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Some patients with COVID-19 show changes in signs and symptoms
such as temperature and oxygen saturation days before being positively tested
for SARS-CoV-2, while others remain asymptomatic. It is important to iden-
tify these subgroups and to understand what biological and clinical predictors
are related to these subgroups. This information will provide insights into
how the immune system may respond differently to infection and can further
be used to identify infected individuals. We propose a flexible nonparamet-
ric mixed-effects mixture model that identifies risk factors and classifies pa-
tients with biological changes. We model the latent probability of biological
changes using a logistic regression model and trajectories in the latent groups
using smoothing splines. We developed an EM algorithm to maximize the
penalized likelihood for estimating all parameters and mean functions. We
evaluate our methods by simulations and apply the proposed model to inves-
tigate changes in temperature in a cohort of COVID-19-infected hemodialysis
patients.

1. Introduction. The Coronavirus Disease 2019 (COVID-19) pandemic has had a pro-
found impact on humanity, and the emergence of new variants of severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) challenges healthcare systems worldwide. Much re-
search has examined changes in biological variables for diagnosis and prognosis during and
after an infection caused by the SARS-CoV-2 (Pimentel et al., 2020; Malik et al., 2021;
Chaudhuri et al., 2022). Early detection of SARS-CoV-2 infection based on changes in read-
ily available measurements such as temperature and arterial oxygen saturation during the in-
cubation period is crucial for isolating and treating contagious individuals (de Moraes Batista
et al., 2020; Wu et al., 2020; Kukar et al., 2021; Monaghan et al., 2021). Indicators of disease
severity and prognosis are essential to the clinical management of COVID-19 patients (Jiang
et al., 2020; Malik et al., 2021; Gallo Marin et al., 2021). Identifying potential changes in
an individual is challenging because the clinical presentation of COVID-19 varies greatly
from asymptomatic infection to critical illness (Harahwa et al., 2020; Souza et al., 2020;
da Rosa Mesquita et al., 2021). It is difficult to predict how the disease will manifest itself
in an individual. Identifying biological variables, their longitudinal patterns, variations be-
tween individuals, and associations with demographic and clinical characteristics would aid
the development of a risk-stratified approach to patient care.

Keywords and phrases: clustering, Coronavirus Disease 2019, COVID-19, EM algorithm, mixed-effects
model, mixture model, SARS-CoV-2, severe acute respiratory syndrome coronavirus 2, spline.
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FIG 1. The temperature profiles before confirmation time in 3,293 COVID-19 HD patients. Symptomatic (left)
and asymptomatic (right) groups were classified by the method in this paper. Red lines are the estimates of mean
functions, and shaded areas are 95% bootstrap confidence intervals.

Nearly 786,000 people in the United States have end-stage renal disease (ESRD). About
488,000 ESRD patients travel to clinics to receive life-sustaining hemodialysis (HD) treat-
ments and cannot shelter in place (USRDS, 2020; NIDDK, 2021). HD patients suffer from
a host of comorbidities, such as diabetes and cardiac disease, putting them at an increased
risk for complications from COVID-19. In addition, HD patients have reduced responses to
SARS-CoV-2 vaccines (Simon et al., 2021). Thus, there is a pressing need to identify po-
tential coronavirus carriers and develop procedures to curb the spread among HD patients.
Numerous studies (Bivona, Agnello and Ciaccio, 2021; Malik et al., 2021; Gallo Marin et al.,
2021) focus on the general population but only a few center on HD patients (Monaghan et al.,
2021). The thrice-weekly in-center HD treatments provide results of a large number of clin-
ical and treatment variables that are stored in patients’ electronic health records (EHRs) and
thus readily available for analysis. Utilizing EHRs, Chaudhuri et al. (2022) observed sig-
nificant changes in many biological variables due to COVID-19 infection. However, these
results estimated at the population level are not directly applicable to individual detection
and prediction. For each patient, we compute temperature change as the difference between
measured temperatures minus the average temperatures during a period free of COVID-19
infection. Figure 1 presents temperature change profiles before confirmation time in a cohort
of COVID-19 HD patients. Since the body temperature of some patients raised a couple of
days before being tested positive for COVID-19, these patterns are indicative of COVID-19
infection. Nevertheless, the temperatures of other patients remain relatively unchanged. We
observed similar patterns for other biological variables, including pulse rate, systolic blood
pressure, interdialytic weight gain, serum levels of albumin and ferritin, and counts of neu-
trophils and lymphocytes (Chaudhuri et al., 2022).

This paper focuses on estimating changes in biological and clinical indicators in in-center
HD patients with COVID-19. We have two objectives: (a) clustering patients into two groups:
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symptomatic and asymptomatic; and (b) associating the group probability with comorbidi-
ties and demographic/clinical characteristics. Existing methods for clustering longitudinal
and functional data (see Bouveyron and Brunet (2014) and Jacques and Preda (2014) for re-
views) do not apply since they were proposed only for objective (a). We proposed a novel
Nonparametric Mixed-Effects Mixture (NMEM) model to fulfill both objectives (a) and (b).
We model the probability of a latent group label using a logistic regression model and the
response variable when the latent group label is given using a nonparametric mixed-effects
model. Joo et al. (2009) considered a similar model with P-spline fixed effects only for the
characteristics of urban groundwater recharge. Lu and Song (2012) studied a Bayesian model
with B-spline fixed effects and random intercepts for the treatment effect of heroin use. The
main contributions of this paper are as follows: (1) modeling both the group mean and sub-
ject deviation trajectories using smoothing splines, which makes the proposed NMEM model
more flexible than those in Joo et al. (2009) and Lu and Song (2012). Our method extends
that in Ma and Zhong (2008) by allowing the probability to depend on covariates; (2) intro-
ducing an L regularization method for variable selection, which Joo et al. (2009) and Lu
and Song (2012) did not consider; and (3) investigating changes in temperature in a cohort
of COVID-19-infected hemodialysis patients using the proposed method. We note that the
proposed method is general, which is not limited to the application illustrated in this paper.

The rest of the paper is organized as follows. We introduce the NMEM model and estima-
tion procedure in Section 2. The real data analysis is reported in Section 3. The simulation
and comparisons with other methods are presented in Section 4.

2. Nonparametric Mixed-Effects Mixture Model.

2.1. Model Specification. Denote y;; as the observation from subject ¢ at time ?;; where
i=1,...,mandj=1,...,n;. Lety, = (yi1,. .., Yin,)" and t; = (t;1,...,tin. )T be vectors
of observations and time points from subject 7. Let u;; be a latent variable such that u;;, = 1 if
subject ¢ belongs to group k& and u;; = 0 otherwise. In this paper, for simplicity, we consider
two latent groups (e.g., symptomatic and asymptomatic). The extension to more than two
groups is straightforward. Denote x; as a vector of covariates from subject :. We assume the
following NMEM model:

o o exp(Bo + x! B8;)
(1) pin = Pluin =1) = 1 +exp(Bo + ] By)’

(2) Y = [k (ti) + Zigybiry + € ifu =1, k=1,2,

where p;1 is the probability of subject i belonging to group 1; fx(¢;) = (fx(ti1), fx(ti2), .-
fr(tin,))T is the mean function in group k, fy, evaluated at time points £;; Z;(1;) is the design

matrix for random effects; b, w N(0, Gy k)) are the random effects associated with subject
i nested within group k; €; ~ N(0,021,,,) are the random errors; and I,,, is an identity matrix
with dimension n;. We assume that u;x, b;(x), and €; from different subjects are independent.

The logistic regression model in equation (1) models the probability of subject ¢ belonging
to group 1 as a function of covariates, and the nonparametric mixed-effect model in equation
(2) models longitudinal trajectories of subject ¢ given the group label. Given a latent group,
since the trajectory of the mean function is usually unknown and could be nonlinear, we
model the shape of the mean function nonparametrically using a cubic spline. Specifically,
we scale time points into the interval [0, 1], denote the first and second derivative of a function
fas f" and f”, and assume that f, € WZ[0, 1] where

1
W2[0,1) = {f: f and f’ are absolutely continuous,/ (f"(t))%dt < 0o}
0
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is a Sobolev space. The space can be decomposed into two subspaces W2 [O 1] =Ho®
1, where Ho = {f: f" =0} and?—[lz{f: £0)=0, £/(0)=0, [} (f"(t) <oo} are
reproducing kernel Hilbert spaces (RKHS) with reproducing kemels (RK) Ro(s,t) =1+
k1(s)k1(t), Ri(s,t) = ka(s)ka(t) — ka(|s —t]), k1(t) =t — 0.5, kao(t) = (kQ( ) — 12) and
ka(t) = 5 (k‘%( ) — i (t) + 240) See Wang (2011) for more details.

The random effects bz(k) model deviation of subject ¢’s trajectory from the group mean.
Different models may be considered for different applications. For example, one may include
random intercepts and slopes. Since different subjects may have different nonlinear shapes
in our application, we will consider smooth random effects associated with cubic splines
(Wang, 1998a). Specifically, in addition to random intercepts and slopes, we will consider
a zero mean Gaussian process with a covariance function proportional to the RK Ry (s,t).
Details are given in Section 3.

2.2. Model Estimation. Denote parameters in the covariance matrix of random ef-
fects Gy as ;. We need to estimate [y, By, o2, f1, f2, ¢y, and Cy. Denote N =

> it n; as the total number of observations from all subjects. Let y = (I, ... yDl)T,
up = (U11,- .-, Um1)?, and Vi, = Zi(k)Gi(k)Zﬂk) + 021,,,. The complete data likelihood

of (y,u1) is calculated as p(y,u1) = p(ylui)p(u1) = ]_[Z 1 P(y;uin)p(uin ). We estimate
all parameters and nonparametric functions using the following penalized likelihood:

(Z [win (B0 + =] B1) —log (1 +exp (B + 2] B1))] +Ao|ﬁl|>

m ro - 1
(Zuﬂ " tog (2m) + 3 108 [Vt + 5 (wi — ()T Viy! (wi — Fu()| + N /0 (f{’>2dt>

(3

m (. _ 1 1
- (Z uiz | " log (2m) + 5 log [Vial + 5 (yi — fo(t:) T Vis! (i — falt))| + N /O <f§’>2dt) :

where the first part of the first line corresponds to logp(wuy), the L; penalty with tuning
parameter )\g in the second part of the first line is used to select covariates in x, the first parts
on the second and third lines correspond to log p(y|u1), and the second parts in the second
and third lines with smoothing parameters A\; and Ay control the smoothness of the mean
functions in two groups.

Since the latent variables w; are not observed, we use the EM algorithm to estimate the
parameters. The E-step of the EM algorithm involves taking the conditional expectation of
the likelihood conditional on the data and previously updated parameter values. Denote 6 =
(f1, f2, B0, 81,15 €, 02, Mo, A1, A2) as all the parameters to be estimated in both groups.
Note that u;, is Bernoulli. The conditional expectation of the latent variable u;y,

P(uy, = 110) P(y;|ui = 1,0)
S, Pluie = 106) Py, fui = 1,6)
where k € {1,2}, @ represents the estimated parameters from the last iteration, and

P(y,|ug, = 1,0) is a multivariate Gaussian density function of y; with mean fj(¢;) and

variance V.
The conditional expectation of /. becomes

E(le | y,0) =

“4) wi := P(uip = 1|y;,0)
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m . _ 7 1
- (Z wit | log (2m) + 2 log Vit | + 5 (w1 — f16)T Vir' (wi = f1(8))| + N /0 <f{’>2dt>

- _ni 1 1 T~r—1 ] 1 11\2

- (Zwi2 5 log(2m) + S log[Vig| + 5 (i — f2(t:))” Vig' (i — fa(ti)) +N)\2/0 (f2) dt)
i=1 - -

where w;s = 1 — w;1 and 6 represents the estimated parameters from the last iteration.

The M-step involves maximizing E(l. | y,0). We maximize equations (5) and (6) sep-
arately since they involve two disjoint set of parameters 61 = (5y,31, o) and Oy =
(fb f2a Clv CQ? 027 )\17 )\2) respectively.

Equation (5) is the penalized likelihood of a logistic regression model with an L; penalty.
We apply the existing method and software package in R (Friedman, Hastie and Tibshirani,
2010) to update the estimate of 81. We use 10-fold cross-validation to select the tuning pa-
rameter \g.

For equation (6), the mean functions f; and f> are modeled using cubic splines. Based on
the decomposition of the Sobolev space W[0,1] = Ho @ H1, the estimated mean functions
can be expressed as (Wang, 2011)

2 e
(7 Felti) = drdu(tig) + > eni(tiy), k=1,2,
v=1 =1
where ¢ (t) = 1 and ¢2(t) = t are basis functions of Hy, &(t) = Ri(z,t), and {z1,- -+, ze}
are e distinct points in the set {t;;, i=1,...,m, j=1,...,n;}. Let di, = (dy1,dp2)T, e, =
(ck1,---,cre)t,and (71,...,7n)" be the stacked vectors of all time points (¢11, ..., t1n, ;.- -,

tmn, )T. Denote S as an N x 2 matrix with the (¢, v)th entry ¢, (7,), R as an N x e matrix
with (¢,0)th entry Ry(7,,2;), and Q as an e x e matrix with the (I, k)th entry Ry(z;, zi). Let
‘W . be a block diagonal matrix of size N x N where the i-th block is wikVZ._kl. It is easy to
verify that the target equation (6) is proportional to

m
(8) Z (w,-l log ‘V11|) + (y — Sdl — Rcl)TW1 (y — Sd1 — Rcl) + N/\lc{ch

i=1

m
) —I—Z (wizlog | Via|) + (y — Sda — Rea)’ Wi (y — Sda — Rez) + N ol Qes.

i=1
We estimate the variance components (02,¢;,¢5) and components corresponding to the
mean functions (c1, d1, \1, ¢z, d2, \2) alternatively.

When fixing the variance components (02, ;,(5), we estimate the two mean functions
and their smoothing parameters in equation (8) and (9) separately. Each one is the penalized
least square for smoothing spline regression with correlated data. The minimizer of each
satisfies the following equations (Gu, 2013):

(10) STWiS  STW,R di _(STWry\
RTW SRTW, R+ NAQ ) \er )~ \RTWyy )” 7 77

Note that Wy, is fixed at this step. Let wikVi_kl = Pg,;Pik be the Cholesky decomposition
of wikakl and Py = diag(Px, -+ ,Pyk). Then Wy, = Png is the Cholesky decom-
position of W, = diag(wlkakl, e ,wmkV;j{). With the transformations (y;,, Sk, Ry) =
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Pg(y, S,R), the weight matrices Wy in equation (10) are absorbed into other vec-
tors/matrices and the equations reduce to those under the independent cases. Therefore, we
can apply computational methods in Gu (2013) for independent data to update ¢, and dj, with
smoothing parameters \; selected by the generalized maximum likelihood method. More re-
cent advances in computational methods can be found in Ma, Huang and Zhang (2015) and
Sun, Zhong and Ma (2021).

When fixing the mean functions, we estimate the variance components by minimizing (8)
and (9) together using the Limited-memory Broyden—Fletcher—Goldfarb—Shanno (L-BFGS-
B) algorithm (Byrd et al., 1995; Zhu et al., 1997). Since both equations contain the common
variance of random error o2, we profiled it out and minimized the profiled likelihood. We
provide the calculation of profiled likelihood in the Supplementary Material (Ma et al., 2023).

The initial estimates of variance components and the mean function are calculated using
the linear mixed effects (LME) form of smoothing splines. These estimates are then used for
the first inner iteration. The existing package nlme can be used for fitting these LME models.
Details can be found in Wang (1998b) and Xu and Wang (2021).

We summarize the entire EM algorithm in Algorithm 1. The stopping criteria are set as
follows. Let 8 represent all the estimated values except the penalty parameter \g and the

: 0] _ 167671 -
smoothing parameters A1 and A2. Let d;, = TR be the relative change of the
1
5l0.7) Fl0.I-1]), )
estimates at the Oth EM iteration and dﬁ)nze]r = ”0|9~[(9,17+2+NH be the relative change of
2
the estimates at the Zth inner iteration inside the Oth EM iteration. The inner iteration stops
if dfnﬂ, < Djpner and the EM iteration stops if dﬂ/l < Dgjps. The maximum number of

iterations are denoted as O,,q, and Z,,4,, respectively.

Algorithm 1: EM algorithm for fitting the NMEM model

Input : longitudinal data
Output: estimates of group probabilities, variance components, parameters of covariates and mean
functions: p;z, &k’ [72, ﬁg, ﬁl, fk
1 randomly assign subjects with probability 0.5 into two groups where group 1 contains n1 subjects and
group 2 contains no subjects;
2 set P;. = ny, /N forall ¢;

3 get the initial estimates of é’ k> &2 and fk using the method introduced in Wang (1998b) and Xu and

Wang (2021);
+ while {diS] > Dgpr} A {O <= Omaa}) do
5 E-step:
6 compute w;. as in equation (4) using the current estimates p;., ¢ k> 52 and fk;
7 M-step:
8 update ,@ using logistic regression as in equation (5) and calculate p;}. as in equation (1);
o | while {8 > Dyt AT <= Timaa}) do
10 solve equation (8) and (9) separately to update fj, with fixed é % and &2;
11 minimize the sum of equation (8) and (9) to update é 1 and &2 with fixed f using
L-BFGS-B;
12 end
13 end

—

~ A2 5 a7
4 return p;i, Cx. 67, By, B1, fi,

We regard the L penalty in the logistic regression as a variable selection process. After
variable selection, we rerun Algorithm 1 without the L; penalty and get the point estimate of
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all parameters. We construct bootstrap confidence intervals for the estimated mean functions
and all parameters. We note that even though we are only interested in two clusters for our
specific problem, the number of clusters in other applications is usually unknown. Model
selection methods, such as BIC described in Ma and Zhong (2008), can be used to select the
number of clusters.

3. Temperature Profiles in COVID-19-Infected HD Patients. This section applies our
methods to investigate temperature change profiles before COVID-19 confirmation in HD
patients. We consider 3,293 ESRD patients who received in-center HD treatment from Fre-
senius Medical Care and had positive PCR tests during 2020-01-01 and 2021-8-31. We align
patients at their first positive PCR test date and analyze their temperature measurements 30
days before the PCR test. The observation window is defined as -30 to 0, where 0 is the PCR
test date. The average number of observations for each patient is around 14. To focus on
the changing pattern, we subtract each patient’s temperature from the average temperature
between -60 to -31 days, a period free of COVID-19 infection. Figure 1 shows temperature
change profiles for all patients. Our goals are to identify two latent groups (symptomatic and
asymptomatic), estimate the probability of belonging to each group for each subject, and
associate the group probability with demographic and clinical characteristics.

Based on preliminary analyses, we consider an NMEM model with equation (1) and the
following model in place of equation (2):

(11) Yi = fr (t:) + bty 1 + bioeyti + iy (8i) + €, ifugpe =1, k=1,2,

where groups 1 and 2 correspond to patients with and without temperature changes,
f1 and fy are the mean functions of these two groups, b;i(), bio(k), and s;)(ti;) =
(Sigky (ti1)s - 5 Sig) (i, ))T" are random intercept, slope, and a vector of smooth random ef-
fects associated with subject i nested within group &, and €; ~ N(0,021I,,,) are random errors
independent of the random effects. Model (11) is a special case of the proposed model (2)
with Z;) = (1,5, 1n,) and by = (bi1(ky, biogiy» Sigey (Bi1)s -+ Sicry (tim, )T - We assume
unstructured covariance for the random intercept and slope. In addition to the random inter-
cept and slope, the smooth random effect s; ) (t) is a function of ¢ that allows a more flexible
deviation of subject ¢ from the population mean (Wang, 2011). We assume that si(k)(t) fol-
lows a zero mean Gaussian process with a covariance function equal to the reproducing kernel
of H1 (Wang, 1998a). Specifically, for the combined random effects, we assume that

bi1 (k)
M Uz'znter,k Ois,k 0
(12) by =| siwEn) | ~N[0,| ok 0Zpen :
: 0 ‘O-rzmn,le(ti’ti)

Sik) (tin,)

2 2
for k € {1,2}, where 07, 1. 05000 1>

dom intercept and slope, afwn,k is the variance of smooth random effect, and R;(t;,t;)
is an n; x n; matrix with the jkth entry as Ri(;;,t;). For model (11), we have ¢, =
(U?nter,m Tis,k> Oglope,lw G?Lon,k)’ ke {17 2}

Based on exploratory analysis and literature, we consider the following covariates for the
logistic regression model (1): gender, race, ethnicity, vintage, diabetes, hypertension, BMI
(calculated using height and the average weight after each dialysis treatment during the ob-
servation window), age on the treatment date, and vascular access type with three options:

and o, are variances and covariance of the ran-
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arteriovenous fistula (AVF), arteriovenous grafts (AVG), and central venous catheter (CV-
CATH).

For the stopping criteria, we set k1 = ko = 107°, Dgar = 1075, Dipner = 1075, O e =
100, and Z,,4; = 5. Different hyperparameters parameters lead to similar fits. After variable
selection, we refit the model with selected variables and without the L; penalty. To avoid
over-fitting, we set a lower bound for \;, as log;o(/N ;) = 0 where N = 46837. The variance
components in equation (12) are estimated using the covariance matrix of bivariate normal
where 051 = pOinter,10si0pe,1- All variances are estimated using natural log transformation,
and a tangent transformation is used for the correlation parameter p.

We perform the following diagnostics to evaluate the model assumptions. First, to check
the independence assumption between random errors in €; = (€1, - ,emi)T and model po-
tential temporal correlation within patient ¢, we consider a continuous AR(1) random er-
ror structure with covariance between €;;, at time ¢;;, and €;; at time t;; equals 02¢|ti’“_t“|.
We extend our estimation and computational methods to fit models with correlated ran-
dom errors. The estimate of ¢ equals 2.85 x 107297 with 95% bootstrap confidence interval
[6.02 % 107397 3.86 % 1038], indicating the autocorrelation is ignorable. Second, to check
the normality assumptions for random errors and random effects, we compute estimates of
random effects using the following formula in Wang (1998a):

Zikybigr) = Zi(k)éi(k)zg(k)vi_kl(y — Sdj, — Rey,),

where Gi(k),\?ik, &k, and ¢ are the estimates, and a threshold of 0.5 was used to cluster
patients into two groups. The estimated random effects and residuals’ QQ plots (not shown)
show no evidence of substantial violations of the normality assumptions.

We summarize estimates of coefficients associated with covariates, variance components,
and their 95% bootstrap confidence intervals based on 1000 samples from the fitted model in
Table 1.

We conclude that white and elderly patients were less likely to have a change in temper-
ature. Age can reflect the strength of the patient’s immune system. Elderly patients usually
have a weaker immune system and are thus less responsive to the infection.

With the probability threshold for clustering set as 0.5, our method identified 468 (14.21%)
out of 3,293 COVID-19 patients who experienced an increase in temperature before the posi-
tive PCR test. Figure 2 shows the estimated mean change functions and their 95% confidence
intervals in the two groups. We note that confidence intervals for the mean functions are nar-
row due to a large number of total observations. As we can see, in group 1, the increase in
temperature started about nine days and accelerated about four days before the PCR test date.

Table 2 shows several interesting characteristics that set patients with fever apart from
those who did not have fever. Two observations are striking: first, age is higher in patients
who did not have fever, and second, the rate of whites without fever was higher compared to
the ones with fever. The observation regarding age agrees with clinical experience. Fever is
less prevalent in the elderly (> 65 years) than in younger adults. The body temperature in the
elderly is physiologically lower compared to middle-aged adults. In frail, older adults, fever is
absent in 30 to 50 percent, even in serious infections such as pneumonia or endocarditis (Mus-
grave and Verghese, 1990; Henschke, 1993). The blunted febrile response in older adults is
mostly due to impairment in multiple systems responsible for thermoregulation (e.g., shiver-
ing, vasoconstriction, hypothalamic regulation, and thermogenesis by brown adipose tissue)
(Mackowiak, 1997). The impact of race on fever is less clear. Interestingly, in a study, fever
was less prevalent in blacks compared to whites with temporal measurement and more preva-
lent with oral measurement (Bhavani et al., 2022). In that study of patients with suspected
(non-COVID) infection, in 265 black patients with paired measurements within the first hour
of presentation, fever prevalence was 23.4% with temporal and 35.8% with oral measure-
ment. In 281 white patients, the prevalence was 27.8% with temporal and 26.0% with oral
measurement.



TABLE 1
Result of data analysis. Upper: estimates of variance components. Lower: estimates of coefficients in the logistic
regression model. We only report the variables selected by Lasso. We report the point estimate and 95%
bootstrap confidence intervals. The subscripts for variance components are defined in equation (12). The
subscripts for covariates with a “Y" indicate the patient has that comorbidity.

Parameters Estimate 95% CI

52 04136 | (0.4027,0.4239)

62 or1 0.0955 | (0.0571,0.1854)
62 oro 0.0620 | (0.0000,0.0752)
Gis.1 -0.0809 | (-0.1435,-0.0291)
Gis2 0.0135 | (-0.0268,0.0053)

G slope.1 0.5130 | (0.3793,0.6539)

G slope.2 0.0956 | (0.0467,0.1251)
6201 14.8065 | (9.0019,20.3593)
Ghon.2 0.2195 | (0.0000,1.0791)
Bo -1.0028 | (-1.6899,0.2948)

BW hite -0.3734 | (-0.625,-0.0432)
BDiabetesy | -0-1085 | (-0.3421,0.1256)
BeumI 0.0139 | (-0.0047,0.0268)
Bage -0.0107 | (-0.0203,-0.0023)
Bave 0.2057 | (-0.1251,0.5811)
Bovoarn | 01675 | (-0.5195,0.1863)
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FIG 2. Estimated mean functions of two groups and their 95% bootstrap confidence intervals.
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TABLE 2

Statistics of patients in different groups. The abbreviation "std" stands for standard deviation.

Variable All Temperature Increased | Temperature Unchanged
Female (%) 44 42 44
White (%) 64 55 66
Hispanic (%) 21 20 21
Diabetes (%) 52 49 52
Hypertension (%) 79 80 79
AVF (%) 67 68 67
AVG (%) 13 15 12
BMI (std) 30.84 (8.20) 31.78 (9.35) 30.68 (7.99)
Age (std) 61.69 (14.19) 59.58 (14.03) 62.04 (14.19)
Vintage (std) 4.64 (4.09) 4.69 (4.40) 4.64 (4.04)

4. Simulation Study. We conduct simulations to evaluate the performance of the pro-
posed method and compare it with the previous work in Lu and Song (2012). Lu and Song
(2012) considered the following model:

exp(fo + =7 B;)
Pluj =1) =pix = ;
k=) =Ph =5 oo + =)

y; = XM (t) + Xy + Zibigy + € ifug=1,

1=1,...,m,

(13)

where Xl[l] and X?} are the design matrices of fixed effects fi(t;) and oy, respectively, Z;y,
is the design matrix for the random effects b, (1), and the variances of random errors €;;, are
assumed to be different for different groups.

Our method differs from Lu and Song’s methods in both the model structure and estima-
tion approach. Lu and Song (2012) modeled the nonparametric functions f;’s using P-splines
while we use smoothing splines. Our proposed model includes a smooth random effect for
flexibility and allows different random effects in different groups. Lu and Song (2012) es-
timate parameters in a Bayesian framework while we estimate parameters using penalized
likelihood. In addition, our estimation procedure includes an L; penalty for variable selec-
tion.

We generate data using model (1) and (11), which was used in real data analysis in Section
3. We set m = 3293, n;’s are randomly selected from integers in the interval [16,31], and
parameters as their estimates when possible.

We generate latent variables u;; for ¢ = 1,--- ,m using equation (1). We include all nine
covariates (before variable selection) for the group probability in equation (1) and generated
them according to their estimated marginal distributions. Specifically, six categorical vari-
ables are generated according to their empirical ratios in each category. Three continuous
variables are generated from an exponential distribution with a rate parameter of 0.22 (vin-
tage), a Gamma distribution with a shape parameter of 15.58 and a rate parameter of 0.51
(BMI), and a normal distribution with a mean 61.69 and standard deviation 14.20 (age). Pa-
rameters in three continuous distributions are set to be the maximum likelihood estimates.
For the 3 coefficients in the logistic model (1), we set the intercept as the estimate in Table 1,
coefficients for gender, ethnicity, vintage, diabetes, hypertension, BMI, and vascular access
types as zero since they are either not selected in the variable selection process or the confi-
dence interval contains zero in the final estimation. The coefficients for race and age are set to
be the estimates in Table 1. The latent variables u;; for ¢ =1,--- ,m are generated according
to a Bernoulli distribution with probability given in equation (1).

We use equation (11) to generate responses y,. Since Lu and Song (2012)’s model does
not have a smooth random effect, we consider two simulation settings: with smooth random
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TABLE 3
Simulation results: average accuracy in the two settings. NMEM stands for our method, LS stands for LU and
Song’s method. We also report the average mean squared error (MSE) of estimated mean functions.

Without o2, | Witho? .
NMEM LS NMEM LS

Accuracy | 0.9341 | 0.9344 | 0.8239 | 0.6351
MSE f 0.0017 | 0.0018 | 0.0240 | 0.0494

MSE fo 0.0000 | 0.0001 | 0.0007 | 0.0158

2

effect where o2 1 = 14.8 (estimate from the real data), o7,

non o = 14 and without smooth

random effect where 0'72wn,1 = a?wnz = 0. In both settings, the values of all other parameters
apart from the variance of smooth random effect are set to be the estimates in the real data
analysis in Table 1. We first randomly generate the number of observations n; from a discrete
uniform distribution on [16, 31] for each subject 4, and then randomly select n; days between
-30 to 0 as ¢;. The values of mean functions fj, at each time point are set to be the estimates
in the real data analysis. Independent and identically distributed random errors are generated
from a normal distribution with mean zero and variance equals the estimate from the real data

analysis.

To fit model (13), we set sz as an identity matrix and X?] =0. Lu and Song (2012) used
the random permutation sampler approach in Frithwirth-Schnatter (2001) to deal with the
label-switching problem caused by the symmetric prior of the parameters in different com-
ponents. We use the variance of random slope for the permutation sampler in our simulations.

Each simulation is replicated 100 times. We use the same stopping criteria as in the real
data analysis. The comparison results are presented in Table 3, Figure 3 and Figure 4.

Both methods performed well when no smooth random effect existed. The clustering accu-
racy and MSEs of function estimates are almost identical. The existence of a smooth random
effect allows nonlinear individual departure from the population mean function, thus making
clustering and estimation more difficult. This is reflected in the smaller accuracy and larger
MSEs in Table 3. As expected, our method achieves better accuracy and lower MSEs than Lu
and Song’s method when smooth random effect existed. In general, our method has smaller
biases in the estimates of variance components (Figures 3 and 4).

We also conducted a simulation study to test the performance of variable selection. The
values of all parameters, including the variance of the smooth random effects, are set to be the
estimates in the real data analysis in table 1. For variable selection in the model (1), on aver-
age, 0.3 of the two non-zero parameters (not including the intercept) are mistakenly excluded
from the model, and 2.95 out of the eight zero parameters are mistakenly selected. The over-
selection behavior agrees with the previous literature (Tibshirani, 1996; Chetverikov, Liao
and Chernozhukov, 2021).

To evaluate the performance of the proposed method under sparse longitudinal data situa-
tion, in addition to generating n;’s from [16, 31], we consider two alternative settings where
n;’s are randomly generated from the sets of integers in the intervals [4, 8] and [6, 23] respec-
tively while keeping other parameters unchanged. Table 4 summarizes clustering accuracies
and mean squared errors under the three different settings for n;’s. The proposed method
performed reasonably well under sparse situations, and the performance improves as obser-
vations become denser.

We included the codes in the supplementary materials and posted them to GitHub
(https://github.com/HubDaniel/NMEM). A subset of data is available at the NIH
RADx Data Hub (https://radx—hub.nih.gov/).
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TABLE 4
Simulation results: average accuracy and the average mean squared error (MSE) of estimated mean functions.

. 2
With U?’LOTL k
Intervals for n; [4,8] [6,23] [16,31]

Accuracy 0.6446 | 0.7354 | 0.8239

MSE f1 0.0524 | 0.0394 | 0.0240

MSE fo 0.0026 | 0.0014 | 0.0007

S. Conclusion and Future Work. This article proposes a unified method for clustering
longitudinal trajectories and relating the subgroups to other biological and clinical predictors.
A flexible nonparametric mixed-effects mixture model is proposed to identify risk factors and
classify patients with a change in body temperature before the diagnosis of COVID-19. We
model the change in temperature using smoothing splines. We use penalized likelihood and
the EM algorithm to estimate the mean functions, variance components, and covariates as-
sociated with the clustering probability. A simulation study shows that our method performs
well and, under certain scenarios, outperforms existing methods. The results of data analysis
suggest that different demographic characteristics influence the immune system response and
provide an improved understanding of patient groups that may or may not experience a more
severe course following infection with SARS-CoV-2.

The identification of two clusters with respect to pre-diagnosis dynamics of body temper-
ature is novel and significant. It indicates the existence of biological phenotypes that may
react to infection differently during the COVID-19 incubation period. While the underlying
biological reasons are unclear, it will be of interest in future analysis to explore the clinical
course and patient outcomes after diagnosis of COVID-19 differ. One could hypothesize that
patients with a pre-diagnostic rise in temperature may have a more severe infection (e.g.,
higher virus load) or augmented inflammatory response (e.g., higher levels of interleukin-6)
that may translate into worse COVID-19 outcomes.

The identifiability of mixture models has received a great deal of attention, and some
general conditions were provided in the existing literature (Teicher, 1963; Holzmann, Munk
and Gneiting, 2006; Wang, Yao and Huang, 2014; Aragam et al., 2020; Wong, Zeng and Lin,
2022). However, these general conditions are complicated and difficult to verify. Specific
conditions for the identifiability of the proposed model warrant further research.
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(doi: ; .pdf). Profiled likelihood used for estimation.

Supplement B: Code-Independent random error
(doi: ; .zip). Code for the implementation with independent random error.

Supplement C: Code-CAR1 random error
(doi: ; .zip). Code for the implementation with CAR1 random error.
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