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Abstract We provide an analytical construction of the gluing map for stable affine vortices over

the upper half plane with the Lagrangian boundary condition. This result is a necessary ingredient in

studies of the relation between gauged sigma model and nonlinear sigma model, such as the closed or
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1 Introduction

Vortices are local minima of the Yang–Mills–Higgs functional. For example, given a Hermitian

line bundle L over a compact Riemann surface Σ, for a unitary connection A ∈ A(L) and a

smooth section u ∈ Γ(L), the Yang–Mills–Higgs functional reads

YMH(A, u) =
1

2

∫
Σ

[
|dAu|2 + 1

4ε2
(|u|2 − 1)2 + ε2|FA|2

]
dvolΣ, (ε > 0)

and the vortex equation, which is the equation of motion for this functional, reads

∂Au = 0, ∗FA − i

2ε2
(|u|2 − 1) = 0. (1.1)

Vortices appears in many areas of mathematics and physics, and have been generalized to the

case of nonabelian gauge groups and nonlinear target spaces. To the author the most important

appearance of vortices is in the two-dimensional gauged linear sigma model (GLSM), and the

motivation of this work mainly comes from this perspective, as is explained below.

Vortices share many similar features with J-holomorphic curves. So it is natural to con-

sider using vortices to define numerical invariants (similar to Gromov–Witten invariants) for a

symplectic manifold X with a Hamiltonian action by a compact Lie group K. In this setting

the equation is also called the “symplectic vortex equation”, which was firstly considered by

[3, 14, 15]. Moreover, such invariants (called gauged GW invariants or Hamiltonian GW invari-

ants, see for example [2, 15]) is closely related to the ordinary GW invariants of the symplectic

quotient X̄ = X//K. This relation is unveiled by looking at the “adiabatic limit” of the sym-

plectic vortex equation (i.e., ε → 0 in (1.1)). The first mathematical discussion of adiabatic

limit of the symplectic vortex equation and the relation between the gauged invariants of X and
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the GW invariants of X̄ was given in [9], preceded by a similar result in gauge theory in [5]. In

principle, using the symplectic vortex equation one can also define other symplectic invariants

of a Hamiltonian K-manifold, for example, gauged Floer homology (see [6, 36]). Such invariants

are related to their counterparts of X̄ defined by J-holomorphic curves, via the ε→ 0 adiabatic

limit.

One cannot expect the invariants for X and X̄ are trivially identified. This is because in

the adiabatic limit process, vortices converge to J-holomorphic curves modulo “affine vortex”

bubbles, which are solutions to the vortex equation over C. Different from the bubbling phe-

nomena in J-holomorphic curve theory or Donaldson theory, the bubbling of affine vortices is a

codimension zero phenomenon. This is because the affine vortex equation has only translation

invariance but not conformal invariance. Therefore, the invariants for X and X̄ (i.e., the gauged

Gromov–Witten invariants and ordinary Gromov–Witten invariants) are identified only after a

“coordinate transformation” defined by counting affine vortices. Such coordinate transforma-

tion is often referred to as the quantum Kirwan map, which is a deformation of the classical

Kirwan map H∗
K(X) → H∗(X̄). For Gromov–Witten theory, the principle of the quantum

Kirwan map has been explained in [16, 32, 39]. In the case that X is a projective manifold and

the K-action extends to an algebraic action by KC, the quantum Kirwan map is constructed in

[32]. While in the symplectic setting, Ziltener has his (paused-for-long) project on this subject

(see [37–39]).

We would like to mention the parallel developments in physics. Witten invented the frame-

work of gauged linear sigma model (GLSM) in [30], which provides a way of completing non-

linear sigma model (NLSM) in the ultraviolet direction. Consider the A-twisted topological

theories. In the infrared limit, GLSM converges to NLSM with instanton corrections, while

the corrections come from the counting of point-like instantons. With this intuitive picture,

this correspondence has been further developed in [13]. In the case when the superpotential of

GLSM is zero, the moduli spaces of the topological theories are just vortices and holomorphic

curves respectively, and the point-like instantons are exactly affine vortices.

One of the main motivations of the current work is from the project with Woodward, which

aims at extending the above picture to the open string case. In the adiabatic limit of vortices

over surfaces with boundary imposing Lagrangian boundary condition, there also appear affine

vortices over the upper half plane H . In the same spirit as in the closed case, counting affine

vortices over H with Lagrangian boundary condition leads certain nontrivial relations between

open-string invariants of Lagrangian submanifolds. Such an idea was firstly brought in by

Woodward [31] and a precisely stated conjecture can be found in the introduction of [26]. The

upshot of our project is to define an A∞ morphism, which we call the open quantum Kirwan

map, between two versions of Fukaya A∞ algebras associated to a Lagrangian brane in a GIT

quotient (see the paper [33]).

In the symplectic setting, in order to define the (open or closed) quantum Kirwan map

by virtual integration over the moduli space and in order to prove its properties, one has to

understand its compactification and the associated gluing. A Gromov type compactification

of affine vortex moduli has been constructed in [39] for the closed case, and the open case is

essentially covered by the main theorem of [26]. Compared to pseudoholomorphic curves, affine
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vortices have more involved types of degenerations. Energy concentration does cause bubbling

of holomorphic spheres or disks, similar to pseudoholomorphic curves. Besides, the energy can

also be separated to regions that are arbitrarily far away (w.r.t. the Euclidean metric), or escape

from infinity.

In this paper we construct the gluing map for stable H-vortices. We do not consider the

most general configurations of stable affine vortices, which may contain arbitrary bubble trees

of holomorphic disks or spheres in both X and X̄. Instead, we only glue those configurations

consisting of several affine vortex components connected by a single disk component. Such a

configuration is illustrated in Figure 1, which we call a “simple” configuration (see Section 5).

We also add marked points to stabilize the domains. We remark that this special case is the

only new piece which has not been understood and this special case is enough for the application

in [33]; moreover, the analysis can also be generalized to glue a general configuration, and can

be used to construct any Kuranishi type local chart.

Our main theorem is the following, whose precise version is Theorem 5.7.

Theorem 1.1 Let (X,ω, μ) be a Hamiltonian K-manifold equipped with a K-invariant, ω-

compatible almost complex structure J . Assume that 0 is a regular value of μ and K acts freely

on μ−1(0). Let L ⊂ X be a K-invariant embedded Lagrangian submanifold which is contained

in μ−1(0).

Let l, l ≥ 0, l + l ≥ 1. Let Ml,l(H ;X,L) be (an open set of) the moduli space of gauge

equivalence classes of perturbed stable affine vortices over H with l interior marked points and l

boundary marked points, equipped with a natural topology. Let ♣ be a simple combinatorial type,

which labels a stratum M♣(H ;X,L) ⊂ Ml,l(H ;X,L). Here the perturbation is parametrized

by an open subset of a finite dimensional real vector space Wper as well as the deformation space

of the underlying marked curves.

Given [w•,v•] ∈ M♣(H ;X,L), under a certain transversality assumption, there exist an

open neighborhood U♣ ⊂ M♣(H ;X,L) of [w•,v•], a real number ε0 > 0, and a continuous map

Glue : U♣ × [0, ε0) → Ml,l(H ;X,L)

which is a homeomorphism onto an open subset.
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Figure 1 The degeneration of affine vortices over H towards a simple stable affine vortex. The

picture on the left can also represent the degeneration of solutions to other types of equations

satisfying translation invariance and energy quantization property
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One of the technical difficulties in the analytical study of affine vortices is from their mixed

geometric behaviors. In a region with large area, the image of u is close to the level set μ−1(0),

where the tangent bundle TX splits into HX ⊕GX . Here GX is the direction of group action,

and HX is roughly the tangent bundle of the symplectic quotient. In the HX direction u is close

to a holomorphic curve while the behavior in the GX direction is different. Therefore, especially

for gluing, one has to be very careful in choosing the weighted Sobolev norms which match the

behaviors in the two orthogonal directions. Another difficulty is due to the noncompactness of

the domain; although there has been a great amount of details for adiabatic limit over compact

Riemann surfaces in [9], we have to extend almost everything to the noncompact setting. One

novelty of this paper is to use a special weighted Sobolev norms for the involved functional

analysis (see the discussion at the beginning of Subsection 3.2). This choice of norm releases

us from heavy symbol manipulations in doing concrete estimates.

1.1 Extensions and Applications

As we have explained, the immediate motivation for studying the gluing of affine vortices is from

the project of the author with Woodward [33], which aims at defining the open quantum Kirwan

map. Moreover, using the technique and analytical setting of this paper, one can construct the

gluing map for affine vortices over C, and the gluing map w.r.t. the adiabatic limit. This would

be an important step towards the resolution of Salamon’s quantum Kirwan map conjecture in

the symplectic setting, initiated in [37, 39].

In symplectic geometry and gauge theory there are other types of objects which are trans-

lation invariant rather than conformal invariant. The figure 8 bubble, appeared in the strip

shrinking limits of pseudoholomorphic quilts (see [1, 28, 29]), is such an example. There are

also infinite dimensional examples, such as the anti-self-dual equation over C × Σ (see [27]).

We hope that the technique of this paper can be used in the gluing construction for other

translation invariant equations.

In the joint project with G. Tian (see [20–23]), we are developing a mathematical theory

of gauged linear sigma model. To prove the relation between GLSM correlation functions and

GW invariants, we have to consider the gluing of point-like instantons. As we have indicated in

this introduction, these instantons are generalizations of affine vortices with extra terms coming

from a superpotential W ; or in other words, solutions to the gauged Witten equation over C,

which is translation invariant. We will carry out this gluing construction in the future and

certain strategies and technical results from this paper can definitely be useful in that case.

2 Moduli Space of Domain Curves

Recall that the pseudoholomorphic curve equation is invariant under conformal (biholomorphic)

domain automorphisms. Therefore the study of the moduli space of stable marked complex

curves (the Deligne–Mumford space) Mg,n is crucial in Gromov–Witten theory. On the other

hand, the affine vortex equation (over A = C, the complex plane, or A = H , the upper half

plane) is only invariant under translations of the domain. This type of symmetry corresponds

to a different moduli of marked curves, i.e., moduli spaces of configurations of n marked points

in A modulo translations, and their compactifications.

Special cases of such moduli spaces have been given particular names. When A = H and
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all markings are on the boundary, such a moduli space is Stasheff’s multiplihedra Jn appeared

in [18] where the identification was shown by Ma’u–Woodward [11]. When A = C, such a

moduli space was called by Ma’u–Woodward a complexified associahedron. In this paper we

need to treat a more general situation, namely, A = H with not only boundary markings but

also interior ones. However, we only give a modest treatment, which provides the necessities to

study the gluing problem of affine vortices in an ad hoc way. The upshot is to give a convenient

local universal family of a particular singular configuration.

2.1 Deformation of the Domain

Let l, l ≥ 0 such that l + l ≥ 1. Let Nl,l be the moduli space of configurations of l + l distinct

points in H , such that l of them are in the interior and l of them are on the boundary. We use

y := (y1, . . . , yl; y1, . . . , yl)

to denote such a configuration. Two configurations are regarded equivalent and representing

the same point in Nl,l if they are related by a translation t : H → H .

There are two other moduli spaces which we need to discuss. For k ≥ 1, there is a moduli

space Nk of configurations of k distinct points in C, with equivalence induced from complex

translations. A representative is just denoted as

x = (x1, . . . , xk).

For m,m ≥ 0 with 2m +m ≥ 2, we also have the moduli space Mm,m of marked disks with

m+ 1 boundary markings and m interior markings. An element of Mm,m is represented by a

configuration

z := (z1, . . . , zm; z1, . . . , zm)

where zi ∈ IntH and zj ∈ ∂H . The (m+ 1)-st marked point is identified with the infinity of

H . Two configurations are equivalent, i.e., they represent the same point in Mm,m if they are

related by a Möbius transformation of H that fixes the infinity.

Notation 2.1 Whenever we have a collection of objects ai (without underline) indexed by

i = 1, . . . ,m and a collection aj (with underline) indexed by j = 1, . . . ,m, in many situations,

for convenience, we will denote

ai = ai−m, ∀i = n+ 1, . . . ,m+m.

We fix notations for tangent spaces of these moduli spaces. For l, l ≥ 0 with l+ l ≥ 1, define

Wl,l :=

{
t = (t1, . . . , tl; t1, . . . , tl) ∈ C l × R

l

∣∣∣∣Re
l∑
i=1

ti +

l∑
j=1

tj = 0

}
.

It can be identified with Cl × R
l modulo real translations. For k ≥ 1, define

Wk :=

{
s = (s1, . . . , sk) ∈ Ck

∣∣∣∣
l∑

j=k

sj = 0

}
.

It is identified with Ck modulo complex translations. ThenWl,l can be identified with a tangent

space of Nl,l and Wk is identified with a tangent space of Nk.
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The tangent spaces of Mm,m cannot be uniformly described. However, fix a representative

z of a point [z] ∈ Mm,m, one can specify a real codimension 2 linear subspace Wm,m(z) ⊂
Cm × R

m, such that for all q ∈ Wm,m(z) with |q| small, z + q gives a parametrization of a

neighborhood of [z] inside Mm,m.

We consider degenerations of configurations in Nl,l. The moduli space Nl,l can be compact-

ified by adding configurations that corresponding to cases when some points coming together or

going away from each other (in different rates), and the compactified moduli space is denoted

by N l,l. In this paper we do not need to consider compactifications of Nk or Mm,m.

We do not consider all possible degenerations of points of Nl,l, but will fix a “simple”

stratum. Suppose we have a decomposition

(♣) l =

m∑
i=1

ki +

m∑
j=1

lj , l =

m∑
j=1

lj , (ki ≥ 0, lj ≥ 0, lj ≥ 0), (2.1)

satisfying the stability condition

2m+m ≥ 2; ki ≥ 1, ∀i = 1, . . . ,m; lj + lj ≥ 1, ∀j = 1, . . . ,m.

Then this decomposition, denoted by ♣, gives a stratum N♣ ⊂ N l,l. Every point of N♣ is

represented by a collection of configurations

x = (x1, . . . ,xm;y1, . . . ,ym; z).

Here xi represents a point Nki , yj represents a point of Nlj ,lj
, and z represents a point of

Mm,m.

We fix a point [x•] ∈ N♣ and a representative x• = (x•,1, . . . ,x•,m;y•,1, . . . ,y•,m; z•). Then

we can identify the tangent space at [x•], denoted for short by Wdef , with the product

m∏
i=1

Wki ×
m∏
j=1

Wlj ,lj
×Wm,m(z•).

A vector of Wdef is denoted by a and for |a| small enough, denote by

x• + a (2.2)

the deformed configuration defined in the obvious sense.

2.2 Local Model for Degeneration

The moduli N l,l admits a universal curve

U l,l

��
N l,l

. (2.3)

We do not need the full description of U l,l, but only consider it near the point [x•]. Introduce

the gluing parameter ε ≥ 0. We omit the • from the notations temporarily.

For ε = 0, set x0(a) = x+ a as in (2.2). For ε > 0, if z = (z1, . . . , zm; z1, . . . , zm), define

zi,ε :=
zi
ε
, i = 1, . . . ,m+m. (2.4)
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Define a collection of l + l points xε of H where the points in the interior are

(zi,ε + xi,γ , zj,ε + yj,ν)
1≤j≤m, 1≤ν≤lj
1≤i≤m, 1≤γ≤ki ; (2.5)

the points on the boundary are

(zj,ε + yj,ν)1≤j≤m, 1≤ν≤lj . (2.6)

More generally, if a = (s1, . . . , sm, t1, . . . , tm, q) is a deformation of the singular curve, then

xε(a) is the collection of l+ l points, where the points in the interior and on the boundary are
(
zi + qi
ε

+ xi,γ + si,γ ,
zj + qj

ε
+ yj,ν + tj,ν

)1≤j≤m, 1≤ν≤lj

1≤i≤m, 1≤γ≤ki
, (2.7)

(
zj + qj

ε
+ yj,ν + tj,ν

)
1≤j≤m, 1≤ν≤lj

. (2.8)

It is easy to see the following fact.

Lemma 2.2 Given [x] ∈ N♣ and a representative x, for r > 0 small enough, the map

[0, r)×W r
def → N l,l (where W

r
def ⊂Wdef is the radius r ball) defined by

(ε,a) 
→ [xε(a)]

is a homeomorphism onto an open neighborhood of [x].

Remark 2.3 Although the singular domain can have arbitrarily many components, but there

is only one gluing parameter, and, turning on ε resolves all nodes at the same time.

Notice that on every marked curve (H ,xε(a)), there is the standard complex structure j•

and the standard volume form ds ∧ dt.
2.3 An Equivalent Local Model

Later when we do the pregluing construction, it is more convenient to fix the positions of the

nodal points z•,i on the disk component and regard the deformation of the marked disk as

deformations of complex structures over a compact region disjoint from the nodal points and

∞. This is also the usual approach in gluing holomorphic curves in the symplectic setting when

involved with deformations of complex structures.

Let V• ⊂ Mm,m be an open neighborhood of the marked disk [z•]. Let q ∈ V• be the

parameter. Then we have choose a family of representatives

(H , zq) = (H , zq,1, . . . , zq,m, zq,1, . . . , zq,m).

Choosing V• to be sufficiently small, there exist a smooth family of diffeomorphisms ϕq : H →
H such that ϕ• = IdH and satisfying the following conditions.

(a) There exists a small r > 0 such that for all q ∈ V•, the restriction

ϕq : Br(zq,i) → H , i = 1, . . . ,m+m

is the (unique) translation onto Br(z•,i).

(b) There exists a large R > 0 such that BR contains all markings and the restriction of ϕq

onto the complement CR := H \BR is always the identity.

We regard ϕq as a map between marked curves

ϕq : (H , zq) → (H , z•).
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Then ϕq pushes forward the standard Kähler structure (j•, ds ∧ dt) another one, denoted by

(jq, σqds ∧ dt), which restricts to the standard ones in Br(z•,i) and CR.

Now we provide another universal family for the moduli N l,l in this perspective. Given a

gluing parameter ε > 0, let sε : H → H be the rescaling z 
→ εz and

jεq = s∗ε jq, σεq = s∗εσ
ε
q.

Further, since these rescaled structures are the standard ones in a neighborhood (of radius

proportional to ε−1) of
z•,i
ε , using the same construction as before we can still have the position

of the markings as in (2.5) and (2.6). Moreover, the diffeomorphism ϕεq := s∗εϕq maps the set

of markings of the form (2.7) and (2.8) to the set of markings of the form (2.5) and (2.6), and

pushes forward the standard Kähler structure to (jεq, σ
ε
qds ∧ dt).

Notation 2.4 The diffeomorphism ϕεq provides global holomorphic coordinates on (H , jεq)

which differ from the standard one near z•,i and near ∞ by translations. We can denote this

global coordinate by zεq. However, in most cases we still use z to denote this global coordinate

on H although it depends on q and ε.

3 Recollections of Affine Vortices

In this section we review the basic knowledge about affine vortices, and explain how affine

vortices can degenerate through two examples.

3.1 Preliminaries

We first recall the basic knowledge of vortices. Let K be a compact Lie group, with Lie algebra

k and complexification G. Let (X,ω) be a symplectic manifold. Assume there is a Hamiltonian

K-action on (X,ω), with a moment map

μ : X → k∗.

Choose once and for all an Ad-invariant metric on k, so μ is viewed as k-valued. For a ∈ k, let

Xa ∈ Γ(TX) be the associated infinitesimal action. Our convention is that a 
→ −Xa is a Lie

algebra homomorphism.

We make the following fundamental assumption.

Hypothesis 1 0 ∈ k is a regular value of μ and K acts freely on μ−1(0).1)

Let J be a K-invariant, ω-compatible almost complex structure. Then gX(·, ·) := ω(·, J ·)
is a Riemannian metric. We fix a K-invariant neighborhood UX of μ−1(0) such that K acts

freely on UX . Let GX ⊂ TX|UX be the distribution spanned by Xa and JXa for all a ∈ k.

Let L ⊂ X be an embedded K-invariant Lagrangian submanifold that is contained in

μ−1(0). Then L̄ := L/K is an embedded Lagrangian submanifold of X̄. We need a special type

of Riemannian metric which does not necessarily coincide with gX .

Lemma 3.1 There exists a (J, L, μ)-admissible Riemannian metric hX on X, i.e.,

(a) hX is K-invariant.

(b) J is hX-isometric.

(c) J(TL) is orthogonal to TL w.r.t. hX .

1) Usually one imposes conditions on (X,ω, μ) to ensure C0-compactness of moduli spaces. The C0-compactness

property is not necessary in constructing the gluing map.
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(d) Tμ−1(0) is orthogonal to JXa w.r.t. hX , for all a ∈ k.

(e) L is totally geodesic w.r.t. the Levi–Civita connection of hX .

(f) μ−1(0) is totally geodesic w.r.t. the Levi–Civita connection of hX .

Proof The idea of the proof essentially comes from the proof of [7, Lemma A.3], whose method

was also used in proving [26, Lemma A.3]. Notice that if we obtain a metric hX satisfying (b)–

(f), then the metric obtained by averaging hX over K satisfies (a)–(f). Hence we do not need

to consider K-invariance in the construction.

By [26, Lemma A.3] there exists a metric h̃X on X satisfying (a)–(e) (notice that the com-

pactness conditions of the symplectic quotient and L assumed in that paper are not necessary,

since the construction of hX is purely local). Consider an arbitrary metric h′X whose values at

μ−1(0) coincide with the values of h̃X at μ−1(0) and hX(v, w) := 1
2 (h

′
X(v, w) + h′X(Jv, Jw)).

Then any such hX still satisfies (a)–(d) and L is totally geodesic inside μ−1(0). The condition

that μ−1(0) being totally geodesic w.r.t. hX is equivalent to a condition on the 1-jet of hX

at μ−1(0), which is equivalent to another condition on the 1-jet of h′X at μ−1(0), via the re-

lation between hX and h′X . This condition on the 1-jet of h′X can be solved at least in local

coordinates. Hence locally one can always find such metric hX .

Moreover, the conditions (a)–(f) are intrinsic and they continue to hold under convex com-

binations and under multiplications by cut-off functions β whose derivative in the normal direc-

tion to μ−1(0) is zero. Then patching the local constructions above using a partition of unity

provides a metric satisfying the desired properties. �
Let us fix such a metric hX . Let HX be the hX -orthogonal complement of GX . Then

TX|UX = HX ⊕GX is a K-invariant splitting. Item (b) above implies that HX is J-invariant;

Item (d) above implies that HX |μ−1(0) ⊂ Tμ−1(0). It is also easy to see that HX |μ−1(0) is the

gX -orthogonal complement of GX |μ−1(0). Hence HX |μ−1(0) is independent of the choice of hX .

It defines a connection on the K-bundle μ−1(0).

Let A be either C or H with a given global holomorphic coordinate z = s+ it and volume

form ds ∧ dt. We use Σ to denote an open subset of C or H .

Definition 3.2

(a) A smooth gauged map from Σ to X is a smooth map v = (u, φ, ψ) : Σ → X × k × k.

We often identify the triple (u, φ, ψ) with a pair (u, a) where a = φds+ψdt ∈ Ω1(Σ, k), and still

abbreviate the pair by v.

(b) Given a smooth gauged map v = (u, φ, ψ), we denote

dav = ds⊗ vs + dt⊗ vt, where vs = ∂su+ Xφ(u), vt = ∂tu+ Xψ(u).
(c) Let σ : Σ → (0,+∞) be a smooth function. We denote by M̃(Σ, σ;X,L) the set of

smooth solutions v = (u, φ, ψ) to the equation

vs + Jvt = 0, ∂sψ − ∂tφ+ [φ, ψ] + σμ(u) = 0, u(∂Σ) ⊂ L. (3.1)

This is the symplectic vortex equation and solutions are called vortices. We always require the

boundedness condition on vortices, namely, the image u(Σ) has compact closure in X and

the energy of v, defined as follows, is finite:

E(v) :=
1

2
[‖vs‖2L2 + ‖vt‖2L2 + ‖∂sψ − ∂tφ+ [φ, ψ]‖2L2 + ‖μ(u)‖2L2 ].
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Here the L2-norm is defined with respect to the conformal metric on Σ corresponding to the

volume form σds ∧ dt (and any K-invariant metric on X, for example hX or gX). When

∂Σ = ∅, we abbreviate the set by M̃(Σ, σ;X); when σ is understood from the context, abbreviate

as M̃(Σ;X,L) or M̃(Σ;X).

(d) An affine vortex over C (usually called a C-vortex) is an element of M̃(C;X), i.e.,

smooth solutions v = (u, φ, ψ) : C → X × k× k to the affine vortex equation

∂su+ Xφ(u) + J(∂tu+ Xψ(u)) = 0, ∂sψ − ∂tφ+ [φ, ψ] + μ(u) = 0. (3.2)

An H-vortex in (X,L) (H-vortex for short) is an element of M̃(H ;X,L), i.e., smooth solutions

v = (u, φ, ψ) satisfying the same equation over H with the boundary condition u(∂H) ⊂ L.

(Later we will consider a perturbed equation.)

Remark 3.3 (a) Equation (3.1) is a special case of the symplectic vortex equation introduced

by Mundet [14, 15] and Cieliebak–Gaio–Salamon [3], which can be written in a coordinate-free

way over a Riemann surface Σ, where the variables are connections of a K-bundle over Σ

and sections of the associated fibre bundle. Here we only consider affine vortices and skip the

coordinate-free treatment.

(b) Vortices with Lagrangian boundary conditions are also studied in [34] for K = S1, and

in [6] for different types of Lagrangians (not K-invariant).

Equation (3.1) has a gauge symmetry. If v = (u, φ, ψ) is an A-vortex and g : A → K is a

gauge transformation, then

g · v := (g · u,Adg(φ)− (∂sg)g
−1,Adg(ψ)− (∂tg)g

−1)

is also an A-vortex and we say the two affine vortices are gauge equivalent 2). Let M(Ω, σ;X,L)

be the quotient of M̃(Ω, σ;X,L) by gauge equivalence.

There is also a translation symmetry of (3.2). Suppose v = (u, φ, ψ) is an A-vortex. There

is a group of translations isomorphic to A, such that for any t ∈ A, t · v := (u ◦ t, φ ◦ t, ψ ◦ t) is
also an A-vortex. We regard t · v being equivalent to v.

3.2 Linear Theory of Affine Vortices

In previous works on affine vortices, for example, [25, 26], to define weighted Sobolev norms on

affine spaces, we choose parameters p and δ such that

p > 2, 1− 2

p
< δ < 1. (3.3)

In this paper, it will be useful and notationally convenient to choose more special values. We

choose the following values of (p, δ) which satisfy (3.3):

2 < p < 4, δ = δp := 2− 4

p
. (3.4)

3.2.1 Banach Manifolds

For A being either C or H , choose a smooth weight function ρA : A → [1,+∞) such that

outside the unit disk, ρA(z) = |z|. For an open subset U ⊂ A and a function f : U → R, define

‖f‖L̃p(U) =

[ ∫
U

|f(z)|p[ρA(z)]2p−4dsdt

] 1
p

, ‖f‖W̃k,p(U) :=

k∑
l=0

‖∇lf‖L̃p(U).

2) The notation indicates that the group of gauge transformations acts on the left
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This is the weighted norm W k,p,δp for δp given by (3.4).

Consider a smooth affine vortex v = (u, φ, ψ). Following the analytic set-up of [39] and [25],

we introduce the following norm on sections ξ = (ξ, η, ζ) ∈W 1,p
loc (U, u

∗TX ⊕ k⊕ k) by

‖ξ‖L̃1,p
m

:= ‖ξ‖L∞ + ‖∇aξ‖L̃p + ‖dμ · ξ‖L̃p + ‖dμ · Jξ‖L̃p + ‖η‖L̃p + ‖ζ‖L̃p . (3.5)

Here the symbol “m” stands for “mixed”. Notice that this norm is gauge invariant. Let

W 1,p
loc (U, u

∗TX ⊕ k⊕ k)L ⊂W 1,p
loc (U, u

∗TX ⊕ k⊕ k)

be the subspace of sections (ξ, η, ζ) satisfying ξ|∂U ⊂ TL and ζ|∂U = 0. Let

B := Bv ⊂W 1,p
loc (A, u

∗TX ⊕ k⊕ k)L

be the subspace of sections whose ‖ · ‖L̃1,p
m

-norm are finite. It was proved in [39] and [25] that

every B is a Banach space.

The norm (3.5) deserves a more geometric presentation in a suitable gauge. Denote

ΛK = {a ∈ k | exp(2πa) = IdK}.
When A = C, essentially by [9, Proposition 11.1], there exist λ ∈ ΛK and x ∈ μ−1(0) such

that, via a suitable smooth gauge transformation,

lim
r→∞ eλθu(reiθ) = x.

When A = H , by [26, Theorem 2.8], there exists x ∈ L such that via a suitable smooth gauge

transformation,

lim
r→∞u(z) = x.

The difference between C-vortices and H-vortices in the asymptotic behavior is that at infinity,

H has trivial topology but not C. The element λ ∈ ΛK is called the holonomy of v at infinity.

To unify the notations, we say the holonomy of an affine vortex over H at infinity is λ = 0.

We have a refined statement on the asymptotic behavior of the affine vortices.

Lemma 3.4 Let v = (u, a) be a smooth affine vortex over A. Assume δ ∈ (1 − 2
p , 1). By

applying a suitable gauge transformation of class W 2,p
loc , the following condition holds.

• There exist x ∈ X, λ ∈ ΛK (which is zero if A = H) and ξ̌ ∈W 1,p
loc (CR, TxX) whose limit

at ∞ is zero, such that if we define (ǔ, ǎ) = eλθ · (u, a) over CR, the complement of the

radius R open disk centered at the origin, then ǔ|CR = expx ξ̌ and

‖ǎ‖W 1,p,δ(CR) + ‖∇ξ̌‖Lp,δ(CR) + ‖dμ(x) · ξ̌‖Lp,δ(CR) + ‖dμ(x) · Jξ̌‖Lp,δ(CR) <∞.

Proof It is essentially proved in [25]. Indeed [25, Lemma 6.1] implies that after a gauge

transformation, we have

‖ǎ‖W 1,p,δ(CR) + ‖∇ξ̌‖W 1,p,δ(CR) <∞. (3.6)

On the other hand, when |ξ̌| is small, dμ(x) · ξ̌ is roughly comparable to |μ(u)| whose Lp,δ-
bound follows from the energy decay property of affine vortices. Lastly we can do a further

gauge transformation to make dμ(x) · Jξ̌|CR ≡ 0 (similar gauge transformation is used in the

proof of [25, Lemma 6.2]). The last gauge transformation is very small and does not alter the

finiteness of (3.6). In particular we obtain the desired finiteness. �
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The asymptotic behaviors of v implies that for R large, u(CR) ⊂ UX . Then for every

ξ = (ξ, η, ζ) ∈ Bv, we can decompose ξ into the HX component ξH and the GX component ξG.

Lemma 3.5 Suppose v is an affine vortex (of class W 1,p
loc ) satisfying the condition of Lemma

3.4 for some δ > δp and ξ = (ξ, η, ζ) ∈ B = Bv. Then

(a) There exists ξH(∞) ∈ HX,x such that

lim
z→∞ eλθξH(z) = ξH(∞), lim

z→∞ ξG(z) = 0.

(b) The correspondence ξ 
→ ξH(∞) is bounded w.r.t. the norm ‖ · ‖L̃1,p
m

.

(c) If there are ξγ ∈ B, γ = 1, 2 such that γH1 (∞) = γH2 (∞), then

eλθξH1 − eλθξH2 ∈ Lp,δp−1(CR, u
∗HX).

In other words, after subtracting the limit at infinity, the HX -component of eλθξ is of class

W 1,p,δc w.r.t. the cylindrical metric, where δc = δp − 1 + 2
p > 0.

Proof The existence of limits of eλθξH at ∞ follows from the Hardy-type inequality (see [39,

Appendix A.4]), which says that if f ∈W 1,p
loc (A) and ∇f ∈ Lp,δ, then f has a limit f(∞) at ∞

and f − f(∞) ∈ Lp,δ−1. Moreover, there is an equivalence of norms

‖f‖L∞ + ‖∇f‖Lp,δ ≈ |f(∞)|+ ‖f − f(∞)‖Lp,δ−1 + ‖∇f‖Lp,δ . (3.7)

The limit of ξG at infinity vanishes by the choice of weight and Sobolev embedding. �

Definition 3.6 Let sp > 0 be the Sobolev constants making the following inequalities hold.

(a) Let D be the unit disk or half disk. Then for any f ∈W 1,p(D), we have

‖f‖
C

0,1− 2
p
≤ sp‖f‖W 1,p(D).

(b) For any f ∈ L̃1,p
h (A), we have (see (3.7) for δ = δp)

‖f − f(∞)‖Lp,δp−1 ≤ sp‖f‖L̃1,p
h
.

Using the exponential map exp of hX , one identifies ξ = (ξ, η, ζ) ∈ B whose norm is small

with a nearby object

v′ := (u′, φ′, ψ′) := expv ξ := (expu ξ, φ+ η, ψ + ζ). (3.8)

Notice since L is totally geodesic w.r.t. hX , v′ still satisfies the boundary condition when

A = H . Using (3.8) we identify a small ball centered at the origin of B with a Banach manifold

of gauged maps near v. By abuse of notation, we still use B to denote this Banach manifold.

Then Lemma 3.5 implies that there is a smooth evaluation map

ev : B → X̄, if A = C; ev : B → L̄, if A = H . (3.9)

3.2.2 Banach Vector Bundles

Define a vector bundle E → B whose fibre over v′ = (u′, φ′, ψ′) is

E|v′ := L̃p(A, u∗TX ⊕ k⊕ k).
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The vortex equation, plus a gauge fixing condition (which is called the Coulomb gauge) relative

to v defines a section

F : B → E , F(v′) =

⎡
⎢⎢⎣
∂su

′ + Xφ′(u′) + J(∂tu
′ + Xψ′(u′))

∂sη + [φ, η] + ∂tζ + [ψ, ζ] + dμ · Jξ
∂sψ

′ − ∂tφ
′ + [φ′, ψ′] + μ(u′)

⎤
⎥⎥⎦ . (3.10)

For convenience, we placed the gauge fixing condition in the second entry. It is not hard to

check that F(v′) indeed lies in the fibre of E , i.e., having the required regularity at infinity.

Let ∇ be the Levi–Civita connection of the chosen K-invariant Riemannian metric hX .

Using ∇ one can trivialize E near v. So we view E as a Banach space identified with its fibre

over v. A general vector of E is denoted by ν = (ν, κ, ς). W.r.t. this trivialization one has the

linearized operator of F at v, denoted by Dv : B → E , which reads

Dv(ξ, η, ζ) =

⎡
⎢⎢⎣

D(ξ) + Xη + JXζ
∂sη + [φ, η] + ∂tζ + [ψ, ζ] + dμ(u) · Jξ
∂sζ + [φ, ζ]− ∂tη − [ψ, η] + dμ(u) · ξ

⎤
⎥⎥⎦ .

Here the first entry is the linearization of the Cauchy–Riemann operator and

D(ξ) = ∇sξ +∇ξXφ + (∇ξJ)(∂tu+ Xψ) + J(∇tξ +∇ξXψ).
It was proved in [39] (for A = C) and [25] (for A = H) that D is Fredholm.

We introduce a notation which will be used frequently. The connection form a = φds+ψdt

induces a deformed covariant derivative on u∗TX ⊕ k⊕ k: for any section ξ = (ξ, η, ζ), define

∇a
sξ = (∇sξ +∇ξXφ, ∂sη + [φ, η], ∂sζ + [φ, ζ]),

∇a
t ξ = (∇tξ +∇ξXψ, ∂tη + [ψ, η], ∂tζ + [ψ, ζ]).

(3.11)

3.3 Local Model of the Moduli Space of Affine Vortices

The topology of the moduli space M(A;X,L) is defined by uniform convergence with all

derivatives over compact subsets of the domain, up to gauge transformation. This topology is

called the compact convergence topology, abbreviated as c.c.t.. We say that a sequence vn

of affine vortices converge in c.c.t. to an affine vortex v∞ if vn converges to v∞ uniformly with

all derivatives over any compact subset of the domain A. A sequence of points [vn] converge

to [v∞] if there is a sequence of smooth gauge transformations gn : A → K such that gn · vn
converge in c.c.t. to v∞.

On the other hand, for the sake of Fredholm theory, on the linear level we are using the

Banach space Bv which requires certain regularity at ∞. To show that the linear Fredholm

theory really describes the deformation of the moduli space M(A;X,L), a necessary step is to

prove the regularity results. Namely, if [v′] is sufficiently close to [v] in the moduli space, then

up to gauge transformations v′ is inside the Banach manifold Bv. It implies that if the linearized

operator Dv is surjective, then its kernel provides a local manifold chart of M(A;X,L) around

the point [v]. This is indeed a nontrivial problem, as the decaying property of affine vortices

at ∞ is very complicated.

In [25], together with Venugopalan, the author constructed local models of affine vortices

around a given affine vortex v under the assumption that the linearized operator Dv : Bv → Ev
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is surjective, based on Ziltener’s proof of the Fredholmness of the linear operator3). Let us

recall the precise statement of this result.

Theorem 3.7 ([25]) Let v = (u, φ, ψ) be an affine vortex over A. Suppose Dv : Bv → Ev is

surjective. Then there is a homeomorphism from a neighborhood of the origin of kerDv onto a

neighborhood of [v] in the moduli space M(A;X,L). In particular, if v′ is another affine vortex

representing a point of M(A;X,L) which is sufficiently close to [v], then there exists a gauge

transformation of class W 2,p
loc which transforms v′ to an affine vortex (which is still denoted by

v′) such that we can write v′ = expv ξ with ξ = (ξ, η, ζ) ∈ Bv and ‖ξ‖L̃1,p
m

being sufficiently

small. Moreover, we may require that v′ is in Coulomb gauge with respect to v, i.e.,

∂sη + [φ, η] + ∂tζ + [ψ, ζ] + dμ(u) · Jξ = 0.

The core of the proof of Theorem 3.7 is to deal with behaviors of affine vortices at infinity.

Hence this result can certainly be generalized to the situation where the equation is perturbed

by a compactly supported term. We will see and use such a generalization in later sections.

3.4 Examples of Degenerations

A sequence of affine vortices may degenerate in the limit to a stable affine vortex, which has

multiple components. While the precise definition of sequential convergence in the perturbed

case will be given in Definition 5.5, here we provide two examples on extremal cases of the

degeneration for A = C, from which one can see the intuitive picture.

3.4.1 Example 1

Consider a sequence of monic polynomials of degree d ≥ 2

fi(z) = (z − z1i ) · · · (z − zdi ).

By Taubes’ theorem (see [10, 19]), there are unique solutions hi : C → R to the equation

−Δhi
2π

+
1

2
(e2hi |fi(z)|2 − 1) = 0

with an appropriate asymptotic constraint on hi. Equivalently, (e
hifi,−∂thi, ∂shi) is an affine

vortex with target C acted by K = U(1), and his correspondence gives a homeomorphism

M(C;C) �
⊔
d≥0

SymdC.

Let us now moving the zeroes. Suppose there is a partition {1, . . . , d} = I1 � · · · � Is

by nonempty subsets, such that, as i → ∞, |zαi − zβi | is bounded (resp. unbounded) when

α, β belong to the same (resp. different) subsets of this partition. Then up to choosing a

subsequence, one can show that the corresponding sequence of affine vortices will degenerate

to a stable affine vortex having exactly s affine vortex components.

3.4.2 Example 2

Consider abelian vortices of higher rank. More precisely, consider a sequence �fi, each of which

is an N -tuple of polynomials

�fi = (f1i , . . . , f
N
i ), max

α
{degfαi } = d ≥ 1.

3) See [39, Theorem 4]. Indeed Ziltener assumed that the symplectic quotient X̄ has positive dimension, while

in [25] we removed this assumption. See [25, Section 4].
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Then by the main theorem of [35] (see also [24]), there exists a unique solution hi : C → R to

the equation

−Δhi
2π

+
1

2

(
e2hi

N∑
α=1

|fαi (z)|2 − 1

)
= 0.

So such an N -tuple of polynomials gives an affine vortex with target CN acted by K = U(1).

For simplicity restrict to the special case that N = 2, d = 1 and

f1i (z) = z − ni, f2i (z) = z; ni → ∞.

For the corresponding sequence of affine vortices in C
2, one can argue that in the limit, there

is no affine vortex component. Instead, after rescaling by the factor ni, the sequence converges

to the holomorphic sphere z 
→ [z − 1, z] in CP
1.

4 Holomorphic Disks Revisited

As we have seen from the last example, a sequence of affine vortices can converge to a holomor-

phic curve in X̄. The latter is an object purely in nonlinear sigma model, where the gauge field

completely depends on the matter field. This is actually a phenomenon similar to the case of

Morse theory for Lagrange multipliers considered in [17]. For the purpose of gluing, one needs

to better understand holomorphic curves in the quotient not only as maps into X̄, but also as

certain type of gauged maps into X.

4.1 Holomorphic Curves in the Quotient

Compare to the notion of gauged maps defined in Definition 3.2, a general gauged map over

a Riemann surface Σ is a triple (P,A, u), where P → Σ is a K-bundle, A ∈ A(P ) and u ∈
Γ(P ×KX). If P is trivialized and Σ has coordinate z = s+ it, we can write A = d+φds+ψdt.

In this case it coincides with our previous definition.

One can also use gauged maps to represent holomorphic curves in the quotient X̄. For

simplicity consider the case that Σ is a contractible subset of H or C, equipped with a complex

structure jΣ and holomorphic coordinate z = s+ it. Suppose ū : Σ → X̄ is a C1-map satisfying

the equation

∂sū+ J̄∂tū = 0, ū(∂Σ) ⊂ L̄.

Here J̄ is the induced almost complex structure on X̄. Recall that on the K-bundle μ−1(0) →
X̄, there is a connection given by the distribution HX |μ−1(0) (which we call the canonical

connection). Then one can pull back the K-bundle μ−1(0) → X̄ as well as the canonical

connection, giving a bundle P → Σ and a connection A ∈ A(P ). ū also lifts to a section of

P ×K X. Since Σ is contractible, one can trivialize P so that A is written as A = d+φds+ψdt

and u is a genuine map u : Σ → μ−1(0). This gives us a gauged map v = (u, φ, ψ). Moreover,

if ū is JX̄ -holomorphic, then v satisfies the equation

∂su+ Xφ + J(∂tu+ Xψ) = 0, μ(u) = 0, u(∂Σ) ⊂ L. (4.1)

Different trivializations of the pull-back bundle P → Σ give gauge equivalent solutions to

(4.1). On the other hand, each gauge equivalence class of solutions of (4.1) projects down to a

J̄-holomorphic map into X̄.
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We would like to remark that if we view both u and (φ, ψ) as independent variables of (4.1),

then it is not an elliptic equation. The correct perspective is to regard φ and ψ as components

of the pullback connection, so only u is the independent variable of (4.1). Another perspective

is that φ and ψ are the unique functions satisfying

dμ(u) · J(∂su+ Xφ) = dμ(u) · J(∂tu+ Xψ) = 0.

Then the GX -component of (4.1) is automatically satisfied and (4.1) is equivalent to

PH(∂su+ Xφ + J(∂tu+ Xψ)) = 0, μ(u) = 0, u(∂Σ) ⊂ L. (4.2)

where PH : HX ⊕GX → HX is the projection onto the first factor.

From now on we take the gauged map viewpoint of holomorphic curves in X̄. In particular,

if ū is a holomorphic disk in X̄ with boundary in L̄, then we view it as a map ū : (H , ∂H) →
(X̄, L̄) with removable singularity at infinity, so it can be lifted to a gauge equivalence class of

solutions to (4.1) with Σ = H .

4.2 Weighted Sobolev Spaces

Since holomorphic disks we are interested in are limits of affine vortices near ∞, we prefer to

work with the Euclidean coordinate of H . We introduce the following weighted Sobolev norms.

Definition 4.1 Choose a function ρ∞ : H → [1,+∞) such that ρ∞ equals |z| outside a

compact set. For U ⊂ Σ and f, g : U → R define

‖f‖L̃1,p
h (U) = ‖f‖L∞(U) +

[ ∫
U

|∇f(z)|p[ρ∞(z)]2p−4dsdt

] 1
p

.

Here the subscript h stands for “horizontal”, indicating the section take value in HX .

By the Hardy-type inequality (see (3.7)), there is a natural equivalence of Banach spaces

L̃1,p
h �W 1,p(D).

We can define a similar space L̃1,p
h (u∗∞HX) of sections of u∗∞HX . The norm is defined as

‖ξH∞‖L̃1,p
h

= ‖ξH∞‖L∞ +

[ ∫
U

|PH∇a∞ξH∞|p[ρ∞(z)]2p−4dsdt

] 1
p

. (4.3)

Here ∇a∞ is the deformed covariant derivative defined in (3.11). So PH ◦∇a∞ ◦PH is a covariant

derivative on u∗∞HX . There is a canonical identification

π∗ : u∗∞HX → ū∗∞TX̄.

Notice that hX induces a Riemannian metric on X̄, which induces a connection ∇̄ on u∗∞TX̄.

Lemma 4.2 One has π∗ ◦ PH∇a∞ = ∇̄ ◦ π∗. Hence π∗ induces a natural isometry between

L̃1,p
h (u∗∞HX) and L̃1,p

h (ū∗∞TX̄) where the Sobolev norm of the latter is defined using ∇̄.

Therefore, we have an equivalence of Banach spaces

L̃1,p
h (H , u∗∞HX) �W 1,p(D, ū∗∞TX̄). (4.4)

Consider a small ball of L̃1,p
h (u∗∞HX) centered at the origin, denoted by BH∞, and identify

it via the exponential map of the metric hX provided by Lemma 3.1 with a space of maps from

Σ to μ−1(0). The property of hX implies that any map obtained in this way has image lying
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in μ−1(0) and boundary values lying in L. Any u′∞ ∈ BH∞ pulls back the canonical connection

on μ−1(0) to a gauge field φ′∞ds+ ψ′
∞dt of class L

p
loc. A corollary of (4.4) is the following.

Corollary 4.3 There are smooth evaluation maps

ev∞∞ : BH∞ → L̄, evi∞ : BH∞ → X̄, 1 ≤ i ≤ m, evj∞ : BH∞ → L̄, 1 ≤ j ≤ m. (4.5)

Define a Banach space bundle EH∞ → BH∞ whose fibre over u′∞ is the space of sections of

(u′∞)∗HX of class L̃ph. Using the parallel transport of HX w.r.t. the connection PH ◦ ∇ ◦ PH ,
one can trivialize this bundle EH∞ so each fibre is identified with the fibre at the central element

u∞. Define a section FH
∞ : BH∞ → EH∞ as

FH
∞(u′∞) := FH

∞(ξH∞) = PH(∂su
′
∞ + Xφ′∞ + J(∂tu

′
∞ + Xψ′∞)). (4.6)

Then Lemma 4.2 implies that FH
∞ corresponds to the standard Cauchy–Riemann equation.

4.3 An Augmentation

Now we would like to include deformation of u∞ in all directions in the space X. Recall that

one has the splitting

u∗∞TX = u∗∞HX ⊕ u∗∞GX .

We also want to include deformations of the gauge field. Denote

GX = GX ⊕ k⊕ k.

We would like to define another weighted Sobolev norms for sections of u∗∞GX .

Definition 4.4 Let U ⊂ Σ be an open subset.

(a) For functions f : U → R, define

‖f‖L̃k,pg (U) =
k∑
i=0

‖∇if‖L̃p =
k∑
i=0

[∫
U

|∇if |p[ρ∞(z)]2p−4dsdt

] 1
p

.

(b) Let L̃k,pg (U, u∗∞GX) (resp. L̃k,pg (U, u∗∞GX)) be the space of section of u∗∞GX (resp.

u∗∞GX) of class L̃k,pg w.r.t. the connection PG ◦ ∇a∞ ◦ PG. We add a subscript “L” to the

notations to indicate the boundary condition, i.e., the ζ-component vanishes on the boundary.

(c) For any ξ∞ = (ξH∞, ξ
G
∞, η∞, ζ∞) ∈W 1,p

loc (U, u
∗
∞HX ⊕ k⊕ k), define

‖ξ∞‖L̃1,p
m

= ‖ξH∞‖L̃1,p
h

+ ‖ξG∞‖L̃1,p
g
. (4.7)

The norm (4.7) is defined using the diagonal part of the connection ∇a∞ w.r.t. the splitting

HX ⊕GX . The following lemma says that it is equivalent to use ∇a∞ .

Lemma 4.5 The norm on the direct sum

B∞ = L̃1,p
h (Σ, u∗∞HX)L ⊕ L̃1,p

g (Σ, u∗∞GX)L (4.8)

is equivalent to the norm defined by

‖ξH∞‖L∞ + ‖ξG∞‖L̃pg + ‖∇a∞ξH∞‖L̃p + ‖∇a∞ξG∞‖L̃p . (4.9)

Namely, the norms defined by using ∇ and by using the diagonal part of ∇ are equivalent.
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Proof The direct sum norm on B∞ is no greater than the norm (4.9). It remains to show that

the norm (4.9) (actually only the last two parts) can be controlled by the direct sum norm.

The difference between these two norms comes from the fact that the connection ∇a∞ does

not necessarily preserve the splitting HX ⊕GX . w.r.t. this splitting, we can write

∇ =

⎡
⎣ ∇H E′

E′′ ∇G

⎤
⎦

where E′, E′′ are smooth and K-invariant. Then we have

∇a∞
s/tξ

H
∞ − PH∇a∞

s/tξ
H
∞ = E′′

v∞,s/t
(ξH∞), ∇a∞

s/tξ
G
∞ − PG∇a∞

s/tξ
G
∞ = E′

v∞,s/t
(ξG∞),

where the notation indicates that E′ and E′′ are linear in v∞,s and v∞,t. By straightforward

calculation, we have

‖v∞,s/t‖L̃pg , ‖v∞,s/t‖L̃ph < +∞. (4.10)

Moreover, we have Sobolev embedding type estimate

‖ξH∞‖L∞ � ‖ξH∞‖L̃1,p
h

≤ ‖ξH∞‖L̃1,p
m
, ‖ξG∞‖L∞ � ‖ξG∞‖L̃1,p

g
� ‖ξG∞‖L̃1,p

m
. (4.11)

The former follows from the definition of L̃1,p
h and the latter follows from the fact that PG∇a∞

is a connection on u∗GX that preserves the metric (see [12, Remark 3.5.1]). Hence we have

‖∇a∞ξH∞‖L̃p = ‖PH∇a∞ξH∞‖L̃p + ‖E′′ξH∞‖L̃p � ‖ξH∞‖L̃1,p
h

+ ‖ξH∞‖L∞‖da∞v∞‖L̃p � ‖ξH∞‖L̃1,p
h
,

‖∇a∞ξG∞‖L̃p = ‖PG∇a∞ξG∞‖L̃p + ‖E′ξG∞‖L̃ph � ‖ξG∞‖L̃1,p + ‖ξG∞‖L∞‖da∞v∞‖L̃p � ‖ξG∞‖L̃1,p
g
.

4.4 The Linear Operators

Now we consider the deformation theory of v∞. As discussed in Subsection 4.1, we should regard

u∞ as the independent variable and a∞ is the pull-back of the connection on μ−1(0) → X̄ by

u∞. Then modulo gauge transformation, the space infinitesimal deformations of u∞ can be

identified with L̃1,p
h (Σ, u∗∞HX)L.

We use the connection ∇H := PH ◦ ∇ ◦ PH to trivialize EH∞ near u∞. Let the linearization

of FH
∞ at u∞ be

dFH
∞(u∞) : L̃1,p

h (Σ, u∗∞HX)L → L̃p(Σ, u∗∞HX) = EH∞|u∞ . (4.12)

On the other hand, u∞ is also a solution to

∂a∞u∞ := ∂su∞ + Xφ∞(u∞) + J(∂tu∞ + Xψ∞(u∞)).

We use the Levi–Civita connection ∇ of hX to formally define a linearization, which reads

D∞(ξ) = ∇sξ+∇ξXφ∞+(∇ξJ)(∂tu∞+Xψ∞)+J(∇tξ+∇ξXψ∞), ∀ξ∞ ∈ Γ(u∗∞TX). (4.13)

Using the decomposition HX ⊕GX , one can write D∞ in the block matrix form

D∞ =

⎡
⎣ DH

∞ E1
∞

E2
∞ DG

∞

⎤
⎦ . (4.14)

Lemma 4.6 DH
∞ = dFH

∞ where FH
∞ is defined by (4.6).



268 Xu G. B.

Proof Take ξH∞ ∈ u∗∞HX and define uε∞ = expu∞ εξH∞. Let the pullback connection form be

φε∞ds+ ψε∞dt. Then we have

∂su
ε
∞ + Xφε∞ , ∂tuε∞ + Xψε∞ ∈ HX . (4.15)

Let Pε be the parallel transport w.r.t. ∇ and PHε be the parallel transport w.r.t. ∇H . When

restrict to the distribution HX , one can see that PHε = PH ◦ Pε. Then by (4.15), one has

dFH
∞(ξH∞) =

d

dε

∣∣∣∣
ε=0

PHε (∂su
ε
∞ + Xφε∞ + J(∂tu

ε
∞ + Xψε∞))

= PH
d

dε

∣∣∣∣
ε=0

Pε(∂su
ε
∞ + Xφε∞ + J(∂tu

ε
∞ + Xψε∞))

= PHD∞(ξH∞) + PH(X dφε∞
dε

+ JX dψε∞
dε

) = PHD∞(ξH∞).

Later we will need the following fact.

Lemma 4.7 DG
∞, E1

∞, E2
∞ define bounded operators

DG
∞ : L̃1,p

g (u∗∞GX)L → L̃p(u∗∞GX);

E1
∞ : L̃1,p

g (u∗∞GX)L → L̃p(u∗∞HX), E2
∞ : L̃1,p

h (u∗∞HX)L → L̃p(u∗∞GX).

Proof Consider

d

dε

∣∣∣∣
ε=0

Pε(∂su
ε
∞ + Xφ∞(uε∞) + J(∂tu

ε
∞ + Xψ∞(uε∞))) = ∇a∞

s ξ∞ + J∇a∞
t ξ∞ + (∇ξ∞J)v∞,t.

If ξ∞ is a section of u∗∞HX , then we have

‖DG
∞(ξ∞)‖L̃p ≤ ‖ξ∞‖L̃1,p

g
+ ‖PG(∇ξ∞J)v∞,t‖L̃p � ‖ξ∞‖L̃1,p

g
+ ‖ξ∞‖L∞‖v∞,t‖L̃p � ‖ξ∞‖L̃1,p

g
.

Therefore DG
∞ is a bounded operator. On the other hand, it is easy to see that E∞

1 and E∞
2

are linear in ds⊗ v∞,s + dt⊗ v∞,t. Therefore, we have the following estimates. First,

‖E∞
2 (ξH∞)‖L̃p ≤ ‖ξH∞‖L∞

[ ∫
Σ

|da∞u∞(z)|p[ρ∞(z)]2p−4dsdt

] 1
p

,

‖E∞
1 (ξG∞)‖L̃p ≤ ‖ξG∞‖L∞

[ ∫
U

|da∞u∞(z)|p[ρ∞(z)]2p−4dsdt

] 1
p

,

where the integrals are finite due to the asymptotic property of v∞. �

4.5 Deformations of Disks

Now we fix a holomorpic disk ū∞ : D → X̄ and consider a nearby one which can be written as

ū′∞ = expū∞ ξ̄∞.

If we lift ū∞ to a map u∞ : D → μ−1(0), then a convenient lift of ū′∞ is

u′∞ = expu∞ ξH∞

where ξH∞ ∈ Γ(D, u∗∞HX) is the horizontal lift of ξ̄∞, over the disk we have elliptic estimate

and hence there are estimates

‖ξH∞‖Wk,p(D) ≤ ck‖ξH∞‖W 1,p(D).
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Now consider the associated gauge fields a∞, a′∞ ∈ Ω1(D, k). It is easy to see that

‖a′∞ − a∞‖W 1,p(D) � ‖∇HξH∞‖W 1,p(D).

We would like to write this estimate in terms of norms ‖ · ‖L̃1,p
g (H) and ‖ · ‖L̃1,p

h (H).

Since the Euclidean metric on compact regions ofH is comparable to the standard metric on

the corresponding region of D, the only possible divergence may happen near ∞. Let CR ⊂ H

be the complement of a large ball BR centered at the origin. Then we have

‖a′∞ − a∞‖L̃p =

[ ∫
CR

|a′∞ − a∞|p[ρ∞(z)]2p−4dsdt

] 1
p

≈
[ ∫

CR

|a′∞ − a∞|pD|z|−2p[ρ∞(z)]2p−4dsdt

] 1
p

≈ ‖a′∞ − a∞‖Lp(D).

Here | · |D means the norm on tensors with respect to the metric on D. On the other hand,

over CR, since the gauge field a∞ is bounded with respect to the Euclidean metric, one has

|∇a∞(a′∞ − a∞)| ≈ |a′∞ − a∞|+ |∇(a′∞ − a∞)| ≈ |z|−2|a′∞ − a∞|+ |z|−4|∇(a′∞ − a∞)|D.
It follows that ‖∇a∞(a′∞ − a∞)‖L̃p is also bounded by ‖a′∞ − a∞‖L1,p(D). We summarize this

estimate as follows.

Lemma 4.8 Let u∞ : H → μ−1(0) project down to a holomorphic disk in X̄ and u′∞ =

expu∞ ξH∞ be another holomorphic disk where ξH∞ ∈ Γ(H , u∗∞HX). Let a∞ and a′∞ be the gauge

fields on H by pulling back the canonical connection via u∞ and u′∞ respectively. Then there

is a constant c > 0 such that if the two holomorphic disks are sufficiently close, one has

‖a′∞ − a∞‖L̃1,p
g

+ ‖ξH∞‖L̃1,p
h

≤ c‖ξ̄H∞‖W 1,p(D).

5 Statement of the Gluing Theorem

In this section we state the main theorem of this paper, under a precise version of the transver-

sality assumption.

5.1 Perturbation

Let us fix a representative of a point [x•] ∈ N l,l of type ♣ denoted by

x• = (x•,1, . . . ,x•,m,y•,1, . . . ,y•,m, z•).

Recall that we have a universal family for the moduli N l,l. Consider a small neighborhood Qε
•

which by Lemma 2.2 is identified with [0, ε)×W ε
def , and the origin is identified with [x•]. The

restriction of the universal curve to Qε
• is denoted by Uε• . There is a closed subset U ε,sing• ⊂ U ε•

corresponding to the marked points and nodal points of the fibres.

Definition 5.1 A perturbation datum near [x•] consists of a finite dimensional vector space

Wper and for some small ε0, a (not necessarily linear) smooth map

ι :Wper → Γc((Uε0• \ U ε0,sing• )×X,TX). (5.1)

Here Γc means smooth sections whose fibrewise supports are compact. Moreover we require that

ι satisfies the following conditions.
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(a) ι is K-equivariant, namely, for e ∈Wper, z ∈ Uε0• \ U ε0,sing• , g ∈ K and x ∈ X,

ι(e, z, gx) = g∗ι(e, z, x) ∈ TgxX.

(b) ι is supported in an open neighborhood of μ−1(0) where we can decompose TX as the

direct sum of HX and GX . Moreover, when restricted to disk components (i.e., the root compo-

nent of the configurations which are supposed to be mapped into X̄), the values of ι are contained

in HX .

Notation Given a perturbation data ι, suppose u is a smooth or continuous map u from

the fibre of Uε• → Qε
• over x•,ε(a), and e ∈ Wper. Then they induce a section of u∗TX (the

inhomogeneous term) denoted by

ι(e,x•,ε(a), u).

In many situations we combine e and a and denote w = (e,a). So the induced inhomogeneous

term is also denoted by ιε(w, u). Moreover, when ε = 0, u has multiple components. For

each component ui or u∞, denote the restriction to that component by ι(e,x• + a, ui) or

ι(e,x• + a, u∞).

Remark 5.2 In the setting of [33], where we will use the stabilizing divisor technique of

Cieliebak–Mohnke [4], we consider almost complex structures Jz that depend on the point z on

the universal curve over N l,l. Then the difference of Jz from the fixed almost complex structure

is a perturbation data ι satisfying the above definition.

On the other hand, in the Kuranishi setting, we can choose perturbation for each domain

component independently. In that case Wper is the direct sum of different summands.

5.2 Stable Affine Vortices

We only consider a “partial” compactification of the moduli space of perturbed H-vortices over

a smooth domain.

Definition 5.3 A stable H-vortex of type ♣ consists of the following objects

(a) A representative x = (x1, . . . ,xm;y1, · · · ,ym; z) representing a point [x] ∈ Qε0
• ∩ N♣,

which can be written as x = x• + a for certain small deformation parameter a ∈Wdef .

(b) An element e ∈Wper.

(c) A collection of gauged maps v = (v∞,v1, . . . ,vm,v1, . . . ,vm) where v∞ and v1, . . . ,vm
are defined on H with boundaries lie in L and v1, . . . ,vm are defined on C.

They satisfy the following conditions. (Here we use the alternate local model introduced in

Subsection 2.3, so we regard z as the same as z• but on H equipped with a different complex

structure jq and different holomorphic coordinate zq.)

(a) (Perturbed Equation) v∞ = (u∞, φ∞, ψ∞) satisfies

∂su∞ + Xφ∞ + J(∂tu∞ + Xψ∞) + ι(e,x, u∞) = 0, μ(u∞) = 0, u∞(∂H) ⊂ L. (5.2)

For i = 1, . . . ,m+m, vi = (ui, φi, ψi) satisfies

∂sui+Xφi+J(∂tui+Xψi)+ι(e,x, ui) = 0, ∂sψi−∂tφi+[φi, ψi]+μ(ui) = 0, ui(∂H) ⊂ L. (5.3)

(b) (Matching condition) vi(∞) = ū∞(zi) ∈ X̄ for i = 1, . . . ,m and vj(∞) = ū∞(zj) ∈
L̄ for j = 1, . . . ,m. Here ū∞ is the map to X̄ induced from v∞.
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Remark 5.4 There are two reasons why we do not consider the case of having unstable

components. If there are unstable components one just adds extra marked points to stabilize,

which does not make an essential difference. On the other hand, in the case of using stabilizing

divisors and domain dependent almost complex structures (which is the approach of [33]), there

cannot be unstable components in a stable object.

Let M̃ε0
♣ (H ;X,L) be the set of stable H-vortices of type ♣ as defined above. The corre-

sponding objects on smooth domains are defined as follows. Let M̃ε0
l,l(H ;X,L) consist of triples

(e,x•,ε(a),v) where e ∈ Wper, ε ∈ (0, ε0], a ∈ W ε0
def and v = (u, φ, ψ) is a gauged map from H

to X, which satisfies the perturbed equation:

∂su+ Xφ + J(∂tu+ Xψ) + ιε(e,a, u) = 0, ∂sψ − ∂tφ+ [φ, ψ] + μ(u) = 0, u(∂H) ⊂ L.

Definition 5.5 Let (en,x•,εn(an),vn), n = 1, 2, . . . be a sequence of elements in M̃ε0
l,l(H ;X,

L) and (e,x• + a,v) be an element of M̃ε0
♣ (H ;X,L) where v has components v∞, v1, . . .,

vm, v1, . . ., vm, as described in Definition 5.3. We say that (en,x•,εn(an),vn) converges to

(e,x•(a),v) if after removing finitely many terms in this sequence, the following conditions are

satisfied.

(a) εn converges to 0, an converges to a and en converges to e.

(b) For i = 1, . . . ,m+m, define the translation

ti,n(z) = z − z•,i
εn
.

Then the sequence of gauged maps vn ◦ ti,n converges in c.c.t. on C or H to vi.

(c) Define ϕn(z) = εnz. Then un ◦ ϕ−1
n converges uniformly on compact subsets of H \

{z1, . . . , zm, z1, . . . , zm} to u∞ (we do not require the convergence of gauge fields).

(d) There is no energy loss, i.e.,

lim
n→∞E(vn) =

m∑
i=1

E(vi) +

m∑
j=1

E(vj) + E(v∞).

By the K-equivariance of the perturbation ι, one can define an equivalence relation among

perturbed stable affine vortices using gauge transformations. We omit the detailed definition.

For any ε ∈ (0, ε0], let Mε
l,l(H ;X,L) (resp. Mε

♣(H ;X,L)) be the set of gauge equivalence

classes in M̃ε
l,l(H ;X,L) (resp. M̃ε

♣(H ;X,L)). Define

Mε
l,l(H ;X,L) := Mε

l,l(H ;X,L) �Mε
♣(H ;X,L).

where the former component is called the “top stratum” and the latter called the “lower stra-

tum”. Definition 5.5 plus the obvious topology inside the lower stratum induces a topology on

Mε
l,l(H ;X,L), which can be proved to be Hausdorff. The main theorem of this paper is, under

certain transversality assumption, one can give a chart of (topological) manifold with boundary

around a central object in Mε
♣(H ;X,L). To state the main theorem in precise language, we

first need to state the transversality assumption.

Remark 5.6 When constructing the local chart, especially when proving the local surjectivity

of the gluing map, one has to prove the notion of convergence given by Definition 5.5 (which

is weaker) implies the stronger convergence in terms of Banach space norms. The fact that

weaker convergence implies stronger convergence will be proved later in this paper.
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5.3 Transversality and the Gluing Map

We fix a central singular object (e•,x•,v•) in which we assume the underlying curve [x•] is the

central one we have fixed. Let v• have components v•,∞,v•,1, . . . ,v•,m+m. Let w• = (e•, 0) ∈
W = Wper ×Wdef which parametrizes the perturbation term. Let x̄•,i ∈ X̄ (resp. x̄•,j ∈ L̄) be

the limit of v•,i (resp. v•,j) at infinity.

Recall the set-up of Subsection 3.2. For each affine vortex component v•,i, there is a Banach

manifold Bi containing v•,i, a Banach vector bundle Ei → Bi, and a smooth Fredholm section

Fi : Bi → Ei.
The perturbation ι given by (5.1) restricts to the i-th component to a smooth map

ιi :W × Bi → Ei.
Define

F̃i :W × Bi → Ei
to be the sum of Fi and ιi. Then (5.3) implies that F̃i(w•,v•,i) = 0. We have a similar section

associated to the ∞ component

F̃H
∞ :W × BH∞ → EH∞

such that F̃H
∞(w•,v•,∞) = 0. Let the linearizations of F̃i and F̃H

∞ be

D̃i :W ⊕ Bi → Ei, D̃H
∞ :W ⊕ BH∞ → EH∞

respectively, where we abuse the notations by identifying the Banach manifolds with tangent

spaces. There are also smooth evaluation maps

evi : Bi → X̄, i = 1, . . . ,m; evj : Bj → L̄, j = 1, . . . ,m,

such that evi(vi) = x̄•,i for all i = 1, . . . ,m+m. There are also smooth evaluation maps

evi∞ : BH∞ → X̄, i = 1, . . . ,m; evj∞ : BH∞ → L̄, j = 1, . . . ,m

such that evi∞(u•,∞) = x̄•,i for i = 1, . . . ,m+m.

Hypothesis 2

(a) For i = 1, . . . ,m+m, the linearization of F̃i at (w•,v•,i), denoted by D̃i :W ⊕Bi → Ei,
is surjective. In short, each affine vortex plus the perturbation term is regular.

(b) The linearization of F̃H
∞ at (w•, u•,∞), denoted by D̃H

∞ : W × BH∞ → EH∞, is surjective.

In short, the holomorphic disk in X̄ plus the perturbation term is regular in the usual sense.

(c) The map

ker(D̃H
∞)⊕

m+m∏
i=1

ker(D̃i) →Wm+m+1 ⊕
m∏
i=1

(Tx̄iX̄)2 ⊕
m∏
j=1

(Tx̄j L̄)
2 (5.4)

defined by

((h∞, ξH∞), (h1, ξ1), . . . , (hm+m, ξm+m))


→ ((h∞,h1, . . . ,hm+m), (devi(ξi), dev
i
∞(ξH∞))1≤i≤m, (devj(ξj), devj∞(ξH∞))1≤j≤m)
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is transverse to the diagonal

Δm+m+1(W )⊕
m∏
i=1

Δ(Tx̄•,iX̄)⊕
m∏
j=1

Δ(Tx̄•,j L̄). (5.5)

Now we state the main theorem of this paper, which is the precise version of Theorem 1.1.

Theorem 5.7 Under Hypothesis 2, there exist ε1 ∈ (0, ε0), a neighborhood U♣ ⊂ Mε0
♣ (H ;X,

L) of [w•,v•], and a continuous map

Glue : U♣ × [0, ε1) → Mε0
l,l(H ;X,L)

which is a homeomorphism onto an open neighborhood of [w•,v•] inside the target. Moreover,

Glue([w,v], 0) = [w,v] for all [w,v] ∈ U♣.

Remark 5.8 Theorem 5.7 can be certainly extended and generalized to other situations,

including the unbordered case and cases for more complicated strata, or in the case where

vortices are combined with other Fredholm problems (for example, in [33] we will consider flow

lines of certain Morse function in the setting of “treed disks”).

6 Rescaling Holomorphic Disks

In Definition 5.5 we see that the component v•,∞ is the limit after a large rescaling. When

we glue, we need to rescale v•,∞ back by the gluing parameter ε. The main purpose of this

section is then, to construct a right inverse along the singular object where the disk component

is rescaled by ε, and to show however the norm of the right inverse is uniformly bounded

by a constant independent of ε. Obviously this also requires a careful choice of a system of

ε-dependent weighted Sobolev norms.

Since in this section we only consider the central object (e•,x•,v•), we omit the “•” from

the notations.

6.1 Rescaling of the Disk and Weighted Sobolev Norms

Let sε : H → H be the rescaling map z 
→ εz. Then define a gauged map v∞,ε = (u∞,ε, φ∞,ε,

ψ∞,ε) on H by

u∞,ε = s∗εu∞, φ∞,ε = εs∗εφ∞, ψ∞,ε = εs∗εψ∞.

In the definition of the Banach space B∞ (see (4.8)), if we replace v∞ by v∞,ε, the Banach

space obtained is denoted by B∞,ε := Bv∞,ε
, which contains infinitesimal deformations of v∞,ε

as gauged maps. We also define the Banach space (bundle) E∞,ε := Ev∞,ε
containing sections

of u∗∞,εTX⊕ k⊕ k over H which is finite L̃p-norm. However we will redefine the norms on B∞,ε

and E∞,ε as follows. Define ρ∞,ε : H → [1,+∞) by

ρ∞,ε(z) =
1√
ε
ρ∞(εz). (6.1)

Then for any open subset U ⊂ H and f ∈ Lploc(U), define

‖f‖L̃pε (U) :=

[ ∫
U

|f(z)|p[ρ∞,ε(z)]
2p−4dsdt

] 1
p

.

This induces a norm on the fibres of E∞,ε. For ξ∞,ε = (ξH∞,ε, ξ
G
∞,ε) ∈ B∞,ε, define

‖ξ∞,ε‖L̃1,p
m;ε(U) := ‖ξG∞,ε‖L̃pε (U) + ‖∇a∞,εξ∞,ε‖L̃pε (U) + ‖ξH∞,ε‖L∞(U). (6.2)
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Now we look at the relation with the previous norms under rescaling. Define

ŝ∗ε :W
1,p
loc (Σ, u

∗
∞HX ⊕ u∗∞GX) →W 1,p

loc (H , u∗∞,εHX ⊕ u∗∞,εGX),

š∗ε : L
p
loc(Σ, u

∗
∞HX ⊕ u∗∞GX) → Lploc(Σ, u

∗
∞,εHX ⊕ u∗∞,εGX)

by

ŝ∗ε (ξ
H
∞, ξ

G
∞) = (s∗εξ

H
∞, εs

∗
εξ
G
∞); š∗ε (ν

H
∞,ν

G
∞) = (εs∗εν

H
∞, εs

∗
εν

G
∞).

Moreover, for ξ∞ = (ξH∞, ξ
G
∞) ∈W 1,p

loc (Σ, u
∗
∞HX ⊕ u∗∞GX), define an auxiliary norm

‖ξ∞‖L̃1,p
a;ε

:= ‖ξH∞‖L̃1,p
h

+ ‖ξG∞‖L̃p + ε‖∇a∞ξG∞‖L̃p . (6.3)

Here the subscript a stands for “auxiliary”. Regarding the auxiliary norm, we have the following

result. It can be proved via straightforward calculation and we omit the proof.

Lemma 6.1 For any ξ∞ ∈ B∞ and ν∞ ∈ E∞,

‖ŝ∗εξ∞‖L̃1,p
m;ε

= ‖ξ∞‖L̃1,p
a;ε
, ‖š∗εν∞‖L̃pε = ‖ν∞‖L̃p . (6.4)

6.2 Right Inverse on the Rescaled Object

We rescale the perturbation by introducing

ι∞,ε :W → E∞,ε, ι∞,ε(w) = εs∗ε ι∞(w).

Extend the definition of ŝ∗ε to W by ŝ∗ε (w) = w. Then

ι∞,ε ◦ ŝ∗ε = š∗ε ι∞. (6.5)

v∞,ε satisfy (4.2) after perturbing by ι∞,ε. Consider the section F̃∞,ε :W×B∞,ε → E∞,ε. Then

F̃∞,ε(w,v∞,ε) = 0. Let D∞,ε be the linearization of the vortex equation along the gauged map

v∞,ε, which gives a Fredholm map

D∞,ε : B∞,ε → E∞,ε.

Including the contribution of perturbations, we have a total derivative

D̃∞,ε := D∞,ε + dι∞,ε :W ⊕ B∞,ε → E∞,ε. (6.6)

We intend to prove the following result.

Proposition 6.2 There exist ε2 > 0 and c2 > 0 such that for all ε ∈ (0, ε2), there exists a

bounded right inverse Q̃∞,ε : E∞,ε →W × B∞,ε to D̃∞,ε such that

‖Q̃∞,ε‖ ≤ c2.

Proof By Lemma 6.1, it is equivalent to consider the conjugated operator

D̃aux
∞,ε = (š∗ε )

−1 ◦ D̃∞,ε ◦ ŝ∗ε :W ⊕ B∞ → E∞
where on B∞ (defined in (4.8)) we use the auxiliary norm ‖ · ‖L̃1,p

a;ε
. Then for ξ∞ = (ξH∞, ξ

G
∞, η∞,

ζ∞) and h ∈W , using (6.5) and the fact that ι∞(w) is contained in u∗∞HX , one has

D̃aux
∞,ε(h, ξ∞) =

⎡
⎢⎢⎣

DH
∞(ξH∞) + E1

∞(ξG∞) + ι∞(h)

εE2
∞(ξH∞) + εDG

∞(ξG∞) + L∞(η∞, ζ∞)

L∗
∞(ξG∞) + ε /D

G
∞(η∞, ζ∞)

⎤
⎥⎥⎦ . (6.7)
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Here DH
∞, DG

∞, E1
∞, E2

∞ are the entries of (4.14), while

L∞(η∞, ζ∞) = Xη∞ + JXζ∞ , L∗
∞(ξG∞) = (dμ · JξG∞, dμ · ξG∞).

/D
G
∞(η∞, ζ∞) = (∂sη∞ + ∂tζ∞ + [φ∞, η∞] + [ψ∞, ζ∞], ∂sζ∞ − ∂tη∞ + [φ∞, ζ∞]− [ψ∞, η∞]).

By Lemma 4.7, E1
∞ and E2

∞ are bounded operators, and the operator (h, ξH∞) 
→ D̃∞(h, ξH∞)

has a bounded right inverse, this proposition follows from Lemma 6.3 below.

Lemma 6.3 There exist c3 > 0 and ε3 > 0 such that for all ε ∈ (0, ε3), the operator

Daux,G
∞,ε : L̃1,p

a;ε(u
∗
∞GX) → L̃p(u∗∞GX),

defined by

Daux,G
∞,ε (ξG∞, η∞, ζ∞) = (εDG

∞(ξG∞) + L∞(η∞, ζ∞), ε /D
G
∞(η∞, ζ∞) + L∗

∞(ξG∞))

is invertible and for all ξG∞ = (ξG∞, η∞, ζ∞) ∈ L̃1,p
a;ε(u

∗
∞GX),

c3‖Daux,G
∞,ε (ξG∞)‖L̃p ≥ ‖ξG∞‖L̃1,p

a;ε
.

Now we prove Lemma 6.3. Let δ ≥ 0 be a small number. Take k ≥ 1 and abbreviate

B1 =W 1,p,δ(H ,Ck)R, B2 = Lp,δ(H ,Ck),

where the subscript R means the boundary values are required to be real. Let γ1, γ2 : Σ →
R

2k×2k be bounded continuous maps, which define zero-th order operators γ1, γ2 : B1 → B2.

Denote

Dγ : B1 ⊕ B1 → B2 ⊕ B2, Dγ(f1, f2) = (∂z̄f1 + γ1(f1) + f2, ∂zf2 + γ2(f2) + f1).

Here ∂z, ∂z̄ are partial derivatives in the standard flat coordinate of H .

Lemma 6.4 When γ1 = γ2 = 0, Dγ : B1 ⊕ B1 → B2 ⊕ B2 is an invertible operator.

Proof In this case denote the operator by D. It is a standard fact that D is Fredholm, and

it needs a bit more effort to check that its index is zero. Hence it remains to show that D has

trivial kernel. Indeed, it is easy to see that B1 ⊂ L2(H ,Ck), and elliptic regularity shows that

any (f1, f2) ∈ kerD is smooth. Then

D†D(f1, f2) = (−Δf1 + f1,−Δf2 + f2) = (0, 0).

However, since −Δ+ Id is positive on L2, f1 = f2 = 0. �

Lemma 6.5 Consider the operator Daux
γ,ε : B1 ⊕ B1 → B2 ⊕ B2 defined by

Daux
γ,ε (f1, f2) = (ε∂z̄f1 + εγ1(f1) + f2, ε∂zf2 + εγ2(f2) + f1). (6.8)

Then there exist ε(γ) > 0 and c(γ) > 0 such that for all ε ∈ (0, ε(γ)], there is a bounded right

inverse Qaux
γ,ε of Daux

γ,ε such that

‖Qaux
γ,ε (h1, h2)‖Lp,δ + ε‖∇Qaux

γ,ε (h1, h2)‖Lp,δ ≤ c(γ)‖(h1, h2)‖Lp,δ , ∀(h1, h2) ∈ B2 ⊕ B2.

Proof For k = 0, 1, define the new norms

‖f‖k,δ;ε =
k∑
i=0

εi‖∇kf‖Lp,δ . (6.9)
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We first prove the lemma for δ = 0. Denote fε(z) = (s∗εf)(z) = f(εz). Then

‖fε‖Wk,p = ε−
2
p ‖f‖k;ε.

Denote γε = (γε1, γ
ε
2) where γε1(z) = γ1(εz), γ

ε
2(z) = γ2(εz). Then s∗ε ◦ Daux

γ,ε = Dεγε ◦ s∗ε .
Then by Lemma 6.4, there is a constant c > 0 such that

‖Daux
γ,ε (f1, f2)‖Lp = ‖Daux

γ,ε (f1, f2)‖0,0;ε = ‖(s∗ε )−1Dεγε(f1,ε, f2,ε)‖0,0;ε
= ε

2
p ‖Dεγε(f1,ε, f2,ε)‖Lp ≥ ε

2
p

[
1

c
− ε‖γ‖L∞

]
‖(f1,ε, f2,ε)‖W 1,p

=

[
1

c
− ε‖γ‖L∞

]
‖(f1, f2)‖1,0;ε.

Then for ε ≤ (2c‖γ‖L∞)−1, one has

‖Daux
γ,ε (f1, f2)‖0,0;ε ≥

1

2c
‖(f1, f2)‖1,0;ε.

Therefore Daux
γ,ε has trivial kernel. Moreover, since its index is zero, there is a bounded inverse

Qaux
γ,ε whose norm is bounded by 2c. Hence the δ = 0 case is proved.

Now we show that the δ = 0 case implies the general case. Indeed, the map f 
→ ρ−δ∞ f

induces isomorphisms between the W k,p-norm and the new norm (6.9). Then it is equivalent

to consider the operator

W 1,p � f 
→ ρδ∞Daux
γ,ε (ρ

−δ
∞ f1, ρ

−δ
∞ f2) = Daux

γ,ε (f1, f2)− ε(ρδ∞(∂z̄(ρ
−δ
∞ ))f1, ρ

δ
∞(∂z(ρ

−δ
∞ ))f2).

Since ρδ∞∇(ρ−δ∞ ) is bounded, the last term is a bounded operator fromW 1,p to Lp. Hence when

ε is sufficiently small, the conclusion follows from the δ = 0 case.

Now we are ready to prove Lemma 6.3. Set δ = δp. Since a∞ is uniformly bounded, the

norm ‖ · ‖L̃1,p
g

= ‖ · ‖W 1,p,δp defined using the connection form a∞ is equivalent to the norm

defined for a∞ = 0. Moreover, it is easy to see

DG
∞(Xη1 + JXζ1) = L∞[∂z(η1 + iζ1) + γ1(η1 + iζ1)]

/D
G
∞(η2 + iζ2) = ∂z(η2 + iζ2) + γ2(η2 + iζ2).

Here γ1 and γ2 are uniformly bounded matrix valued continuous maps. Therefore, Daux,G
∞,ε is of

the same form as Daux
γ,ε in (6.8). Then by Lemma 6.5, for ε3 sufficiently small and ε ∈ (0, ε3), the

operator Daux,G
∞,ε is uniformly invertible w.r.t. the norm ‖ · ‖L̃1,p

a;ε
on the domain and the norm

‖ · ‖L̃p on the target. This proves Lemma 6.3.

6.3 Right Inverses and Matching Condition

Consider the space of infinitesimal deformations of the singular configurations, i.e.,

B#,ε := B∞,ε ×
m+m∏
i=1

Bi,

and the one with the matching condition imposed

B♣,ε := {(ξH∞, ξ1, . . . , ξm+m) ∈ B#,ε | evi∞(ξH∞) = evi(ξi), i = 1, . . . ,m+m}.
Introduce the bundle over B♣,ε

E♣,ε := E∞,ε �
m+m∏
i=1

Ei,
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The perturbed equation defines a family of sections parametrized by ε

F̃♣,ε :W × B♣,ε → E♣,ε.
Its linearization at the rescaled object is a linear operator

D̃♣,ε :W ⊕ B♣,ε → E♣,ε.
As the last step of the preparation, we prove the existence of a family of uniformly bounded

right inverses.

Proposition 6.6 There exist c♣ > 0, ε♣ > 0 and bounded right operators

Q̃♣,ε : E♣,ε →W ⊕ B♣,ε, ∀ε ∈ (0, ε♣)

which are right inverses to the operators D̃♣,ε and ‖Q̃♣,ε‖ ≤ c♣. Moreover, as maps between

two fixed topological vector spaces, Q̃♣,ε varies continuously with ε.

The operator Q̃♣,ε will be used to construct right inverses along approximate solutions

which we construct in the following section.

To prove Proposition 6.6, we first look at the rescaled disk component. We have three

operators associated with the disk component v∞, which are D̃H
∞ = DH

∞ + dι∞ : W ⊕ BH∞ →
EH∞ where DH

∞ is considered in (4.12) and (4.13), D̃∞,ε : W ⊕ B∞,ε → E∞,ε (see (6.6)), and

D̃aux
∞,ε :W ⊕ L̃1,p

a;ε(u
∗
∞HX ⊕u∗∞GX) → L̃p(u∗∞HX ⊕u∗∞GX) defined by (6.7). The transversality

assumption Hypothesis 2 assumes that the first operator D̃H
∞ is surjective, hence has a bounded

right inverse. We need to construct an induced right inverse to D̃∞,ε.

Lemma 6.7 For ε > 0 sufficiently small, there is a family of operator m∗
ε : ker(D̃H

∞) →
W ⊕ B∞,ε whose norm is uniformly bounded by a constant independent of ε, such that

(ŝ∗ε + εm∗
ε )[ker(D̃

H
∞)] = ker(D̃∞,ε)

Proof By (6.7), one can write D̃aux
∞,ε = š−1

ε ◦ D̃∞,ε ◦ ŝ∗ε in the block matrix form as

D̃aux
∞,ε =

⎡
⎣ D̃H

∞ E1

εE2 Daux,G
∞,ε

⎤
⎦ .

By Lemma 6.3, Daux,G
∞,ε has uniformly bounded inverse Qaux,G

∞,ε . Moreover, E1 and E2 are of

zero-th order, and they are also uniformly bounded. Since D̃H
∞ is surjective, for ε small enough,

there exists a bounded right inverse QH∞,ε to the operator D̃H
∞ − εE1Qaux,G

∞,ε E2 whose norm is

uniformly bounded. Denote

a∗ε := ŝ∗ε ◦
⎡
⎣ Id 0

−εQaux,G
∞,ε E2 Id

⎤
⎦
⎡
⎣ QH∞,εD̃

H
∞ 0

0 Id

⎤
⎦ .

Then one has

(š∗ε )
−1 ◦ D̃∞,ε ◦ a∗ε =

⎡
⎣ D̃H

∞ E1

εE2 Daux,G
∞,ε

⎤
⎦
⎡
⎣ Id 0

−εQaux,G
∞,ε E2 Id

⎤
⎦
⎡
⎣ QH∞,εD̃

H
∞ 0

0 Id

⎤
⎦

=

⎡
⎣ D̃H

∞ − εE1Qaux,G
∞,ε E2 E1

0 Daux,G
∞,ε

⎤
⎦
⎡
⎣ QH∞,εD̃

H
∞ 0

0 Id

⎤
⎦
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=

⎡
⎣ D̃H

∞ E1

0 Daux,G
∞,ε

⎤
⎦ .

So a∗ε : ker[D̃H
∞] ⊕ {0} → ker[D̃∞,ε] is an isomorphism. Moreover, a∗ε − ŝ∗ε is bounded by a

multiple of ε. Hence the statement of the lemma holds for m∗
ε = ε−1(a∗ε − s∗ε ).

In Hypothesis 2, the map (5.4) is transversal to the diagonal (5.5). Lemma 6.7 shows that

by replacing ker(D̃H
∞) by ker(D̃∞,ε), we obtain a small perturbation of (5.4)

ker[D̃∞,ε]⊕
m+m∏
i=1

ker[D̃i] →
m∏
i=1

[Tx̄iX̄]2 ⊕
m∏
j=1

[Tx̄j L̄]
2 ⊕Wm+m+1.

which is still transversal to the diagonal. Hence for all small ε, one can choose a right inverse

Qε :
Wm+m+1

Δm+m+1(W )
⊕

m∏
i=1

[Tx̄iX̄]2

Δ(Tx̄iX̄)
⊕

m∏
j=1

[Tx̄j L̄]
2

Δ(Tx̄j L̄)
→ ker[D̃∞,ε]⊕

m+m∏
i=1

ker[D̃i]

whose norm is uniformly bounded.

Moreover, Hypothesis 2 tells that there are right inverses

Q̃i : Ei →W ⊕ Bi.
Together with the right inverse Q̃∞,ε of Proposition 6.2, one obtains right inverses

Q̃#,ε : E∞,ε ⊕
m+m∏
i=1

Ei → (W ⊕ B∞,ε)⊕
m+m∏
i=1

(W ⊕ Bi)

for all ε small enough, whose norm is uniformly bounded. The image of Q̃#,ε may not lie in

the diagonals, and we use Qε to correct it. Since the norm of Qε is also bounded uniformly, it

implies Proposition 6.6.

7 Constructing the Gluing Map

In this section we use the standard idea of gluing to construct perturbed H-vortices near the

singular solution. In Subsection 7.1 we describe how to subdivide the domain and introduce

the cut-off functions. In Subsection 7.2 we construct the approximate solutions. In Subsection

7.3 we introduce the ε-dependent weighted Sobolev norms along the approximate solutions. In

Subsection 7.4 we state the major estimates required to apply the implicit function theorem,

which immediately implies the (set-theoretic) construction of the gluing map. In Subsection

7.5 we prove that the gluing map is locally a homeomorphism. Certain technical results will be

proved in Section 8 and the appendix.

We will establish several estimates in which we prove the existence of constants ε1, ε2, . . . > 0

and c1, c2, . . . > 0 (whose values are reset now). We will always assume

ε1 ≥ ε2 ≥ ε3 ≥ · · · , c1 ≤ c2 ≤ c3 ≤ · · · .
7.1 Decomposing the Domain

We use the alternate local model for domain curves discussed in Subsection 2.3, so that the

nodal point set z = (z1, . . . , zm, z1, . . . , zm) is fixed. For ε > 0 sufficiently small, define

Σε = Σε,z := H \ {z1;ε, . . . , zm+m;ε}.
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(Recall that zi,ε is defined in (2.4).) Take a number b > 0 such that

100spc♣
p− 2

≤ log b ≤ 1000spc♣
p− 2

(7.1)

where sp is the Sobolev constant given by Definition 3.6 and c♣ is the bound of the right

inverse Q̃♣ given by Proposition 6.6. The reason for this seemingly strange choice will be clear

in Proposition 8.1. Then the following sets (in increasing sequence)

ˇ̌Biε = B

(
zi,ε,

1

2b
√
ε

)
, B̌iε = B

(
zi;ε,

1

b
√
ε

)
, B̊iε = B

(
zi;ε,

1√
ε

)
,

B̂iε = B

(
zi;ε,

b√
ε

)
,

ˆ̂
Biε = B

(
zi,ε,

2b√
ε

)
.

We also denote

ˇ̌Σε := H \
m+m⋃
i=1

ˇ̌Biε, Σ̌ε := H \
m+m⋃
i=1

B̌iε, Σ̊ε := H \
m+m⋃
i=1

B̊iε, and similarly Σ̂ε,
ˆ̂
Σε;

and

Ȧiε := B̂iε \ B̌iε, Äiε :=
ˆ̂
Biε \ ˇ̌Biε.

zi,ε

ˇ̌Bi
ε

ˆ̂
Σε

ˆ̂
Σε

1�
ε

2b�
ε

Figure 2 The decomposition of the domain near a node. Over Ȧi
ε, the shaded area in the picture,

the approximate solution is covariantly constant

Let β : R → [0, 1] be a smooth cut-off function such that

β|(−∞,−1] ≡ 1, β|[0,+∞) = 0, |∇β| ≤ 2.

Then for a given gluing parameter ε and i, define βi,ε : H → [0, 1] by

βi,ε(z) = β

(
log |z − zi,ε|+ log b+ log

√
ε

log 2

)
.

Define β∞,ε : H → [0, 1] by

β∞,ε(z) = min
1≤i≤m+m

β

(− log |z − zi,ε|+ log b− log
√
ε

log 2

)
.

Then βi,ε equals to one inside ˇ̌Biε and equals to zero outside B̌iε. β∞,ε equals to one inside
ˆ̂
Σε

and equals to zero outside Σ̂ε. Moreover,

‖∇βi,ε‖L∞ ≤ 2b
√
ε

log 2
sup |∇β| ≤ 2b

√
ε, ‖∇β∞,ε‖L∞ ≤

√
ε

b log 2
sup |∇β| ≤

√
ε

b
.
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7.2 The Approximate Solutions

We first consider a small neighborhood of [w•,v•] inside Mε0
♣ (H ;X,L), which is has the struc-

ture of a fibre product. If [w,v] ∈ Mε0
♣ (H ;X,L) is sufficiently close to [w•,v•], then by Theorem

3.7, for i = 1, . . . ,m+m, the i-th component vi of v is close to v•,i in the topology of Bi, and
can be written uniquely as vi = expv•,i ξi, where ξi = (ξi, ηi, ζi) ∈ Bi satisfying the gauge fixing

condition

∂sηi + [φ•,i, ηi] + ∂tζi + [ψ•,i, ζi] + dμ(u•,i) · Jξi = 0.

On the other hand, the ∞-th component v∞ = (u∞, φ∞, ψ∞) is also sufficiently close to v•,∞,

and there is a unique vector ξH∞ ∈ BH∞ such that u∞ = expu•,∞ ξ∞. Then for ε > 0 sufficiently

small, we just use Mε
♣(H ;X,L) to denote the set of gauge equivalence classes of perturbed

stable affine vortices which have representatives in the above way such that all ‖ξi‖L̃1,p
m

< ε and

‖ξ∞‖L̃1,p
h

< ε, and every element of Mε
♣(H ;X,L) are provided with canonical representatives

where a general one is denoted by (w,v).

The purpose of this subsection is, for each ε small enough and (w,v) in this family of rep-

resentatives, we would like to define a gauged map vε = (uε, φε, ψε) on H from the components

vi and v∞, and call (w,vε) an approximate solution.

We first need to change the gauge of v∞ (for all (w,v) in this family of representatives).

Let (ri, θi) be the polar coordinates centered at zi. Let g∞ : H \ {z1, . . . , zm} → K be a gauge

transformation satisfying the following conditions:

(a) For i = 1, . . . ,m, g∞(ri, θi) = e−λiθi in a small neighborhood of zi.

(b) g∞ equals identity outside a compact subset of H and

∂g∞
∂t

|∂H = 0. (7.2)

By abuse of notations, we replace v∞ by g∞ · v∞ = g∞ · (u∞, φ∞, ψ∞), in which the

connection form a∞ = φ∞ds+ ψ∞dt has poles at zi for i = 1, . . . ,m. For convenience, set the

monodromies at the boundary punctures to be λm+j = λj = 0 for j = 1, . . . ,m. Then it is easy

to see

lim
z→zi

eλiθiu∞(z) = xi, i = 1, . . . ,m+m.

Moreover, (7.2) implies the boundary condition

u∞(∂Σ) ⊂ L, ψ∞|∂Σ = 0.

As before, v∞,ε = s∗εv∞ is the rescaled gauged map defined on Σε, which has poles at zi,ε. The

original (smooth) gauged map is denoted by v̌∞ = (ǔ∞, α̌∞). From now on symbols with “̌ ”

on top indicate that they are associated with objects which have no poles at the nodes.

Now v∞ and vi has the same monodromy at nodes and we can form connected sums. More

precisely, over the neck region Äiε with polar coordinates (ri, θi), denote α̌i = eλiθi · αi. Define

αε =

⎧⎪⎪⎨
⎪⎪⎩

α∞,ε(z), z ∈ ˆ̂
Σε;

e−λiθi · (β∞,εα̌∞,ε(ri, θi) + βi,εα̌i(ri, θi)), z ∈ Äiε, i = 1, . . . ,m+m;

αi(z − zi,ε), z ∈ ˇ̌Biε.

(7.3)
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Secondly, over the neck region Äiε, denote ǔi = eλiθiui. Using the exponential map, there

are TxiX-valued functions ξ̌∞,ε and ξ̌i such that

ǔ∞,ε(z) = expxi ξ̌∞,ε(z), ǔi(z − zi,ε) = expxi ξ̌i(z), z ∈ Äiε.

Let (ri, θi) be the polar coordinates defined as ri + iθi = log(z − zi,ε). Then define

uε(z) =

⎧⎪⎪⎨
⎪⎪⎩

u∞,ε(z), z ∈ ˆ̂
Σε;

e−λiθi expxi(β∞,εξ̌∞,ε(ri, θi) + βi,εξ̌i(ri, θi)), z ∈ Äiε, i = 1, . . . ,m+m;

ui(z − zi,ε), z ∈ ˇ̌Biε.

(7.4)

Finally define vε = (uε, αε) and call the pair (w,vε) the approximate solution. Notice

that they are defined on a fixed presentation of H , however with different global holomorphic

coordinates z (depending on the conformal class of the underlying marked disk, parametrized

by the variable q; see Subsection 2.3) and the associated volume form. The central approximate

solution (w•,v•,ε) is of special role. After we introduce a new, ε-dependent weighted norm and

a Banach manifold centered Bε centered at v•,ε, we will see that all gauged maps vε belonging

to an approximate solution stay close to v•,ε w.r.t. the norm of Bε.
Notice that over the thinner neck region Ȧiε (i.e., the shaded region in Figure 2), v•,ε coincides

with the covariantly constant gauged map

c•,i := (e−λiθix•,i, λidθi).

For convenience, we also introduce gauged maps

v′
•,i,ε =

⎧⎨
⎩

v•,ε, on B̊iε,

c•,i, on Ai \ B̊iε;
v′

•,∞,ε =

⎧⎨
⎩

v•,ε, on Σ̊ε,

c•,i, on B̊iε \ {zi,ε}.
(7.5)

The following two results are proved in Subsection 8.1 by straightforward calculations.

Lemma 7.1 For each i, we can identify v′
•,i,ε with a point ξ′•,i,ε ∈ Bi such that

v′
•,i,ε = expv•,i ξ

′
•,i,ε and lim

ε→0
‖ξ′•,i,ε‖L̃1,p

m;ε
= 0.

Lemma 7.2 We can identify v′
∞,ε with a point ξ′∞,ε ∈ B∞,ε such that

v′
•,∞,ε = expv•,∞,ε

ξ′•,∞,ε and lim
ε→0

‖ξ′•,∞,ε‖L̃1,p
m;ε

= 0.

Remark 7.3 We only need the above two convergence results for the central one (w•,v•) in

the family of stable solutions, in order to estimate the approximate right inverses.

7.3 Weighted Sobolev Norms

To save notations, in this subsection we abbreviate the central approximate solution v•,ε simply

as vε. One use formula (3.5) to define a Banach space Bvε of infinitesimal deformations of vε,

where we replace the gauge field a by aε. Using the exponential map of the metric hX one

can identify a small ball of Bε with a Banach manifold of triples vε = (u′ε, φ
′
ε, ψ

′
ε) near vε. As

always we still denote this Banach manifold by the same symbol Bvε representing the tangent

space. We can also define the Banach vector bundle Evε → Bε whose fibre over v′
ε is the space

L̃p(H , (u′ε)
∗TX ⊕ k⊕ k). However, to obtain uniform estimates needed for the gluing, one has
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to modify the norms on Bvε and Evε . Define ρε : H → R by

ρε(z) =

⎧⎨
⎩

ρAi
(z), z ∈ B̊iε;

ρ∞,ε(z), z ∈ Σ̊ε.
(7.6)

By definition (6.1), ρε is continuous and has value 1√
ε
on ∂B̊iε. Then for U ⊂ H and a section

f ∈ Lploc(U,E) of an Euclidean bundle E → U , define

‖f‖L̃pε =

[ ∫
U

|f(z)|p[ρε(z)]2p−4dsdt

] 1
p

.

This induces a norm on the fibres of Evε , which we abbreviate as Eε. On the other hand, for

ξε = (ξε, ηε, ζε) ∈ Bvε define

‖ξε‖L̃1,p
m;ε

:= ‖ηε‖L̃pε + ‖ζε‖L̃pε + ‖dμ · ξε‖L̃pε + ‖dμ · Jξε‖L̃pε + ‖∇aεξε‖L̃pε + ‖ξε‖L∞ . (7.7)

The space Bvε with the new norm is denoted by Bε. The norm L̃1,p
m;ε(U) for a subset U ⊂ H

can be understood and we do not bother to define it explicitly.

We need the following uniform Sobolev estimate.

Lemma 7.4 (Sobolev Embedding) There exist c2 and ε2 such that for all ε ∈ (0, ε2) and

ξε ∈ Bε, one has ‖ξε‖L∞ ≤ c2‖ξε‖L̃1,p
m;ε

.

Proof By the definition (7.7), ‖ξε‖L∞ is already contained in the norm ‖ξε‖L̃1,p
m;ε

. Hence it

suffices to bound the L∞ norm of φε and ψε. Notice that ∇aε is a connection that preserves

the metric on k. Hence by [12, Remark 3.5.1], the Sobolev embedding for φε and ψε follows

from the standard Sobolev embedding if the weight function is uniformly bounded from below

in the standard coordinate. This is indeed true from the definition. �
When the moduli space in the lower stratum has positive dimensions, we also need to show

that all approximate solutions constructed from nearby singular solutions are in a neighborhood

of v•,ε w.r.t. the distance of Bε. More precisely, we aim at proving the following lemma.

Lemma 7.5 Given r > 0, there exists ε(r) > 0 satisfying the following conditions. Given an

element v′ of the same combinatorial type as v• with components

v′
i = expvi ξi ∈ Bi, i = 1, . . . ,m+m, u′∞ ∈ expu∞ ξH∞ ∈ BH∞

which satisfies the matching condition, and which satisfies

‖ξi‖L̃1,p
m

≤ ε(r), ‖ξH∞‖L̃1,p
h

≤ ε(r).

Given ε ∈ (0, ε(r)] and let v′
ε be the object obtained from v′ by the pregluing construction, then

v′
ε ∈ Bε, and we can write

v′
ε = expv•,ε ξε, ξε ∈ Tv•,εBε, with ‖ξε‖L̃1,p

m;ε
≤ r. (7.8)

Proof One can write (7.8) formally for some ξε which has local regularity W 1,p. On the other

hand, over the region where v′
ε = vi (up to a translation), i.e., over ˇ̌Biε, we have

‖ξε‖L̃1,p
m;ε(

ˇ̌Biε)
= ‖ξi‖L̃1,p

m;ε(
ˇ̌Biε−zi,ε)

.

Over
ˆ̂
Σε where v′

ε = v∞,ε, we have

‖ξε‖L̃1,p
m;ε(

ˆ̂
Σε)

= ‖ξ∞,ε‖L̃1,p
m;ε(

ˆ̂
Σε)

� ‖ξH∞‖L̃1,p
h (H).
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The last inequality follows from Lemma 4.8. Then by taking ε(r) sufficiently small, the norm

of ξε away from all neck regions Äiε can be made very small.

It remains to estimate the difference over the neck regions. Indeed, let xi, x
′
i ∈ μ−1(0) be

the image of the i-th nodal point of v• and v′ respectively.

Claim The monodromy at ∞ of v′
i is the same as that of v•,i, denoted by λi. Moreover, if

v′
i converges to the loop eλiθx′i for x

′
i ∈ μ−1(0), then x′i ∈ expx•,i(HX,x•,i).

Proof of the Claim The conclusion basically follows from the fact that v′
i is in the Banach

manifold centered at v•,i. Near infinity, we write the gauge fields a′i = φ′ids + ψ′
idt of v

′
i as

Φ′
idτ +Ψ′

idθ in the cylindrical coordinate (τ, θ). Since a′i−a•,i is of class L̃
p, while |dθ| = e−τ is

not of this class, we see Ψ′
i converges to λi at ∞. On the other hand, we can write u′i = expu•,i ξ

′
i

with ξ′i ∈ L̃1,p
m (u∗•,iTX). This implies that the limit of ξ′i at ∞ exists and is in the horizontal

distribution. Hence x′i = expx•,i ξ
′
i(∞). �

Then it is routine to estimate the difference between v•,ε and v′
ε over the neck region. They

are close to the covariantly constant gauged maps c•,i and c′i. Moreover, the difference between

c•,i and c′i, which is essentially the size of the vector vi, is small.

Putting the estimates in the three types of regions together, we finish the proof. �

7.4 Implicit Function Theorem

7.4.1 The Failure

Consider the perturbed vortex equation over H , where the perturbation term ι also depends

on the gluing parameter ε,

∂su+ Xφ + J(∂tu+ Xψ) + ιε(w,v) = 0, ∂sψ − ∂tφ+ [φ, ψ] + σεqμ(u) = 0.

Recall that σεqdsdt is the volume form on H depending on the gluing parameter and q which

parametrizes the marked disk, such that σε• ≡ 1. Moreover, we use v•,ε as a reference to define

the local gauge fixing condition, which reads

∂s(φ− φ•,ε) + [φ•,ε, φ− φ•,ε] + ∂t(ψ − ψ•,ε) + [ψ•,ε, ψ − ψ•,ε] + σεqdμ(u•,ε) · ξ = 0.

Here ξ is defined by u = expu•,ε ξ. Then we obtain a section

F̃ε :W × Bε → Eε.

The first major estimate is for the norm of F̃ε(w,vε) for all approximate solutions we construct-

ed.

Proposition 7.6 There exists ε3 > 0 such that for all ε ∈ (0, ε3) and all γ ∈ (0, 1− 2
p ), there

exists c3(γ) > 0 such that for all (w,v) in a neighborhood of (w•,v•),

‖F̃ε(w,vε)‖L̃pε ≤ c3(γ)(
√
ε)γ .

It is proved in Subsection 8.2. Now fix the value of γ and abbreviate c3(γ) = c3.

7.4.2 Variation of Derivatives

Let D̃ε :W ⊕Bε → Eε|vε be the linearization of F̃ε at (w•,v•,ε). To apply the implicit function

theorem, we also need to bound the variation of D̃ε.
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Consider a small different perturbation parameter e, a small deformation parameter a,

and a deformation of the gauged map ξε = (ξε, ηε, ζε) ∈ Bε. Denote h′ = (e′,a′) and denote

w′′ = w• + h′. Also define

v′′
ε = (u′′ε , a

′
ε) := (expu•,ε ξε, φ•,ε + ηε, ψ•,ε + ζε).

The linearization of F̃ε at (w′′,v′′
ε ) is a linear operator

D̃′′
ε :W ⊕ Tv′′

ε
Bε → Eε|v′′

ε
.

The quadratic estimate asks to control the variation D̃′′
ε − D̃ε. To compare, one identifies

(u′′ε )
∗TX with u∗•,εTX using the parallel transport of ∇ along shortest geodesics4)

Pl ε : u
∗
•,εTX → (u′′ε )

∗TX.

By abuse of notation, it induces the identifications

Pl ε : TvεBε → Tv′′
ε
Bε, Pl ε : Eε|vε → Eε|v′′

ε
.

Then we would like to estimate the difference

Pl−1
ε ◦ D̃′′

ε ◦ Pl ε − D̃ε :W ⊕ Bε → Eε|v•,ε .

For convenience, for ξε = (ξε, ηε, ζε) ∈ TvεBε, denote ξ′′ε := (ξ′′ε , ηε, ζε) = (Plε(ξε), ηε, ζε) ∈
Tv′′

ε
Bε. We will also omit Pl ε whenever no confusion is caused.

First of all, by the smoothness of the perturbation term and the uniform Sobolev estimate

(Lemma 7.4), we have

Lemma 7.7 There exist ε4 > 0 and c4 > 0 such that, for all ε ∈ (0, ε4), h
′ ∈W with |h′| ≤ ε4

and all ξ′ε ∈ Bε with ‖ξ′ε‖L̃1,p
m;ε

≤ ε4, denoting v′′
ε = expv•,ε ξ

′
ε and w′′ = w• + h′, one has

‖Pl−1
ε dιεw′′,v′′

ε
(h, ξ′′ε )− dιεw•,v•,ε(h, ξε)‖L̃pε ≤ c4(‖h′‖+ ‖ξ′ε‖L̃1,p

m;ε
)(‖h‖+ ‖ξε‖L̃1,p

m;ε
).

Therefore, to prove the quadratic estimate it remains to bound the variation of dF .

Proposition 7.8 There exist ε5 > 0 and c5 > 0 such that for all ε ∈ (0, ε5) and all ξ′ε ∈ TvεBε
with ‖ξ′ε‖L̃1,p

m;ε
≤ ε5, using the notations above, we have

‖D′′
ε (ξ

′′
ε )−Dε(ξε)‖L̃pε ≤ c5‖ξ′ε‖L̃1,p

m;ε
‖ξ‖L̃1,p

m;ε
. (7.9)

This proposition is proved in Subsection 8.3. Lemma 7.7 and Proposition 7.8 together imply

the following estimate.

Corollary 7.9 There exist ε6 and c6 such that, for all ε ∈ (0, ε6) and all (h′, ξ′ε) ∈W ⊕TvεBε
with ‖h′‖+ ‖ξ′ε‖L̃1,p

m;ε
≤ ε6, denoting v′′

ε = expvε ξ
′
ε and w′′ = w• + h′, one has

‖D̃′′
ε (h, ξ

′′
ε )− D̃ε(h, ξ)‖L̃pε ≤ c6(‖h′‖+ ‖ξ′ε‖L̃1,p

m;ε
)(‖h‖+ ‖ξε‖L̃1,p

m;ε
).

7.4.3 The Right Inverse

We use the family of right inverses Q̃♣,ε constructed in Section 6 to construct the right inverses

along vε.

Proposition 7.10 There exist ε7, c7, and, for each ε ∈ (0, ε7), a bounded right inverse

Q̃ε : Eε|vε →W ⊕ TvεBε to the operator D̃ε such that ‖Q̃ε‖ ≤ c7.

The construction of Q̃ε and the proof of this proposition are given in Subsection 8.3.

4) Notice ∇ is not diagonal w.r.t. the splitting HX ⊕GX near μ−1(0).
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7.4.4 The Gluing Map

Now we are ready to apply the implicit function theorem. Let us first cite a precise version of

it.

Proposition 7.11 ([12, Proposition A.3.4]) Let X, Y be Banach spaces, U ⊂ X be an open

set and f : U → Y be a continuously differentiable map. Let x• ∈ U be such that df(x•) : X → Y

is surjective and has a bounded right inverse Q : Y → X.

Assume there are constants ε, c > 0 such that

‖Q‖ ≤ c; (7.10)

Bε(x•) ⊂ U and x ∈ Bε(x•) =⇒ ‖df(x)− df(x•)‖ ≤ 1

2c
. (7.11)

Suppose x′ ∈ X satisfies

‖f(x′)‖ < ε

4c
, ‖x′ − x•‖ < ε

8
, (7.12)

then there exists a unique x ∈ X satisfying

f(x) = 0, x− x′ ∈ ImQ, ‖x− x•‖ ≤ ε. (7.13)

Moreover,

‖x− x′‖ ≤ 2c‖f(x′)‖. (7.14)

Now let X =W ⊕Bε, Y = Eε|vε , f = Pl−1
ε ◦ F̃ε ◦ Pl ε, x• = (w•,v•,ε). Then (7.10) holds for

c = c7. Corollary 7.9 implies (7.11) holds for

ε =
1

2c6c7
.

By Lemma 7.5, for any approximate solution (w,vε) constructed from a nearby singular solution

(w,v) sufficiently close to (w•,v•), and for sufficiently small ε, there is a corresponding point x′ ∈
X whose distance from x• is less than ε/8. Proposition 7.6 implies that, when ε < (8c3c6c

2
7)

−2/γ ,

(7.12) is satisfied. Therefore by Proposition 7.11 there exists a unique x satisfying (7.13), which

we denote by

(w′
ε,v

′
ε) = (w + h′

ε, expvε ξ
′
ε) ∈W × Bε.

Then we denote the gluing map by

Glue([w,v], ε) = [w′
ε,v

′
ε], ∀ε ∈ (0, ε7), Glue([w,v], 0) = [w,v].

It is not hard to check that Glue is a continuous map from [0, ε7)×Mε7
♣ (H ;X,L) to Mε0

l,l(H ;X,

L). To prove our main theorem (Theorem 5.7), it remains to show that it is a local homeo-

morphism, hence a local chart of topological manifold with boundary. Notice that by the

transversality assumption, the domain of Glue is identified with an open subset of an Euclidean

space. A standard result in general topology tells that a one-to-one and onto continuous map

from a compact space to a Hausdorff space is necessarily a diffeomorphism. Then to prove Glue

is a homeomorphism, it suffices to show that in a small neighborhood of (0, [w•,v•]), Glue is

injective and surjective onto a neighborhood of [w•,v•] in Mε0
l,l(H ;X,L).
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7.5 Injectivity and Surjectivity

For injectivity, suppose on the contrary that there are sequences wn,a,wn,b ∈W converging to

w•, sequences of stable perturbed affine vortices vn,a,vn,b of type ♣ on the gauge slice through

v• converging to v•, and sequences of gluing parameters εn,a, εn,b converging to zero, such that

Glue([wn,a,vn,a], εn,a) = Glue([wn,b,vn,b], εn,b).

By definition, for all n, wn,a = wn,b and εn,a = εn,b. We would like to show that for large

n, vn,a = vn,b. Suppose it is not the case. Let the corresponding approximate solutions be

vεn,a, vεn,b respectively, which are in small neighborhoods of the central approximate solution

v•,εn . By construction, vεn,a and vεn,b can be identified with different elements ξappn,a , ξ
app
n,b in

the tangent space Bεn , while the exact solutions are identified with ξexactn,a , ξexactn,b . Since the

exact solutions are both in the Coulomb slice through v•,εn and represent the same point in the

moduli space, the two exact solutions are identical. Moreover, since exact solutions differ from

the approximate solutions by elements in the image of the right inverse Q̃εn , we know that

ξappn,a − ξappn,b ∈ ImQ̃εn .

Therefore, by the uniform boundedness of the right inverse, there is a number c > 0 independent

of n such that

‖D̃εn(ξappn,a − ξappn,b )‖L̃pεn ≥ 1

c
‖ξappn,a − ξappn,b ‖L̃1,p

m;εn
.

However, by straightforward estimate, for εn sufficiently small, we have

lim
n→∞ ‖D̃εn(ξappn,a − ξappn,b )‖L̃pεn /‖ξ

app
n,a − ξappn,b ‖L̃1,p

m;εn
= 0.

We omit the rather tedious estimate. This contradicts the previous inequality. Hence for n

large, vn,a = vn,b and we proved the injectivity of the gluing map.

Now we prove the surjectivity. The main difficulty is that the topology of Mε0
l,l(H ;X,L)

is defined in terms of a very weak notion of convergence. In particular, for a sequence of

perturbed vortices vn, for each R > 0, we only require that a C0
loc convergence for the rescaled

one (s−1
εn )

∗(vn|CR/εn ). However, we need to show that every nearby smooth vortex vn is actually

close to the approximate solution vεn w.r.t. our norm in Bεn . This is similar to the case of Gaio–

Salamon [9], where the surjectivity, based on their a priori estimates in their Section 9 and 10,

was the most difficult part. More precisely, in Subsection 8.5 we prove the following theorem.

Proposition 7.12 Suppose a sequence [wn,vn] ∈ Mε0
l,l(H ;X,L) converges to [w•,v•], namely,

up to gauge transformation, (wn,vn) and (w•,v•) satisfy the conditions of Definition 5.5 for a

sequence of gluing parameters εn → 0. Then for i sufficiently large, we can gauge transform

vn to a sequence of smooth vortices (which we still denote by vn) such that (wn,vn) = (w• +

hn, expv•,εn
ξn) where ξn ∈ Bεn and

lim
i→∞

(‖hn‖+ ‖ξn‖L̃1,p
m;εn

) = 0.

The surjectivity of the gluing map follows from this proposition in a rather abstract way.

By this proposition, it suffices to show that there exists r > 0 such that for all ε sufficiently

small, the zero locus F̃−1
εn (0) intersecting the radius r ball centered at (w•,v•,ε) is contained in

the image of the gluing map. If this is not true, then there exists a sequence εn → 0 and a
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sequence of elements (wn,vn) ∈ F̃−1
εn (0) whose distances from (w•,v•,εn) converge to zero, but

do not coincide with any exact solution. Identify (wn,vn) with a sequence of tangent vectors

ξ̃n ∈W ⊕ Bεn . Consider the path tξ̃n. Then by Proposition 7.8, we know that

lim
n→∞ ‖F̃εn(tξ̃n)‖ = 0, uniformly in t ∈ [0, 1].

Then by the implicit function theorem, by correcting tξ̃n there exists a sequence of exact

solutions ξ̃n(t). Notice that ξ̃n(0) is the correction of (w•,v•,εn) which lies in the image of the

gluing map. Let tn ∈ [0, 1) be the largest number such that ξ̃n(t) is in the image of the gluing

map for all t ≤ tn. Then ξ̃n(tn) is on the boundary of the image of the gluing map (for the

fixed value t = tn) and its distance from the origin of Bεn is uniformly bounded away from zero.

However, by the implicit function theorem (more precisely by (7.14)) we have

‖tnξ̃n − ξ̃n(tn)‖ � ‖F̃εn(tξ̃n)‖ → 0.

We also have ‖tnξ̃n‖ → 0, which is a contradiction. This finishes the proof of surjectivity of

the gluing map and hence finishes the proof of our main theorem (Theorem 5.7).

8 Technical Results for Gluing

We prove certain technical results which have been stated earlier in the gluing construction.

8.1 Proof of Lemmas 7.1, 7.2

Since we only care the central object for these two lemmata, we remove “•” from the notations.

Proof of Lemma 7.1 The C0 distance between v′
i,ε and vi is small. Hence we obtain ξ′i,ε

satisfying v′
i,ε = expvi ξ

′
i,ε pointwise. Without loss of generality, assume the base point zi,ε = 0.

Hence ξ′i,ε is supported in Ai \ ˇ̌Biε. In this region we have

v̌i = (expxi ξ̌i, φ̌i, ψ̌i), v̌′
i,ε = (expxi βi,εξ̌i, βi,εφ̌i, βi,εψ̌i).

Then (after identifying ξ̌i as a tangent vector along ǔi) we have

ξ̌′i,ε := eλiθξ′i,ε = (βi,ε − 1)(ξ̌i, φ̌i, ψ̌i).

It suffices to estimate ‖ξ̌′i,ε‖L̃1,p
m

using the trivial connection. By Lemma 3.4, we know that over

Ai \ ˇ̌Biε, for all δ ∈ (1− 2
p , 1),

‖∇ξ̌i‖Lp,δ + ‖dμ · ξ̌i‖Lp,δ + ‖dμ · Jξ̌i‖Lp,δ + ‖φ̌i‖W 1,p,δ + ‖ψ̌i‖W 1,p,δ <∞.

Choose δ ∈ (δp, 1). Then

‖eλiθξ′i(z)‖L̃1,p
m

≤ ‖ξ̌i‖L̃1,p
m (Ai\ ˇ̌Biε)

+ ‖∇βi,ε‖L∞‖ξ̌Gi ‖L̃p(Ai\ ˇ̌Biε)
+ ‖(∇βi,ε)ξ̌Hi ‖

L̃p(Ai\ ˇ̌Biε)

�
√
εδ−δp +

√
ε‖ξ̌i‖L̃p(Ai\ ˇ̌Biε)

+ ‖(∇βi,ε)ξ̌Hi ‖
L̃p(Ai\ ˇ̌Biε)

.

The first two terms converge to zero as ε→ 0; the third term is estimated as follows.

‖(∇βi,ε)ξ̌Hi ‖
L̃p(Ai\ ˇ̌Biε)

=

[ ∫
Ai\ ˇ̌Biε

|∇βi,ε|p|ξ̌Hi |p[ρε(z)]2p−4dsdt

] 1
p

�
[ ∫

Ai\ ˇ̌Biε

|ξ̌Hi |p[ρε(z)]p−4dsdt

] 1
p

= ‖ξ̌Hi ‖
Lp,δp−1(Ai\ ˇ̌Biε)

�
√
εδ−δp‖ξ̌Hi ‖Lp,δ−1 �

√
εδ−δp(‖ξ̌Hi ‖L∞ + ‖∇ξ̌Hi ‖Lp,δ ).
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Here the last inequality follows from (3.7) and the fact that the limit of ξ̌Hi at ∞ is zero. Hence

this also converges to zero as ε→ 0. This finishes the proof of Lemma 7.1. �
Proof of Lemma 7.2 Similar to the previous proof, we can assume zi,ε. Inside

ˆ̂
Biε, we can

write

ξ̌′∞,ε := eλiθξ′∞,ε(z) = (β∞,ε − 1)(ξ̌∞,ε, φ̌∞,ε, ψ̌∞,ε)

Denote V iε = B(2b
√
ε) = sε(

ˆ̂
Biε). Then since v∞,ε is the rescaling of v∞, we can write ξ̌∞,ε =

s∗ε ξ̌∞, φ̌∞,ε = εs∗ε φ̌∞, and ψ̌∞,ε = εs∗ε ψ̌∞. Since v∞ comes from a smooth holomorphic disk

in X̄, we know that |ξ̌∞| � |z| and φ̌∞, ψ̌∞ are bounded. Moreover, by the special gauge we

choose for v∞, over V iε we have ξ̌∞ = ξ̌H∞. Hence we have

‖ξ̌H∞‖L̃p(V iε ) + ε‖ξ̌G∞‖L̃p(V iε ) �
√
ε
1+ 2

p , ‖∇a∞ ξ̌∞‖L̃p(Vε) �
√
ε

2
p . (8.1)

Then we have (recall the definition of the L̃1,p
m;ε-norm given by (6.2))

‖ξ̌′∞,ε‖L̃1,p
m;ε(

ˆ̂
Biε)

≤ ‖∇β∞,ε‖L∞‖ξ̌G∞,ε‖L̃pε ( ˆ̂Biε) + ‖∇β∞,ε‖L∞‖ξ̌H∞,ε‖L̃pε ( ˆ̂Biε) + ‖ξ̌∞,ε‖L̃1,p
m;ε(

ˆ̂
Biε)

�
√
ε(ε‖s∗ε ξ̌G∞‖

L̃pε (
ˆ̂
Biε)

+ ‖s∗εξH∞‖
L̃pε (

ˆ̂
Biε)

) + ε‖s∗ε∇a∞ξ∞‖
L̃pε (

ˆ̂
Biε)

+ ε‖s∗εξG∞‖
L̃pε (

ˆ̂
Biε)

+ ‖ξ̌H∞,ε‖L∞(
ˆ̂
Biε)

� 1√
ε
(ε‖ξ̌G∞‖L̃p(V iε )+‖ξ̌H∞‖L̃p(V iε ))+‖∇a∞ξ∞‖L̃p(V iε )+‖ξG∞‖L̃p(V iε )+‖ξ̌H∞‖L∞(V iε )

.

Here for the last line we used Lemma 6.1. Then by (8.1) we see that lim
ε→0

‖ξ̌′∞,ε‖L̃1,p
m;ε

→ 0. �

8.2 Proof of Proposition 7.6

We denote the three components of F̃ε by F̃1, F̃2 and F̃3 respectively, where only F̃1 contains

on the perturbation term. We first estimate F̃1(w,vε)

(a) Inside each ˇ̌Biε, i.e., a region with radius ≈ 1√
ε
corresponding to the affine vortex vi,

F̃1(w,vε) = ∂Aiui + ιε(w, ui) = ιε(w, ui)− ι0(w, ui).

Here we used the equation ∂Aiui + ι0(w, ui) = 0. Then by the definition of the norm the

definition of the perturbation ιε (which is supported on a compact subset and depends on ε

smoothly), one has

‖F̃1(w,vε)‖L̃pε ( ˇ̌Biε) � ε. (8.2)

(b) Over
ˆ̂
Σε, i.e., a region corresponding to a large part of the disk v∞, one has

F̃1(w,vε) = ∂A∞,ε
u∞,ε + ι∞,ε(w, u∞,ε)

= ι∞,ε(w, u∞,ε)− ι∞,0(w, u∞,ε) = εs∗ε (ιε(w, u∞)− ι0(w, u∞)).

Then by the property of ιε, and Lemma 6.1, one has

‖F̃1(w,vε)‖
L̃pε (

ˆ̂
Σε)

� ε. (8.3)

(c) In the interior part of the neck region B̊iε \ ˇ̌Biε ⊂ Äiε, one has

uε(z) = e−λiθi expxi(βi,εξ̌i(z)), aε = e−λiθi · (βi,εα̌i).
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Recall that the perturbation term vanishes in the neck region. Using the normal coordinate

centered at xi, we can write

eλiθi(∂Aεuε) =
∂ǔε
∂s

+ J(ǔε)
∂ǔε
∂t

+ βi,ε(Xφ̌i + J(ǔε)Xψ̌i)

= βi,ε

[
∂ξ̌i
∂s

+ Xφ̌i(ǔε) + J(ǔε)

(
∂ξ̌i
∂t

+ Xψ̌i(ǔε)
)]

+
∂βi,ε
∂s

ξ̌i + J(ǔε)
∂βi,ε
∂t

ξ̌i

= βi,ε[Xφ̌i(ǔε)−Xφ̌i(ǔi) + J(ǔε)Xψ̌i(ǔε)− J(ξ̌i)Xψ̌i(ξ̌i)] +
∂βi,ε
∂s

ξ̌i + J(ǔε)
∂βi,ε
∂t

ξ̌i.

In the last line, let F1 be the sum of the terms involving the derivatives of βi,ε, and F2 be the

sum of other terms. To estimate them, firstly recall that, by the main result of [38] and [25,

Proposition A.4], the energy density of vi decays in the following way:

|daivi(wi)|2 + |FAi(wi)|2 + |μ(ui(wi))|2 �α |wi|−4+α, ∀α > 0. (8.4)

Here wi = z − zi,ε is the shifted affine coordinate. Then if z ∈ Ai,−ε;2 ,

dist(ǔi(wi), xi) �α (
√
ε)1−α =⇒ sup

Äiε

|ui − uε| �α (
√
ε)1−α. (8.5)

So using the fact that |∇βi,ε| �
√
ε, one has

‖(∂sβi,ε)ξ̌i + J(ǔε)(∂tβi,ε)ξ̌i‖L̃pε �
[ ∫

Äiε

|∇βi,ε(z)|p
[
sup
z∈Äiε

dist(ǔi, xi)
]p
ε2−pdsdt

] 1
p

�α (
√
ε)

4
p−α[Area(Äiε)]

1
p �α (

√
ε)

2
p−α, ∀α > 0. (8.6)

On the other hand, by Sobolev embedding, one has

‖α̌i‖L̃1,p
g

≤ ci =⇒ sup
Äiε

(|φ̌i|+ |ψ̌i|) � ε1−
2
p . (8.7)

Then by (8.5) and (8.7) one has

‖βi,ε(Xφ̌i(uε)−Xφ̌i(ui) + J(uε)Xψ̌i(uε)− J(ui)Xψ̌i(ui))‖L̃pε (Äiε)

�
[ ∫

Äiε

[
sup
Äiε

|α̌i|
]p[

sup
Äiε

dist(uε, ui)
]p
ε2−pdsdt

] 1
p

�α (
√
ε)1−α[Area(Äiε)]

1
p �α (

√
ε)1−α−

2
p .

Together with (8.6), we find that

‖F̃1(w,vε)‖L̃pε (B̊iε\ ˇ̌Biε)
�α (

√
ε)1−α−

2
p , ∀α > 0. (8.8)

(d) In the outer part of the neck region
ˆ̂
Biε \ B̊iε ⊂ Äiε we can derive similar estimate. We

remark that we have slightly better bound than (8.5) and (8.7) if replace ǔi by ǔ∞,ε and α̌i by

α̌∞,ε, i.e.,

sup
Äiε

dist(u∞,ε − uε) �
√
ε; sup

Äiε

|α̌∞,ε| � ε. (8.9)

So we obtain a bound of ‖F̃1(w,vε)‖L̃pε ( ˆ̂Biε\B̊iε) as in (8.8) for all α > 0. In summary, we have

obtained desired bound for the component F̃1(w,vε).

To estimate F̃2(w,vε) we cut H as the union of Σ̊ε and all B̊iε. Over Σ̊ε, one has

∗FAε + σεqμ(uε) = ∗d(β∞,εα̌∞,ε) + σεqμ(uε) = β∞,ε ∗ FA∞,ε
+ ∗(dβ∞,ε ∧ α̌∞,ε) + σεqμ(uε).
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Over B̊iε, using the vortex equation ∗FAi + μ(ui) = 0 and σεq = 1, we obtain

∗FAε + σεqμ(uε) = βi,εσ
ε
q[μ(uε)− μ(ui)] + (1− βi,ε)σ

ε
qμ(uε) + ∗(dβi,ε ∧ α̌i,ε).

So as a unifying expression,

F̃2(w,vε) = β∞,ε∗FA∞,ε
+∗(dβ∞,ε∧α̌∞,ε)+∗(dβi,ε∧α̌i)+(1−βi,ε)σεqμ(uε)+βi,εσεq(μ(uε)−μ(ui)).

We estimate the terms one by one (all norms below without labelling are ‖ · ‖L̃pε ).
(a) One has FA∞,ε

= s∗εFA∞ , so by Lemma 6.1 (extending to two-forms),

‖β∞,ε ∗ FA∞,ε
‖ ≤ ‖s∗εFA∞‖ = ε‖FA∞‖L̃p � ε.

(b) By (8.9), and the fact that |∇β∞,ε| �
√
ε,

‖ ∗ (dβ∞,ε ∧ α̌∞,ε)‖ �
√
ε

[ ∫
Äiε

|α̌∞,ε(z)|p[ρ∞,ε(z)]
2p−4dsdt

] 1
p

� ε
1
2+

2
p [Area(Äiε)]

1
p � (

√
ε)1+

2
p .

(c) By (8.7) and |∇βi,ε| �
√
ε, one has

‖ ∗ (dβi,ε ∧ α̌i)‖ �
√
ε

[ ∫
Äiε

|α̌i(z)|p[ρε(z)]2p−4dsdt

] 1
p

�
√
ε[Area(Äiε)]

1
p � (

√
ε)1−

2
p .

(d) By (8.4) we know that in the neck region |μ(uε)| �α (
√
ε)2−α, so

‖(1− βi,ε)σ
ε
qμ(uε)‖ ≤

[ ∫
Äiε

[
sup
Äiε

|μ(uε)|
]p
[ρε(z)]

2p−4dsdt

] 1
p

�α (
√
ε)

4
p−α[Area(Äiε)]

1
p

� (
√
ε)

2
p−α.

(e) By the energy decay we also have σεq|μ(uε)− μ(ui)| �α (
√
ε)2−α. So

‖βi,εσεq(μ(uε)− μ(ui))‖ � (
√
ε)2−α[Area(Äiε)]

1
p �α (

√
ε)2−

2
p−α.

By (a)–(e) above, for any γ < 1− 2
p , by taking α appropriately, one obtains

‖F̃2(w,vε)‖L̃pε � (
√
ε)γ .

Now we estimate F̃3(w,vε). Introduce ξε = (ξε, ηε, ζε) by

uε = expu•,ε ξε, ηε = φε − φ•,ε, ζε = ψε − ψ•,ε.

Then

F̃3(w,vε) = ∂sηε + [φ•,ε, ηε] + ∂tζε + [ψ•,ε, ζε] + dμ(u•,ε) · Jξε.

It vanishes on all ˇ̌Biε since vi is already in the Coulomb slice through v•,i. On the other hand,

over
ˆ̂
Σε, Jξε is in the horizontal distribution. Since in this region vε and v•,ε are both obtained

by pulling back disks in X̄, F̃3(w,vε) is ε
2s∗εF for some function F on sε(

ˆ̂
Σε), and by Lemma

4.8, the L̃p-norm of F is finite. Combining with Lemma 6.1 we see the size of F̃3(w,vε) over
ˆ̂
Σε

is bounded by a constant multiple of ε. Lastly, the estimate of F̃3(w,vε) over the neck regions

Äεi can be estimated similarly as F̃2(w,vε) and we omit it. This finishes proving Proposition 7.6.
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8.3 Proof of Proposition 7.8

Consider an intermediate object v′′′
ε = (uε, φ

′
ε, ψ

′
ε) with linearized operator D′′′

ε = dFv′′′
ε

:

Bv′′′
ε

→ Ev′′′
ε
. Namely, v′′′

ε and vε only differ in their gauge fields.

We first compare D′′′
ε and Dε, whose domains and targets are identified without using

parallel transport. Suppose φ′ε = φε + η′ε, ψ
′
ε = ψε + ζ ′ε. Then for an infinitesimal deformation

ξ = (ξ, η, ζ),

(D′′′
ε −Dε)(ξ, η, ζ) =

⎡
⎢⎢⎣

∇ξXη′ε(uε) +∇ξ(JXζ′ε)(uε)
[η′ε, η] + [ζ ′ε, ζ]

[η′ε, ζ]− [ζ ′ε, η]

⎤
⎥⎥⎦ .

By Lemma 7.4 and the definition of the norm (7.7), one has

‖(D′′′
ε −Dε)(ξ)‖L̃pε � ‖ξ‖L∞(‖η′ε‖L̃pε + ‖ζ ′ε‖L̃pε ) � ‖ξ‖L̃1,p

m;ε
(‖η′ε‖L̃1,p

g;ε
+ ‖ζ ′ε‖L̃1,p

g;ε
). (8.10)

Now we compare D′′′
ε with D′′

ε whose domains and targets are identified via the parallel

transport Pl ε between uε and u
′
ε = expuε ξ

′
ε. Firstly, given an infinitesimal deformations of the

type ξ = (0, η, ζ), only the first component of (D′′
ε −D′′′

ε )(ξ) is nonzero, which reads

Pl−1
ε [Xη(u′ε) + J(u′ε)Xζ(u′ε)]−Xη(uε)− J(uε)Xζ(uε).

Hence similar to (8.10),

‖(D′′
ε −D′′′

ε )(ξ)‖L̃pε � (‖η‖L̃pε + ‖ζ‖L̃pε )‖ξ′ε‖L∞ � (‖η‖L̃1,p
m;ε

+ ‖ζ‖L̃1,p
m;ε

)‖ξ′ε‖L̃1,p
m;ε
. (8.11)

Further, consider an infinitesimal deformation of the form ξ = (ξ, 0, 0) and denote ξ′′ = Pl ε(ξ).

Then we have

(D′′
ε −D′′′

ε )(ξ) =

⎡
⎢⎢⎣

Pl−1
ε [I(u′ε, φ

′
ε, ψ

′
ε)(ξ

′′)]− I(uε, φ
′
ε, ψ

′
ε)(ξ)

dμ(u′ε) · ξ′′ − dμ(uε) · ξ
dμ(u′ε) · Jξ′′ − dμ(uε) · Jξ

⎤
⎥⎥⎦ . (8.12)

Here the term I in the first entry is defined by

I(u, φ, ψ)(ξ) = ∇sξ +∇ξXφ + J(∇tξ +∇ξXψ) + (∇ξJ)(∂tu+ Xψ(u)).
Now we estimate (8.12). The last two entries are easy to bound. Indeed, by the Sobolev

estimate (Lemma 7.4) and the definition of the norm, also the fact that Plε preserves the

splitting HX ⊕GX in a neighborhood of μ−1(0), one has

‖dμ(u′ε) · ξ′′ − dμ(uε) · ξ‖L̃pε + ‖dμ(u′ε) · Jξ′′ − dμ(uε) · Jξ‖L̃pε � ‖ξ′ε‖L̃1,p
m;ε

‖ξ‖L̃1,p
m;ε
. (8.13)

It remains to estimate the first entry of (8.12). For convenience, introduce

I1(u)(ξ) = ∇sξ + J∇tξ + (∇ξJ)(∂tu), I2(u, φ, ψ)(ξ) = ∇ξXφ + J∇ξXψ + (∇ξJ)Xψ,
and write the first entry of (8.12) as (δI1)(ξ) + (δI2)(ξ). Take R > 0 and define

U1 :=

m+m⋃
i=1

BiR :=

m+m⋃
i=1

BR(zi,ε), U2 := H \
m+m⋃
i=1

B1/(εR)(zi,ε), U3 := H \ (U1 ∪ U2).

In the following we estimate the variation of I1 and I2 in the above regions. We will use the

fact that ‖ξ′ε‖L̃1,p
m;ε

≤ 1 and the uniform Sobolev embedding L̃1,p
m;ε ↪→ C0 (Lemma 7.4) frequently

without explicitly mentioning them.
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(a) Inside each BiR, the variation of I1 can be bounded pointwise as

|(δI1)(ξ)| � |duε||ξ||ξ′ε|+ |∇ξ||ξ||ξ′ε|+ |∇ξ||ξ′ε|+ |∇ξ′ε||ξ|. (8.14)

(See [12, Proof of Proposition 3.5.3] for details.) One has

|∇ξ| � |duε||ξ|+ |∇aεξ|+ |φε||ξ|+ |ψε||ξ|, (8.15)

|∇ξ′| � |duε||ξ′|+ |∇aεξ′|+ |φε||ξ′|+ |ψε||ξ′|. (8.16)

Then since vε|BiR = vi which is independent of ε, one has

‖∇ξ‖L̃pε (BiR) � ‖∇aεξ‖L̃pε (BiR) + [‖duε‖L̃pε (BiR) + ‖aε‖L̃pε (BiR)]‖ξ‖L∞ � ‖ξ‖L̃1,p
m;ε

;

‖∇ξ′ε‖L̃pε (BiR) � ‖∇aεξ′ε‖L̃pε (BiR) + [‖duε‖L̃pε (BiR) + ‖aε‖L̃pε (BiR)]‖ξ′ε‖L∞ � ‖ξ′ε‖L̃1,p
m;ε
.

Hence by (8.14),

‖(δI1)(ξ)‖L̃pε (BiR) � [‖duε‖L̃pε (BiR) + ‖∇ξ‖L̃pε (BiR)]‖ξ‖L∞‖ξ′ε‖L∞

+ ‖ξ′ε‖L∞‖∇ξ‖L̃pε (BiR) + ‖∇ξ′ε‖L̃pε (BiR)‖ξ‖L∞ � ‖ξ′ε‖L̃1,p
m;ε

‖ξ‖L̃1,p
m;ε
. (8.17)

(b) Since I2 is a tensor in ξ, φ′ε and ψ
′
ε, one has

|(δI2)(ξ)| � |ξ||ξ′ε||a′ε| ≤ |ξ||ξ′ε|[|aε|+ |α′
ε|].

Therefore

‖(δI2)(ξ)‖L̃pε (BiR) � ‖ξ‖L∞‖ξ′ε‖L∞‖a′ε‖L̃pε (BiR) � ‖ξ‖L̃1,p
m;ε

‖ξ′ε‖L̃1,p
m;ε
. (8.18)

(c) Now we estimate the variation of I1, I2 over U2. Using the same argument as in Step

(a), similar to (8.15), one has

‖∇ξ‖L̃pε (U2)
� [‖du∞,ε‖L̃pε (U2)

+ ‖a∞,ε‖L̃pε (U2)
]‖ξ‖L∞ + ‖∇a∞,εξ‖L̃pε (U2)

≤ ε[‖s∗εdu∞‖L̃pε + ‖s∗εφ∞‖L̃pε + ‖s∗εψ∞‖L̃pε ]‖ξ‖L∞ + ‖ξ‖L̃1,p
m;ε

� ‖ξ‖L̃1,p
m;ε
.

Here to obtain the last inequality we used Lemma 6.1. Similarly

‖∇ξ′ε‖L̃pε (U2)
� ‖ξ′ε‖L̃1,p

m;ε
.

Hence (8.14) implies that

‖(δI1)(ξ)‖L̃pε (U2)
� [‖duε‖L̃pε (U2)

+ ‖∇ξ‖L̃pε (U2)
]‖ξ‖L∞‖ξ′ε‖L∞

+ ‖ξ′ε‖L∞‖∇ξ‖L̃pε (U2)
+ ‖∇ξ′ε‖L̃pε (U2)

‖ξ‖L∞ � ‖ξ‖1;ε‖ξ′ε‖1;ε.
Further, as in Step (b), one has

‖(δI2)(ξ)‖L̃pε (U2)
� ‖a′ε‖L̃pε (U2)

‖ξ‖L̃1,p
m;ε

‖ξ′ε‖L̃1,p
m;ε

� ‖ξ‖L̃1,p
m;ε

‖ξ′ε‖L̃1,p
m;ε
.

Here the uniform boundedness of the norm ‖α′
ε‖L̃pε (U2)

follows from Lemma 6.1 and the relation

(φε, ψε)|U2
= ε(s∗εφ∞, s

∗
εψ∞).

(d) Lastly, we estimate over the neck region U3, which has connected components U i3 for

i = 1, . . . ,m+m. For each i, denote

α̌′
ε = φ̌′εds+ ψ̌′

εdt = e−λiθiα′
εe
λiθi − λidθi,
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ξ̌ = e−λiθiξ, ξ̌′′ = e−λiθiξ′′, ξ̌′ε = e−λiθiξ′ε.

Recall that

α̌ε = φ̌εds+ ψ̌εdt = βi,εα̌i + β∞,εα̌∞,ε.

Denote U i,−3 = U i3 ∩ B̊iε, U i,+3 = U i3 ∩ Σ̊ε. So

‖α̌ε‖L̃pε (Ui3) ≤ ‖α̌i‖L̃p(Ui,−2 ) + ‖α̌∞,ε‖L̃pε (Ui,+2 ) ≤ c

for some constant c > 0 independent of ε. One can also obtain a uniform bound on ‖dǔε‖L̃pε (Ui3).
Using the above notation, e−λiθi(δI)(ξ) is the sum of the following two parts.

(δǏ1)(ξ̌) = P̌l ε[∇sξ̌
′′ + J∇tξ̌

′′ + (∇ξ̌′′J)(∂tǔε)]− [∇sξ̌ + J∇tξ̌ + (∇ξ̌J)∂tǔε];

(δǏ2)(ξ̌) = P̌l ε[∇ξ̌′′Xφ̌′
ε
+∇ξ̌′′(JXψ̌′

ε
)]− [∇ξ̌Xφ̌′

ε
+∇ξ̌(JXψ̌′

ε
)].

Here P̌l ε is the conjugation of Pl ε by e−λiθi . One can reproduce similar estimates as in previous

steps using the uniform bounds on φ̌ε, ψ̌ε and dǔε. The detail is omitted.

The above steps (a)–(d) provides the bound

‖(δI)(ξ)‖L̃pε � ‖ξ‖L̃1,p
m;ε

‖ξ′ε‖L̃1,p
m;ε
.

This completes the proof of Proposition 7.8.

8.4 Proof of Proposition 7.10

Now we construct the approximate right inverse along the gauged map vε = (uε, aε). We reset

the values of the constants c1 ≤ c2 ≤ · · · and ε1 ≥ ε2 ≥ · · · . Again, since the construction only

involves the central object v•,ε, we abbreviate it as vε and similarly for other relevant objects.

Since uε is close to u∞,ε over Σ̊ε, there is a parallel transport using certain connection on

TX

Pl∞ : u∗∞,εTX|Σ̊ε → u∗εTX|Σ̊ε .
We require that this connection respects the metric as well as the splitting HX ⊕ GX near

μ−1(0). Using the same connection there are also parallel transports

Pl i : u
∗
i TX|B̊iε → u∗εTX|B̊iε , i = 1, . . . ,m+m.

Recall that b is chosen by (7.1). Choose e < b and introduce cut-off functions χε∞, χ
ε
i : H →

[0, 1] satisfying the following conditions.

suppχε∞ ⊂ H \
s+s⋃
i=1

B

(
zi,ε,

1

e
√
ε

)
, χε∞|Σε;0 ≡ 1, (8.19)

and for z ∈ B(zi,ε,
1√
ε
) \B(zi,ε,

1
e
√
ε
),

|∇χε∞(z)| ≤ 2

log e

1

|z − zi,ε| . (8.20)

Similarly we require

suppχεi ⊂ B

(
zi,ε,

e√
ε

)
, χεi |Biε;0 ≡ 1

and for all z ∈ B(zi,ε,
e√
ε
) \B(zi,ε,

1√
ε
),

|∇χεi(z)| ≤
2

log e

1

|z − zi,ε| . (8.21)
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Notice that when ∇χε∞ �= 0 or ∇χεi �= 0, vε = ci = (eλiθixi, λidθi).

Using Pl∞, Pl i and χ
ε
∞, χεi , we define the maps

Cut : Eε → E∞,ε ⊕
m+m⊕
i=1

Ei, Paste : B♣,ε → Bε.

as follows. For ν ∈ Eε, define Cut(ν) = (ν∞,ε,ν1, . . . ,νm+m) where

ν∞,ε(z) =

⎧⎨
⎩

Pl−1
∞ [ν(z)], z ∈ Σ̊ε;

0, z /∈ Σ̊ε,
νi(z) =

⎧⎨
⎩

Pl−1
i [ν(z + zi,ε)], z ∈ B̊iε;

0, z /∈ B̊iε.

On the other hand, take

�ξ = (ξ∞,ε, ξ1, . . . , ξm+m) ∈ B♣,ε ⊂ B∞,ε ⊕
m+m⊕
i=1

Bi.

Then ui(Ai \ ˇ̌Biε) ⊂ UX and we can decompose ξi = ξHi + ξGi w.r.t. the splitting HX ⊕ GX .

Then by the matching condition, there exist ξH,i ∈ HX,xi for i = 1, . . . ,m and ξH,j ∈ HL,xj for

j = 1, . . . ,m, such that

lim
z→zi,ε

eλiθiξH∞,ε(z) = lim
z→∞ eλiθiξHi (z) = ξH,i, i = 1, . . . ,m+m.

Then define

ξε(z) := Paste(ξ∞,ε, ξ1, . . . , ξm+m)(z) =

⎧⎨
⎩

ξi(z − zi,ε), z ∈ ˇ̌Biε;

[ξHε (z), ξGε (z)], z ∈ ˇ̌Σε.
(8.22)

where

ξHε (z) =

⎧⎪⎪⎨
⎪⎪⎩

Pl i[ξ
H
i (z − zi,ε)] + χε∞[Pl∞[ξH∞,ε(z)]− e−λiθiξH,i], z∈B̊iε\ ˇ̌Biε,

i=1,...,m+m;

Pl∞[ξH∞,ε(z)] +

m+m∑
i=1

χεi [Pl i[ξ
H
i (z − zi,ε)]− e−λiθiξH,i], z ∈ Σ̊ε.

(8.23)

ξGε (z) =

m+m∑
i=1

χεiPl i[ξ
G
i ] + χε∞Pl∞[ξG∞,ε]. (8.24)

With abuse of notation, use Paste : W ⊕ B♣,ε → W ⊕ Bε to denote the induced map which is

the identity on the factor W .

Finally, define the “approximate right inverse”

Q̃app
ε = Paste ◦ Q̃♣,ε ◦ Cut : Eε →W × Bε. (8.25)

Here Q̃♣,ε is the operator given by Proposition 6.6.

Proposition 8.1 Suppose log e ≥ 8πspc♣
p−2 (which is consistent with (7.1)). Then there exist

ε1 and c1 (which depend on b and e) such that for ε ∈ (0, ε1]

‖Q̃app
ε ‖ ≤ c1, ‖D̃ε ◦ Q̃app

ε − Id‖ ≤ 1

2
. (8.26)

The operator norms are taken w.r.t. the norm ‖ · ‖L̃pε on Eε and the norm ‖ · ‖L̃1,p
m;ε

on Bε.
Proposition 7.10 then follows from Proposition 8.1 by setting Q̃ε = Q̃app

ε ◦ (D̃ε ◦ Q̃app
ε )−1.

It remains to prove Proposition 8.1. By straightforward estimate and comparison between

different norms, one has the following bounds.



Gluing Affine Vortices 295

Lemma 8.2 There exist c2 > 0 and ε2 ∈ (0, ε1] such that for all ε ∈ (0, ε2), one has

‖Cut(ν)‖ = ‖ν∞,ε‖L̃pε +
m+m∑
i=1

‖νi‖L̃p ≤ ‖ν‖L̃pε , (8.27)

‖Paste(ξ∞,ε, ξ1, . . . , ξm+m)‖L̃1,p
m;ε

≤ c2

[
‖ξ∞,ε‖L̃1,p

m;ε
+

m+m∑
i=1

‖ξi‖L̃1,p
m

]
. (8.28)

Proof (8.27) is an easy consequence of the definition of the weight functions, the definition of

Cut, and the fact that the parallel transport is isometric fibrewise.

To prove the estimate about Paste, one needs to pay extra attention to the cut-off functions

χε∞ and χεi . By the definition of Paste (see (8.22)), we have

‖Paste(ξ�)‖
L̃1,p
m;ε(

ˇ̌Biε)
� ‖ξi‖L̃1,p

m (Ai)
, ‖Paste(ξ�)‖

L̃1,p
m;ε(

ˆ̂
Σε)

� ‖ξ∞,ε‖L̃1,p
m;ε(Σε)

.

Hence it remains to bound the norm of Paste(ξ�) over the neck regions Äiε.

By the definition of the norm ‖ · ‖L̃1,p
m;ε

(see (7.7)) and the definition of Paste (see (8.22)–

(8.24)), and the norm along v∞,ε (see (6.2)),

‖Paste(ξ�)‖L̃1,p
m;ε(Äiε)

≤ ‖ξHε ‖L∞(Äiε)
+ ‖ξGε ‖L∞(Aiε)

+ ‖ξGε ‖L̃pε (Aiε) + ‖∇aεξε‖L̃pε (Äiε).
The first two terms are bounded by ‖ξ∞,ε‖L̃1,p

m;ε
and ‖ξi‖L̃1,p

m
by Sobolev embeddings. The third

term is also easy to bound. It remains to bound the last term which involves the derivatives of

the cut-off functions χε∞ and χεi . By (8.23) and (8.24), we have

∇aεξε = χε∞[∇aεPl∞[ξ∞,ε(z)]] + χεi [∇aεPl i[ξi(z − zi,ε)]]

+ (∇χε∞)[Pl∞ξG∞,ε(z)] + (∇χεi)[Pl iξGi (z − zi,ε)]

+ (∇χε∞)[Pl∞[ξH∞,ε(z)]− ξ̌H,i] + (∇χεi)[Pl i[ξHi (z − zi,ε)]− ξ̌H,i]. (8.29)

Here we used the fact that over the intersection of the supports of χε∞ and χεi , vε = ci, the

“constant” object, and the covariant derivative of the “constant” ξ̌H,i is zero.

(a) For the first term of the right hand side of (8.29),

‖χε∞∇aεPl∞ξ∞,ε‖L̃pε (Äiε) � ‖∇a∞,εPl∞ξ∞,ε‖L̃pε + ‖aε − a∞,ε‖L∞‖ξ∞,ε‖L̃pε
� ‖Pl∞∇a∞,εξ∞,ε‖L̃pε + ‖Pl∞∇a∞,εξ∞,ε −∇a∞,εPl∞ξ∞,ε‖L̃pε + ‖ξ∞,ε‖L̃pε � ‖ξ∞,ε‖L̃1,p

m;ε
.

Similarly one can estimate

‖χεi∇aεPl i[ξi(z − zi,ε)]‖L̃pε (Äiε) � ‖ξi‖L̃1,p
m
.

(b) For the third term on the right hand side of (8.29), notice that over the support of

∇χε∞, ρε(z) ≤ ρ∞,ε(z) and |∇χε∞| � √
ε. Therefore, by the definition of the norm,

‖(∇χε∞)Pl∞ξG∞,ε‖L̃pε =

[ ∫
H

|∇χε∞(z)|p|ξG∞,ε(z)|p[ρε(z)]2p−4dsdt

] 1
p

�
√
ε

[ ∫
supp∇χε∞

|ξG∞,ε(z)|p[ρ∞,ε(z)]
2p−4dsdt

] 1
p

≤ √
ε‖ξ∞,ε‖L̃1,p

m;ε
. (8.30)

Similarly, over the support of ∇χεi one has ρε(z) ≤ ρAi
(z − zi,ε), so

‖(∇χεi)Pl iξGi ‖L̃pε �
√
ε‖ξi‖L̃1,p

m
. (8.31)
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(c) The estimate of the fifth term on the right hand side of (8.29) is one for which we prefer

a sharper bound. Notice that over supp∇χε∞, ρε(z) = |wi| = |z − zi,ε|. So
m+m∑
i=1

‖(∇χε∞)(ξH∞,ε − ξ̌H,i)‖
L̃pε (

ˆ̂
Biε)

=

m+m∑
i=1

[ ∫
ˆ̂
Biε

|∇χε∞(z)|p|ξH∞,ε(z)− ξ̌H,i|p[ρε(z)]2p−4dsdt

] 1
p

≤ 2sp
log e

m+m∑
i=1

‖ξH∞,ε‖L̃1,p
h;ε(

ˆ̂
Biε)

[ ∫
ˆ̂
Biε∩supp∇χε∞

|εwi|p−2|wi|p−4dsdt

] 1
p

≤ 2spε
1− 2

p

log e

m+m∑
i=1

‖ξH∞,ε‖L̃1,p
h;ε(

ˆ̂
Biε)

[ ∫
ˆ̂
Biε∩supp∇χε∞

|wi|2p−6dsdt

] 1
p

≤ 2πsp
(p− 2) log e

‖ξH∞,ε‖L̃1,p
h;ε
. (8.32)

Here for the second line we used (8.21) and for the third line we used the Sobolev embedding

W 1,p ↪→ C0,1− 2
p . Notice that (8.32) is a precise estimate, which will be used in a minute.

(d) For the sixth term, over the support of ∇χεi , one has ρε(z) ≤ ρAi
(wi) = |wi| and using

cylindrical coordinates, one has

‖(∇χεi)(ξHi − ξ̌H,i)‖L̃pε =
[ ∫

B̂iε

|∇χεi(z)|p|ξHi (z)− ξ̌H,i|p[ρε(z)]2p−4dsdt

] 1
p

≤ 2

log e

[ ∫
supp∇χεi

|ξHi (z)− ξ̌H,i|p|wi|p−4dsdt

] 1
p

≤ 2

log e
‖ξHi − ξ̌H,i‖

L
p,1− 2

p
cyl

≤ 2sp
log e

‖ξHi ‖L̃1,p
h
. (8.33)

For the last inequality we used Lemma 3.5. �
Proof of Proposition 8.1 By Lemma 8.2 and the definition of Q̃app

ε (8.25), the bound on Q̃app
ε

is equivalent to that of Q̃♣,ε, which is given by Proposition 6.6. So it remains to prove the

second inequality of (8.26). Given ν ∈ Eε, denote
(h, ξ�) = (h, ξ∞,ε, ξ1, . . . , ξm+m) = Q̃♣,ε(Cut(ν)).

Then by definition of Q̃♣,ε and Cut, we have

ν = Pl∞[D̃∞,ε(h, ξ∞,ε)] +
s∑
i=1

Pl i[D̃i(h, ξi)].

Therefore

D̃ε ◦ Q̃app
ε (ν)− ν = D̃ε[h,Paste(ξ�)]−

[
Pl∞D̃∞,ε(h, ξ∞,ε) +

m+m∑
i=1

Pl iD̃i(h, ξi)
]

= Dε[Paste(ξ�)]−
[
Pl∞D∞,ε(ξ∞,ε) +

m+m∑
i=1

Pl iDi(ξi)
]
.
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Here the last inequality follows from the property of the perturbation term. The last line is

estimated in different regions as follows.

(a) Inside Biε;e := B̊iε \ suppχε∞, we have vε = v′
i,ε where the latter is defined by (7.5). So

Dε[Paste(ξ�)]− ν = Dv′
i,ε
[Pl i(ξi)]− Pl i[Di(ξi)]

while we can write v′
i,ε = expvi ξ

′
i,ε (see Lemma 7.1). Then by using the same method as

proving Proposition 7.8, we have

‖Dv′
i,ε
[Pl i(ξi)]− Pl i[Di(ξi)]‖L̃pε (Biε;e) ≤ ci,e‖ξ′i,ε‖L̃1,p

m (B̊iε)
‖ξi‖L̃1,p

m (Ai)
. (8.34)

(b) Similarly, inside Σε;e := Σ̊ε \
⋃m+m
i=1 suppχεi , we have

Dε[Paste(ξ�)]− ν = Dv′∞,ε
[Pl∞(ξ∞,ε)]− Pl∞[D∞(ξ∞,ε)]

while we can write v′
∞,ε = expv∞,ε

ξ′∞,ε (see Lemma 7.2). Similar to the above case, for some

c∞,e > 0 and ε sufficiently small,

‖Dε[Paste(ξ�)]− ν‖L̃pε (Σε;e) ≤ c∞,e‖ξ′∞,ε‖L̃1,p
m;ε(Σε;e)

‖ξ∞,ε‖L̃1,p
m;ε(Σε)

. (8.35)

(c) In one of remaining the neck regions, i.e., N i
ε := suppχε∞ ∩ suppχεi , by our construction

of the approximate solution, vε = ci = (d + λidθi, e
−λiθixi). By the definition of Paste (see

(8.22)–(8.24)) and the fact that

Dε(e−λiθiξHi ) = 0,

one sees that over N i
ε (all norms below are ‖ · ‖L̃pε (Niε))

‖DεPaste(ξ�)− ν‖
= ‖Dε[χε∞(Pl∞(ξ∞,ε)− ξ̌H,i) + χεi(Pl i(ξi)− ξ̌H,i)]− Pl∞D∞(ξ∞,ε)− Pl iDi(ξi)‖
= ‖Dε[χε∞(Pl∞(ξ∞,ε)− ξ̌H,i) + χεi(Pl i(ξi)− ξ̌H,i)]− χε∞Pl∞[D∞(ξ∞,ε)]− χεiPl i[Di(ξi)]‖
≤ ‖χε∞(DεPl∞(ξ∞,ε)− Pl∞(D∞ξ∞,ε))‖+ ‖χεi(DεPl i(ξi)− Pl i(Diξi))‖
+ ‖[Dε, χε∞](Pl∞(ξ∞,ε)− ξ̌H,i)‖+ ‖[Dε, χεi ](Pl i(ξi)− ξ̌H,i)‖.

Here the third line follows from the fact that over the region where χε∞ �= 0 (resp. χεi �= 0),

D∞(ξ∞,ε) = 0 (resp. Di(ξi) = 0). The first and the second terms of the last line can be

bounded by the same method of deriving (8.34) and (8.35), which gives

‖χε∞(DεPl∞(ξ∞,ε)− Pl∞(D∞,εξ∞,ε))‖ � ‖ξ′∞,ε‖L̃1,p
m;ε(Niε)

‖ξ∞,ε‖L̃1,p
m;ε(Σε)

;

‖χεi(DεPl i(ξi)− Pl i(Diξi))‖ � ‖ξ′i,ε‖L̃1,p
m (Niε)

‖ξi‖L̃1,p
m (Ai)

. (8.36)

On the other hand, the third and the fourth terms can be estimated similarly to the estimates

we had in the proof of Lemma 8.2. More precisely, using (8.30), (8.32) and (8.27), for some

constant C > 0, we have

‖[Dε, χε∞](Pl∞(ξ∞,ε)− ξ̌H,i)‖ ≤
(
C
√
ε+

2πsp
(p− 2) log e

)
‖ξ∞,ε‖L̃1,p

m;ε

≤
(
Cc♣

√
ε+

2πspc♣
(p− 2) log e

)
‖Cut(ν)‖L̃pε

≤
(
Cc♣

√
ε+

2πspc♣
(p− 2) log e

)
‖ν‖L̃pε .
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By the choice of the value of b (see (7.1)), it is possible to choose e < b such that for ε sufficiently

small, we have

‖[Dε, χε∞](Pl∞(ξ∞,ε)− ξ̌H,i)‖ ≤ 1

8
‖ν‖L̃pε . (8.37)

Similarly, by utilizing (8.31) and (8.33), we obtain

m+m∑
i=1

‖[Dε, χεi ](Pl i(ξi)− ξ̌H,i)‖ ≤ 1

8
‖ν‖L̃pε (8.38)

for appropriate value of e < b and sufficiently small ε.

Therefore, for appropriate value of e and sufficiently small ε, (8.34)–(8.40) imply the second

bound in (8.26). �

8.5 Proof of Proposition 7.12

The convergence ‖hn‖ → 0 follows from the convergence of the underlying curve and the

continuity of perturbations. The sequence of underlying domains of vn uniquely determines a

sequence of deformation parameters an ∈Wper and a sequence of gluing parameters εn. Hence

we only consider the difference between vn and certain sequence of approximate solutions v•,εn .

Here we abbreviate v•,εn by vεn .

For simplicity, we assume that the stable affine vortex v• has only two components, the disk

component v∞ = (u∞, a∞) and an H-vortex component v = (u, φ, ψ) attached at the origin

of the disk component. The case that v• has more components (including C-vortices) can be

proved in the same way with only more complicated symbol manipulations. We assume that

lim
z→∞u(z) = lim

z→0
u∞(z) = x0 ∈ L, lim

z→∞u∞(z) = x∞ ∈ L.

8.5.1 Estimates over the Neck Region and Near Infinity

Recall that when constructing the gluing map, we have already fixed certain gauge of v and

v∞. Then v satisfies the conditions of Lemma 3.4. Let R > 0 be sufficiently big so that u(CR)

and u∞(B1/R) are contained in a very small neighborhood of x0. Then we can write

u(z) = expx0
ξ, ∀z ∈ CR; u∞(z) = expx0

ξ∞, ∀z ∈ B1/R.

The gauge for v∞ implies that ξ∞ takes value in the horizontal distribution.

For the sequence of gluing parameters εn, define the neck region Nn,R = N−
n,R ∪N+

n,R by

Nn,R := B1/(εnR) \BR, and N−
n,R := B1/

√
εn

\BR, N+
n,R := B1/(εnR) \B1/

√
εn
.

We transform vn on Nn,R into temporal gauge, i.e., in the polar coordinates (r, θ), the gauge

field an of vn is written as

an = ψn(r, θ)dθ, (r, θ) ∈ Nn,R.

Moreover, we require that for all θ, ψn(
1√
εn
, θ) ≡ 0. Then the vortex equation in this gauge,

written in terms of cylindrical coordinates (τ, θ), reads

∂τun + J(∂θun + Xψn) = 0, ∂sψn + e2τμ(un) = 0.

Denote temporarily its energy density function as

en(τ, θ) = |∂τun(τ, θ)|2 + e2τ |μ(un(τ, θ))|2.
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When R is large, after this gauge transformation un is still contained in a small neighborhood

of x0. Then by the annulus lemma (proved as [39, Proposition 45] for C-vortices and as [26,

Proposition A.11] for H-vortices), for all γ > 0, one has

en(τ, θ) � max

{
Re−τ ,

eτ

εnR

}2−γ
, logR ≤ τ ≤ − log(εnR). (8.39)

Here the constant absorbed by � only depends on γ, R, the total energy and the local geometry,

and hence uniform for all large n. The energy density of v∞ and v decays similarly. Hence for

R sufficiently large, un(Nn,R) is contained in a small neighborhood of x0, so we can write

vn|Nn,R = expvεn ξn, ξn = (ξn, ηn, ζn) ∈W 1,p(Nn,R).

Lemma 8.3 For any α > 0, there exists Rα > R and nα > 0 such that for n ≥ nα,

‖ξn‖L̃1,p
m;ε(Nn,Rα ) ≤ α.

Proof It is not hard to see (via a simple estimate) that it suffices to compare both vn|Nn,R and

vεn |Nn,R with the covariantly constant gauged map c0 = (x0, 0, 0) with higher Sobolev norms

defined using the trivial connection. Since vεn |Nn,R is defined in a straightforward way and it

is difference from c0 is easy to estimate, we only estimate the difference between vn and c0.

We first estimate the gauge fields an = ψndθ. Let Zτ ⊂ [logR,− log
√
εn]× [0, π] be a closed

region containing [τ, τ +1]× [0, π] such that for different values of τ , Zτ differs by a translation

in the τ -direction. Let Ωτ ⊃ Zτ be a bigger open set containing Zτ . Then given τ0, over Ωτ0
we have

vτ + Jvθ = 0, κ+ e2τ0 · e2τ−2τ0μ(u) = 0.

Applying Lemma A.4 for this pair of sets Zτ0 ⊂ Ωτ0 with ε = e−τ0 , σ = e2τ−2τ0 , we obtain

‖μ(un)‖Lp(Zτ0 ) � e−(1+ 2
p )τ0(‖vτ‖L2(Ωτ0)

+ e2τ0‖μ(un)‖L2(Ωτ0)
) � e−(2+ 2

p−γ)τ0 .

The last inequality follows from the exponential decay of energy ((8.39)).

On the other hand, by the temporal gauge condition and the vortex equation, we have

|ψn(τ2, θ)− ψn(τ1, θ)|p =
∣∣∣∣
∫ τ2

τ1

∂ψn
∂τ

dτ

∣∣∣∣
p

≤
[ ∫ τ2

τ1

e−aτeaτ
∣∣∣∣∂ψn∂τ

∣∣∣∣dτ
]p

≤
[ ∫ τ2

τ1

e−aqτdτ
]p−1 ∫ τn

τ

eapτ
∣∣∣∣∂ψn∂τ

∣∣∣∣
p

dτ

� e−apτ1
∫ τ2

τ1

e(2+a)pτ |μ(un)|pdτ.

Here a > 0 is a small positive number and q = p/(p−1); the second line uses Hölder inequality.

Set τ2 = τn := − log
√
εn and τ1 ∈ [τn− k, τn− k+1), k being a positive integer. Then we have∫ π

0

|ψn(τ1, θ)|pdθ � e−ap(τn−k)
∫ τn

τn−k

∫ π

0

e(2+a)pτ |μ(un)|pdτdθ

� e−ap(τn−k)
k∑
i=1

∫
Zτn−i

e(2+a)pτ |μ(un)|pdτdθ
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≤ e−ap(τn−k)
k∑
i=1

e(2+a)p(τn−i+1)‖μ(un)‖pLp(Zτn−i)

� e−ap(τn−k)
k∑
i=1

e−(2−ap−pγ)(τn−i)

� e−(2−pγ)τ1 . (8.40)

Then the norm of the gauge field ψndθ can be estimated as

‖ψndθ‖L̃pεn (N−
n,R) :=

∫ τn

R

∫ π

0

|ψndθ|p[ρεn(z)]2p−2dτdθ

=

∫ τn

R

∫ π

0

|ψn(τ, θ)|pe(p−2)τdτdθ

�
∫ τn

R

e(p−4+pγ)τdτ

� e(p−4+pγ)R.

Since p < 4, choosing an appropriate small value of γ, for R sufficiently large, the above integral

can be as small as we need. A bound similar to (8.40) can be derived in the same way for τ1 = τn,

τ2 ∈ [τn + k, τn + k + 1) using (8.39). We omit the details. Therefore for R and n sufficiently

large, we have

‖ψndθ‖L̃pεn (Nn,R) ≤ α.

The estimates of derivatives of ψndθ can be done similarly. Here we only sketch it. For the

τ -derivative of ψndθ, we have

|∇τ (ψndθ)⊗ dτ | = e−2τ |μ(un)|.
It has higher order than the above estimate for ψndθ itself, so the estimate of the τ -derivative

follows. For the θ-derivative, we have∣∣∣∣∂ψn∂θ (τ1, θ)dθ

∣∣∣∣ = e−τ1
∫ τn

τ1

e2τ
∣∣∣∣∂μ(un)∂θ

∣∣∣∣dτ � e−τ1
∫ τn

τ1

e2τ (|dμ(un) · vn,θ|+ |μ(un)||ψn|)dτ.

The second integrand is easy to estimate. For the first integrand dμ(un) · vn,θ, by Lemma A.4

we know it has one order lower in e−τ than |μ(u)|. However the factor e−τ1 in front of the

above integral (which comes from |dθ|) compensates this drop of order so we can derive similar

bound as the case for |ψndθ|.
Now we estimate the difference in the matter fields un and the constant x0. We can write

un(τ, θ) = expx0
ξn. Recall the definition of the norm ‖ · ‖L̃1,p

m;εn
(see (7.7)) that

‖ξn‖L̃1,p
m;εn (Nn,R) ≈ ‖ξn‖L∞(Nn,R) + ‖ξGn ‖L̃pεn (Nn,R) + ‖∇ξn‖L̃pεn (Nn,R).

First by the convergence of vn towards the stable affine vortex, we have convergence

lim
R→∞

‖ξn‖L∞(Nn,R) = 0, uniform in n.

Moreover, we know vn,τ = E2∇τ ξn, vn,θ = E2∇θξn + Xψn (where we use the notations intro-

duced at the beginning of the appendix). Hence

‖∇rξn‖L̃pεn (Nn,R) ≈
[ ∫

Nn,R

|vn,r|p[ρεn(z)]2p−4dsdt

] 1
p

=

[ ∫
Nn,R

|vn,τ |pe(p−2)τdτdθ

] 1
p

.
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By the energy decay property ((8.39)), one can find Rα so that ‖∇rξ‖L̃pεn (Nn,Rα ) ≤ α for all n.

Using the bound on ψn achieved previously, one can also obtain a similar bound for ∇θξ.

Now we turn to the estimate of ξGn , which can be written as Xh′
n
+ JXh′′

n
. Notice that

|h′′n| ≈ |μ(un)| whose L̃pε -norm has been estimated. On the other hand, we know that h′n is

comparable to L∗
x0
ξn; by Lemma A.1, we have ∂τL

∗
x0
ξn = L∗

x0
∇τ ξn; also ∇τ ξn is comparable

to vn,τ and L∗
x0
∇sξn is then comparable to dμ(x0) · Jvn,τ . Therefore we have

|∂τh′n| ≈ |dμ(x0) · Jvn,τ |.
Notice that we have an estimate for the Lp-norm of the right hand side by Lemma A.4. Hence

using the same method as estimating ψndθ, we can ask ‖h′n − h′n(τn, ·)‖L̃pε (Nn,R) as small as

possible (by increasing R). However, the difference from the case for ψn is that we do not

have h′n(τn, ·) ≡ 0. Hence we have to estimate the norm of the function h′n(τn, ·) (which is

independent of the τ variable).

To estimate the value of h′n(τn, ·), we choose a bounded region Z containing the segment

τ = τn in its interior. Recall that the gauge fields an = ψndθ is in temporal gauge in Nn,R

with ψn(τn, θ) ≡ 0; the remaining degree of freedom of gauging vn is by using a constant gauge

transformation. Therefore by using a constant gauge transformation we can ask the average of

h′n over Z to be zero. Then by the Poincaré inequality and Sobolev embedding, we obtain that

‖h′n‖L∞(Z) � ‖∇h′n‖Lp(Z).

Notice that ∂τh
′
n (resp. ∂θh

′
n) is comparable to dμ(x0) · vn,τ (resp. dμ(x0) · vn,θ) plus terms

which are of even lower order. Then by Lemma A.4 and the energy decay property, for any

γ > 0 and a region Ω containing Z in its interior, we have

sup
θ∈[0,π]

h′n(τn, θ) � ‖∇h′n‖Lp(Z) � (
√
εn)

2
p (‖μ(un)‖L2(Ω) + ε−1

n ‖vn,τ‖L2(Ω)) � (
√
εn)

1+ 2
p−γ .

Notice that the L̃pε -norm over Nn,R of the constant (
√
εn)

1+ 2
p−γ can be as small as we want.

Hence we can take Rα > 0 such that for n sufficiently large, ‖h′n‖L̃pε (Nn,Rα ) ≤ α �
Notice that in estimating the distance between vn and vεn over the neck region, we do not

compare them directly but only compare with a constant object. Using the same method, we

can estimate the distance between v∞ and vrsn = (ursn , φ
rs
n , ψ

rs
n ) near infinity. Here the latter is

the rescaling of vn by εn which satisfies

∂su
rs
n + Xφrsn + J(∂tu

rs
n + Xψrsn ) = 0, ∂sψ

rs
n − ∂tφ

rs
n + [φrsn , ψ

rs
n ] + ε−2

n μ(ursn ) = 0.

To carry out the estimate, first we need a uniform energy decay.

Lemma 8.4 For all γ > 0, we have

lim sup
n→∞

lim sup
z→∞

|z|4−γ [|vrsn,s|2 + ε−2
n |μ(ursn )|2] < +∞.

This can be proved by utilizing the annulus lemma ([39, Proposition 45] for A = C and

[26, Proposition A.11] for A = H). It implies a uniform C0 convergence of ursn → u∞ near ∞.

Lemma 8.5 For any R > 0, up to gauge transformations, ursn converges to u∞ uniformly on

CR. Moreover, the evaluations ev∞(vrsn ) ∈ L̄ converges to ev∞(v∞).

Therefore, by the same method of proving Lemma 8.3, we have
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Lemma 8.6 For any α > 0, there exist R′
α > 0 and n′

α such that, for n ≥ n′
α, we can write

vrsn = expv∞ ξrsn and ‖ξrsn ‖L̃1,p
a;εn (CR′

α
) ≤ α.

We omit the proof since it can still be checked by straightforward calculations. Recall that

‖ · ‖L̃1,p
a;εn

is the auxiliary norm defined in (6.3). Define ξn = s∗εξ
rs
n which is an infinitesimal

deformation of vεn over CR/εn . Then expvεn ξn = vn over CR/εn and by Lemma 6.1,

‖ξn‖L̃1,p
m;εn (CR/εn )

≤ α.

8.5.2 In the Compact Region

Without loss of generality, assume that nα = n′
α and Rα = R′

α. Consider the convergence over

the compact region BRα , which is part of the domain of v. Since the expression of the norm

‖ · ‖L̃1,p
m;εn

restricted to BRα has no dependence on εn and is equivalent to the unweighted norm

‖ · ‖W 1,p(BRα ), using standard elliptic theory, we can show that (up to gauge transformations)

lim
n→∞ ‖ξn‖L̃1,p

m;εn (BRα ) = 0.

On the other hand, we compare vrsn with v∞ over Ω = BRα \ B 1
Rα

. Using the graph

construction (see [9, Appendix A]), we may regard all the perturbed vortices as unperturbed

vortices with target X ×C with the Lagrangian L × R. So without loss of generality, assume

that the perturbation term vanishes. We write vrsn = expv∞ ξrsn where ξrsn = (ξrsn , η
rs
n , ζ

rs
n ) and

αrsn = ηrsn ds+ ζrsn dt. Then Theorem A.11 implies that after suitable gauge transformation,

lim
n→∞[‖ξrs;Hn ‖W 1,p(Ω) + ε−1

n ‖ξrs;Gn ‖Lp(Ω) + ‖∇ξrs;Gn ‖Lp(Ω) + ‖αrsn ‖Lp(Ω) + εn‖∇a∞αrsn ‖Lp(Ω)] = 0.

Rescale back, it implies that the distance between vn and v∞,ε over Ω converges to zero. This

finishes the proof of Proposition 7.12.

Appendix

A Technical Results about Vortices and Adiabatic Limits

A.1 Derivatives of the Exponential Map

One uses the exponential map to compare nonlinear objects and uses derivatives of the exponen-

tial map to compare derivatives. Many discussions below are identical to part of [9, Appendix

C].

Let M be a Riemannian manifold. For v ∈ TxM and i, j ∈ {1, 2} there are linear maps

Ei(x, v) : TxM → Texpx vM, Eij(x, v) : TxM ⊕ TxM → Texpx vM

defined by the following identities

d expx v = E1(x, v)dx+ E2(x, v)∇v,
∇E1(x, v)w = E11(x, v)(w, dx) + E12(x, v)(w,∇v) + E1(x, v)∇w,
∇E2(x, v)w = E21(x, v)(w, dx) + E22(x, v)(w,∇v) + E2(x, v)∇w.

To save space, we often omit the variables (x, v) of Ei or Eij .

Now let M = X and let g be a K-invariant Riemannian metric. Let ∇ be the Levi–Civita

connection of g. By the K-invariance of the metric, one has

Xη(expx ξ) = E1(x, ξ)Xη(x) + E2(x, ξ)∇ξXη, ∀x ∈ X, ξ ∈ TxX, η ∈ k.
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To continue, define (recall) the following notations.

• Abbreviate the map η 
→ Xη(x) by Lx and its dual L∗
x(ξ) = dμ(x) · Jξ.

• Denote X∗ = {x ∈ X | kerLx = {0}}.
• Define a 2-form ρ ∈ Ω2(X, k) by 〈ρ(ξ1, ξ2), η〉 = 〈∇ξ1Xη, ξ2〉.
• Let v = (u, φ, ψ) : R2 → X × k× k be a smooth map. Denote

a = φds+ ψdt, vs = ∂su+ Xφ, vt = ∂tu+ Xψ.

Moreover, for ξ ∈ Γ(u∗TX) and η : R2 → k, define

∇a
sξ = ∇sξ +∇ξXφ, ∇a

t ξ = ∇tξ +∇ξXψ.
∇a
sη = ∂sη + [φ, η], ∇a

t η = ∂tη + [ψ, η].

Then ∇a induces a covariant derivative along u of all tensor fields. Moreover, it is easy to

see that if T is a K-invariant tensor field, we have

∇a
sT = ∇vsT, ∇a

t T = ∇vtT.

In particular, we can obtain the following useful formula.

Lemma A.1 ([9, Lemma C.2], [8]) For η : R2 → k, ξ ∈ Γ(u∗TX), one has

[∇a
s/t, Lu](η) = ∇vs/tXη(u), [∇a

s/t, L
∗
u](ξ) = ρ(vs/t, ξ). (A.1)

Let X∗ ⊂ X be the open subset consisting of x ∈ X for which a 
→ Xa(x) is injective. So

we have the distribution HX ⊂ TX|X∗ which is defined to be the hX -orthogonal complement

of KX ⊕JKX . Let Ω ⊂ H be an open subset and let u0 : Ω → X∗ be a C1-map. Then u0 pulls

back a connection form a0 = φ0ds+ ψ0dt in such a way that if we denote by v0 = (u0, φ0, ψ0),

then

v0,s = ∂su0 + Xφ0
∈ HX ⊕ JKX , v0,t = ∂tu0 + Xψ0

∈ HX ⊕ JKX .

Suppose ξ0 ∈ Γ(Ω, u∗0TX) and denote u = expu0
ξ0; η0, ζ0 : Ω → k and denote φ = φ0 + η0,

ψ = ψ0 + ζ0 and denote a = φds+ ψdt.

Lemma A.2 ([9, Lemma C.3])

Xη0(u) = vs − E1(u0, ξ0)v0,s − E2(u0, ξ0)∇a0
s ξ0,

Xζ0 = vt − E1(u0, ξ0)v0,t − E2(u0, ξ0)∇a0ξ0.

Lemma A.3 ([9, Lemma C.5]) Suppose Lu0
ξ0 = 0, then

Lu∇a
t η0 = ∇a

t vs +∇Xη0Xζ0 −∇vtXη0 −∇vsXζ0 − E11(v0,s,v0,t)− E12(v0,s,∇a0
t ξ0)

− E21(∇a0
s ξ0,v0,t)− E22(∇a0

s ξ0,∇a0
t ξ0)− E1∇a0

t v0,s − E2∇a0
t ∇a0

s ξ0;

Lu∇a
sη0 = ∇a

svs +∇Xη0Xη0 − 2∇vsXη0 − E11(v0,s,v0,s)− E12(v0,s,∇a0
s ξ0)

− E21(∇a0
s ξ0,v0,s)− E22(∇a0

s ξ0,∇a0
s ξ0)− E1∇a0

s v0,s − E2∇a0
s ∇a0

s ξ0.
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A.2 A Priori Estimates

Let Ω ⊂ H be an open subset and let σ : Ω → (0,+∞) be a smooth function which is bounded

from below and from above, and which has bounded derivatives in every order. For any gauged

map v = (u, φ, ψ) from Ω to X, denote

vs = ∂su+ Xφ, vt = ∂tu+ Xψ, κ = ∂sψ − ∂tφ+ [φ, ψ].

Let ε > 0 be a (small) constant. Consider the local form of the perturbed vortex equation

vs + Jvt = 0, κ+ ε−2σμ(u) = 0, u(∂Ω) ⊂ L. (A.2)

Let M̃(Ω, ε−2σ;X,L) be the set of smooth solutions to (A.2). On the other hand, let M̃(Ω,∞;

X,L) be the set of solutions to

vs + Jvt = 0, μ(u) ≡ 0, u(∂Ω) ⊂ L.

For each M > 0, define

UM :=

{
x ∈ X∗

∣∣∣∣ 1

M
|a| ≤ |Xa(x)|, ∀a ∈ k

}
.

Lemma A.4 (cf. [9, Lemma 9.3]) Assume 2 ≤ p ≤ ∞. For any M > 0 and any compact

subset Z ⊂ Ω, there exist c(M,Ω, Z) > 0 and ε(M) (both of which also depend on σ) that satisfy

the following condition. Suppose ε ∈ (0, ε(M)] and v is a solution to (A.2) over Ω such that

u(Ω) ⊂ UM and

sup
z∈Ω

[
|vs(z)|+

√
σ(z)

ε
|μ(u(z))|

]
≤M. (A.3)

Then

1

ε
‖μ(u)‖Lp(Z) + ‖dμ(u) · vs‖Lp(Z) + ‖dμ(u) · Jvs‖Lp(Z) + ε‖∇a

svs‖Lp(Z) + ε‖∇a
t vs‖Lp(Z)

≤ c(M,Ω, Z)ε
2
p [‖vs‖L2(Ω) + ε−1‖μ(u)‖L2(Ω)]. (A.4)

Remark A.5 Lemma A.4 was proved as [9, Lemma 9.3] for Ω with empty boundary. The

proof in the case that ∂Ω �= ∅ is essentially the same. However, in order to use reflection

across the boundary, one has to use a (J, L, μ)-admissible metric and the associated Levi–Civita

connection, instead of any K-invariant metric and its Levi–Civita connection.

A.3 Projection to μ−1(0)

Now suppose one has a gauged map v from Ω to X with supΩ |μ(u)| being sufficiently small

with image having compact closure. So its image is contained in UM for some M . Then there

is a unique function h : Ω → k such that

μ(expu JXh) ≡ 0.

Define u′ = expu JXh and v′ = (u′, a′) where a′ = φ′ds+ψ′dt is the connection pulled back by

u′. Then it is easy to see that for all Z ⊂ Ω,

‖JXh‖Lp(Z) � ‖μ(u)‖Lp(Z). (A.5)
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Lemma A.6 Under the hypothesis of Lemma A.4, by possibly decreasing ε(M) and increasing

c(M,Ω, Z), one has

‖∇a(JXh)‖Lp(Z) ≤ c(M,Ω, Z)[‖μ(u)‖Lp(Z) + ‖dμ(u) · vs‖Lp(Z) + ‖dμ(u) · vt‖Lp(Z)].

Proof Denote η′ds+ ζ ′dt = a− a′. Then by Lemma A.2, along u′ one has

Xη′ + v′
s − E1(vs)− E2∇a

s(JXh) = Xζ′ + v′
t − E1(vt)− E2∇a

t (JXh) = 0. (A.6)

Since u′ is contained in μ−1(0), applying dμ(u′) to the above identities gives

dμ(u′) · E2∇a
s(JXh) = −dμ(u′) · E1(vs), dμ(u′) · E2∇a

t (JXh) = −dμ(u′) · E1(vt).

By the smoothness of dμ, one has

|dμ(u′) · E2∇a
s(JXh)− dμ(u) · ∇a

s(JXh)| � |JXh||∇a
s(JXh)|.

|dμ(u′) · E1(vs)− dμ(u) · vs| � |JXh||vs|.

Therefore,

|∇a
sJXh| � |dμ(u) · ∇a

sJXh|+ |vs||JXh|
� |dμ(u′) · E2(∇a

sJXh)|+ |JXh||∇a
sJXh|+ |vs||JXh|

� |dμ(u′) · E1(vs)|+ |JXh||∇a
sJXh|+ |JXh||vs|

� |dμ(u) · vs|+ |JXh||∇a
sJXh|+ |JXh||vs|.

Therefore if the ε in (A.3) is sufficiently small, which implies |JXh| is sufficiently small, one has

|∇a
sJXh| � |dμ(u) · vs|+ |vs||JXh|. (A.7)

Then by the bound on |vs| given by (A.3) and (A.5),

‖∇a
s(JXh)‖Lp(Z) � ‖vs‖L∞(Ω)‖JXh‖Lp(Z) + ‖dμ(u) · vs‖Lp(Z)

� ‖μ(u)‖Lp(Z) + ‖dμ(u) · vs‖Lp(Z).

The bound of ∇a
t (JXh) can be proved similarly. �

In the rest of this appendix, the values of C(M,Ω, Z) will be modified to satisfy various

estimates without mentioning.

The gauged map v′ is nearly holomorphic and one needs to estimate its failure.

Corollary A.7 Under the hypothesis of Lemma A.4, one has

‖v′
s + Jv′

t‖Lp(Z) � ‖μ(u)‖Lp(Z) + ‖dμ(u) · vs‖Lp(Z) + ‖dμ(u) · vt‖Lp(Z).

Proof Since v′
s and v′

t are contained in HX , (A.6) implies that

v′
s + Jv′

t = PH [E1(vs) + E2(∇a
sJXh) + JE1(vt) + JE2(∇a

t JXh)]
= PH [(JE1 − E1J)(vt) + E2(∇a

sJXh) + JE2(∇a
t JXh)].
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Since JE1 − E1J is bounded by a multiple of |JXh|, one has

‖v′
s + Jv′

t‖Lp(K) � ‖JXh‖Lp(K)‖vt‖L∞(K) + ‖∇a
sJXh‖Lp(K) + ‖∇a

t JXh‖Lp(K)

� ‖μ(u)‖Lp(K) + ‖dμ · vs‖Lp(K) + ‖dμ(u) · vt‖Lp(K).

This finishes the proof. �
We also need to estimate the difference between the gauge fields in v and v′.

Lemma A.8 (Recall that η′ds+ ζ ′dt = a− a′) one has

‖η′‖Lp(Z) + ‖ζ ′‖Lp(Z) ≤ C(M,Ω, Z)ε
2
p [‖vs‖L2(Ω) + ε−1‖μ(u)‖L2(Ω)].

Proof Since v′
s is contained in HX , so L∗

u′v′
s = 0. Apply L∗

u′ to (A.6), one obtains

L∗
u′Xη′ = L∗

u′E1(vs) + L∗
u′E2∇a

s(JXh). (A.8)

Since η′ 
→ L∗
u′Xη′ is invertible, and E1, E2 are nearly the identity, one has

|η′| � |L∗
u′E1(vs)|+ |L∗

u′E2∇a
s(JXh)|

� |L∗
uvs|+ |JXh||vs|+ |L∗

u∇a
s(JXh)|+ |JXh||∇a

s(JXh)| � |L∗
uvs|+ |μ(u)|+ |∇a

sJXh|.

Therefore by Lemma A.4 and Lemma A.6, one has

‖η′‖Lp(Z) � ‖dμ(u) · Jvs‖Lp(Z) + ‖μ(u)‖Lp(Z) + ‖∇a
s(JXh)‖Lp(Z)

� ‖dμ(u) · Jvs‖Lp(K) + ‖μ(u)‖Lp(Z) + ‖dμ(u) · vs‖Lp(Z)

� ε
2
p [‖vs‖L2(Ω) + ε−1‖μ(u)‖L2(Ω)].

Similarly, one can derive the estimate for ζ ′.
We also have to estimate the first order derivatives of η′ and ζ ′.

Lemma A.9 One has

ε[‖∇a
sη

′‖Lp(Z) + ‖∇a
sζ

′‖Lp(Z)] ≤ c(M,Ω, Z)ε
2
p [‖vs‖L2(Ω) + ε−1‖μ(u)‖L2(Ω)].

Proof Apply dμ(u′) to (A.6), one has

dμ(u′) · E1(vs) + dμ(u′) · E2(∇a
sJXh) = 0.

Then applying ∇a
s to the above equation, by Lemma A.1, one obtains

0 = ∇a
sL

∗
u′JE1(vs) +∇a

sL
∗
u′(JE2(∇a

sJXh))
= L∗

u′ [∇a
s(JE1(vs)) +∇a

sJE2(∇a
sJXh)] + ρ(∂su

′ + Xφ, JE1(vs) + JE2(∇a
sJXh))

= L∗
u′ [JE1(∇a

svs) + Φ1(vs,vs) + Φ2(vs,∇a
sJXh)]

+ L∗
u′ [JE2(∇a

s∇a
sJXh) + Ψ1(vs,∇a

sJXh) + Ψ2(∇a
sJXh,∇a

sJXh)]
+ ρ(∂su

′ + Xφ, JE1(vs) + JE2(∇a
sJXh)).
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Here Φ1,Φ2,Ψ1,Ψ2 are tensors that are uniformly bounded, which come from derivatives of

JE1 and JE2. Using the facts that E2 is very close to the identity, that |vs|, |∂su′ + Xφ|, and
|∇a

sJXh| are bounded, one has

‖∇a
s∇a

sJXh‖Lp(Z) � ‖∇a
sJXh‖Lp(Z) + ‖vs‖Lp(Z) + ‖∇a

svs‖Lp(Z). (A.9)

Then apply ∇a
sL

∗
u′ to (A.6), one has

∇a
sL

∗
u′Xη′ = ∇a

sL
∗
u′E1(vs) +∇a

sL
∗
u′E2∇a

s(JXh).

Using Lemma A.1 again, one has

L∗
u′ [∇a

sXη′ −∇a
sE1(vs)−∇a

sE2∇a
sJXh] = ρ[∂su

′ + Xφ,Xη′ − E1(vs)− E2∇a
sJXh]. (A.10)

We know that ∇a
sXη′ = Lu′(∇a

sη
′) +∇∂su′+XφXη′ and L∗

u′Lu′ is an isomorphism. Therefore,

‖∇a
sη

′‖Lp(Z) � ‖L∗
u′∇a

sXη′‖Lp(Z) + ‖∇∂su′+XφXη′‖Lp(Z)

� ‖L∗
u′∇a

sXη′‖Lp(Z) + ‖∂su′ + Xφ‖L∞‖η′‖Lp(Z)

� ‖vs‖Lp(Z) + ‖∇a
svs‖Lp(Z) + ‖JXh‖Lp(Z) + ‖∇a

sJXh‖
+ ‖∇a

s∇a
sJXh‖Lp(Z) + ‖η′‖Lp(Z)

� ‖vs‖Lp(Z) + ‖∇a
svs‖Lp(Z) + ‖JXh‖Lp(Z) + ‖∇a

sJXh‖Lp(Z) + ‖η′‖Lp(Z)

� ε
2
p−1[‖vs‖L2(Ω) + ε−1‖μ(u)‖L2(Ω)].

Here in deriving the third inequality we used (A.10) and in deriving the fourth inequality we

used (A.9). In deriving the last inequality, we used the fact that |vs| is uniformly bounded,

Lemma A.4, (A.5), Lemma A.6 and Lemma A.8. Similarly we can derive the estimate for ∇aζ ′.
Below is another necessary estimate.

Lemma A.10 We have

‖∇av′
s‖Lp(K) + ‖∇av′

t‖Lp(K) � ε
2
p−1[‖vs‖L2(Ω) + ε−1‖μ(u)‖L2(Ω)].

Proof We only prove one bound. Apply ∇a
s to (A.6), one has

∇a
sv

′
s = −∇a

sXη′ + E1(∇a
svs) + E2(∇a

s∇a
sJXh) + Φ1(vs,vs) + Φ2(vs,∇a

sJXh),

where Φ1,Φ2 are K-invariant tensors that are uniformly bounded. This allows us to prove the

desired estimate on ∇a
sv

′
s from previous results. �

A.4 Convergence

Let Ω ⊂ H be an open subset. Let εn be a sequence of positive numbers converging to zero.

Let zn = sn + itn : Ω → H be a sequence of smooth maps that are diffeomorphisms onto their

images, that converging uniformly with all derivatives to the identity map. zn then pulls back

a sequence of complex structures jn and a sequence of volume forms dsn ∧ dtn on Ω. Consider

a sequence of gauged maps vn = (un, φn, ψn) from Ω to X that solve the equation

vn,sn + Jvn,tn = 0, κn +
1

ε2n
μ(un) = 0. (A.11)
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Here κn = ∂snψn − ∂tnφn + [φn, ψn]. Let v∞ = (u∞, φ∞, ψ∞) be a gauged map from Ω to X

with image contained in μ−1(0) that projects down to a holomorphic map with respect to the

standard complex structure on Ω. We would like to prove the following theorem.

Theorem A.11 Suppose un converges to u∞ uniformly on all compact subsets of Ω (a priori

no condition on the convergence of the gauge fields). Then there exists n0 ≥ 1 such that for

all n ≥ n0, we can gauge transform vn to a sequence of vortices (which we still denoted by vn)

such that, if we denote

vn = expv∞ ξn, ξn = (ξn, αn),

then for any compact subset Z ⊂ Ω,

lim
n→∞[‖αn‖Lp(Z)+εn‖∇a∞αn‖Lp(Z)+‖ξHn ‖L1,p(Z)+ε

−1
n ‖ξGn ‖Lp(Z)+‖∇a∞ξGn ‖Lp(Z)] = 0. (A.12)

Here we only present the proof in the special case that zn = z. In the general case the

convergence zn → z allows us to extend the proof.

To start, we first gauge transform vn to satisfy the following pointwise gauge-fixing condi-

tion. Let v′
n = (u′n, a

′
n) be the projection of vn onto μ−1(0). Namely, there are hn : CR → k

such that u′n = expun JXhn is contained in μ−1(0) and a′n is pulled back by u′n. The gauge-fixing
condition is that if we write u′n = expu∞ ξ′′n, then

ξ′′n ∈ u∗∞HX .

This is the gauge that allows us to have the estimate in Theorem A.11. To prove it, we compare

vn with v′
n and compare v′

n with v∞ separately.

Denote α′
n = an − a′n = η′nds+ ζ ′ndt. Then by Lemma A.8 and Lemma A.9, one has

lim sup
i→∞

[‖α′
n‖Lp(Z) + εn‖∇anα′

n‖Lp(Z)] ≤ c(εn)
2
p [‖vn,s‖L2(Ω) + ε−1

n ‖μ(un)‖L2(Ω)]. (A.13)

By the uniform bound on energy, the right hand side of (A.13) converges to zero. Similarly, by

(A.4), (A.5) and Lemma A.6, one has

ε−1
n ‖JXhn‖Lp(Z) + ‖∇anJXhn‖Lp(Ω) � (εn)

2
p . (A.14)

Hence the distance between vn and v′
n w.r.t. the norm in (A.12) (defined using ∇an instead of

∇a∞) converges to zero.

Lemma A.12 For any compact subset Z ⊂ Ω, ‖da′nv′
n‖L∞(Z) is uniformly bounded.

Proof By the uniform convergence vn → v∞ we know that ‖danvn‖L∞(Z) is uniformly bound-

ed (otherwise there will be bubbling). (A.7) implies that ‖∇anJXhn‖L∞(Z) is uniformly bound-

ed. Then by applying Lemma A.2 for v0 = vn, v = v′
n, one obtains

−Xη′n = v′
n,s − E1(un,−JXhn)vn,s − E2(un,−JXhn)∇an

s JXhn ;
−Xζ′n = v′

n,t − E1(un,−JXhn)vn,t − E2(un,−JXhn)∇an
t JXhn .

Since v′
n,s and v′

n,t are in HX ⊕JKX , their sizes are controlled by those of vn,t and ∇a∞JXhn ,
both of which are finite.
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Now we estimate the distance between v′
n and v∞. Recall u′n = expu∞ ξ′′n. Denote

α′′
n = η′′nds+ ζ ′′ndt = a′n − a∞.

Since vn converges to v∞ uniformly on compact subsets, so does v′
n. First, we have the decay

of W 1,p-norm of ξ′′n shown as follows.

Lemma A.13 One has

lim
i→∞

[‖ξ′′n‖Lp(Z) + ‖∇a∞ξ′′n‖Lp(Z)] = 0. (A.15)

Proof ‖ξ′′n‖Lp(Z) → 0 follows from the convergence vn towards v∞. The estimate for

‖∇a∞ξ′′n‖Lp(Z) basically follows from Corollary A.7 and elliptic estimate for ∂ operator. More

precisely, by Lemma A.2, one has

v′
n,s = E1v∞,s + E2∇a∞

s ξ′′n + Xη′′n , v′
n,t = E1v∞,t + E2∇a∞

t ξ′′n + Xζ′′n .

Hence

v′
n,s + Jv′

n,t = E1v∞,s + JE1v∞,t + E2∇a∞
s ξ′′n + JE2∇a∞

t ξ′′n + Xη′′n + JXζ′′n .

Notice that v′
n,s and v′

n,t are both in HX . Then projecting on to HX , one obtains5)

v′
n,s + Jv′

n,t = PHE1v∞,s + PHJE1v∞,t + PHE2∇a∞
s ξ′′n + PHJE2∇a∞

t ξ′′n
= PH(JE1 − E1J)v∞,t +Dξ′′n.

Here the first term above is bounded pointwise by a multiple of |ξ′′n||v∞,t|; D is a Cauchy–

Riemann type operator whose zero order term is uniformly bounded. Therefore, by the elliptic

estimate for ∂-operators, using Corollary A.7 and Lemma A.4, for certain precompact open

subset Z ′ ⊂ Ω containing Z, one has

lim sup
n→∞

‖∇a∞ξ′′n‖Lp(Z) � lim sup
n→∞

‖ξ′′n‖Lp(Z′) + lim sup
n→∞

‖Dξ′′n‖Lp(Z′)

� lim sup
n→∞

‖v′
n,s + Jv′

n,t‖Lp(Z′) + lim sup
n→∞

‖|ξ′′n||v∞,t|‖Lp(Z′)

� lim sup
n→∞

(‖μ(un)‖Lp(Z′) + ‖dμ(un) · vn,s‖Lp(Z′) + ‖dμ(un) · vn,t‖Lp(Z′)) = 0.

This finishes the proof of (A.15).

Lemma A.14 One has

lim
n→∞[‖α′′

n‖Lp(Z) + εn‖∇a∞α′′
n‖Lp(Z)] = 0. (A.16)

Proof Since a′n and a∞ are pulled back from the canonical connection by u′n and u∞, and

u′n = expu∞ ξ′′n, also using Lemma A.13, one has

lim
n→∞ ‖α′′

n‖Lp(Z) � lim
n→∞[‖ξ′′n‖Lp(Z) + ‖∇a∞ξ′′n‖Lp(Z)] = 0. (A.17)

5) If it is not in the special case that zn = z, then there will be an extra term below. But that term can still be

controlled.
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For the derivatives, we only estimate ‖∇a∞
t η′′n‖Lp(Z). The case for other components can be

done similarly, by utilizing Lemma A.3. Apply Lemma A.3 to v0 = v∞, v = v′
n. Then one has

‖∇a∞
t η′′n‖Lp(Z) � ‖a∞ − a′n‖L∞(Z)‖η′′n‖Lp(Z) + ‖∇a′n

t η′′n‖
≤ ‖α′′

n‖L∞(Z)‖η′′n‖Lp(Z) + ‖L∗
u∞X∇a′nt η′′n

‖Lp(Z)

� ‖α′′
n‖L∞(Z)‖η′′n‖Lp(Z) + ‖∇a′n

t v′
n,s‖Lp(Z) + ‖ζ ′′n‖L∞(Z)‖η′′n‖Lp(Z)

+ ‖α′′
n‖L∞(Z)‖da∞v∞‖Lp(Z) + ‖da∞u∞‖L∞(Z)‖da∞u∞‖Lp(Z)

+ ‖da∞u∞‖L∞(Z)‖∇a∞ξ′′n‖Lp(Z) + ‖∇a∞
t ξ′′n‖L∞‖∇a∞

s ξ′′n‖Lp(Z)

+ ‖∇a∞da∞v∞‖Lp(Z) + ‖L∗
u∞∇a∞

t ∇a∞
s ξ̇n‖Lp(Z).

We would like to show that the right hand side converges to zero after multiplying εn. Indeed,

Lemma A.12 shows that ‖da′nv′
n‖L∞(Z) is uniformly bounded (u.d. for short). Recall that u′n

projects to a map ū′n : Ω → X̄, whose derivative is the projection of d′anv
′
n. Hence ‖∇ū′n‖L∞(Z)

is u.d.. Since u′n = expu∞ ξ′′n with ξ′′n being in the horizontal distribution, we know that both

‖∇a∞ξ′′n‖L∞(Z) and ‖∇u′n‖L∞(Z) is u.d.. Hence it implies that the gauge fields of v′
n are u.d..

Hence all L∞-norms appeared in the last long inequality are u.d.. It remains to bound all the

Lp-norms that depend on n in the same inequality.

(a) By Lemma A.10 ‖∇a′n
t v′

n,s‖Lp(Z) � (εn)
2/p−1.

(b) The bound on ‖η′′n‖Lp(Z) has been given in (A.17). The bound on ‖∇a∞ξ′′n‖Lp(Z) follows

from the bound on its L∞-norm.

(c) Since L∗
u∞ξ

′′
n = 0, by Lemma A.1, we have

L∗
u∞∇a∞

t ∇a∞
s ξ′′n = ∇a∞

t (L∗
u∞∇a∞

s ξ′′n)− ρ(v∞,t,∇a∞
s ξ′′n) = −∇a∞

t ρ(v∞,s, ξ
′′
n)− ρ(v∞,t,∇a∞

s ξ′′n).

A bound of this term follows easily from the bounds achieved previously.

In summary, limi→∞ εn‖∇a∞
t η′′n‖Lp(Z) = 0. This finishes the proof of this lemma. �

Now we consider the distance between vn and v∞. By (A.13) and Lemma A.14, we know

that ‖an − a∞‖Lp(Z) converges to zero. Hence the W 1,p-norms defined by ∇an and ∇a∞ are

equivalent. Hence (A.13) and Lemma A.14 imply that

lim
n→∞[‖an − a∞‖Lp(Z) + εn‖∇a∞(an − a∞)‖Lp(Z)] = 0. (A.18)

On the other hand, we write

un = expu∞ ξn = − expu′
n
JXhn = − expexpu∞ ξ′′n

JXhn .

Because of the nonlinearity of the exponential map, ξn �= ξ′′n − JXhn . However, we can define

a smooth family of function Φz : HX,u∞(z) ⊕ k → Tu∞(z)X by

ξn(z)− ξ′′n(z) + JXhn(u∞(z)) = Φz(ξ
′′
n(z), hn(z)).

Moreover, we know that

|Φz(ξ′′n(z), hn(z))| � |ξ′′n(z)||hn(z)|,
|∇a∞Φz(ξ

′′
n(z), hn(z))| � |da∞u∞||ξ′′n||hn(z)|+ |∇a∞ξ′′n(z)||hn(z)|+ |ξ′′n||∇a∞hn(z)|.
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Roughly speaking, the discrepancy Φz is “small”. This allows the estimate that

lim
i→∞

‖PHξn‖L̃1,p
h (Z) = 0, lim

i→∞
[ε−1
n ‖PGξn‖L̃p(Z) + ‖∇a∞PGξn‖L̃p(Z)] = 0.

This finishes the proof of Theorem A.11.
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