNN-RNN E2E ASR model
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Table 2: WER on the WSJ corpus of proposed MixRep method.
S denotes the set of layers to be selected from (see Section 3.3).

Model With LM (%) No LM (%)
dev93 eval92 dev93 eval92

Conformer
SpecAug. baseline 6.2 4.3 10.4 7.7
+ MixRep S = {0} 6.3 4.2 9.8 7.5
+ MixRep S = {9} 6.1 4.1 9.4 7.2
+ MixRep S = {0, 9} 6.0 4.2 9.8 7.5

trained on LibriSpeech contain more phonetic information than
the early to middle layers. We hypothesize that certain layers of
the E2E ASR model encode information similar to the output
textual space, thus applying MixRep helps enforce this associa-
tion by the linear relationship imposed.

Figure 1: Per-layer improvement of MixRep compared to the
SpecAugment baseline on the WSJ corpus.

We observe a superior performance using MixRep from the
results presented in Table 3. Mixing up the 9-th layer represen-
tations outperforms the SpecAugment baseline by +6.5% rela-
tive and the input mixup by +4% on the evaluation set. When
decoding with the LM, the improvement is diminished slightly,
suggesting the benefits of the mixup may come from learning
more linguistic knowledge in the encoder representations.

5.3. Spontaneous telephony speech

We compare MixRep to other regularization methods for spon-
taneous telephony ASR. The results of MixRep applied at each
layer are displayed in Figure 2. The experimental results are
illustrated in Table 3.

Figure 2: Per-layer improvement of MixRep compared to the
SpecAugment baseline on the eval2000 using 40 hours of SWB.

From Figure 2, we observeMixRep achieves significant and
consistent gains over the SpecAugment baseline on the 40 hours
SWB, which proves MixRep to be an effective method for low-

Table 3: WER on the eval’2000 using 40- and 80 hours training
data subsets from the SWB corpus of proposed MixRep method.

Train Data Model With LM (%) No LM (%)
swb chm swb chm

SWB 40hr

Conformer
SpecAug. baseline 16.8 29.6 18.5 31.6
+ MixRep S = {0} 17.1 28.4 18.9 30.6
+ MixRep S = {5} 16.1 29.1 17.6 30.9
+ MixRep S = {0, 5} 16.3 27.7 17.7 29.5

SWB 80hr

SpecAug. baseline 12.0 21.8 13.2 23.3
+ MixRep S = {0} 12.1 21.1 13.0 22.6
+ MixRep S = {0, 5} 11.9 21.3 12.8 22.8
+ MixRep S = {0, 9} 11.8 21.2 12.8 22.5

resource training. Moreover, layer 5, being the strongest per-
formance on average, improves over the input mixup at the 0-th
layer. Compared to Figure 1, we notice stronger improvements
obtained by mixing up early to middle layer for the spontaneous
telephony speech. Moreover, we spot a similar downward trend
from layer 8 to layer 12, suggesting {8} or {9} can be a safe
choice for the hyperparameter S.

For the SWB 40hr dataset in Table 3, we verify applying
MixRep to multiple layers can achieve better performance than
a single layer. Mixing up both the 0-th layer and 5-th layer
representations outperforms the SpecAugment baseline by a
+6.6% relative on the Callhome set, suggesting complementary
learning behavior upon regularizing multiple layers for ASR.
This is similar to the previous finding for sound classification
[36]. For the SWB 80hr dataset in Table 3, we observe the
impact of training data size. The MixRep S = {0, 5} config-
uration leads the baseline by a +2.1% relative after the train-
ing data is doubled. This verifies the data augmentation aspect
of MixRep, but also shows the limitation of performance gain
when the training data becomes sufficient. On the other hand,
using the set S = {0, 9} outperforms S = {0, 5}, which indi-
cates the heuristic to select the optimal set S is not optimal and
is open for future work.

6. Conclusions
In conclusion, we presented MixRep in this paper, a method
to create artificial examples by interpolating hidden representa-
tions for E2E ASR training. We proposed an enhanced strategy
for mixup-based methods, where a regularization along the time
axis at the input is added. This is shown to be complementary
to the feature regularization effect of the mixup for ASR. By ex-
perimenting on both read and spontaneous telephony styles of
speech, we showed a significant and consistent improvement of
MixRep over other regularization techniques such as SpecAug-
ment and MixSpeech for low-resource ASR. We discussed the
impact of training data size and the heuristic for searching the
optimal set of eligible layers, which opens up future work.
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