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1 Introduction

Vortices are local minima of the Yang-Mills-Higgs functional. For example, given a Hermitian
line bundle L over a compact Riemann surface ¥, for a unitary connection A € A(L) and a
smooth section v € T'(L), the Yang-Mills-Higgs functional reads

1 1
YMH(Au) = 5 / {dAu2 + 1e2 (Jul* = 1)2 + 2| Fal?|dvols, (e > 0)
b
and the vortex equation, which is the equation of motion for this functional, reads
%
Oau=0, *Fy— 02 (Jul* = 1) = 0. (1.1)

Vortices appears in many areas of mathematics and physics, and have been generalized to the
case of nonabelian gauge groups and nonlinear target spaces. To the author the most important
appearance of vortices is in the two-dimensional gauged linear sigma model (GLSM), and the
motivation of this work mainly comes from this perspective, as is explained below.

Vortices share many similar features with J-holomorphic curves. So it is natural to con-
sider using vortices to define numerical invariants (similar to Gromov-Witten invariants) for a
symplectic manifold X with a Hamiltonian action by a compact Lie group K. In this setting
the equation is also called the “symplectic vortex equation”, which was firstly considered by
[3, 14, 15]. Moreover, such invariants (called gauged GW invariants or Hamiltonian GW invari-
ants, see for example [2, 15]) is closely related to the ordinary GW invariants of the symplectic
quotient X = X//K. This relation is unveiled by looking at the “adiabatic limit” of the sym-
plectic vortex equation (i.e., € — 0 in (1.1)). The first mathematical discussion of adiabatic
limit of the symplectic vortex equation and the relation between the gauged invariants of X and
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the GW invariants of X was given in [9], preceded by a similar result in gauge theory in [5]. In
principle, using the symplectic vortex equation one can also define other symplectic invariants
of a Hamiltonian K-manifold, for example, gauged Floer homology (see [6, 36]). Such invariants
are related to their counterparts of X defined by J-holomorphic curves, via the ¢ — 0 adiabatic
limit.

One cannot expect the invariants for X and X are trivially identified. This is because in
the adiabatic limit process, vortices converge to J-holomorphic curves modulo “affine vortex”
bubbles, which are solutions to the vortex equation over C. Different from the bubbling phe-
nomena in J-holomorphic curve theory or Donaldson theory, the bubbling of affine vortices is a
codimension zero phenomenon. This is because the affine vortex equation has only translation
invariance but not conformal invariance. Therefore, the invariants for X and X (i.e., the gauged
Gromov—Witten invariants and ordinary Gromov—Witten invariants) are identified only after a
“coordinate transformation” defined by counting affine vortices. Such coordinate transforma-
tion is often referred to as the quantum Kirwan map, which is a deformation of the classical
Kirwan map Hj(X) — H*(X). For Gromov-Witten theory, the principle of the quantum
Kirwan map has been explained in [16, 32, 39]. In the case that X is a projective manifold and
the K-action extends to an algebraic action by K©, the quantum Kirwan map is constructed in
[32]. While in the symplectic setting, Ziltener has his (paused-for-long) project on this subject
(see [37-39]).

We would like to mention the parallel developments in physics. Witten invented the frame-
work of gauged linear sigma model (GLSM) in [30], which provides a way of completing non-
linear sigma model (NLSM) in the ultraviolet direction. Consider the A-twisted topological
theories. In the infrared limit, GLSM converges to NLSM with instanton corrections, while
the corrections come from the counting of point-like instantons. With this intuitive picture,
this correspondence has been further developed in [13]. In the case when the superpotential of
GLSM is zero, the moduli spaces of the topological theories are just vortices and holomorphic
curves respectively, and the point-like instantons are exactly affine vortices.

One of the main motivations of the current work is from the project with Woodward, which
aims at extending the above picture to the open string case. In the adiabatic limit of vortices
over surfaces with boundary imposing Lagrangian boundary condition, there also appear affine
vortices over the upper half plane H. In the same spirit as in the closed case, counting affine
vortices over H with Lagrangian boundary condition leads certain nontrivial relations between
open-string invariants of Lagrangian submanifolds. Such an idea was firstly brought in by
Woodward [31] and a precisely stated conjecture can be found in the introduction of [26]. The
upshot of our project is to define an A, morphism, which we call the open quantum Kirwan
map, between two versions of Fukaya A, algebras associated to a Lagrangian brane in a GIT
quotient (see the paper [33]).

In the symplectic setting, in order to define the (open or closed) quantum Kirwan map
by virtual integration over the moduli space and in order to prove its properties, one has to
understand its compactification and the associated gluing. A Gromov type compactification
of affine vortex moduli has been constructed in [39] for the closed case, and the open case is

essentially covered by the main theorem of [26]. Compared to pseudoholomorphic curves, affine
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vortices have more involved types of degenerations. Energy concentration does cause bubbling
of holomorphic spheres or disks, similar to pseudoholomorphic curves. Besides, the energy can
also be separated to regions that are arbitrarily far away (w.r.t. the Euclidean metric), or escape
from infinity.

In this paper we construct the gluing map for stable H-vortices. We do not consider the
most general configurations of stable affine vortices, which may contain arbitrary bubble trees
of holomorphic disks or spheres in both X and X. Instead, we only glue those configurations
consisting of several affine vortex components connected by a single disk component. Such a
configuration is illustrated in Figure 1, which we call a “simple” configuration (see Section 5).
We also add marked points to stabilize the domains. We remark that this special case is the
only new piece which has not been understood and this special case is enough for the application
in [33]; moreover, the analysis can also be generalized to glue a general configuration, and can
be used to construct any Kuranishi type local chart.

Our main theorem is the following, whose precise version is Theorem 5.7.

Theorem 1.1 Let (X,w, ) be a Hamiltonian K-manifold equipped with a K -invariant, w-
compatible almost complex structure J. Assume that 0 is a regular value of p and K acts freely
on u=1(0). Let L C X be a K-invariant embedded Lagrangian submanifold which is contained
in u=1(0).

Let 1,1 > 0, l+1 > 1. Let M;;(H;X,L) be (an open set of) the moduli space of gauge
equivalence classes of perturbed stable affine vortices over H with | interior marked points and |
boundary marked points, equipped with a natural topology. Let & be a simple combinatorial type,
which labels a stratum Mg (H;X,L) C M ;(H;X,L). Here the perturbation is parametrized
by an open subset of a finite dimensional real vector space Wpyer as well as the deformation space
of the underlying marked curves.

Given [w.,v.] € Mg(H;X, L), under a certain transversality assumption, there exist an
open neighborhood Uy, C Mg (H; X, L) of [w.,v.], a real number ey > 0, and a continuous map

Glue : Uy, x [0,¢0) = M, (H; X, L)
which is a homeomorphism onto an open subset.
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Figure 1 The degeneration of affine vortices over H towards a simple stable affine vortex. The
picture on the left can also represent the degeneration of solutions to other types of equations

satisfying translation invariance and energy quantization property
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One of the technical difficulties in the analytical study of affine vortices is from their mixed
geometric behaviors. In a region with large area, the image of u is close to the level set ;1 ~1(0),
where the tangent bundle T'X splits into Hy @& Gx. Here Gx is the direction of group action,
and Hx is roughly the tangent bundle of the symplectic quotient. In the Hyx direction w is close
to a holomorphic curve while the behavior in the G x direction is different. Therefore, especially
for gluing, one has to be very careful in choosing the weighted Sobolev norms which match the
behaviors in the two orthogonal directions. Another difficulty is due to the noncompactness of
the domain; although there has been a great amount of details for adiabatic limit over compact
Riemann surfaces in [9], we have to extend almost everything to the noncompact setting. One
novelty of this paper is to use a special weighted Sobolev norms for the involved functional
analysis (see the discussion at the beginning of Subsection 3.2). This choice of norm releases

us from heavy symbol manipulations in doing concrete estimates.

1.1 Extensions and Applications

As we have explained, the immediate motivation for studying the gluing of affine vortices is from
the project of the author with Woodward [33], which aims at defining the open quantum Kirwan
map. Moreover, using the technique and analytical setting of this paper, one can construct the
gluing map for affine vortices over C, and the gluing map w.r.t. the adiabatic limit. This would
be an important step towards the resolution of Salamon’s quantum Kirwan map conjecture in
the symplectic setting, initiated in [37, 39].

In symplectic geometry and gauge theory there are other types of objects which are trans-
lation invariant rather than conformal invariant. The figure 8 bubble, appeared in the strip
shrinking limits of pseudoholomorphic quilts (see [1, 28, 29]), is such an example. There are
also infinite dimensional examples, such as the anti-self-dual equation over C' x ¥ (see [27]).
We hope that the technique of this paper can be used in the gluing construction for other
translation invariant equations.

In the joint project with G. Tian (see [20-23]), we are developing a mathematical theory
of gauged linear sigma model. To prove the relation between GLSM correlation functions and
GW invariants, we have to consider the gluing of point-like instantons. As we have indicated in
this introduction, these instantons are generalizations of affine vortices with extra terms coming
from a superpotential W; or in other words, solutions to the gauged Witten equation over C,
which is translation invariant. We will carry out this gluing construction in the future and

certain strategies and technical results from this paper can definitely be useful in that case.

2 Moduli Space of Domain Curves

Recall that the pseudoholomorphic curve equation is invariant under conformal (biholomorphic)
domain automorphisms. Therefore the study of the moduli space of stable marked complex
curves (the Deligne-Mumford space) M, ,, is crucial in Gromov—Witten theory. On the other
hand, the affine vortex equation (over A = C, the complex plane, or A = H, the upper half
plane) is only invariant under translations of the domain. This type of symmetry corresponds
to a different moduli of marked curves, i.e., moduli spaces of configurations of n marked points
in A modulo translations, and their compactifications.

Special cases of such moduli spaces have been given particular names. When A = H and
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all markings are on the boundary, such a moduli space is Stasheff’s multiplihedra J,, appeared
in [18] where the identification was shown by Ma'u-Woodward [11]. When A = C, such a
moduli space was called by Ma’'u—Woodward a complexified associahedron. In this paper we
need to treat a more general situation, namely, A = H with not only boundary markings but
also interior ones. However, we only give a modest treatment, which provides the necessities to
study the gluing problem of affine vortices in an ad hoc way. The upshot is to give a convenient
local universal family of a particular singular configuration.

2.1 Deformation of the Domain

Let 1,1 > 0 such that [ + 1 > 1. Let N;; be the moduli space of configurations of [ + [ distinct
points in H, such that [ of them are in the interior and [ of them are on the boundary. We use

Yo=Y YY1 Yp)

to denote such a configuration. Two configurations are regarded equivalent and representing
the same point in N if they are related by a translation t : H — H.

There are two other moduli spaces which we need to discuss. For k > 1, there is a moduli
space N}, of configurations of k distinct points in C, with equivalence induced from complex

translations. A representative is just denoted as
= (x1,...,2k).

For m,m > 0 with 2m + m > 2, we also have the moduli space M,, ,,, of marked disks with
m + 1 boundary markings and m interior markings. An element of M, ,,, is represented by a

configuration
2= (21, oy Zm} Z1s e e s Zny)

rm

where z; € Int H and 2; € 9H. The (m + 1)-st marked point is identified with the infinity of
H. Two configurations are equivalent, i.e., they represent the same point in M,, ,, if they are
related by a Mobius transformation of H that fixes the infinity.

Notation 2.1 Whenever we have a collection of objects a; (without underline) indexed by
i=1,...,m and a collection a; (with underline) indexed by j = 1,...,m, in many situations,

for convenience, we will denote
iems Vi=n+1l....m+m.

We fix notations for tangent spaces of these moduli spaces. For [,1 > 0 with [+ > 1, define

l l
Red ti+» t;= 0}.
i=1 j=1

It can be identified with C' x R! modulo real translations. For k > 1, define

l
ZS]‘ = O}
ji=k

It is identified with C* modulo complex translations. Then W;; can be identified with a tangent

WZJ = {tz (tl,...,tl;tl,...,tl) S C!' xR

Wy, = {3(51,...,sk)€Ck

space of NV, ; and Wy, is identified with a tangent space of Nj.
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The tangent spaces of M, ,,, cannot be uniformly described. However, fix a representative
z of a point [2] € M, one can specify a real codimension 2 linear subspace Wy, mm(z) C
C™ x R™, such that for all g € W, ,,,(2) with |g| small, z + g gives a parametrization of a
neighborhood of [z] inside M, .

We consider degenerations of configurations in A ;. The moduli space N;; can be compact-
ified by adding configurations that corresponding to cases when some points coming together or
going away from each other (in different rates), and the compactified moduli space is denoted
by Ni;. In this paper we do not need to consider compactifications of Ny or M, .

We do not consider all possible degenerations of points of N;;, but will fix a “simple”

stratum. Suppose we have a decomposition

m m m

() 1= "ki+ Y L, 1= 1, (k=>0,1;>0,1;>0), (2.1)
i=1 7

j=1 j=1
satisfying the stability condition
2m+m>2 k> 1, Vi=1,...,m; [ +1; > 1, Vi=1,...,m.
Then this decomposition, denoted by &, gives a stratum Ng C N ;. Every point of Ng is
represented by a collection of configurations
T=(T1,.. ., Tm;Y1s-- -, Ym; Z).

Here x; represents a point Nkw Yy, represents a point of Mj,lj7 and z represents a point of
Mm,nw
We fix a point [x.] € Ng and a representative @. = (Tu1,...,ZTesm;Ye1,---,Yem;2). Then

we can identify the tangent space at [x.], denoted for short by Wyes, with the product

A vector of Wy is denoted by a and for |a| small enough, denote by
T.+a (2.2)
the deformed configuration defined in the obvious sense.

2.2 Local Model for Degeneration

The moduli NV;; admits a universal curve

We do not need the full description of U;;, but only consider it near the point [z.]. Introduce
the gluing parameter € > 0. We omit the . from the notations temporarily.
For e =0, set g(a) = x +a as in (2.2). For e > 0, if 2 = (21,...,2m; 21, .-, 2,,), define
Zi

Ziei =, it=1,...,m+m. (2.4)
€
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Define a collection of [ 4+ [ points . of H where the points in the interior are

1<j<m, 1<v<li; |
(zie + Tipy, 25+ ij)lgiSm, 1<y<k;? (2.5)

the points on the boundary are

(2j.e + Y0 )1<i<m, 1<v<i, - (2.6)

More generally, if @ = (s1,...,8m,t1,...,tm,q) is a deformation of the singular curve, then

x(a) is the collection of [ + [ points, where the points in the interior and on the boundary are

1<5< 1<v<li;

Zi + q; z;+q; SIS A=V
+ Tiy + iy + Yj + i ; (2.7)

€ € 1<i<m, 1<y<k;

z:+q;

< T 4y, +tj7u) : (2.8)
€ 1<j<m, 1<v<l;

It is easy to see the following fact.

Lemma 2.2 Given [x] € Ng and a representative x, for r > 0 small enough, the map
[0,7) x Wi — Ny (where Wis C Waer is the radius v ball) defined by

(6,a) = [zc(a)]
is a homeomorphism onto an open neighborhood of [x].

Remark 2.3 Although the singular domain can have arbitrarily many components, but there

is only one gluing parameter, and, turning on e resolves all nodes at the same time.

Notice that on every marked curve (H,z.(a)), there is the standard complex structure j.

and the standard volume form ds A dt.

2.3 An Equivalent Local Model

Later when we do the pregluing construction, it is more convenient to fix the positions of the
nodal points z.; on the disk component and regard the deformation of the marked disk as
deformations of complex structures over a compact region disjoint from the nodal points and
oo. This is also the usual approach in gluing holomorphic curves in the symplectic setting when
involved with deformations of complex structures.

Let V. C M, m be an open neighborhood of the marked disk [z.]. Let g € V. be the
parameter. Then we have choose a family of representatives

(Ha zq) = (H7 Zqls--s”qmsRg 1y Zq;rn)'

Choosing V. to be sufficiently small, there exist a smooth family of diffeomorphisms ¢q : H —
H such that ¢, = Idg and satisfying the following conditions.
(a) There exists a small » > 0 such that for all g € V., the restriction

0q:Br(2q:) = H, i=1,....m+m
is the (unique) translation onto B;(z. ;).
(b) There exists a large R > 0 such that Br contains all markings and the restriction of ¢4

onto the complement Cr := H \ Bpg is always the identity.

We regard ¢q4 as a map between marked curves

vq: (H, zq) = (H, z.).
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Then ¢4 pushes forward the standard Kéhler structure (j.,ds A dt) another one, denoted by
(Jq,0qds A dt), which restricts to the standard ones in B, (z.;) and Cg.
Now we provide another universal family for the moduli Ny in this perspective. Given a

gluing parameter € > 0, let s : H — H be the rescaling z — ez and

c€ ok € __ * €
]q - 55]‘1? Uq - Seo—q'

Further, since these rescaled structures are the standard ones in a neighborhood (of radius
proportional to e~ 1) of ’: , using the same construction as before we can still have the position
of the markings as in (2.5) and (2.6). Moreover, the diffeomorphism ¢g := 574 maps the set
of markings of the form (2.7) and (2.8) to the set of markings of the form (2.5) and (2.6), and
pushes forward the standard Kéhler structure to (jg,ogds A dt).

Notation 2.4 The diffeomorphism ¢g provides global holomorphic coordinates on (H, jf])
which differ from the standard one near z.; and near oo by translations. We can denote this
global coordinate by z;. However, in most cases we still use 2 to denote this global coordinate
on H although it depends on q and e.

3 Recollections of Affine Vortices

In this section we review the basic knowledge about affine vortices, and explain how affine

vortices can degenerate through two examples.

3.1 Preliminaries

We first recall the basic knowledge of vortices. Let K be a compact Lie group, with Lie algebra
¢ and complexification G. Let (X, w) be a symplectic manifold. Assume there is a Hamiltonian

K-action on (X,w), with a moment map
e X — e

Choose once and for all an Ad-invariant metric on €, so u is viewed as ¢-valued. For a € &, let
X, € I'(TX) be the associated infinitesimal action. Our convention is that a — —AXj, is a Lie
algebra homomorphism.

We make the following fundamental assumption.

Hypothesis 1 0 € ¢ is a regular value of  and K acts freely on p~1(0).")

Let J be a K-invariant, w-compatible almost complex structure. Then gx(-,-) := w(-, J)
is a Riemannian metric. We fix a K-invariant neighborhood Ux of x~1(0) such that K acts
freely on Ux. Let Gx C TX |y, be the distribution spanned by X, and JX, for all a € .

Let L € X be an embedded K-invariant Lagrangian submanifold that is contained in
= 1(0). Then L := L/K is an embedded Lagrangian submanifold of X. We need a special type
of Riemannian metric which does not necessarily coincide with gx.

Lemma 3.1 There exists a (J, L, u)-admissible Riemannian metric hx on X, i.e.,

(a) hx is K-invariant.

(b) J is hx-isometric.

(¢) J(T'L) is orthogonal to TL w.r.t. hx.

1) Usually one imposes conditions on (X, w, i) to ensure C?-compactness of moduli spaces. The C°-compactness

property is not necessary in constructing the gluing map.
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(d) Tu=1t(0) is orthogonal to JX, w.r.t. hx, for all a € .
(e) L is totally geodesic w.r.t. the Levi—Civita connection of hx .
(f) n=1(0) is totally geodesic w.r.t. the Levi-Civita connection of hx.

Proof The idea of the proof essentially comes from the proof of [7, Lemma A.3], whose method
was also used in proving [26, Lemma A.3]. Notice that if we obtain a metric hx satisfying (b)—
(f), then the metric obtained by averaging hx over K satisfies (a)—(f). Hence we do not need
to consider K-invariance in the construction.

By [26, Lemma A.3] there exists a metric hx on X satisfying (a)-(e) (notice that the com-
pactness conditions of the symplectic quotient and L assumed in that paper are not necessary,
since the construction of hx is purely local). Consider an arbitrary metric h'y whose values at
1~ 1(0) coincide with the values of hy at x~(0) and hx (v, w) = 5 (W (v, w) + Ry (Jv, Jw)).
Then any such hx still satisfies (a)—(d) and L is totally geodesic inside x~1(0). The condition
that p~1(0) being totally geodesic w.r.t. hx is equivalent to a condition on the 1-jet of hx
at p~1(0), which is equivalent to another condition on the 1-jet of h’y at p=1(0), via the re-
lation between hx and h'y. This condition on the 1-jet of A’y can be solved at least in local
coordinates. Hence locally one can always find such metric hx.

Moreover, the conditions (a)—(f) are intrinsic and they continue to hold under convex com-
binations and under multiplications by cut-off functions 8 whose derivative in the normal direc-
tion to u~1(0) is zero. Then patching the local constructions above using a partition of unity
provides a metric satisfying the desired properties. O

Let us fix such a metric hx. Let Hx be the hx-orthogonal complement of Gx. Then
TX|vy = Hx @ Gx is a K-invariant splitting. Item (b) above implies that Hx is J-invariant;
Item (d) above implies that Hx/|,-1o) C T~ '(0). It is also easy to see that Hx/|,-1(g is the
gx-orthogonal complement of G x|,~1(py. Hence Hx/|,-1(y is independent of the choice of hx.
It defines a connection on the K-bundle p~1(0).

Let A be either C or H with a given global holomorphic coordinate z = s + it and volume
form ds A dt. We use X to denote an open subset of C or H.

Definition 3.2
(a) A smooth gauged map from ¥ to X is a smooth map v = (u,¢,¢¥) : & — X x £ x L.
We often identify the triple (u, ¢, 1) with a pair (u,a) where a = ¢ds+pdt € Q (X, ), and still
abbreviate the pair by v.
(b) Given a smooth gauged map v = (u, $,v), we denote
dgv = ds @ vy + dt ® vy, where vy = Osu + Xy(u), vy = Ou + Xy (u).

(¢) Let o : ¥ — (0,+00) be a smooth function. We denote by M(X,0; X, L) the set of
smooth solutions v = (u, ¢,1) to the equation

vs+Ju, =0, Osp =0+ [, ¥+ op(u) =0, w(d%)C L. (3.1)

This is the symplectic vortex equation and solutions are called vortices. We always require the
boundedness condition on vortices, namely, the image uw(X) has compact closure in X and

the energy of v, defined as follows, is finite:

1
E(v) =, [lvsl72 + llvellZe + 1059 = 06 + [, 972 + | (w) 1 72)-
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Here the L?-norm is defined with respect to the conformal metric on ¥ corresponding to the
volume form ods A dt (and any K-invariant metric on X, for example hx or gx). When
0% = (), we abbreviate the set by M(Z, o; X); when o is understood from the context, abbreviate
as M(3; X, L) or M(Z; X).

(d) An affine vortex over C (usually called a C-vortex) is an element of M(C;X), i.e.,
smooth solutions v = (u, p,1) : C — X x £ X € to the affine vortex equation

Isu + Xp(u) + J(Opu+ Xyp(u) =0, 95t — 0o+ (¢, ¢] + p(u) = 0. (3.2)

An H -vortex in (X, L) (H -vortex for short) is an element of M(H; X, L), i.e., smooth solutions
v = (u,¢,) satisfying the same equation over H with the boundary condition w(OH) C L.
(Later we will consider a perturbed equation.)
Remark 3.3 (a) Equation (3.1) is a special case of the symplectic vortex equation introduced
by Mundet [14, 15] and Cieliebak—Gaio—Salamon [3], which can be written in a coordinate-free
way over a Riemann surface X, where the variables are connections of a K-bundle over %
and sections of the associated fibre bundle. Here we only consider affine vortices and skip the
coordinate-free treatment.

(b) Vortices with Lagrangian boundary conditions are also studied in [34] for K = S!, and
in [6] for different types of Lagrangians (not K-invariant).

Equation (3.1) has a gauge symmetry. If v = (u, ¢, ) is an A-vortex and g: A — K is a
gauge transformation, then

g v = (g-u,Adg(9) — (9s9)g", Ady(v)) — (Deg)g™")
is also an A-vortex and we say the two affine vortices are gauge equivalent 2). Let M(Q,0;X,L)
be the quotient of M(Q, 0; X, L) by gauge equivalence.

There is also a translation symmetry of (3.2). Suppose v = (u, ¢, ) is an A-vortex. There
is a group of translations isomorphic to A, such that for any t € A, t-v := (uot,pot,pot)is
also an A-vortex. We regard t - v being equivalent to v.

3.2 Linear Theory of Affine Vortices
In previous works on affine vortices, for example, [25, 26], to define weighted Sobolev norms on
affine spaces, we choose parameters p and ¢ such that

2
D> 2, 1—p<5<1. (3.3)

In this paper, it will be useful and notationally convenient to choose more special values. We
choose the following values of (p, d) which satisfy (3.3):
4
2<p<d, d=0p:=2— . (3.4)
p

3.2.1 Banach Manifolds

For A being either C or H, choose a smooth weight function pa : A — [1,+00) such that
outside the unit disk, pa(z) = |z|. For an open subset U C A and a function f : U — R, define

L k
|f||mU):[ /U FEPIpa@I 4 dsdt|”, 1 lwenw == S IV 2o,

=0

2) The notation indicates that the group of gauge transformations acts on the left
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This is the weighted norm W*P% for §, given by (3.4).
Consider a smooth affine vortex v = (u, ¢, 9). Following the analytic set-up of [39] and [25],
we introduce the following norm on sections & = (£,7,¢) € W'll’p(U, W TX ®tDt) by

oc
1€l g2 = €l + IVl zo + lldpe - Ell o + g - TEN 7o + Il 2o + < - (3-5)

Here the symbol “m” stands for “mixed”. Notice that this norm is gauge invariant. Let

WEP(U W' TX @t @), C WP(U,w'TX @t t)

loc c

be the subspace of sections (£,7, () satisfying £|oy C TL and |sy = 0. Let
B:=B, CWP(Aw'TX ®tat)L

be the subspace of sections whose || - ||z1.,-norm are finite. It was proved in [39] and [25] that
every B is a Banach space.

The norm (3.5) deserves a more geometric presentation in a suitable gauge. Denote
Ax = {a € t| exp(27a) = I1dk }.

When A = C, essentially by [9, Proposition 11.1], there exist A € Ax and z € p~1(0) such
that, via a suitable smooth gauge transformation,

lim eMu(rel?) = .

00
When A = H, by [26, Theorem 2.8], there exists x € L such that via a suitable smooth gauge
transformation,

TILIEO u(z) = x.

The difference between C-vortices and H-vortices in the asymptotic behavior is that at infinity,
H has trivial topology but not C. The element A € Ak is called the holonomy of v at infinity.
To unify the notations, we say the holonomy of an affine vortex over H at infinity is A = 0.

We have a refined statement on the asymptotic behavior of the affine vortices.

Lemma 3.4 Let v = (u,a) be a smooth affine vortex over A. Assume § € (1 — 127, 1). By

applying a suitable gauge transformation of class VVli’Cp,

the following condition holds.

o There exist x € X, A € A (which is zero if A = H) and £ € W2P(Cr, T, X) whose limit

loc
A0 . (

at oo is zero, such that if we define (i,a) = e u,a) over Cr, the complement of the

radius R open disk centered at the origin, then i|c,, = exp, & and
lallwrescny + V€l Lrs(ony + (@) - Ellposcny + 1dp(@) - TE|| Los(cp)y < 0

Proof Tt is essentially proved in [25]. Indeed [25, Lemma 6.1] implies that after a gauge

transformation, we have
lallwr.e.scpy + IVEIlWwps(cr)y < 00 (3.6)
On the other hand, when |£| is small, du(z) - € is roughly comparable to |u(u)| whose LP?-

bound follows from the energy decay property of affine vortices. Lastly we can do a further
gauge transformation to make dy(z) - JE |cp = 0 (similar gauge transformation is used in the
proof of [25, Lemma 6.2]). The last gauge transformation is very small and does not alter the

finiteness of (3.6). In particular we obtain the desired finiteness. O



Gluing Affine Vortices 261

The asymptotic behaviors of v implies that for R large, u(Cr) C Ux. Then for every
€= (£,1,¢) € By, we can decompose ¢ into the Hy component ¢# and the Gx component £€.

Lemma 3.5 Suppose v is an affine vortez (of class VVl})Cp) satisfying the condition of Lemma
3.4 for some 6 > 6, and § = (§,1,() € B=B,. Then
(a) There exists £ (c0) € Hx . such that

lim MM (2) = €7(c0),  lim €9(2) = 0.

(b) The correspondence & — £ (00) is bounded w.r.t. the norm || - 10
(c) If there are &, € B, v = 1,2 such that v (c0) = 74 (c0), then

Ml _ Ml ¢ [P (O u*Hy).

In other words, after subtracting the limit at infinity, the Hx-component of e*¢ is of class
WLPde w.rt. the cylindrical metric, where 6. = §, — 1+ 12) > 0.

Proof The existence of limits of e’¢H at co follows from the Hardy-type inequality (see [39,

Appendix A.4]), which says that if f € VVlif(A) and Vf € LP, then f has a limit f(oco) at oo
and f — f(co) € LP°~L. Moreover, there is an equivalence of norms

[fllzee + IV fllzes = [f(00)[ + If = F(o)l[Los—1 + IV fllLrs- (3.7)

The limit of ¢ at infinity vanishes by the choice of weight and Sobolev embedding. O

Definition 3.6 Let s, > 0 be the Sobolev constants making the following inequalities hold.
(a) Let D be the unit disk or half disk. Then for any f € WYP(D), we have

”f”co,l—f, < spr”Wl’p(D)'
(b) For any f € f/,ll’p(A), we have (see (3.7) for 6 = dp)
If = F() a1 < spll fll e

Using the exponential map exp of hyx, one identifies € = (£,7,() € B whose norm is small
with a nearby object

v = (v, ¢, ) == exp, € == (exp, & ¢ + 1,9 + (). (3.8)

Notice since L is totally geodesic w.r.t. hx, v still satisfies the boundary condition when
A = H. Using (3.8) we identify a small ball centered at the origin of B with a Banach manifold
of gauged maps near v. By abuse of notation, we still use B to denote this Banach manifold.

Then Lemma 3.5 implies that there is a smooth evaluation map

ev:B—>X,ifA=C; ev:B—L,if A=H. (3.9)
3.2.2 Banach Vector Bundles
Define a vector bundle & — B whose fibre over v’ = (u/, ¢',¢)’) is

Elo = LP(A,W'TX ®EDE).
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The vortex equation, plus a gauge fixing condition (which is called the Coulomb gauge) relative

to v defines a section
05t + Xy () + J(Opu” + Xy (u'))
FiB= & FO)=1| 0+ o0 +0C+ [, +dp-JE |- (3.10)
05" = ¢’ + (¢, 4] + p(u')
For convenience, we placed the gauge fixing condition in the second entry. It is not hard to
check that F(v’) indeed lies in the fibre of £, i.e., having the required regularity at infinity.
Let V be the Levi—Civita connection of the chosen K-invariant Riemannian metric hx.
Using V one can trivialize £ near v. So we view £ as a Banach space identified with its fibre
over v. A general vector of £ is denoted by v = (v, k,¢). W.r.t. this trivialization one has the
linearized operator of F at v, denoted by D,, : B — £, which reads
D)+ X, + JX;
Dy(§,1,6) = | Osm+ &, ] + 0:C + [, ¢ + du(u) - J€
Here the first entry is the linearization of the Cauchy—Riemann operator and
D(§) = Vs + Ve Xy + (Ve )(Opu+ Xy) + T (Vi€ + Vedy).

It was proved in [39] (for A = C) and [25] (for A = H) that D is Fredholm.
We introduce a notation which will be used frequently. The connection form a = ¢ds + ¥dt
induces a deformed covariant derivative on v*TX @ t @ & for any section & = (§,7,(), define

Vf£ = (vég + Ve, Osn + [¢a 77]a 0sC + [st C])a

Vi€ = (Vi€ + VeXy, 0 + [, 1], 0:C + [, ().
3.3 Local Model of the Moduli Space of Affine Vortices

(3.11)

The topology of the moduli space M(A;X, L) is defined by uniform convergence with all
derivatives over compact subsets of the domain, up to gauge transformation. This topology is
called the compact convergence topology, abbreviated as c.c.t.. We say that a sequence v,
of affine vortices converge in c.c.t. to an affine vortex v, if v,, converges to v, uniformly with
all derivatives over any compact subset of the domain A. A sequence of points [v,] converge
to [vso] if there is a sequence of smooth gauge transformations g, : A — K such that g, - v,
converge in c.c.t. t0 V.-

On the other hand, for the sake of Fredholm theory, on the linear level we are using the
Banach space B, which requires certain regularity at co. To show that the linear Fredholm
theory really describes the deformation of the moduli space M(A; X, L), a necessary step is to
prove the regularity results. Namely, if [v'] is sufficiently close to [v] in the moduli space, then
up to gauge transformations v’ is inside the Banach manifold B,,. It implies that if the linearized
operator D, is surjective, then its kernel provides a local manifold chart of M(A; X, L) around
the point [v]. This is indeed a nontrivial problem, as the decaying property of affine vortices
at oo is very complicated.

In [25], together with Venugopalan, the author constructed local models of affine vortices

around a given affine vortex v under the assumption that the linearized operator Dy, : B, — &,
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is surjective, based on Ziltener’s proof of the Fredholmness of the linear operator®. Let us
recall the precise statement of this result.

Theorem 3.7 ([25]) Let v = (u, $,v) be an affine vortex over A. Suppose Dy, : By — &y is
surjective. Then there is a homeomorphism from a neighborhood of the origin of ker D,, onto a
neighborhood of [v] in the moduli space M(A; X, L). In particular, if v’ is another affine vortex
representing a point of M(A; X, L) which is sufficiently close to [v], then there exists a gauge
transformation of class Wlicp which transforms v' to an affine vortex (which is still denoted by
v') such that we can write v' = exp, § with & = (§,1,() € By and |[€|[z1.» being sufficiently
small. Moreover, we may require that v’ is in Coulomb gauge with respect to v, i.e.,

Isn + [¢,1] + O + [, ¢] + dp(u) - JE = 0.

The core of the proof of Theorem 3.7 is to deal with behaviors of affine vortices at infinity.
Hence this result can certainly be generalized to the situation where the equation is perturbed
by a compactly supported term. We will see and use such a generalization in later sections.
3.4 Examples of Degenerations

A sequence of affine vortices may degenerate in the limit to a stable affine vortex, which has
multiple components. While the precise definition of sequential convergence in the perturbed
case will be given in Definition 5.5, here we provide two examples on extremal cases of the

degeneration for A = C, from which one can see the intuitive picture.
3.4.1 Example 1

Consider a sequence of monic polynomials of degree d > 2
filz) = (2 = 21) - (2 = ).
By Taubes’ theorem (see [10, 19]), there are unique solutions h; : C — R to the equation
Ah 1
fi)P=1)=0

_ C 4 (e2hi
with an appropriate asymptotic constraint on h;. Equivalently, (e® f;, —0;h;, Osh;) is an affine

2w 2

vortex with target C acted by K = U(1), and his correspondence gives a homeomorphism
M(C;C) ~ | | sym?C.
d>0
Let us now moving the zeroes. Suppose there is a partition {1,...,d} = I U--- U I,
by nonempty subsets, such that, as i — oo, |2 — 2°| is bounded (resp. unbounded) when
a, B belong to the same (resp. different) subsets of this partition. Then up to choosing a
subsequence, one can show that the corresponding sequence of affine vortices will degenerate

to a stable affine vortex having exactly s affine vortex components.
3.4.2 Example 2

Consider abelian vortices of higher rank. More precisely, consider a sequence f; , each of which

is an N-tuple of polynomials
fi= (o ), max{degf?}=d > 1.

3) See [39, Theorem 4]. Indeed Ziltener assumed that the symplectic quotient X has positive dimension, while
in [25] we removed this assumption. See [25, Section 4].
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Then by the main theorem of [35] (see also [24]), there exists a unique solution h; : C — R to
the equation

5 +2<e ;m (2)>P—=1) =o.

So such an N-tuple of polynomials gives an affine vortex with target CV acted by K = U(1).
For simplicity restrict to the special case that N =2, d =1 and

fil(z) =2 Ny, ff(z) =2z; mn; — 0.

For the corresponding sequence of affine vortices in C?, one can argue that in the limit, there
is no affine vortex component. Instead, after rescaling by the factor n;, the sequence converges
to the holomorphic sphere z — [z — 1, 2] in CP*'.

4 Holomorphic Disks Revisited

As we have seen from the last example, a sequence of affine vortices can converge to a holomor-
phic curve in X. The latter is an object purely in nonlinear sigma model, where the gauge field
completely depends on the matter field. This is actually a phenomenon similar to the case of
Morse theory for Lagrange multipliers considered in [17]. For the purpose of gluing, one needs
to better understand holomorphic curves in the quotient not only as maps into X, but also as

certain type of gauged maps into X.

4.1 Holomorphic Curves in the Quotient

Compare to the notion of gauged maps defined in Definition 3.2, a general gauged map over
a Riemann surface X is a triple (P, A,u), where P — X is a K-bundle, A € A(P) and u €
I'(P xg X). If P is trivialized and ¥ has coordinate z = s+ ét, we can write A = d+ ¢ds+1dt.
In this case it coincides with our previous definition.

One can also use gauged maps to represent holomorphic curves in the quotient X. For
simplicity consider the case that X is a contractible subset of H or C, equipped with a complex
structure js and holomorphic coordinate z = s +it. Suppose @ : ¥ — X is a C'-map satisfying
the equation

st + JO i =0, wdx)C L.

Here J is the induced almost complex structure on X. Recall that on the K-bundle p=1(0) —
X, there is a connection given by the distribution Hx]| u-1(0) (which we call the canonical
connection). Then one can pull back the K-bundle p~1(0) — X as well as the canonical
connection, giving a bundle P — ¥ and a connection A € A(P). @ also lifts to a section of
P x g X. Since X is contractible, one can trivialize P so that A is written as A = d+ ¢ds + dt
and u is a genuine map u : X — pu~%(0). This gives us a gauged map v = (u, ¢,v). Moreover,

if @ is Jg-holomorphic, then v satisfies the equation
Osu+ Xy + J(Ou+ Xyp) =0, p(u)=0, w0%)CL. (4.1)

Different trivializations of the pull-back bundle P — ¥ give gauge equivalent solutions to
(4.1). On the other hand, each gauge equivalence class of solutions of (4.1) projects down to a

J-holomorphic map into X.
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We would like to remark that if we view both u and (¢, 1) as independent variables of (4.1),
then it is not an elliptic equation. The correct perspective is to regard ¢ and v as components
of the pullback connection, so only u is the independent variable of (4.1). Another perspective
is that ¢ and v are the unique functions satisfying

dp(u) - J(0su + Xy) = du(u) - J(Opu + Xy) = 0.
Then the G x-component of (4.1) is automatically satisfied and (4.1) is equivalent to
Pr(Osu+ Xy + J(Opu+ Xy)) =0, p(u) =0, u(0%)C L. (4.2)

where Py : Hx & Gx — Hx is the projection onto the first factor.

From now on we take the gauged map viewpoint of holomorphic curves in X. In particular,
if 7 is a holomorphic disk in X with boundary in L, then we view it as a map @ : (H,0H) —
(X, L) with removable singularity at infinity, so it can be lifted to a gauge equivalence class of
solutions to (4.1) with ¥ = H.

4.2 Weighted Sobolev Spaces

Since holomorphic disks we are interested in are limits of affine vortices near oo, we prefer to

work with the Euclidean coordinate of H. We introduce the following weighted Sobolev norms.

Definition 4.1 Choose a function ps : H — [1,400) such that ps equals |z| outside a
compact set. ForU C ¥ and f,g:U — R define

1 llz200) = Il + [ | VP st

Here the subscript h stands for “horizontal”, indicating the section take value in Hx .

By the Hardy-type inequality (see (3.7)), there is a natural equivalence of Banach spaces
- 7
LY ~ Wi?(D).

We can define a similar space E}L’p(u;OHX) of sections of uX Hx. The norm is defined as

€l =€l + | [ 1Puve~etplom (P~ tasar] (43)

Here V%= is the deformed covariant derivative defined in (3.11). So Py oV®> o Py is a covariant

derivative on u’ Hx. There is a canonical identification
Tt Uso Hx — a5 TX.
Notice that hy induces a Riemannian metric on X, which induces a connection V on u* TX.

Lemma 4.2 One has 7, o PEV% = Vo r,. Hence 7, induces a natural isometry between
LyP(ui Hy) and L))" (@, TX) where the Sobolev norm of the latter is defined using V.

Therefore, we have an equivalence of Banach spaces
LyP(H,ui Hyx) ~ W'Y (D, @ TX). (4.4)

H
<}

Consider a small ball of E}L’p (ur Hx) centered at the origin, denoted by B2, and identify
it via the exponential map of the metric hx provided by Lemma 3.1 with a space of maps from

¥ to = 1(0). The property of hx implies that any map obtained in this way has image lying
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in 4 ~1(0) and boundary values lying in L. Any u/_ € BZ pulls back the canonical connection
on p~1(0) to a gauge field ¢/ ds + 9. dt of class L

loc®

A corollary of (4.4) is the following.
Corollary 4.3 There are smooth evaluation maps
v BE L evi :BY 5 X, 1<i<m, e :BE 5L, 1<j<m. (4.5)

Define a Banach space bundle £ — B whose fibre over u’_ is the space of sections of
(ul,)*Hx of class iﬁ. Using the parallel transport of Hy w.r.t. the connection Py o V o Py,
one can trivialize this bundle £ so each fibre is identified with the fibre at the central element

Uso. Define a section FI : B — £ a4
Faoluly) = FL(EL) = Pr(Osuly + Xor + J(Dpulg + Xy ). (4.6)
Then Lemma 4.2 implies that FZ corresponds to the standard Cauchy-Riemann equation.

4.3 An Augmentation

Now we would like to include deformation of u, in all directions in the space X. Recall that
one has the splitting
UZOTX = UZOHX D ’U,ZOGX

We also want to include deformations of the gauge field. Denote
Gx=Gxotat

We would like to define another weighted Sobolev norms for sections of u’ Gx.

Definition 4.4 Let U C X be an open subset.
(a) For functions f : U — R, define

k k 1
£l 50y =D IV Fllze =D UU IV f1P[poo (2)]P~ *dsdt |
1=0 =0

(b) Let E’;’p(U, ui Gx) (resp. i’g”’(U, ui Gx)) be the space of section of u’ Gx (resp.
ut Gx) of class L’;’p w.r.t. the connection Pg o V%< o Pg. We add a subscript “r” to the
notations to indicate the boundary condition, i.e., the (-component vanishes on the boundary.

(c) For any &x = (65,65, Moo: o) € Wiold (U, ul Hx @€ DY), define

€oc iz = €K Nz Lr + €SIz - (4.7)

The norm (4.7) is defined using the diagonal part of the connection V*< w.r.t. the splitting
Hx & Gx. The following lemma says that it is equivalent to use V%,

Lemma 4.5 The norm on the direct sum
Boo = LyP(S,ui Hx ) & LLP(S,ul Gx )1 (4.8)
is equivalent to the norm defined by
€2 + 16511 zp + V=Ll 70 + V= €S I 2 (4.9)

Namely, the norms defined by using V and by using the diagonal part of V are equivalent.
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Proof The direct sum norm on B is no greater than the norm (4.9). It remains to show that
the norm (4.9) (actually only the last two parts) can be controlled by the direct sum norm.
The difference between these two norms comes from the fact that the connection V= does

not necessarily preserve the splitting Hx & Gx. w.r.t. this splitting, we can write

vH FE
E" VG

v:

where E’, E” are smooth and K-invariant. Then we have

Virel - Puvinel =By (€l), Vinel - PVl =E,_(€5),

s/t s Voo,s/t s/t Voo,s/t

where the notation indicates that E’ and E” are linear in v s and v . By straightforward

calculation, we have

”voo,s/tHf,ga ||'Uoo,s/t||]:£ < +00. (4.10)
Moreover, we have Sobolev embedding type estimate
G G G
el S NEdlzrr < NELNz2e,  N€SNLe S NESN 72w S €720 (4.11)

The former follows from the definition of INJ,ll’p and the latter follows from the fact that PV %
is a connection on u*Gx that preserves the metric (see [12, Remark 3.5.1]). Hence we have

IVe=elllze = 1PV =Ll 1o + 1 B"EXN 0 S NELN 710 + 1L N L davocll 2o S €SN 22,
V=€l e = 1PV =€l ze + 1 E'€C 2y S 16N 21 + €S o ldar Vool £ S IES N £2-

4.4 The Linear Operators

Now we consider the deformation theory of v,. As discussed in Subsection 4.1, we should regard
Uso as the independent variable and as, is the pull-back of the connection on p~'(0) — X by
Uso. Then modulo gauge transformation, the space infinitesimal deformations of u., can be
identified with L,* (2, u Hx) .

We use the connection VH := PH o Vo PH to trivialize £Z near u,. Let the linearization
of FX at us, be

dFH (uso) : LyP (S, ul Hyx ) — LP(S,u Hx) = EX |, (4.12)
On the other hand, u., is also a solution to
OaoUoo 1= Oslioo + Xy (Uoo) + J (Ot + Xy, (Uso))-

We use the Levi—Civita connection V of hx to formally define a linearization, which reads

Do (&) = Vsl +Ve Xy 4+ (Ved)(Optoo + Xy )+ I (Vil+Ve Xy ), Vo € T(ulTX). (4.13)
Using the decomposition Hx @ G x, one can write D, in the block matrix form
DI gl

Dy = Ez DZGZ . (4.14)

Lemma 4.6 DX = dFE where FX is defined by (4.6).
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Proof Take £ € ul Hx and define uS, = exp,__e£Z. Let the pullback connection form be
¢S.ds + S dt. Then we have

Let P. be the parallel transport w.r.t. V and P be the parallel transport w.r.t. V. When
restrict to the distribution Hy, one can see that P# = Py o P.. Then by (4.15), one has

d
H cHY _

PH(Ouus, + Xpe + J(Ous, + X))
e=0

d
de e=0

— PuDoc(€2]) + Pu(Xuss, +JXuss) = PuDoc(¢10)

Later we will need the following fact.
Lemma 4.7 DS, EL, E2 define bounded operators
l)OGo : E;’p(u;Gx)L — fjp(u;on);

EL : LYP(ui Gx)p — LP(u' Hx), E2:LyP(ui Hy)r — LP(u Gx).

g 00
Proof Consider

d

e P (9suge + Xy (uS) + J(Opus, + Xy (uSy))) = VE<Eo + IVE=Eo + (Ve J) Voot

e=0

If £ is a section of u’ Hx, then we have

IDS (o)l < Méssllzr + I1Pa(Ver Nvssillzn S Ioollzar + €scllza lvooll zo S ool z1-

Therefore DS is a bounded operator. On the other hand, it is easy to see that E{® and ES°

are linear in ds ® v s + dt ® Voo ,s. Therefore, we have the following estimates. First,

B (D50 < 1 | [ Mot o7 asct] "
P

1B (€70 < 1€ ]I {/ daxuoo(Z)”[poo(Z)]Q”“dsdt] §
U

where the integrals are finite due to the asymptotic property of v. O

4.5 Deformations of Disks

Now we fix a holomorpic disk % : D — X and consider a nearby one which can be written as

—/ _ ey
Uso = €XPg__Eco-

If we lift tio to a map uo : D — p~1(0), then a convenient lift of u/ is

/ H

Uy = €XPy, _ Eoo

where ¢ € I'(D,u’ Hx) is the horizontal lift of £, over the disk we have elliptic estimate

and hence there are estimates

e e Dy < cull& Iwa(D)-
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Now consider the associated gauge fields a.,al, € QY(D, ). It is easy to see that
laly = acollwrr oy S IV L lwrr()-

We would like to write this estimate in terms of norms || - ||i§,p(H) and || - ||I~J’11,p(H).
Since the Euclidean metric on compact regions of H is comparable to the standard metric on
the corresponding region of D, the only possible divergence may happen near co. Let Cr C H

be the complement of a large ball Br centered at the origin. Then we have

o — a1 — [ [ - amp[pm@)]%—%sdt] ”
Cr

Q

1
[ sl o asat] e oo
R

Here | - |p means the norm on tensors with respect to the metric on D. On the other hand,
over C'g, since the gauge field a, is bounded with respect to the Euclidean metric, one has

[V (ale = aco)| & Jaly = aco| + [V(ate — as)| & |2 "2Jal, — aco| + |2] 7 V(al, — acc)Ip.
It follows that ||[V*=(al, — @)l 7, is also bounded by |lal, — aco|/z1.»(p). We summarize this
estimate as follows.

Lemma 4.8 Let us : H — p~1(0) project down to a holomorphic disk in X and u’, =
exp,_ &8 be another holomorphic disk where £ € T(H ui Hx). Let ass and al, be the gauge
fields on H by pulling back the canonical connection via us, and ul_ respectively. Then there

is a constant ¢ > 0 such that if the two holomorphic disks are sufficiently close, one has
la’e = acellzrr + €211 710 < cllELNwrr D).

5 Statement of the Gluing Theorem

In this section we state the main theorem of this paper, under a precise version of the transver-
sality assumption.

5.1 Perturbation

Let us fix a representative of a point [z.] € N of type & denoted by

Lo = (Tatye s Loy Yo 1y s Yo, Zo)-

Recall that we have a universal family for the moduli N;;. Consider a small neighborhood Q¢
which by Lemma 2.2 is identified with [0, €) x W, and the origin is identified with [x.]. The
restriction of the universal curve to Qf is denoted by U¢. There is a closed subset USsing  14¢

corresponding to the marked points and nodal points of the fibres.

Definition 5.1 A perturbation datum near [x.] consists of a finite dimensional vector space

Wpyer and for some small €y, a (not necessarily linear) smooth map
L Woer = De((UP \ULSTE) x X, TX). (5.1)

Here T'. means smooth sections whose fibrewise supports are compact. Moreover we require that

L satisfies the following conditions.
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' - ' - ’ ’ er; -0 . St ) ’
(a) ¢ is K-equivariant, namely, for € € Wyey, z € UL \ U8, g€ K and x € X
e, z,gz) = git(e, z,x) € Ty X.

(b) v is supported in an open neighborhood of ;1~1(0) where we can decompose TX as the
direct sum of Hx and Gx. Moreover, when restricted to disk components (i.e., the root compo-
nent of the configurations which are supposed to be mapped into X), the values of v are contained

iTLHx.

Notation Given a perturbation data ¢, suppose u is a smooth or continuous map u from
the fibre of US — QF over . (a), and e € Wpe,. Then they induce a section of w*TX (the
inhomogeneous term) denoted by

e, x.(a),u).

In many situations we combine e and a and denote w = (e, a). So the induced inhomogeneous
term is also denoted by te(w,u). Moreover, when ¢ = 0, u has multiple components. For
each component u; or u,, denote the restriction to that component by c(e,x. + a,u;) or
e, T+ a,us).
Remark 5.2 In the setting of [33], where we will use the stabilizing divisor technique of
Cieliebak—Mohnke [4], we consider almost complex structures J, that depend on the point z on
the universal curve over N ;. Then the difference of J, from the fixed almost complex structure
is a perturbation data ¢ satisfying the above definition.

On the other hand, in the Kuranishi setting, we can choose perturbation for each domain

component independently. In that case Wy, is the direct sum of different summands.

5.2 Stable Affine Vortices

We only consider a “partial” compactification of the moduli space of perturbed H-vortices over

a smooth domain.

Definition 5.3 A stable H-vortex of type & consists of the following objects

(a) A representative € = (X1,...,Tm; Y1, " ,Ym; 2) representing a point [x] € Q N Ny,
which can be written as * = x. + a for certain small deformation parameter a € Wyes.

(b) An element e € Wie,.

(¢) A collection of gauged maps v = (Voo, U1, .., Uy Uy, ..., 0,,) where vs and vy,...,v

? m m

are defined on H with boundaries lie in L and v1,...,v,, are defined on C.

They satisfy the following conditions. (Here we use the alternate local model introduced in
Subsection 2.3, so we regard z as the same as z. but on H equipped with a different complex
structure jq and different holomorphic coordinate zq.)

(a) (Perturbed Equation) v. = (tso, Poo, Woo) Satisfies

Ostioo + Xy, + J(Ortioo + Xy ) + (e, @, us) =0, plus) =0, uxx(0H) C L. (5.2)
Fori=1,...,m+m, v; = (u;, ¢;, ;) satisfies
8Sui+2\,’¢i+J(8tui+X¢i)+L(e, w,ui) =0, 8swi_8t¢i+[¢i7 wz]—l—u(ul) =0, UK@H) c L. (53)

(b) (Matching condition) v;(00) = tiao(2i) € X fori=1,...,m and v,;(00) = U (z;) €

L forj=1,...,m. Here i, is the map to X induced from vs.
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Remark 5.4 There are two reasons why we do not consider the case of having unstable
components. If there are unstable components one just adds extra marked points to stabilize,
which does not make an essential difference. On the other hand, in the case of using stabilizing
divisors and domain dependent almost complex structures (which is the approach of [33]), there

cannot be unstable components in a stable object.

Let /\;li’ (H; X, L) be the set of stable H-vortices of type & as defined above. The corre-
sponding objects on smooth domains are defined as follows. Let ./\/lfol (H; X, L) consist of triples
(e,x.(a),v) where e € Wyer, € € (0,6, @ € Wi and v = (u, ¢, 7)) is a gauged map from H
to X, which satisfies the perturbed equation:

Ostu + Xy + J(Ou + Xy) + te(e,a,u) =0, st — 0+ [, ¢] + u(u) =0, w(0OH) C L.

Definition 5.5 Let (e, ®. ., (an),vn), n=1,2,... be a sequence of elements in Y le"’l(H;X,
L) and (e,z. + a,v) be an element of /\;l;f(H;X, L) where v has components Voo, V1, ...,
U, V1, - .., Um, as described in Definition 5.3. We say that (en,@. ., (an),vy) converges to
(e, z.(a),v) if after removing finitely many terms in this sequence, the following conditions are
satisfied.

(a) €, converges to 0, a,, converges to a and e, converges to e.

(b) Fori=1,...,m+ m, define the translation

tin(z) =2— inl

Then the sequence of gauged maps vy, o t; ., converges in c.c.t. on C or H to v;.

(c) Define pn(2) = €nz. Then u, o @t converges uniformly on compact subsets of H \
{Z1, - s Zmy 21 -+, 2 | 10 Uso (we do not require the convergence of gauge fields).

(d) There is no energy loss, i.e.,

m m

lim E(v,) = Z E(v;) + Z E(v;) + E(voo).-

By the K-equivariance of the perturbation ¢, one can define an equivalence relation among
perturbed stable affine vortices using gauge transformations. We omit the detailed definition.
For any € € (0, €], let Mj,(H;X, L) (resp. Mg(H;X, L)) be the set of gauge equivalence
classes in ./\;lle)l(H;X,L) (resp. ./\;l;(H;X, L)). Define

le,l(H;XaL) = le,l(H7XaL)|—|M;(H7XaL)

where the former component is called the “top stratum” and the latter called the “lower stra-
tum”. Definition 5.5 plus the obvious topology inside the lower stratum induces a topology on

3 ,(H; X, L), which can be proved to be Hausdorff. The main theorem of this paper is, under
certain transversality assumption, one can give a chart of (topological) manifold with boundary
around a central object in Mg (H; X, L). To state the main theorem in precise language, we

first need to state the transversality assumption.

Remark 5.6 When constructing the local chart, especially when proving the local surjectivity
of the gluing map, one has to prove the notion of convergence given by Definition 5.5 (which
is weaker) implies the stronger convergence in terms of Banach space norms. The fact that

weaker convergence implies stronger convergence will be proved later in this paper.
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5.3 Transversality and the Gluing Map
We fix a central singular object (e.,x.,v.) in which we assume the underlying curve [x.] is the
central one we have fixed. Let v. have components v. o, v 1, ..., Ve mitm- Let w. = (e.,0) €
W = Wper X Wyer which parametrizes the perturbation term. Let Z.; € X (resp. Z.,; € E) be
the limit of v.; (resp. v. ;) at infinity.

Recall the set-up of Subsection 3.2. For each affine vortex component v. ;, there is a Banach
manifold B; containing v. ;, a Banach vector bundle & — B;, and a smooth Fredholm section
The perturbation ¢ given by (5.1) restricts to the i-th component to a smooth map

LiZWXBi%Ei.

Define
]:_i W x Bl — 51

to be the sum of F; and ¢;. Then (5.3) implies that F;(w.,v.;) = 0. We have a similar section
associated to the oo component
F.wxBl 5 el
such that FX (w.,v. ) = 0. Let the linearizations of F; and F be
Di:-WaB —&, DI -waeBl g

respectively, where we abuse the notations by identifying the Banach manifolds with tangent

spaces. There are also smooth evaluation maps

evi:Bi =X, i=1,...,m; evj:Bj%Ij, j=1...,m,
such that ev;(v;) = Z.; for all 4 = 1,...,m + m. There are also smooth evaluation maps
ev;:BgﬁX, i=1,...,m; evf;O:BfO%E, j=1....m
such that evl (u. ) =Z.; fori =1,....,m+m.

Hypothesis 2

(a) For i = 1,...,m+ m, the linearization of F; at (w., v. ;), denoted by D WaB; — &,
is surjective. In short, each affine vortex plus the perturbation term is regular.

(b) The linearization of FX at (w.,u. ), denoted by DX : W x B2 — £H s surjective.

In short, the holomorphic disk in X plus the perturbation term is regular in the usual sense.
(¢) The map

m+m m m
ker(DX) @ ] ker(D;) » wmtmt o [[(7:,X)* ® [[(T%,L)? (5.4)
i=1 i=1 j=1

defined by

((h'OOa goli)a (hla 51)7 ey (hm-‘rma €7n+7n))
= ((Roo, b1y - ), (devi (&), devig (€5)) 1<icm, (dev;(€5), devi (61))1<j<m)



Gluing Affine Vortices 273

is transverse to the diagonal
m m

AWy o [[ AT, X) @ [[ AT

Te,j

L). (5.5)
i=1 j=1

Now we state the main theorem of this paper, which is the precise version of Theorem 1.1.

Theorem 5.7 Under Hypothesis 2, there exist €1 € (0,¢€0), a neighborhood Ug C Mg (H; X,

L) of [w.,v.], and a continuous map
Glue : Ug x [0,e1) = M5(H; X, L)

which is a homeomorphism onto an open neighborhood of [w.,v.] inside the target. Moreover,
Glue([w, v],0) = [w, v] for all [w,v] € Us,.

Remark 5.8 Theorem 5.7 can be certainly extended and generalized to other situations,
including the unbordered case and cases for more complicated strata, or in the case where
vortices are combined with other Fredholm problems (for example, in [33] we will consider flow

lines of certain Morse function in the setting of “treed disks”).

6 Rescaling Holomorphic Disks

In Definition 5.5 we see that the component v. o is the limit after a large rescaling. When
we glue, we need to rescale v. ., back by the gluing parameter e. The main purpose of this
section is then, to construct a right inverse along the singular object where the disk component
is rescaled by €, and to show however the norm of the right inverse is uniformly bounded
by a constant independent of e. Obviously this also requires a careful choice of a system of
e-dependent weighted Sobolev norms.

Since in this section we only consider the central object (e.,.,v.), we omit the “.” from
the notations.

6.1 Rescaling of the Disk and Weighted Sobolev Norms

Let s. : H — H be the rescaling map z — ez. Then define a gauged map veo,c = (Uoo,e, Poo,es
Yoo,e) o0 H by
Uso,e = Selloo;  Pooe = €5ePoo, Yoo, = €S5:oo.

In the definition of the Banach space Bo, (see (4.8)), if we replace voo by voo e, the Banach
space obtained is denoted by B := By, ., which contains infinitesimal deformations of v e
as gauged maps. We also define the Banach space (bundle) o ¢ := &, . containing sections
of uf, TX @t®¢tover H which is finite LP-norm. However we will redefine the norms on By, .
and E ¢ as follows. Define po  : H — [1,400) by

oD = poes) (6.1)

Then for any open subset U C H and f € LY (U), define

loc

1
e = { L e tasar]
This induces a norm on the fibres of . For £,c = ( g)e,ﬁgo)e) € Bwo,e, define

Hgoo,e| |L°°(U)~ (6.2)

ity = IE N zpw) + 1V Eoc ell 2 vy + 1650,
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Now we look at the relation with the previous norms under rescaling. Define
Wl (B, us Hx © uiGx) = Wil (H us, Hix @ ul Gx),

DLy (B ul Hx @ ulGx) — Ly (B, ul, Hx ®ul, Gx)

loc

by
se(ell eS) = (stell eszeS); st wg) = (esivl estvf).

Moreover, for €., = (€2,£%) € WhP (S, u%, Hx ® u’, Gx), define an auxiliary norm

H G o ¢G

1€oollzre == ll€ccllzrr + 1€ zn + €l V<€ 2o (6.3)

Here the subscript a stands for “auxiliary”. Regarding the auxiliary norm, we have the following
result. It can be proved via straightforward calculation and we omit the proof.

Lemma 6.1 For any €x € By and vy € Ex,

H§Z£OO||£$”{’E = ||€oo||fl}lv;§a ||§:Voo||ﬂf = ”Voon,p' (6.4)

6.2 Right Inverse on the Rescaled Object

We rescale the perturbation by introducing
looe - W = Exorey loo,e(W) = €S Loo(W).
Extend the definition of §f to W by §}(w) = w. Then
loo,e 082 = 85 Loo. (6.5)

Voo, satisfy (4.2) after perturbing by to .. Consider the section .7:'00,E W xBso,e =+ Eo,e- Then

Foo,e(w, Voo e) = 0. Let Dy ¢ be the linearization of the vortex equation along the gauged map
Voo,e, Which gives a Fredholm map

Dooye : Boo,e =+ Ecore-

Including the contribution of perturbations, we have a total derivative

Dooye :=Doge +dio,e : W D Boge = Ecoe- (6.6)
We intend to prove the following result.
Proposition 6.2 There exist e > 0 and co > 0 such that for all € € (0,¢eq), there exists a
bounded right inverse QOO@ 1€, =+ W X B e to ﬁoo’s such that
||Qoo,e” S C2.
Proof By Lemma 6.1, it is equivalent to consider the conjugated operator

DAY = (55) LoDy 08 : WD Ba = Exo

00, €

where on B, (defined in (4.8)) we use the auxiliary norm || - || ;1. Then for €u = (62,65, 7o,

() and h € W, using (6.5) and the fact that too(w) is contained in u’ Hx, one has
DIL(EL) + ELED) + ()
Di(hbo) = | eBL(ED) + eDE(ES) + Lol o) .67
. el
L3 (65) + ePoo(neo: Co)
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Here DX DS | El | E% are the entries of (4.14), while
Loo(1oss Goo) = Xy + I X, LEJ(ES) = (du- JEG, dp- £5).
G
lDoo(nom Coo) = (OsMoo + OtCoo + [Poor Mool + [Yoos Cools FsCoo — FtMoo + [Poor Cool — [Woo, Noc])-

By Lemma 4.7, EL and E2, are bounded operators, and the operator (h, &) — Dy, (h, &)

has a bounded right inverse, this proposition follows from Lemma 6.3 below.

Lemma 6.3 There exist c3 > 0 and ez > 0 such that for all € € (0,¢3), the operator
DG LIP(uf Gx) — LP(ul Gx),
defined by
ux G *
Dgo,éG( c?o) Noos Coo) = (EDc?o(ffo) + Lo (100 Coo) dDoo(noov Coo) + Loo(fc?o))
is invertible and for all €5 = (£, 100, (o) € LEP(ul Gx),
c3| DEe (€)= 11571
Now we prove Lemma 6.3. Let 6 > 0 be a small number. Take k > 1 and abbreviate
B'=W'"*(H,C"g, B*=L"°(H,C"),

where the subscript R means the boundary values are required to be real. Let 71,72 : ¥ —
R2k*2k he bounded continuous maps, which define zero-th order operators v;,7s : BY — B2.

Denote

D,:B' @B = B*o B, D,(fi, fo) = (8:fi + (1) + f2,0: fo +2(f2) + fr).

Here 0., 05 are partial derivatives in the standard flat coordinate of H.
Lemma 6.4 When v, =2 =0, D : B @ B! — B2 @ B? is an invertible operator.
Proof In this case denote the operator by D. It is a standard fact that D is Fredholm, and
it needs a bit more effort to check that its index is zero. Hence it remains to show that D has
trivial kernel. Indeed, it is easy to see that B! C L?(H,C*), and elliptic regularity shows that
any (f1, f2) € ker D is smooth. Then

D'D(f1, f2) = (~Afi + fr,—Af2 + f2) = (0,0).
However, since —A + Id is positive on L2, f; = fo = 0. O
Lemma 6.5 Consider the operator DI : B @ B! — B2 @ B? defined by

DI (f1, f2) = (€0: f1 + en1(f1) + f2, €0 fo + e2(f2) + f1). (6.8)

Then there exist €(y) > 0 and c(y) > 0 such that for all € € (0,€(7)], there is a bounded right
inverse QY% of D such that

1955 (i ho)llos + € VI (ha, h2) [ pos < e[ (ha, ha)llpws,  V(ha, ha) € B @ B2

Proof For k= 0,1, define the new norms

k

k,6 = Zei\lkallma- (6.9)

=0

/]
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We first prove the lemma for 6 = 0. Denote f.(z) = (s*f)(z) = f(ez). Then

_2
[fellwrr = €7 [ fllkse-

Denote 7€ = (75,75) where 7(2) = 1(e2), 95(2) = 7a(€z). Then s? 0 D3 = D o 5.

Then by Lemma 6.4, there is a constant ¢ > 0 such that

IDSE(frs f2)lle = DS (frs fo)lloose = 1(5) ™ Dene (fre, fr.e)

2 2|1
= P (e ol 2 € [ = el Sl

|0,0;e

1
_ { _ eufmm] 1 )1

Then for € < (2¢||v||L=)"", one has

1
1P s f)llooie 2 4 NI(f1s F2)llose-

Therefore DI has trivial kernel. Moreover, since its index is zero, there is a bounded inverse
Q?Y“EX whose norm is bounded by 2c¢. Hence the 6 = 0 case is proved.

Now we show that the § = 0 case implies the general case. Indeed, the map f + p7°
induces isomorphisms between the W*?-norm and the new norm (6.9). Then it is equivalent

to consider the operator

WS f o pa DY 1o f2) = DY (frs f2) = €lple (0= (030N frs 92 (0=(030)) o).
Since p2,V(p=?) is bounded, the last term is a bounded operator from WP to LP. Hence when
€ is sufficiently small, the conclusion follows from the § = 0 case.

Now we are ready to prove Lemma 6.3. Set § = 6,. Since ao is uniformly bounded, the
norm || - ||Z;,p = || - llyrr.5p defined using the connection form a is equivalent to the norm

defined for a., = 0. Moreover, it is easy to see
DX, + J X)) = Lool0:(m +4G1) +71.(m +1461)]
G . . .
D (2 4 iC2) = 0 (m2 + 9Ca) + 72(n2 + iC2).

Here v, and ~5 are uniformly bounded matrix valued continuous maps. Therefore, Df;‘j”gc is of
the same form as D3 in (6.8). Then by Lemma 6.5, for €3 sufficiently small and € € (0, €3), the
operator Dg};i’G is uniformly invertible w.r.t. the norm || - || i1e on the domain and the norm

| - |7 on the target. This proves Lemma 6.3.

6.3 Right Inverses and Matching Condition

Consider the space of infinitesimal deformations of the singular configurations, i.e.,

m+m

By =B x [ Bi,
i=1
and the one with the matching condition imposed

Bae ={(€8, &1, . &mim) € Byclevi (¢2) =evi(&), i=1,...,m+m}.

Introduce the bundle over B, .

m-+m

Eae=Exc B[] &,
=1
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The perturbed equation defines a family of sections parametrized by e
Fae: W xBae— Eqe
Its linearization at the rescaled object is a linear operator
Dge : W @ Bge — Ege-
As the last step of the preparation, we prove the existence of a family of uniformly bounded

right inverses.

Proposition 6.6 There exist cg, > 0, e, > 0 and bounded right operators
Q&,e : 5&,5 - W B&,E; Ve € (07 6*)

which are right inverses to the operators Dg, . and | Q.|| < ca. Moreover, as maps between

two fized topological vector spaces, Q&e varies continuously with €.

The operator Q.y.,e will be used to construct right inverses along approximate solutions
which we construct in the following section.

To prove Proposition 6.6, we first look at the rescaled disk component. We have three
operators associated with the disk component v, which are ﬁfo =DE +di, : WaBE —
EM where D is considered in (4.12) and (4.13), Do : W @ Booe — Esoc (see (6.6)), and
755;‘;7’; : WEBZNL}I;Q(u’;oHX Dut Gx) — LP(u* Hx ®u’ Gx) defined by (6.7). The transversality

assumption Hypothesis 2 assumes that the first operator Dfo is surjective, hence has a bounded

right inverse. We need to construct an induced right inverse to 250076.
Lemma 6.7 For e > 0 sufficiently small, there is a family of operator m} : ker(Dg) —
W @ Boo,e whose norm is uniformly bounded by a constant independent of €, such that

(35 + em?) [ker(DL)] = ker(Decc)

Proof By (6.7), one can write ﬁggj; = 5.1 0Dy 08" in the block matrix form as

Ey

’ ¢By DG

By Lemma 6.3, Dggi’G has uniformly bounded inverse Qggng. Moreover, Fy and Fs are of
zero-th order, and they are also uniformly bounded. Since f?fo is surjective, for € small enough,

there exists a bounded right inverse Q;E to the operator D — ¢F, Qggf;’GEg whose norm is
uniformly bounded. Denote

. Id 0 2 DH o
a. =S8, 0 ’
—eQuCE, 1d 0 Id
Then one has
s b R Id 0 H DH
(5" oDweoar=| > ° e
€By DG —eQUCE, 1d 0 Id
| DE - e, QuxCE, B 7 .DE 0
0 D 0 Id
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DH B
0 DaxC

So a* : ker[DX] @ {0} — ker[Du ] is an isomorphism. Moreover, a* — 3* is bounded by a
multiple of . Hence the statement of the lemma holds for m? = e~ *(a} — s7).

In Hypothesis 2, the map (5.4) is transversal to the diagonal (5.5). Lemma 6.7 shows that
by replacing ker(DX) by ker(Dy.c), we obtain a small perturbation of (5.4)

m-+m m

ker[D H ker[D H Ty, X)? H 2 g wmtmtl

which is still transversal to the diagonal. Hence for all small €, one can choose a right inverse

Wm+m+1 m TILX B m+m _
Qe : AmtmL ([ 691_[ H A 3 —>ker[Doo’€] b Zl;[l ker[D;]

whose norm is uniformly bounded.

Moreover, Hypothesis 2 tells that there are right inverses
Q& - WaB,.

Together with the right inverse Qoo’E of Proposition 6.2, one obtains right inverses

m+m m-+m
QN#,E : 500,5 3] H 52 — (W S Boo,e) ® H (W S¥ Bz)
i=1 i=1

for all € small enough, whose norm is uniformly bounded. The image of Q#7e may not lie in
the diagonals, and we use Q. to correct it. Since the norm of Q. is also bounded uniformly, it

implies Proposition 6.6.

7 Constructing the Gluing Map

In this section we use the standard idea of gluing to construct perturbed H-vortices near the
singular solution. In Subsection 7.1 we describe how to subdivide the domain and introduce
the cut-off functions. In Subsection 7.2 we construct the approximate solutions. In Subsection
7.3 we introduce the e-dependent weighted Sobolev norms along the approximate solutions. In
Subsection 7.4 we state the major estimates required to apply the implicit function theorem,
which immediately implies the (set-theoretic) construction of the gluing map. In Subsection
7.5 we prove that the gluing map is locally a homeomorphism. Certain technical results will be
proved in Section 8 and the appendix.

We will establish several estimates in which we prove the existence of constants €1, €,... > 0

and ¢y, c2,... > 0 (whose values are reset now). We will always assume

€1>2€e>€>--, c1<ca<cz3<---.

)
7.1 Decomposing the Domain

We use the alternate local model for domain curves discussed in Subsection 2.3, so that the

nodal point set z = (z1,...,2m, 21, ..., 2m) is fixed. For ¢ > 0 sufficiently small, define

Ze = Ee,z =H \ {21;67 ey zm+m;e}~
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(Recall that z; . is defined in (2.4).) Take a number b > 0 such that
100s,cq <logh < 1000s,cq
p—2 p—2
where s, is the Sobolev constant given by Definition 3.6 and cg is the bound of the right
inverse Q.y, given by Proposition 6.6. The reason for this seemingly strange choice will be clear

(7.1)

in Proposition 8.1. Then the following sets (in increasing sequence)
c 1 Ny 1 y 1
B, =B ,€9 ) B:=B ;€5 ) B:=B ;€5 )
e S A SRV It SO
Bz = B Zites b y Bz = B Zies 2b .
T Ve Ve

We also denote

5 mtm m+m m+m o
Y= H\ U B!, ¥.:=H\ U B!, %.:=H\ U B!, and similarly 3, >;
i=1 i=1 i=1

and

A= BI\BI, Al=Bi\ B

M
o

M
o

Figure 2 The decomposition of the domain near a node. Over A?, the shaded area in the picture,

the approximate solution is covariantly constant

Let 5 : R — [0,1] be a smooth cut-off function such that

Bl(=so,—11 =1, Blo4c) =0, VB <2.

Then for a given gluing parameter € and ¢, define §; . : H — [0,1] by
log |z — z;.| + log b+ log /€

@Ad=ﬁ<gl ie| +1log g¢>.

log 2
Define Boo . : H — [0, 1] by

Booe(z) = min B<

—log |z — 2| +log b — log \/€
1<i<m+m ’

log 2

Then ;. equals to one inside Bi and equals to zero outside Bﬁ. Boo,e equals to one inside 3.

and equals to zero outside .. Moreover,

2b./€ € €
IVBic e < 22V sup V8| < 2bv/e,  [VBmllm <, V< sup s < V°.
log 2 blog2 b
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7.2 The Approximate Solutions

We first consider a small neighborhood of [w.,v.] inside Mg (H; X, L), which is has the struc-
ture of a fibre product. If [w,v] € Mg (H; X, L) is sufficiently close to [w., v.], then by Theorem
3.7, for i =1,...,m + m, the i-th component v; of v is close to v.; in the topology of B;, and
can be written uniquely as v; = exp,, |, &;, where &; = (&, m;,¢;) € B; satisfying the gauge fixing

condition
Osni + [Deiy i) + 0:Ci + [Vu i, G + dpp(ua i) - J& = 0.

On the other hand, the co-th component vo, = (Uoo, Poo; ¥o) is also sufficiently close to v. oo,
and there is a unique vector ¢ € BH such that uy, = exp,,, _ §oo- Then for € > 0 sufficiently
small, we just use M;(H ; X, L) to denote the set of gauge equivalence classes of perturbed
stable affine vortices which have representatives in the above way such that all [|€;[|;1.» < € and
1€ || 1w <€ and every element of Mg (H; X, L) are provided with canonical representatives
where a general one is denoted by (w,v).

The purpose of this subsection is, for each € small enough and (w,v) in this family of rep-
resentatives, we would like to define a gauged map ve = (ue, ¢, %) on H from the components
v; and v, and call (w, v.) an approximate solution.

We first need to change the gauge of vy, (for all (w,v) in this family of representatives).
Let (r;,0;) be the polar coordinates centered at z;. Let goo : H \ {21,...,2m} — K be a gauge
transformation satisfying the following conditions:

Xi0

(a) Fori=1,...,m, goo(r;,0;) = e 7" in a small neighborhood of z;.

(b) goo equals identity outside a compact subset of H and

ag:" lorr = 0. (7.2)
By abuse of notations, we replace Voo BY goo * Voo = Goo * (Uoos Poos Yoo ), in which the
connection form a., = ¢Poods + Ysodt has poles at z; for i = 1,...,m. For convenience, set the
monodromies at the boundary punctures to be Ap,j = A; =0 for j =1,...,m. Then it is easy
to see
lim e)‘ieiuoo(z) =xz;, i=1,...,m+m.
z2—z;

Moreover, (7.2) implies the boundary condition
Uso(0X) C L, tsolox = 0.

As before, Voo, = 5;Vo is the rescaled gauged map defined on X, which has poles at z; .. The
original (smooth) gauged map is denoted by Do, = (oo, (b ). From now on symbols with “
on top indicate that they are associated with objects which have no poles at the nodes.

Now v, and v; has the same monodromy at nodes and we can form connected sums. More

precisely, over the neck region Aé with polar coordinates (r;,6;), denote ¢; = e*% - a;. Define
Qoo e(2), z €S
Qe = ei)\iei ' (Boo,edoo,E(Tia 01) + 6i,edi(ri7 92))7 z e Aéa L= ]-a ce,m A My (73)

iz — Zie), z € éi
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i

Secondly, over the neck region Ai, denote u; = e u;. Using the exponential map, there

are T, X-valued functions goo,e and fz such that

liso,e(2) = €xp,, goo,e(z), Ui (2 — 2i,c) = €xp,, éz(z), z € Az

Let (r;,0;) be the polar coordinates defined as r; + 40; = log(z — z; ¢). Then define

Uso,e(2), z € f]e;
UE(Z) = e_AiGi expzi (/BOO,SEOO,G(TM 91) + Bi,egi(riv ol))a z 6 sz 7’ = 1a M) m + m7 (74)
Ui(Z — Zi,s); z € éz

Finally define v, = (ue, @) and call the pair (w,v.) the approximate solution. Notice
that they are defined on a fixed presentation of H, however with different global holomorphic
coordinates z (depending on the conformal class of the underlying marked disk, parametrized
by the variable g; see Subsection 2.3) and the associated volume form. The central approximate
solution (w.,v. ) is of special role. After we introduce a new, e-dependent weighted norm and
a Banach manifold centered B, centered at v. ., we will see that all gauged maps v, belonging
to an approximate solution stay close to v. . w.r.t. the norm of B..

Notice that over the thinner neck region A? (i.e., the shaded region in Figure 2), v. . coincides

with the covariantly constant gauged map
C.; = (e_”\ig’ix.)i, )\zdel>
For convenience, we also introduce gauged maps

v. on Bi v, on
Viie= © o Ve= "« ) (7.5)
cos, on A; \ Bl; ¢, onB\{z.}

The following two results are proved in Subsection 8.1 by straightforward calculations.

! .. with a point &, . € B; such that

,0,€ 00,6

Lemma 7.1 For each i, we can identify v

! / .
v,,.=exp, & . and lim
L€ pv.’I E J1,€ 50 |

/ —
£o,i,e ||I:$,'f’6 =0.

/
00,€

Lemma 7.2 We can identify v with a point &, . € Boo e such that

/ /

Ve = 5Dy, L. and i €

! oone]
*,00,€

1o = 0.

Remark 7.3 We only need the above two convergence results for the central one (w.,v.) in

the family of stable solutions, in order to estimate the approximate right inverses.

7.3 Weighted Sobolev Norms

To save notations, in this subsection we abbreviate the central approximate solution v. . simply
as v.. One use formula (3.5) to define a Banach space B, of infinitesimal deformations of vk,
where we replace the gauge field a by a.. Using the exponential map of the metric hx one
can identify a small ball of B, with a Banach manifold of triples v. = (ul, ¢.,%.) near v.. As
always we still denote this Banach manifold by the same symbol B,, representing the tangent
space. We can also define the Banach vector bundle &, — B, whose fibre over v is the space

LP(H, (u/)*TX @€ ®t). However, to obtain uniform estimates needed for the gluing, one has
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to modify the norms on B,,, and &, . Define p. : H — R by
pa,(z),  z€By

) (7.6)
pOO,E(z>7 FAS EE'

pe(z) =

By definition (6.1), p. is continuous and has value \}6 on 8B§ Then for U C H and a section
f e Ll (U, E) of an Euclidean bundle E — U, define

loc

1A lze = {/[]lf(Z)p[pe(Z)]Q”_4dsdt -
This induces a norm on the fibres of &,,, which we abbreviate as £&. On the other hand, for
&e = (§e:7e: Cc) € B, define
ir Gl zp + lldp - &l i HIV*Eellzr + €l (7.7)
The space B, with the new norm is denoted by B.. The norm LLP (U) for a subset U ¢ H

m;e

[€ell g2 == el o+ lldp - JE]

can be understood and we do not bother to define it explicitly.
We need the following uniform Sobolev estimate.

Lemma 7.4 (Sobolev Embedding) There exist ca and €z such that for all € € (0,€2) and
& € Be, one has ||€] L~ < CQH&HET,L;;S.

Proof By the definition (7.7), [|{[[= is already contained in the norm |[&| z1.» . Hence it
suffices to bound the L* norm of ¢. and .. Notice that V% is a connection that preserves
the metric on €. Hence by [12, Remark 3.5.1], the Sobolev embedding for ¢, and 1. follows
from the standard Sobolev embedding if the weight function is uniformly bounded from below
in the standard coordinate. This is indeed true from the definition. g

When the moduli space in the lower stratum has positive dimensions, we also need to show
that all approximate solutions constructed from nearby singular solutions are in a neighborhood

of v. . w.r.t. the distance of B.. More precisely, we aim at proving the following lemma.

Lemma 7.5 Given r > 0, there exists €(r) > 0 satisfying the following conditions. Given an

element v’ of the same combinatorial type as v. with components
vl =exp,, & €By, i=1,...,m+m, ul €exp, &¢I eBY
which satisfies the matching condition, and which satisfies
1€l 71 < e(r), €L zr0 < €(r).

Given e € (0,¢e(r)] and let v. be the object obtained from v’ by the pregluing construction, then

v. € B., and we can write
v, = exp,, &, & €Ty, B, with ||£6||ii,;{; <r. (7.8)

Proof One can write (7.8) formally for some &, which has local regularity W', On the other

hand, over the region where v/ = v; (up to a translation), i.e., over B?, we have
Hgﬁnj}ﬁ{’g(éi) = ”Ein‘}ﬁi(éi,Zi’E)'
Over 3, where V. = Voo, We have

||€€HE,§;§L(§€) = HEOO’EHE}A’-}@G) < Hffo”f,};”(H)'
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The last inequality follows from Lemma 4.8. Then by taking e(r) sufficiently small, the norm
of & away from all neck regions Aé can be made very small.
It remains to estimate the difference over the neck regions. Indeed, let x;, 2} € u=1(0) be

the image of the i-th nodal point of v. and v’ respectively.
Claim The monodromy at co of v} is the same as that of v.;, denoted by ;. Moreover, if
v} converges to the loop e*?z] for a} € 4=1(0), then 2} € exp,, ,(Hx a..,)-
Proof of the Claim  The conclusion basically follows from the fact that v} is in the Banach
manifold centered at wv.,. Near infinity, we write the gauge fields a, = ¢ids + ¢.dt of v as
®’dr + W)df in the cylindrical coordinate (7,6). Since a} — a. ; is of class LP, while |df] = ™7 is
not of this class, we see W} converges to A; at co. On the other hand, we can write u; = exp,, . §;
with & € Ji}ﬁp(uiiTX). This implies that the limit of £, at co exists and is in the horizontal
distribution. Hence z} = exp,, , &;(00). O
Then it is routine to estimate the difference between v. . and v, over the neck region. They
are close to the covariantly constant gauged maps c. ; and ¢;. Moreover, the difference between
c.; and ¢, which is essentially the size of the vector v;, is small.

Putting the estimates in the three types of regions together, we finish the proof. O
7.4 TImplicit Function Theorem

7.4.1 The Failure

Consider the perturbed vortex equation over H, where the perturbation term ¢ also depends

on the gluing parameter e,
Osu+ Xy + J(Opu + Xy) + te(w,v) =0, 059 — 04 + [¢, Y] + ogu(u) = 0.

Recall that ogdsdt is the volume form on H depending on the gluing parameter and g which
parametrizes the marked disk, such that of = 1. Moreover, we use v. . as a reference to define

the local gauge fixing condition, which reads

6S(¢) - (/b-,e) + [¢',Ea ¢ - ¢-,e] + 8t(w - w-,e> + [’(/}',67 ¢ - "l}-,e} + U;dru’(u',e> : € =0.
Here ¢ is defined by u = exp,,, _£. Then we obtain a section
Fe: W x Be — &
The first major estimate is for the norm of ]:'e(w, v, ) for all approximate solutions we construct-
ed.
Proposition 7.6  There exists €3 > 0 such that for all € € (0,€3) and all v € (0,1 — 12)), there
exists c3(y) > 0 such that for all (w,v) in a neighborhood of (w.,v.),

IFe(w, ve)llzy < es(1)(Ve)

It is proved in Subsection 8.2. Now fix the value of v and abbreviate c3(y) = ¢3.
7.4.2 Variation of Derivatives

Let D.: W@ B, — &,
theorem, we also need to bound the variation of D..

». be the linearization of F. at (w.,v. ). To apply the implicit function
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Consider a small different perturbation parameter e, a small deformation parameter a,
and a deformation of the gauged map & = (&7, () € B.. Denote h' = (€’,a’) and denote
w” = w. + h’. Also define

'Ug = (ulelv a/e) = (eXpu,'e 567 ¢-,e + Ne, "l}-,e + Ce)
The linearization of F, at (w”,v”) is a linear operator

'252/ W Tv;/Be — 56|v2’~

The quadratic estimate asks to control the variation ﬁé’ — D.. To compare, one identifies
(u)*TX with u} TX using the parallel transport of V along shortest geodesics?)

Ple:u; TX — (u!)*TX.
By abuse of notation, it induces the identifications
Ple : Ty Be = TyrBe,  Plc: Eclo, = Eclorr
Then we would like to estimate the difference
Pl7' oD/ oPle—De: W @ Be — Eo...

For convenience, for & = (&,ne, () € Ty Be, denote &/ := (£/,ne,¢) = (Ple(€e),ne, Ce) €
Tvé/BE. We will also omit Pl. whenever no confusion is caused.

First of all, by the smoothness of the perturbation term and the uniform Sobolev estimate
(Lemma 7.4), we have

Lemma 7.7 There exist €4 > 0 and ¢4 > 0 such that, for alle € (0,€4), b’ € W with |h'| < ¢
and all & € Be with ||§([|;1» < €1, denoting v, = exp,, & and w" = w.+ k', one has

1 PL iy (B, €1) = dy, g, (€2 < ca(lB] + €00 22 )(1RI + €] 10 ).

w//’vé/
Therefore, to prove the quadratic estimate it remains to bound the variation of d.F.

Proposition 7.8 There exist €5 > 0 and c5 > 0 such that for all e € (0,€5) and all €. € Ty, Be
with |[&|

i1 < €5, using the notations above, we have

||Dé/(€él) - De(£5)|
This proposition is proved in Subsection 8.3. Lemma 7.7 and Proposition 7.8 together imply

€||Z1,p . (79)

mie

i < o5&z

the following estimate.
Corollary 7.9 There exist €g and cg such that, for all e € (0,¢6) and all (h',€.) € W & T, B.
with |[A'|| + €l 7 < €6, denoting v = exp,,_&. and w"” = w. + ', one has

ID! (R, &) = De(h, €)llzr < co(IR'[| + €00 z20 ) (IR + 1€l
7.4.3 The Right Inverse

F1p ).
Liiie

We use the family of right inverses Q.'.,E constructed in Section 6 to construct the right inverses
along v..
Proposition 7.10 There exist €7, ¢z, and, for each € € (0,€e7), a bounded right inverse
Qc : Eclp. = W @ Ty Be to the operator D such that || Q.|| < ¢7.

The construction of O, and the proof of this proposition are given in Subsection 8.3.

4) Notice V is not diagonal w.r.t. the splitting Hx @ G x near u~1(0).
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7.4.4 The Gluing Map

Now we are ready to apply the implicit function theorem. Let us first cite a precise version of
it.

Proposition 7.11 ([12, Proposition A.3.4]) Let X, Y be Banach spaces, U C X be an open
set and f : U =Y be a continuously differentiable map. Let x. € U be such that df (z.) : X =Y
is surjective and has a bounded right inverse Q : Y — X.

Assume there are constants €,¢ > 0 such that

1Rl < ¢ (7.10)
B.(z.) CU and z € B.(x.) = ||df (z) — df (z.)|| < 210. (7.11)
Suppose ' € X satisfies
IF@)l< .l —adl < g (7.12)
then there exists a unique x € X satisfying
fl)=0, z—2'€lmQ, |z—ux|<e. (7.13)
Moreowver,
[z — 2’| < 2¢]| f(z")]- (7.14)

Now let X = W@ B, Y =&y, f = PI." o F. 0 Pl,, x. = (w.,v. ). Then (7.10) holds for

¢ = c¢7. Corollary 7.9 implies (7.11) holds for

1

n 20667 '
By Lemma 7.5, for any approximate solution (w, v.) constructed from a nearby singular solution
(w, v) sufficiently close to (w., v.), and for sufficiently small ¢, there is a corresponding point 2’ €
X whose distance from z. is less than /8. Proposition 7.6 implies that, when ¢ < (8czcge2)™2/7,
(7.12) is satisfied. Therefore by Proposition 7.11 there exists a unique x satisfying (7.13), which
we denote by

(w,,v,) = (w+ h,exp, &)€W x B..

Then we denote the gluing map by
Glue([w, v],€) = [wl,v]], Ve€ (0,e7), Glue([w,v],0)= [w,v].

It is not hard to check that Glue is a continuous map from [0, e7) x Mg (H; X, L) to M, (H; X,
L). To prove our main theorem (Theorem 5.7), it remains to show that it is a local homeo-
morphism, hence a local chart of topological manifold with boundary. Notice that by the
transversality assumption, the domain of Glue is identified with an open subset of an Euclidean
space. A standard result in general topology tells that a one-to-one and onto continuous map
from a compact space to a Hausdorff space is necessarily a diffeomorphism. Then to prove Glue
is a homeomorphism, it suffices to show that in a small neighborhood of (0, [w.,v.]), Glue is

injective and surjective onto a neighborhood of [w.,v.] in M} (H; X, L).
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7.5 Injectivity and Surjectivity

For injectivity, suppose on the contrary that there are sequences wy, 4, w, s € W converging to
w., sequences of stable perturbed affine vortices vy, q, V5 of type & on the gauge slice through

v. converging to v., and sequences of gluing parameters €, 4, €, converging to zero, such that
Glue([wn,aa vn,a]a 6n,a) = Glue([wn,ba Un,b]7 6n,b)~

By definition, for all n, w,, = wyp and €, , = €,,. We would like to show that for large
N, VUpq = Upyp. SUppose it is not the case. Let the corresponding approximate solutions be

Ve, ,a» Ve, b respectively, which are in small neighborhoods of the central approximate solution

V.,. By construction, v, and v, can be identified with different elements &3P, &5 in
the tangent space B, while the exact solutions are identified with £5¥2°% £22°*. Since the

exact solutions are both in the Coulomb slice through v. ., and represent the same point in the
moduli space, the two exact solutions are identical. Moreover, since exact solutions differ from

the approximate solutions by elements in the image of the right inverse an, we know that

P 9P € ImQ, .

n,a

Therefore, by the uniform boundedness of the right inverse, there is a number ¢ > 0 independent
of n such that

n,a n,a

- 1
1Pe, (€37 = & )iz, = &% — & s, -
However, by straightforward estimate, for €, sufficiently small, we have

e & — &y llpie, =0

We omit the rather tedious estimate. This contradicts the previous inequality. Hence for n

lim_|[B, (€370 ~ €27%)

large, vy, q = vy and we proved the injectivity of the gluing map.

Now we prove the surjectivity. The main difficulty is that the topology of /\/lfgl(H ; X, L)
is defined in terms of a very weak notion of convergence. In particular, for a sequence of
perturbed vortices v, for each R > 0, we only require that a C{ = convergence for the rescaled
one (s_')*(vn|cy,. ). However, we need to show that every nearby smooth vortex v, is actually
close to the approximate solution v,, w.r.t. our norm in B, . This is similar to the case of Gaio—
Salamon [9], where the surjectivity, based on their a priori estimates in their Section 9 and 10,

was the most difficult part. More precisely, in Subsection 8.5 we prove the following theorem.

Proposition 7.12  Suppose a sequence [wy,, v,] € M} (H; X, L) converges to [w.,v.], namely,
up to gauge transformation, (wy,v,) and (w.,v.) satisfy the conditions of Definition 5.5 for a
sequence of gluing parameters €, — 0. Then for i sufficiently large, we can gauge transform
v, to a sequence of smooth vortices (which we still denote by v,,) such that (w,,v,) = (w. +
hn,exp,, &) where &, € B, and

lllglo(”hn” + ‘|€7L||£},;§’en) =0.

The surjectivity of the gluing map follows from this proposition in a rather abstract way.
By this proposition, it suffices to show that there exists » > 0 such that for all e sufficiently
small, the zero locus .7’:';1 (0) intersecting the radius r ball centered at (w., v..) is contained in

the image of the gluing map. If this is not true, then there exists a sequence €, — 0 and a
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sequence of elements (w,,,v,) € .7:'; 1(0) whose distances from (w., v. ., ) converge to zero, but
do not coincide with any exact solution. Identify (w,,v,) with a sequence of tangent vectors
EneWa B, . Consider the path t€,. Then by Proposition 7.8, we know that

lim | Fe, (t€,)]| =0, uniformly in ¢ € [0,1].

Then by the implicit function theorem, by correcting tén there exists a sequence of exact
solutions &, (t). Notice that &,(0) is the correction of (w., ., ) which lies in the image of the
gluing map. Let ¢, € [0,1) be the largest number such that &, () is in the image of the gluing
map for all ¢ < ¢,. Then én(tn) is on the boundary of the image of the gluing map (for the
fixed value t = t,,) and its distance from the origin of B, is uniformly bounded away from zero.

However, by the implicit function theorem (more precisely by (7.14)) we have
[tn&n = €n(tn)ll S [IFe, (t)]l — 0.
We also have ||t,&,|| — 0, which is a contradiction. This finishes the proof of surjectivity of
the gluing map and hence finishes the proof of our main theorem (Theorem 5.7).
8 Technical Results for Gluing
We prove certain technical results which have been stated earlier in the gluing construction.

8.1 Proof of Lemmas 7.1, 7.2
Since we only care the central object for these two lemmata, we remove “.” from the notations.
Proof of Lemma 7.1 ~ The C° distance between v; . and v; is small. Hence we obtain &
satisfying 1);76 = eXD,, 5;6 pointwise. Without loss of generality, assume the base point z; . = 0.
Hence &; . is supported in A; \ B. In this region we have
v; = (expwi gh (élﬁ 1&2)7 ’b;,e = (eXpIi ﬁi’fgi’ Bi’eéi’ Bi’elﬁi)'

Then (after identifying & as a tangent vector along ;) we have

. P P

S;,e = e)\ 57’;,6 - (6i76 - 1)(517 (blvwl)
It suffices to estimate \|é§7€||£3ﬁp using the trivial connection. By Lemma 3.4, we know that over
A;\ B, forall § € (1-2,1),

|‘Vfi||Lp,6 + [|dp - &Hmﬁ + |ldp - Jgi“uué + ||<fv)z‘HW1,p.é + HJ%‘HWLP,J < 00.

Choose § € (0p,1). Then

0z < Wil zsman gty + IV Buclm 1 a3ty + VB o
S Ve 4 \/EH&H@(Ai\éi) + H(Vﬂi,e)gﬁummi\éi)'

The first two terms converge to zero as € — 0; the third term is estimated as follows.

1

7308 o iy = | [ 1P asar]

A\BL

1
< éﬂp[pe(z)v)4dsdt}”=||éfn
{/Ai\ég LP°»~'(A;\B})

SVETE o1 S VETIE e + IVET | 1)
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Here the last inequality follows from (3.7) and the fact that the limit of £ at oo is zero. Hence
this also converges to zero as € — 0. This finishes the proof of Lemma 7.1. O
Proof of Lemma 7.2  Similar to the previous proof, we can assume z; .. Inside éé, we can
write

Eloc = MEL (2) = (Boose — 1)(Escies boo,es Poore)

Denote V! = B(2by/e) = s.(B%). Then since v, . is the rescaling of v, we can write £, =
s:éoo, ém,é = es:éoo, and @[Vjoo,e = esjlﬁoo. Since v, comes from a smooth holomorphic disk
in X, we know that |£o| < |2 and ¢, 9ee are bounded. Moreover, by the special gauge we
choose for v, over VZ we have £, = £, Hence we have

. . 142 G & 2
12 vy + €IS oy S Ve, IV Ewllzag) S Ver. (.1)
Then we have (recall the definition of the Ii#f;’e—norm given by (6.2))
1€l ey < VBl €L el )+ 19 Bl Nl oy + Wl

. ’
S VelelsE N 1y )+ 15T 1y ) + €l Vel

) :
+ells€ 0y 5y + IER A )

1 y v “ .
S Ve (€||£c(>;o ||Ep(vg) + ||f£ ||Zp(vg))+ [V € ||Zp(vg) + ||£c(>;o ||Ep(vg) + Hfohg HLoc(V;')-

Here for the last line we used Lemma 6.1. Then by (8.1) we see that lir% 1€ llzie — 0. O
e— € mie

8.2 Proof of Proposition 7.6

We denote the three components of F. by fl, Fo and Fy respectively, where only F1 contains
on the perturbation term. We first estimate F (w, v,)

(a) Inside each Bi, i.e., a region with radius = \}6 corresponding to the affine vortex v;,

fl(wave) = aquui + Le(waui) = Le(waui) - L()(’U),’U,i).

Here we used the equation d4,u; + to(w,u;) = 0. Then by the definition of the norm the
definition of the perturbation ¢ (which is supported on a compact subset and depends on ¢
smoothly), one has

||.7-"1(w,v6) < e (8.2)

”Ef(éz) ~

(b) Over ﬁ)e, i.e., a region corresponding to a large part of the disk v, one has

]:1 (w7 ve) = aAoo,guoo,e + Loo,e(wa uoo,e)
= Loo,e (W, Uoo,e) = Loo,0 (W, Uso,e) = €57 (Le(W, Uoo) — Lo(W, Uso))-
Then by the property of ¢, and Lemma 6.1, one has

I (w, 01,5, S € (53)

(c) In the interior part of the neck region B¢\ Bi C Ai, one has

UE(Z) = e_)\igi eng;i (Bz,egl(z))a Ae = e—A,-O,-, - (ﬁi,edi)-
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Recall that the perturbation term vanishes in the neck region. Using the normal coordinate

centered at x;, we can write

OO = 0 T+ X, + T,
8;, . 8;- . 8 i€ X 8 1,6 X
= Bie ai +Xéi(ue)+J(a€)< ;t +X¢i(ue)>] + gs’ &+ J (i) gt’ &
= Biel X5, () — X, (i) + J (@) Xy, () — J(6) X, ()] + ag;’sé +J (aaag;"&-

In the last line, let F; be the sum of the terms involving the derivatives of 3; ., and F» be the
sum of other terms. To estimate them, firstly recall that, by the main result of [38] and [25,
Proposition A.4], the energy density of v; decays in the following way:

|da,vi(wi)[* + |Fa, (wi)|* + |u(ui(w) )| Sa fwi| 7, Ya > 0. (8.4)
Here w; = z — z; ¢ is the shifted affine coordinate. Then if z € Azg,
dist (1 (w;), 7;) Sa (Ve)'™* = sup Ju; — ue| So (V) (8.5)
Al
So using the fact that |V8; | < Ve, one has

1
p

. . P
[(0sBi,e)&i + J (1ie) (OrBie)&ill r S [/ [VBi,e(2)[| sup dist(ﬂi,xi)] €2pd5dt]
Al zEA'@
S (V) r Area(Al)]r So (Ve)r®, Va>0.  (8.6)
On the other hand, by Sobolev embedding, one has

o - )
il o < i = sup(idal + ldil) S €5 (8.7)

€

Then by (8.5) and (8.7) one has

Hﬁz,e(X(i;l (ue) - Xd}l (Uz) + J(UG)XJM (ue) — J(ul)XJ}l (“z))”ES(Az)

< {/ [supdir[supdist(uﬁ,ui)reQpdsdt} ’ <a (\/e)lfa[Area(A'i)]rla <a (\/e)lfo"i.
Ai b 4 A

Together with (8.6), we find that

~ a2
||F1(w,v€)||ig(éé\éé) Sa (\/6)1 P, Yo > 0. (88)

(d) In the outer part of the neck region Bi \ Bf C A! we can derive similar estimate. We
remark that we have slightly better bound than (8.5) and (8.7) if replace @; by o and &; by
Qoo e, 1.6,

sup dist (Uoo,e — Ue) S V€ SUP [Goo | S €. (8.9)

So we obtain a bound of ||F;(w,v,)| as in (8.8) for all & > 0. In summary, we have

LE(Bi\BY)
obtained desired bound for the component F; (w, v.).

To estimate ]:'2 (w,v,) we cut H as the union of Xole and all Bé Over ZD]E, one has

>kF‘Ae + U;M(ue) = *d(ﬁoo,edoo,e) + U;M(ue) = Boo,e * FjAoc,e + *(dﬁoo,e A doo,e) + U;M(UE)
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Over Bi, using the vortex equation *Fa, + pu(u;) = 0 and o = 1, we obtain
#Fa, +oguue) = Bicoglu(ue) — pui)]l + (1 = Bic)ogu(ue) + *(dBic A dic).
So as a unifying expression,
Fa(w,0e) = oo, #Fay  A(dBoo e Ntoo ) +5(dB,c i)+ (1= i ) ogi(ue) +5i.cog (1) —p(us)-

We estimate the terms one by one (all norms below without labelling are || - [|z»).

(a) One has Fa_ = siFa_, so by Lemma 6.1 (extending to two-forms),
[1Boc.e ¥ Fa N < llscFas |l = ellFacllzs S

(b) By (8.9), and the fact that |V .| S Ve,

| % (dBoo.e A oo, )|l S \/e[/‘_‘ |Ovzoo’€(z)|p[poo’€(z)]2p—4dsdt:| ? < exti[Area(AY)]r < (Ve)'tr.

(c) By (8.7) and |V ;.| < Ve, one has
| (dBie A ) S we[ /A 1. ai<z>|p[pe<z>]2p-4dsdt] " S VelArea(AD)]5 S (Vo).

(d) By (8.4) we know that in the neck region |u(u.)| <o (v€)2~, so

(1= Bie)ogu(u)| < [ /A [sup ] [p (2P tasar ‘17

Al
Sa (V)7 [Area(4])]»
< W
(e) By the energy decay we also have og|u(uc) — p(ui)| Sa (ve€)*~*. So
18,c05 ((ue) — p(ua))[| S (Ve)*~[Area(AD)]» S (ve)> 7.
By (a)—(e) above, for any v < 1 — 12), by taking « appropriately, one obtains
1 E2(w, vz S (Vo).
Now we estimate fg(w, v.). Introduce & = (&, 7, C) by

Ue = expu.yE 557 Te = (be - d)-,e? Ce = ws - l/}-,e-
Then
Fa(w,ve) = Outle + (b 1] + Ore + e, G + ) - TEe

It vanishes on all éi since v; is already in the Coulomb slice through w. ;. On the other hand,
over f)e, JE&. is in the horizontal distribution. Since in this region v, and wv.  are both obtained
by pulling back disks in X, F3(w,v.) is €2s*F for some function F on s, (Z ), and by Lemma
4.8, the LP-norm of F is finite. Combining with Lemma 6.1 we see the size of F3 (w,v,) over Z:]E

is bounded by a constant multiple of e. Lastly, the estimate of Fs (w,ve) over the neck regions
Af can be estimated similarly as Fy (w,v.) and we omit it. This finishes proving Proposition 7.6.
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8.3 Proof of Proposition 7.8
Consider an intermediate object v." = (uc,¢,,1;) with linearized operator D" = dFym :
By — Eyrr. Namely, v and v only differ in their gauge fields.

We first compare Dé” and D, whose domains and targets are identified without using
parallel transport. Suppose ¢. = ¢ + 1., Y. = 1. + (.. Then for an infinitesimal deformation
§=(&m.0),

Ve (ue) + Ve (J X ) (ue)
Mo ) + (¢4 €]
‘

(
(D& =De)(§,m,¢) = [
[, €] = [¢&ml
)
)<

By Lemma 7.4 and the definition of the norm (7.7), one has
(D = De)(E)llze S 1€l Ulmellze + 16 z2) S M€l z2e (mellzze + 16N 22 e)- (8.10)

Now we compare Dé" with D whose domains and targets are identified via the parallel

transport Pl between u. and u, = exp,, &, Firstly, given an infinitesimal deformations of the
type & = (0,7, (), only the first component of (D” — D!")(&) is nonzero, which reads

PIZ [ (ug) + T (ug) X (u))] = Xy (ue) — J (ue) X (ue).
Hence similar to (8.10),
(D =D (E e S ( ir) S

Further, consider an infinitesimal deformation of the form & = (£,0,0) and denote £’ = PI.(£).

(8.11)

Then we have
PIZMI(ul, ¢, 90 (€M) = I(ue, 6, 90 (€)
(D! —D)(€) = dp(uy) - € — du(ue) - € . (8.12)
dp(ug) - JE" —dp(u) - J€
Here the term I in the first entry is defined by
I(u, ¢,9)(§) = V& + Ve Xy + J(Vi€ + Vedy) + (Ve ) (Oru + Xy (u)).

Now we estimate (8.12). The last two entries are easy to bound. Indeed, by the Sobolev
estimate (Lemma 7.4) and the definition of the norm, also the fact that Pl. preserves the

splitting Hx @ G x in a neighborhood of ;1 ~1(0), one has
ldp(ug) - €" = dpue) -l gp + ldp(uy) - J&" = dpue) - T€l| e S 16l g1,
It remains to estimate the first entry of (8.12). For convenience, introduce
L) (§) = Vel + IV + (V) (Orw),  Ta(u, ¢, ¥)(§) = VeXy + IVeXy + (Ve )Xy,
and write the first entry of (8.12) as (611)(&) + (d12)(€). Take R > 0 and define

(8.13)

m-+m m-+m m+m
Uy = U B%: = U BR(Zi,e); U,y = H\ U Bl/(eR)(Zi,6)7 Uz = H\ (U U Us).
- = i=1

In the following we estimate the variation of I; and I in the above regions. We will use the
fact that [|{(]|z1» < 1 and the uniform Sobolev embedding f/}npc — C° (Lemma 7.4) frequently

without explicitly mentioning them.



292 Xu G. B.

(a) Inside each B, the variation of I; can be bounded pointwise as

[OL)(E] S Iduel SIS + IVENIENEN + [VENE + [VECLIE]- (8.14)

(See [12, Proof of Proposition 3.5.3] for details.) One has
IVELS lducllg] + [V &l + |l l€] + |vellE], (8.15)
IVE'| S lduellg] + V&' + [8el[€'] + el l€]. (8.16)

Then since v,

Bi, = v; which is independent of €, one has
LP(BY) S V€]
ir(Bi) SIvVeeg]
Hence by (8.14),
1OL) iz 1) S llduellze sy + 1VEIz2 1)€< 1€l
+ 1€l L IVEll g2 1) + IVE

V¢l
IVE]

recsy (el 2y + lael o sy el e < €01z

vy T lduellzz(pi) + llacl flf(B}'é)]”gé”L“ S €z -

sy lEle < 1€z €0z . (827)

(b) Since I is a tensor in &, ¢, and 1., one has
012) (O] S I€ll€l lac| < [€l1€l [lael + [ec]-
Therefore

1612 () 22 sy < €l € N el (8.18)

(¢) Now we estimate the variation of Iy, I over Us. Using the same argument as in Step

sy S €Nz

(a), similar to (8.15), one has

V¢l

i?(UQ)]HfHLoo + || V=g
ir T llseves]

vy T l[aoo.el

< efllséducollzr + lls¢ Pool

2wy S [llduce.c| r(s)

Ellzes + €l e

mie

22l S 1€l -

Here to obtain the last inequality we used Lemma 6.1. Similarly

IVE

trws S M€z -
Hence (8.14) implies that
1G22y S Utz gy + V€ 22 iy €N = €L
TN L= IVEIl 22 17y + IVEN 22 0y €N oo S (1136

Further, as in Step (b), one has
1(012)(8)]

Here the uniform boundedness of the norm [[ag|z» ¢, follows from Lemma 6.1 and the relation

(¢67 w6>|U2 = 6(5:¢ma 5:¢00)

(d) Lastly, we estimate over the neck region Us, which has connected components U: for

&

|1;6~

LP(Us) < ||a/e| if(Uz)HSHL;;?e 52”%;@1 S ||§Hi;;§;||€é\|fi$,;?€-

i=1,...,m+ m. For each i, denote

&L = lds + Lt = e M Pialel — N;df;,
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é-/: e—k¢9g£7 g// — e—kig,igll7 éé — e—Aigigé.
Recall that
Qe = ¢€d$ + ¢€dt = /Bi,edi + ﬁoo,eééoo,e-
Denote Ui~ = Uin B!, Ubt =UinS.. So
Gellzzwp < 15l o + ool zzss < ¢

for some constant ¢ > 0 independent of e. One can also obtain a uniform bound on ||d. HE"(U;)'

Using the above notation, e =% (6)(¢) is the sum of the following two parts.
((ﬁl)(é) = Ple{vsgu + Jvtg// + (VS’/J) (Optic)] — [vsg + Jvté + (Véj)atﬂe]?
(012)(€) = PleVen Xy + Ve (JXy,)] = [VeXy, + Ve(J X))

—Aib;

Here P, is the conjugation of Pl, by e . One can reproduce similar estimates as in previous

steps using the uniform bounds on @, v, and dii.. The detail is omitted.
The above steps (a)—(d) provides the bound

161)(E)]

This completes the proof of Proposition 7.8.

i S NN zee 1l 2o, -

8.4 Proof of Proposition 7.10

Now we construct the approximate right inverse along the gauged map ve = (uc,a.). We reset
the values of the constants ¢; < co < --- and €; > €5 > ---. Again, since the construction only
involves the central object v. ., we abbreviate it as v. and similarly for other relevant objects.
Since u. is close to ueg ¢ OVer XOJC, there is a parallel transport using certain connection on
TX
Plo i uly TX|g —uTX] .

We require that this connection respects the metric as well as the splitting Hx & Gx near

p~1(0). Using the same connection there are also parallel transports
Pli:uiTX|g —uTX|g, i=1,....,m+m.

Recall that b is chosen by (7.1). Choose e < b and introduce cut-off functions x&, x§ : H —
[0, 1] satisfying the following conditions.

s+s
s € HAUB (s ) oo =1 (5.19)

and for z € B(zj,, \}6) \ B(%ie, 6\1/6),

Vx5 (2)] < loge |2 jZm'. (8.20)
Similarly we require

suppx; C B<zi,e, j€> Xilgi, =1

and for all 2 € B(zi.e, 5.) \ B(zi.c, \}6)7

Vxi(2) : (3.21)

< .
loge |z — 2 ]
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Notice that when V&, # 0 or Vx§ # 0, v, = ¢; = (X% x;, \;db;).
Using Pls, Pl; and xS, x5, we define the maps

m-+m
Cut: & = e ® @ &, Paste: Bg . — Be.
i=1
as follows. For v € &, define Cut(v) = (Woo,e, Y1, - - -, Vm+tm) Where
PIlv(2)], zeXg Pl v(z+z.)], ze€ B
Voo,e(2) = . vi(z) = N
0, z & 3, 0, z ¢ B!
On the other hand, take
m—+m
5 = (500,67617 ce 7£m+m> S Bﬂ-,e C Boo,e 3] @ B’L
i=1

Then u;(A; \ éi) C Ux and we can decompose & = & + €Y w.r.t. the splitting Hy ® Gx.
Then by the matching condition, there exist £+ € Hx ,, fori=1,...,mand M ¢ Hy, ., for
j=1,...,m, such that

ZEIZI}‘ eAi9i££7e(2) _ Zlggo e)\ieigzﬂ(z) — gH,i’ i=1,...,m+m.
Then define
&i(z— zie), = éz,
EE(Z) = PaSte(€M,e7 £17 e 7£m+m)(z) = i G M (822)
€7 (2),€(2)], =€ Xe.
where
PLIEF (2 = 2,)] + X5 [Ploo 6 ()] — e M0 ], i
l(z) = fag . . (8.23)
Ploo€ ()] + D XGIPLlE (2 — zi.0)] — e Mg, e n,.
i=1
m-+m
£9(2) = > XiPLEF] + XS Plo€S . (8.24)
i=1

With abuse of notation, use Paste : W @ Bg, . = W @& B, to denote the induced map which is
the identity on the factor W.

Finally, define the “approximate right inverse”
O™PP — Paste o Qg o Cut : & — W x B.. (8.25)

Here Q&E is the operator given by Proposition 6.6.

Proposition 8.1 Suppose loge > 87;’_";"' (which is consistent with (7.1)). Then there exist

€1 and ¢1 (which depend on b and e) such that for e € (0, ¢1]
< L 1
1QEPPI < €1y [[Peo QPP —1d| < . (8.26)

The operator norms are taken w.r.t. the norm || - ||z» on & and the norm || - [|z1.» on Be.

Proposition 7.10 then follows from Proposition 8.1 by setting O, = QPP o (D, o Q2PP)~ 1,
It remains to prove Proposition 8.1. By straightforward estimate and comparison between

different norms, one has the following bounds.
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Lemma 8.2 There exist ca > 0 and ez € (0, €1] such that for all € € (0, €2), one has

m—+m
lCut@) = vallgs + 3 Il < W52 (s.21)
=1
m—+m
[Pastel6ncsbasesEmimlizg, < ca| Il + 3 ez 529)
=1

Proof (8.27) is an easy consequence of the definition of the weight functions, the definition of
Cut, and the fact that the parallel transport is isometric fibrewise.
To prove the estimate about Paste, one needs to pay extra attention to the cut-off functions

X5, and x§. By the definition of Paste (see (8.22)), we have

HPaSte(S*)”ibﬂ(éz) S HEinﬁlﬁp(Ai); ||PaSte(£*)||I:$di(ée) S ”50076

JERACRE

Hence it remains to bound the norm of Paste(£*) over the neck regions A’.
By the definition of the norm |[| - |[z1.» (see (7.7)) and the definition of Paste (see (8.22)-
(8.24)), and the norm along v . (see (6.2)),

[Paste(€)|z1e sy < N7 N oo ey + 168 o cary + 168 1 2o sy + IV Eell 22 sy

The first two terms are bounded by [|§oc,el[71.» and [|€;[|;1.» by Sobolev embeddings. The third

term is also easy to bound. It remains to bound the last term which involves the derivatives of
the cut-off functions x5, and x¢. By (8.23) and (8.24), we have

Ve = X5V Ploo[§oc,e (2)]] + X [V Pli[&i(2 — zi,)]]

+ (VXE) PlookS ()] + (VXD [PLES (2 — 2i.0)]

+ (VXS Ploo €5 e (2)] = €77 + (VXE)[PLIET (2 — 2i0)] — €. (8.29)

Here we used the fact that over the intersection of the supports of x¢, and x§, ve = ¢;, the
“constant” object, and the covariant derivative of the “constant” £+ is zero.
(a) For the first term of the right hand side of (8.29),

HXZOVGCPZOOEOO,eHIZf(Ag) S IVE= Ploc€oo ellpr + llae — oo ellLoe 100 ell 7

S IPLoV b el 1o + | Ploc VO €og e — VO Plogoo ol 12 + |ooc]

if S Hgoo,e”il,p .

mie

Similarly one can estimate

IxG V4 Plil&i (2 = zi.e )|l gr sy S N1l

(b) For the third term on the right hand side of (8.29), notice that over the support of
Vxos Pe(2) < pooe(z) and |VxS| S v/e. Therefore, by the definition of the norm,

Fl,p.
Ly

(VX5 PlocES cll 22 = {/ IVXEQ(Z)Ipl£§o,e(2)lp[pe(2)]2p4d8dt] :
H

P
Svel [ e ol b P asit] < el (530
suppVxso !
Similarly, over the support of Vx§ one has p.(z) < pa,(z — zi.), SO

(VX PLET |22 S Vell&il

I“er,bp. (831)
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(c) The estimate of the fifth term on the right hand side of (8.29) is one for which we prefer
a sharper bound. Notice that over supp Vx5, pe(2) = |wi| = |z — zi | So

m-+m
€ H FH,i N
Zl H(VXOO)(goo,e_g >||I~lf(éé)
m-+m ' 11)
=3 | [ OGP () - s
i=1 Bt
m+m 1
S H§ [/ |ewi|p2|wi|p4dsdt]
loge Z BinsuppVxe,
9 _2 m+m 1
S 6 P P
<7 : i[*P O dsdt
<P g 2 gy | [
2ms,, H
Flp. 8.32
A (8.32)
Here for the second line we used (8.21) and for the third line we used the Sobolev embedding
WP < €%~ 5. Notice that (8.32) is a precise estimate, which will be used in a minute.

(d) For the sixth term, over the support of Vx5, one has p.(z) < pa,(w;) = |w;| and using
cylindrical coordinates, one has
1

I9x0E = €9l = | [ IV PIe! () - 0 lpor—asar]

1
2 o »
< e [l - € tas]
loge suppVx§
2 H _ fH,i
< H _ cHi
— logellfl € :jff’
28y .H
i pre. 8.33
< oor eIz (3.33)
For the last inequality we used Lemma 3.5. (]

Proof of Proposition 8.1 By Lemma 8.2 and the definition of QP (8.25), the bound on QPP
is equivalent to that of Q.',,E, which is given by Proposition 6.6. So it remains to prove the
second inequality of (8.26). Given v € &, denote

(ha 5*) = (h7 £oo,ea 617 oo 7£m+m) - Q&E(Cut(y)).
Then by definition of Q*C and Cut, we have

V = Plo[Doc e (b, oo )] +ZP1 i(h, &).

i=1
Therefore
DE o Q?Pp(y) — Vv = De[h, Paste(&'*)] _ |:Ploo’Doo,e(h5£DO,e) + Z Plﬂ?l(h,ﬁl)}
=1
m-+m

= D, [Paste(£*)] — [Pl Do c(€ooc) + Z PL;D; (& ]
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Here the last inequality follows from the property of the perturbation term. The last line is
estimated in different regions as follows.
(a) Inside BY,, := B\ supp x&,, we have v, = v; . where the latter is defined by (7.5). So

De[Paste(§")] — v = Dy, _[Pli(&)] — PL[Di(&)]

while we can write v; . = exp,, §; . (see Lemma 7.1). Then by using the same method as

proving Proposition 7.8, we have
Doy [PL(&:)] — PL[Di(€)]lll zo 5z ) < ciell€iellzs,
(b) Similarly, inside ... := . \ 7™ supp x¢, we have
De[Paste(£*)] — v = Dy, [Ploc(€cc.c)] = Ploo[Doo (b))

while we can write v}, . = exp,, &, . (see Lemma 7.2). Similar to the above case, for some

”;)H&HE;P(AI-)' (8.34)

Coo,e > 0 and e sufficiently small,
|D.[Paste(¢")] — v . (8.35)

(c) In one of remaining the neck regions, i.e., N! := supp x5, Nsupp x§, by our construction

12(90) < Cooell€iorellinn (s,

of the approximate solution, v, = ¢; = (d 4+ \;df;,e % x;). By the definition of Paste (see
(8.22)—(8.24)) and the fact that
De(ei)\ieing) =0,

one sees that over N! (all norms below are || - Hif(Ng”))
|DcPaste(£*) — v||
= [IDelxe (Ploc (§oc,e) — ”) + X5 (Pli(&i) — €7)] = PlocDog(€oc.e) — PLDi(&)|
= | De[xSo (Ploc(€sc.e) = €17) + X5 (Pli(€:) — €)] = x5 Ploc [Doc (€co.e)] — X PLi[Di (&)
< X5 (PePlog(§sc,c) — P oo( so€os.e)) || + IXi (DePli(&:) — PLi(Di&;))|
+ | [De; XE) (Plos (€co,e) = €T + IDe, x51(Pli(&:) — €7

Here the third line follows from the fact that over the region where x5, # 0 (resp. x§ # 0),
Doo(€o,e) = 0 (resp. D;(&) = 0). The first and the second terms of the last line can be
bounded by the same method of deriving (8.34) and (8.35), which gives

”Xeoo(DePlOO(éoo,e) - PlOO(DOO,6€OO,e))|| N ||€oo €
x5 (DePli(&:) — Pli(Di&:)) || S Hﬁé,eHi}nP(N

On the other hand, the third and the fourth terms can be estimated similarly to the estimates

ke ( Lite(Se)
‘||E1,;P(Ai)~ (8.36)

we had in the proof of Lemma 8.2. More precisely, using (8.30), (8.32) and (8.27), for some
constant C' > 0, we have
2msy

1P, X5 (Ploo (§co,e) — €71 < (C\/€+ (p—2)loge

e elzz
2mspCe

< (Ceaver Ty Nicuwls,

27Ss,C,
< pCd p
< (Ceaver e, vt
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By the choice of the value of b (see (7.1)), it is possible to choose e < b such that for e sufficiently

small, we have

€ ~H,i 1
I[De; X&) (Ploo (€oc,e) = €T < gllze- (8.37)
Similarly, by utilizing (8.31) and (8.33), we obtain
m-+m 1
> Pe x§I(PLi(&:) — E7))| < glvlze (8.38)
i=1

for appropriate value of e < b and sufficiently small e.
Therefore, for appropriate value of e and sufficiently small ¢, (8.34)—(8.40) imply the second
bound in (8.26). 0

8.5 Proof of Proposition 7.12

The convergence |h,| — 0 follows from the convergence of the underlying curve and the
continuity of perturbations. The sequence of underlying domains of v,, uniquely determines a
sequence of deformation parameters a,, € Wye and a sequence of gluing parameters €,. Hence
we only consider the difference between v,, and certain sequence of approximate solutions wv. .
Here we abbreviate v. ., by ve,.

For simplicity, we assume that the stable affine vortex v. has only two components, the disk
component Vo, = (Ueo, Goo) and an H-vortex component v = (u, ¢, 1) attached at the origin
of the disk component. The case that v. has more components (including C-vortices) can be
proved in the same way with only more complicated symbol manipulations. We assume that

Zhj& u(z) = 51_% Uoo(2) =20 € L, Zlggo Uoo(2) = Too € L.

8.5.1 Estimates over the Neck Region and Near Infinity

Recall that when constructing the gluing map, we have already fixed certain gauge of v and
VUoo. Then v satisfies the conditions of Lemma 3.4. Let R > 0 be sufficiently big so that u(Cr)

and s (B1/R) are contained in a very small neighborhood of xg. Then we can write
u(z) = exp,, & V2 € Cr;  uso(2) = exp,, &oos V2 € By/p.

The gauge for v,, implies that £, takes value in the horizontal distribution.

For the sequence of gluing parameters ¢, define the neck region N, p = N, pU an r by
Nn,R = Bl/(enR) \ BR, and NniR = Bl/\/en \BR, N:LF’R = Bl/(enR) \Bl/\/en'

We transform v,, on N,, g into temporal gauge, i.e., in the polar coordinates (r,#), the gauge
field a,, of v,, is written as
ap, = Py (r,0)d0, (r,0) € N, g.

Moreover, we require that for all 6, 1), ( \/16

n

,0) = 0. Then the vortex equation in this gauge,

written in terms of cylindrical coordinates (7, 6), reads
87-”71 + '](agun + Xlﬁn) = 07 aswn + e2TILL(Un) = O
Denote temporarily its energy density function as

en(Tv 9) = ‘87—Un(7', 9)|2 + e2T|,u(un(7'7 9))|2
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When R is large, after this gauge transformation w,, is still contained in a small neighborhood
of zg. Then by the annulus lemma (proved as [39, Proposition 45] for C-vortices and as [26,
Proposition A.11] for H-vortices), for all v > 0, one has
(1,0) Smax< Re " ¢
En\7,V) S max >
enR

Here the constant absorbed by < only depends on 7, R, the total energy and the local geometry,

2—y
} , logR <7< —log(e,R). (8.39)

and hence uniform for all large n. The energy density of v, and v decays similarly. Hence for

R sufficiently large, u, (N, r) is contained in a small neighborhood of xg, so we can write

Un|Nn,R = expvm &ns én = (gna s Cn) € Wl)p(Nn,R)~

Lemma 8.3 For any a > 0, there exists R, > R and ny, > 0 such that for n > n,

1€nllE2e (N py) S @

Proof It is not hard to see (via a simple estimate) that it suffices to compare both v, |n,, , and
Ve, |N, r With the covariantly constant gauged map ¢y = (xo,0,0) with higher Sobolev norms

defined using the trivial connection. Since v, |y, , is defined in a straightforward way and it

n,R
is difference from cy is easy to estimate, we only estimate the difference between v,, and cy.
We first estimate the gauge fields a,, = ¥,,df. Let Z, C [log R, —log v/€,] X [0, 7] be a closed
region containing [, 7+ 1] x [0, 7] such that for different values of 7, Z, differs by a translation
in the 7-direction. Let Q2 D Z, be a bigger open set containing Z,. Then given 7y, over {2,

we have
v, +Jvg =0, K+e* 220y (y) = 0.

Applying Lemma A.4 for this pair of sets Z,, C Q,, with e = e~ ™, 0 = ¢?*" 727 we obtain

T T 2 _ 3
liaCun)llzr(z.,) S P lor 2@, + €7 () la2a,) S 02707,

Q)

The last inequality follows from the exponential decay of energy ((8.39)).
On the other hand, by the temporal gauge condition and the vortex equation, we have

TQaTL
(72, 8) — ton(r1, 0 |P—]/ v

—a‘r a‘r 81/)"
|/ o]
p—1 Tn 8’4&
|: —aq'rdT:| / 5 n
T T

e~ aPT1 / (2+a)p7’|‘u( )|pd7’.
T1

Here a > 0 is a small positive number and ¢ = p/(p — 1); the second line uses Holder inequality.
Set 9 = 7, := —log /€, and 1y € [, —k, T, —k+1), k being a positive integer. Then we have

/ |thy (71, 0)|PdO < e~ P(Tn—k) /e(2+a)p7|u(un)|pdrd9
0

'rnfk

S emermh) Z / e () [Pdrde

T™h —1
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k
D D (O]

=1

Tn*i)

k
e~ aP(Tn—k) Z e~ (2—ap—py)(Tn—i)
i=1

< e G, (8.40)

Then the norm of the gauge field 1, df can be estimated as

H%dGHngn(N; )::/ / |1/Jnd9|p[pen(z)]2p72d7d9

/ / [t (1, 0)[PeP=27 drdh

N/ e(P=4+PNT 11
R

< olP—4+pVR

Since p < 4, choosing an appropriate small value of -, for R sufficiently large, the above integral
can be as small as we need. A bound similar to (8.40) can be derived in the same way for 7 = 7,,,
To € [Tn + k,7n + k + 1) using (8.39). We omit the details. Therefore for R and n sufficiently
large, we have

[[¢n

The estimates of derivatives of ,,df can be done similarly. Here we only sketch it. For the

(Nor) SO

T-derivative of ¥, df, we have
V7 (¢Yndf) ®@ dr| = e_27|;¢(un)\.

It has higher order than the above estimate for 1, df itself, so the estimate of the 7-derivative

follows. For the #-derivative, we have

81/1n AT 2T aﬂ(un)
}ae (Tl,e)da‘_e /T h

The second integrand is easy to estimate. For the first integrand dp(uy) - vpn0, by Lemma A.4

Tn

dr <e ™ / e (|dp(un) - vyo| + |p(un)|[ton|)dr

1 1

we know it has one order lower in e™" than |u(u)|. However the factor e~ ™ in front of the
above integral (which comes from |df|) compensates this drop of order so we can derive similar
bound as the case for |1, df)|.

Now we estimate the difference in the matter fields u, and the constant xy. We can write
un(7,0) = exp,, . Recall the definition of the norm || - Hibﬂn (see (7.7)) that

162 0y ~ Nallze o,y + 165022 (x my + V6l

First by the convergence of v,, towards the stable affine vortex, we have convergence

(Nn,R)-

Rli_1>nOo €nlloe (N, r) =0, uniform in n.

Moreover, we know v, ; = EaV &y, Un o = E2VeE, + Xy, (where we use the notations intro-
duced at the beginning of the appendix). Hence

1

1
196l vy~ | [ PPl @ asat] " = | [ o, rer-2raras)
€n n,h Nn,R Nn,R,
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By the energy decay property ((8.39)), one can find Rq so that |[V.&llz» (v, . ) < a for all n.
Using the bound on v, achieved previously, one can also obtain a similar bound for Vy¢&.
Now we turn to the estimate of £¢&, which can be written as Xpr + JXpy. Notice that
|h!| ~ |u(uy,)| whose LP-norm has been estimated. On the other hand, we know that h/, is
comparable to L &,; by Lemma A.1, we have 0. L} &§, = L; V,&,; also V&, is comparable

to vy, and L} V&, is then comparable to du(zg) - Jv, ;. Therefore we have

|07 hy,| = |dp(ao) - Jvp,r

Notice that we have an estimate for the LP-norm of the right hand side by Lemma A.4. Hence

using the same method as estimating v, df, we can ask ||h], — h! (7,,")|

LP(N, p) 35 small as
possible (by increasing R). However, the difference from the case for 1, is that we do not
have hl (7,,-) = 0. Hence we have to estimate the norm of the function h] (7,,-) (which is
independent of the 7 variable).

To estimate the value of b (7,,-), we choose a bounded region Z containing the segment
T = T, in its interior. Recall that the gauge fields a, = ¥,d# is in temporal gauge in N, r
with ¢, (7,,0) = 0; the remaining degree of freedom of gauging wv,, is by using a constant gauge
transformation. Therefore by using a constant gauge transformation we can ask the average of

hl over Z to be zero. Then by the Poincaré inequality and Sobolev embedding, we obtain that

[hpllLee(z) S IV || Lr(2)-

Notice that 0-h], (resp. Oph),) is comparable to du(xo) - vy~ (resp. dp(xo) - vy ) plus terms
which are of even lower order. Then by Lemma A.4 and the energy decay property, for any
v > 0 and a region {2 containing Z in its interior, we have
2 _ 2 _
it 1 (10, 8) S IV lLr(z) S (Ven) 7 (lnlun) [ 22() + €0 on s lliz(0) S (Ven) 77
€[0,m
Notice that the LP-norm over N,, g of the constant (\/en)1+127_7 can be as small as we want.

Hence we can take R, > 0 such that for n sufficiently large, ||hy,[l7r <a O

n,Re )
Notice that in estimating the distance between v,, and v, over the neck region, we do not

compare them directly but only compare with a constant object. Using the same method, we

rs T8
n n

can estimate the distance between v, and v}* = (u ¥r?) near infinity. Here the latter is

the rescaling of v,, by €, which satisfies
Dsuy + Xyrs + J(Opuy” + Xyps) =0, 05by® = 0, + (077, U0°) + €, 2 p(uy,®) = 0.
To carry out the estimate, first we need a uniform energy decay.

Lemma 8.4 For all v > 0, we have

lim sup limsup [2|*77 v, |2 + €, |u(u;?) |P] < +oo.
n— oo Z—r00

This can be proved by utilizing the annulus lemma ([39, Proposition 45] for A = C and
[26, Proposition A.11] for A = H). It implies a uniform C° convergence of u’® — s, near oco.

Lemma 8.5 For any R > 0, up to gauge transformations, u,® converges to u~ uniformly on

Cr. Moreover, the evaluations ev.,(vi®) € L converges to v (Vo).

Therefore, by the same method of proving Lemma 8.3, we have
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/
'’

Lemma 8.6 For any o > 0, there exist R, > 0 and n, such that, for n > nl,, we can write
v, = exp,, &7 and [ z1e (o, ) S @

We omit the proof since it can (;till be checked by straightforward calculations. Recall that
II - Hiéglgn is the auxiliary norm defined in (6.3). Define &, = s:€]° which is an infinitesimal

deformation of v, over Cg/.,. Then exp, &, = v, over Cg/, and by Lemma 6.1,

HERHZ/}T;'VPETL (CR/En) S @
8.5.2 In the Compact Region

Without loss of generality, assume that n, = n,, and R, = R.,. Consider the convergence over
the compact region Bp,, which is part of the domain of v. Since the expression of the norm
[ llz1,, restricted to Bp, has no dependence on €, and is equivalent to the unweighted norm
I| - ||W1’,pn( B, ) using standard elliptic theory, we can show that (up to gauge transformations)

nlggo H&n”ﬂﬁlpﬁn (BRa) =0

On the other hand, we compare v)* with ve, over Q = B\ B X Using the graph
construction (see [9, Appendix A]), we may regard all the perturbed vortices as unperturbed
vortices with target X x C with the Lagrangian L x R. So without loss of generality, assume
that the perturbation term vanishes. We write v,* = exp,, _ £,° where £° = (§,,°,7,°,(},*) and

ay® =nrfds + ¢ °dt. Then Theorem A.11 implies that after suitable gauge transformation,

Hm [)1€57 ey + €, 1655 o) + IVETC o) + o o) + €nll VA= 0l || Lo(a)] = 0.

n—0o0

Rescale back, it implies that the distance between v,, and v over £ converges to zero. This

finishes the proof of Proposition 7.12.

Appendix
A Technical Results about Vortices and Adiabatic Limits
A.1 Derivatives of the Exponential Map

One uses the exponential map to compare nonlinear objects and uses derivatives of the exponen-
tial map to compare derivatives. Many discussions below are identical to part of [9, Appendix
CJ.

Let M be a Riemannian manifold. For v € T, M and 4,j € {1,2} there are linear maps

Ei(xz,v) : ToM — Toxp, oM,  Eij(x,v) : ToM © ToM — Toxp, oM
defined by the following identities

dexp, v = Eyi(z,v)dx + Ez(z,v)Vu,

VE(z,v)w = E11(z,v)(w,dz) + E2(x,v)(w, Vv) + Ei(z,v)Vw,

VEs(z,v)w = FEa(z,v)(w,dz) + Ey(x,v)(w, Vv) + Ey(z,v)Vw.

To save space, we often omit the variables (z,v) of E; or E;;.
Now let M = X and let g be a K-invariant Riemannian metric. Let V be the Levi—-Civita

connection of g. By the K-invariance of the metric, one has

X, (exp, &) = Er(x, )X, (z) + Ex(x,§)VeX,, VeeX, (el X, net.
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To continue, define (recall) the following notations.

e Abbreviate the map n — X, (z) by L, and its dual L} (§) = du(z) - JE.
e Denote X* = {z € X |ker L, = {0}}.

e Define a 2-form p € Q*(X,£) by (p(&1,&2),n) = (Ve, Xy, &2).

o Let v = (u,$,9) : R = X x £ x £ be a smooth map. Denote

a=¢ds+pdt, vs=0u+ Xy, v =0u+Xy.
Moreover, for £ € T'(u*TX) and 7 : R? — £, define

v‘;f:vsg""vfxtﬁv V?fzvtf+V§X¢-
Vin=0sn+[p,n], Vin=0m+ [, n).

Then V* induces a covariant derivative along u of all tensor fields. Moreover, it is easy to
see that if T' is a K-invariant tensor field, we have

VT =V, T, VT =V,,T.

In particular, we can obtain the following useful formula.

Lemma A.1 ([9, Lemma C.2], [8]) Forn:R? — ¢ & € I(u*TX), one has

(Ve Lul() = Ve, Xn(u),  [V5), LiJ(€) = pvee,€). (A1)

Let X* C X be the open subset consisting of € X for which a — X,(z) is injective. So
we have the distribution Hyx C TX|x~ which is defined to be the hx-orthogonal complement
of Kx ®JKx. Let Q C H be an open subset and let ug : Q — X* be a C'-map. Then ug pulls
back a connection form ag = ¢ods + 1odt in such a way that if we denote by vy = (uo, ¢o, o),
then

v07s:85u0+X¢0€HX€BJKX, Uo7t:atu0+X¢0€Hx@JKx.

Suppose & € I'(Q2,usTX) and denote u = exp,, &o; 10, Co : & — € and denote ¢ = ¢o + 70,
¥ = 1)y + (o and denote a = ¢ds + dt.

Lemma A.2 ([9, Lemma C.3])

Xy, () = vy — Eq(uo, §o)vo,s — E2(ug, &) V5&o,
Xey = ve — Ei(ug, &o)vo,e — Eauo, &) V*E.

Lemma A.3 (]9, Lemma C.5]) Suppose Ly, = 0, then

L,Viny = Vivs + Va, Xey — Vo, Xy — Vo Xy — E11(v0,5,v0,t) — Er2(vo,s, Vi°&0)
— E51(V5°&o,v0,1) — E22(V5°&0, Vi®&o) — E1V{ vos — EoV{°V{&;
L,Nino = Vivs + Va, Xy — 2V, Xy, — E11(vos, vo,s) — E12(vo,s, V5°&o)

— E51(V5°o,v0,5) — B2 (V§°60, Vi) — E1VE°v s — EaVEOVE0&.
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A.2 A Priori Estimates
Let 2 C H be an open subset and let o : Q@ — (0, 400) be a smooth function which is bounded

from below and from above, and which has bounded derivatives in every order. For any gauged
map v = (u, ¢, 1) from Q to X, denote

Vs =0su+ Xy, v, =0u+ Xy, k=09 — 0+ [p,].
Let € > 0 be a (small) constant. Consider the local form of the perturbed vortex equation
ve+Ju =0, k+e Zou(u)=0, u(dQ)cC L. (A.2)

Let M(Q, € 20; X, L) be the set of smooth solutions to (A.2). On the other hand, let M(Q, 00;
X, L) be the set of solutions to

ve+Jv, =0, pu)=0, u(0Q)C L.

For each M > 0, define

Uy = {xeX*

ylol < 1), va e,

Lemma A.4 (cf. [9, Lemma 9.3]) Assume 2 < p < co. For any M > 0 and any compact
subset Z C S, there exist c(M,, Z) > 0 and (M) (both of which also depend on o) that satisfy
the following condition. Suppose € € (0,e(M)] and v is a solution to (A.2) over Q such that
uw(Q) C Uns and

sup [1o.(2)] + vole) uu(:))l| < o (A.3)

ZEQN
Then

1 a a
Ne@llzez) +lldu(u) - vslle(z) + lldn(w) - Jsllo(z) + el Vivs|Lez) + €l VivslLr(z)
2 —
< o(M, 2, 2)é (ol @) + ) 2] (A.4)
Remark A.5 Lemma A.4 was proved as [9, Lemma 9.3] for Q with empty boundary. The
proof in the case that 9Q # () is essentially the same. However, in order to use reflection

across the boundary, one has to use a (J, L, u)-admissible metric and the associated Levi-Civita

connection, instead of any K-invariant metric and its Levi—Civita connection.

A.3 Projection to u~*(0)

Now suppose one has a gauged map v from € to X with supg, |u(u)| being sufficiently small
with image having compact closure. So its image is contained in Uy, for some M. Then there

is a unique function h : 2 — £ such that
plexp, JX,) = 0.

Define v’ = exp,, JX, and v' = (v/,a’) where o/ = ¢'ds + 1’dt is the connection pulled back by
u’. Then it is easy to see that for all Z C Q,

X Lr(zy S ()|l Le(z)- (A.5)
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Lemma A.6 Under the hypothesis of Lemma A.4, by possibly decreasing e(M) and increasing
c(M,Q,7Z), one has

VT X) e (2) < (M, Q, Z)[||p(u)l| Lo (2) + ldp(u) - vs| Lo (z) + | dp(u) - vell Lo 2)]-
Proof Denote n'ds + ('dt = a — a’. Then by Lemma A.2, along «’ one has
Xy + v, — By (v,) — BaV(JX,) = Xor + 0] — By(vy) — BoVE(JX,) =0, (A6)
Since v’ is contained in x~1(0), applying du(u’) to the above identities gives
du(u') - EoVE(JXy) = —du(u') - E1(vs), dup(u') - EoVE(JX,) = —du(u') - E1(vy).
By the smoothness of dyu, one has

[da(u) - BaV(TX) — dpa(u) - VEIA)| S T 2]1V2(T)].
da(e) - By (v,) = da(u) - vg| £ 12|

Therefore,
IVETXn| S ldp(u) - VETXn] + [vs || X
S ldu(w) - Ex(VETX)| + [T X[ VST X | + [s][J Xy
,S |d:u(u/) ’ El(vs)| + |JX}LHVZJX}L| + ‘JXhH'vs‘
S ldp(u) - o] + [ JX|[VET X | + | X |vs]-
Therefore if the € in (A.3) is sufficiently small, which implies |JA},| is sufficiently small, one has
VS| S ldp(w) - vs| + |vs||J X (A7)

Then by the bound on |v,| given by (A.3) and (A.5),

V(T X Lo (z) S Vsl @)l I XnllLr(z) + ldp(w) - sl Lo (2)
S ()l ez + lldp(u) - vs||Le(z)-

The bound of V§(JA}) can be proved similarly. O
In the rest of this appendix, the values of C'(M,€, Z) will be modified to satisfy various

estimates without mentioning.

The gauged map v’ is nearly holomorphic and one needs to estimate its failure.

Corollary A.7 Under the hypothesis of Lemma A.4, one has
106 + Jville(z) S ln(Wllnez) + ldp(u) - vsll Lo z) + ldu(u) - vell e z)-
Proof Since v} and v; are contained in Hy, (A.6) implies that

’U; + J’Ué = PH[El(’US) + EQ(VZJXh) + JEl(’Ut) + JEQ(V?JX}L)]
= Py[(JE1 — E1J)(v) + Eo(VeIXy,) + JE2(VET X))
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Since JE; — E1J is bounded by a multiple of |JX}|, one has

v + Jvgllor ey S 1T XL iy 1vel| Lo (1) + IVET X e () + IVET X0 e (k)
S ) ze ey + lldp - vsl Loy + ldp(u) - vel| Lo ()

This finishes the proof. O
We also need to estimate the difference between the gauge fields in v and v'.

Lemma A.8 (Recall that n'ds + ¢'dt = a —a’) one has
17 | Loz) + 1¢ o2y < CM,Q, Z)er [0 20y + € l1(w) [ 12(@)-
Proof  Since v}, is contained in Hx, so L*, v, = 0. Apply L*, to (A.6G), one obtains
Ly = Ly By (v,) + Loy EaV(J ). (A8)
Since ' — L, X, is invertible, and Ey, Ey are nearly the identity, one has

0] S L By(v,)| + Ly Bo Ve ()
S Lol + [T [0, + | LLVA(TX0)] + [T [V S | Lo, + ()| + V2T .

Therefore by Lemma A.4 and Lemma A.6, one has
17 llLe(zy < lldp(u) - JvsllLoz) + @) llLecz) + IVE(T )| Lr(2)

S lldp(u) - Josl| ey + [|1(wW)ll Lo (z) + [[dp(u) - vs| e (z)

Ser[||lvsllrzo) + € () L2 o).

Similarly, one can derive the estimate for ('

We also have to estimate the first order derivatives of 1’ and (’.

Lemma A.9 One has
lllVenllrz) + IVEC | Lr ()] < c(M,Q,Z)ei llvsllz2() + 571”#(“)”L2(Q)]'
Proof  Apply du(u') to (A.6), one has
dp(w') - B (vs) + dp(u’) - E2(V5J &) = 0.
Then applying V¢ to the above equation, by Lemma A.1, one obtains

0= VoL, JE (v,) + VLY, (J B2 (VeI X))
= L [VUTEy(v,)) + VT By (VI + p(0st + Xy, JEy (vs) + JER(VEI X))
= L} [JE; (Vo,) + O (vs, v5) + Do (s, VEIAY)]
+ L5 [TE(VOVATX,) + Uy (v, VETX,) + Uy (VT X, VETX,)]
+ p(0st + Xy, JE1(v,) + JE5(VOT X)),
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Here &, P5, ¥y, U5 are tensors that are uniformly bounded, which come from derivatives of
JE, and JE,. Using the facts that Ej is very close to the identity, that |vs|, |0su’ + X,|, and
|[V2JAX,,| are bounded, one has

IVEVeTXnllLe(z) S IVEIXnllLe(2) + 1VsllLe(z) + IVEs | Lo (2)- (A.9)
Then apply V2L¥, to (A.6), one has
VUL Xy = VeL;, Ey(vs) + VIL: EVE(JAy).
Using Lemma A.1 again, one has
VX, — VEE (vs) — V2EVEIX,] = plOsu’ + Xy, Xy — E1(vs) — EoVEJA]. (A10)
We know that ViX,, = L (V1) + Vo,wix,Xy and LY, L, is an isomorphism. Therefore,
IVen' Lo zy S 1Ly Ve Lo (z) + IV o,w+x, Xl Lr(2)
SIL VX llr(zy + 10su” + Xgll Lo 0] Lo (2)
S Nvsllizez) + IVEvslliLez) + [ Xl Le(2) + [[VET X
+ IVEVET Xl Lo (z) + 17 v (2)
S lvsllzez) + IVevsllorz) + 1T X0l Le(z) + IVET Xl e 2y + 110 | e (2)
2— —
S e Mllvsll 2o + € Hlnw) |22 @)-

Here in deriving the third inequality we used (A.10) and in deriving the fourth inequality we
used (A.9). In deriving the last inequality, we used the fact that |vs| is uniformly bounded,
Lemma A.4, (A.5), Lemma A.6 and Lemma A.8. Similarly we can derive the estimate for V(.

Below is another necessary estimate.

Lemma A.10 We have
2— J—
||Va”§||Lv(K) + ||VG'UQHLP(K) Ser 1[||Us||L2(Q) +e€ IHN(U)HLQ(Q)]'
Proof We only prove one bound. Apply V¢ to (A.6), one has
VZ’U; = 7V§Xn/ -+ E1(V§’US) + EQ(V?VZJX}L) -+ <I>1(vs,'vs) + CI)Q(’US, VZJX}L),

where @1, ®, are K-invariant tensors that are uniformly bounded. This allows us to prove the

desired estimate on V%!, from previous results. O

A4 Convergence

Let 2 C H be an open subset. Let ¢, be a sequence of positive numbers converging to zero.
Let z, = s, +it, : Q@ — H be a sequence of smooth maps that are diffeomorphisms onto their
images, that converging uniformly with all derivatives to the identity map. z, then pulls back
a sequence of complex structures j, and a sequence of volume forms ds,, A dt,, on §2. Consider

a sequence of gauged maps v,, = (un, ¢n, ¥y,) from Q to X that solve the equation

1
vn,sn + J'Un,t71 - 0, Rn + 2 M(Un) = 0. (All)
€n
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Here Ky, = Os, Vn — O, On + [Py ¥n]- Let Voo = (Uso, Poo, Yoo) be a gauged map from  to X
with image contained in p~1(0) that projects down to a holomorphic map with respect to the
standard complex structure on 2. We would like to prove the following theorem.

Theorem A.11 Suppose u,, converges to u~, uniformly on all compact subsets of Q (a priori
no condition on the convergence of the gauge fields). Then there exists ng > 1 such that for
all m > ng, we can gauge transform v, to a sequence of vortices (which we still denoted by vy,)
such that, if we denote

Un = €XPy &, &= (& am),

then for any compact subset Z C 2,
; oo - G oo ¢G —
Jim [[jen || e (2) +€nlIV* anll oz FIET ILre2) + €0 165 1 Lo () H V<X Nl Lo(2)] = 0. (A12)

Here we only present the proof in the special case that z, = z. In the general case the
convergence z, — z allows us to extend the proof.

To start, we first gauge transform wv,, to satisfy the following pointwise gauge-fixing condi-
tion. Let v/, = (ul,,al,) be the projection of v, onto ~1(0). Namely, there are h,, : Cr — €
such that u], = exp,, JX}, is contained in p~*(0) and aj, is pulled back by u/,. The gauge-fixing
condition is that if we write u;, = exp,__ &, then

f;; S U,ZOH)(.

This is the gauge that allows us to have the estimate in Theorem A.11. To prove it, we compare
v, with v, and compare v], with v, separately.

Denote o, = a, — a,, = n,ds + ¢/, dt. Then by Lemma A.8 and Lemma A.9, one has

. a 2 p—
tim sup{af | o 2) + €nl| V" @ o 2)) < elen)? o sz + e llun) 2] (A13)
1—> 00

By the uniform bound on energy, the right hand side of (A.13) converges to zero. Similarly, by
(A4), (A.5) and Lemma A.6, one has

2
en 120, || oz) + 1V T, Lo (@) < ()7 (A.14)

Hence the distance between v,, and v}, w.r.t. the norm in (A.12) (defined using V= instead of
V@) converges to zero.

Lemma A.12 For any compact subset Z C Q, ||da: v}, || 1o (z) is uniformly bounded.

n N

Proof By the uniform convergence v,, — v we know that ||dg, v, (z) is uniformly bound-
ed (otherwise there will be bubbling). (A.7) implies that ||V J&},, |1 (z) is uniformly bound-
ed. Then by applying Lemma A.2 for vy = v,,, v = v, one obtains

— Xy = v;’s — By (un, —J X, )On.s — Eo(un, —J X, )VI" X, ;
— Xg] = ’U;L’t — El(un, 7Jth)’Un7t — Eg(un, —Jth)V?“ Jth.

Since v, , and vy, ; are in Hy @ JKx, their sizes are controlled by those of v,, ; and V¢~ J&}, |
both of which are finite.
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Now we estimate the distance between v;, and v.. Recall u;, = exp,,__ &,,. Denote

1"

al =nllds + /dt = a), — aoo-

Since v,, converges to v, uniformly on compact subsets, so does v/,. First, we have the decay

of WhP-norm of &/ shown as follows.

Lemma A.13 One has
Y (1€ o (z) + V=€ Lo(z)] = 0. (A.15)

Proof & |lLr(zy — O follows from the convergence v, towards v... The estimate for
[Ve<&|| 1r(z) basically follows from Corollary A.7 and elliptic estimate for 0 operator. More
precisely, by Lemma A.2, one has

r oo ¢ r Qoo ¢!
vn,s - E1v0075 + Estoogn + X”];h vn,t - Elvooﬂf + E2vtm§n + XC;{
Hence

v+ ‘]v;z,t = El'voo,s + JEl'vooﬂg + EgV‘;‘”SZ + JEQV?oon + XU;{ + JXQ/{

Notice that v;, ; and v}, ;, are both in Hx. Then projecting on to Hx, one obtains®
V), o+ JU, ; = PuE1Voo s + PuJE1Voo y + PuEaVi=¢) + PuJEVi=E,
= PH(JEl - Elj)voo,t + Df,::

Here the first term above is bounded pointwise by a multiple of |£||vec|; D is a Cauchy—
Riemann type operator whose zero order term is uniformly bounded. Therefore, by the elliptic
estimate for d-operators, using Corollary A.7 and Lemma A.4, for certain precompact open

subset Z' C Q containing Z, one has

limsup V<& || 1s(z) < limsup [|€[| e (z7) + limsup | D& || o (21)
n— 00 n— 00 n— o0

S limsup [|vg, ; + Jop 4| Loz + limsup [|[€7|[veo ¢

2oz
n— 00 n—oo
S lim sup(flu(un)llzo(z) + I dp(un) - vn sllezr) + lldp(un) - vntllzezy) = 0.
This finishes the proof of (A.15).
Lemma A.14 One has
1im [0l oz + eall V=0 lLn(z)] = 0. (A.16)

Proof Since al, and ao are pulled back from the canonical connection by u!, and u,, and

uy, = exp,, &, also using Lemma A.13, one has

Jim Jorllzez) S lm (1§01 e (2) + V<&l e (2)] = 0. (A.17)

5) If it is not in the special case that z, = z, then there will be an extra term below. But that term can still be

controlled.
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For the derivatives, we only estimate ||[V{=,||»(z). The case for other components can be
done similarly, by utilizing Lemma A.3. Apply Lemma A.3 to vg = Voo, v = v),. Then one has

IV~ mlloz) S llase = apll Il oz + 195

< ez z)llmmllor 2y + HLuw ez

T
Sllanllnoe 2y lmmllLecz) + HV "oy, ez + 16 L 2y 1l 2)
+ llan |l o (2)ldac Voo ll Lo (2) + | da ool oo (2) | dac tioo | Lo (2)
+ |da ool Lo (2) IV & L Lr(2) + V=&l L IVe=Enll e (2)
+ [V da veollLr(z) + 1 L3, Vi< Ve<&nllLe(2)-

We would like to show that the right hand side converges to zero after multiplying €, . Indeed,
Lemma A.12 shows that ||da; v || (z) is uniformly bounded (u.d. for short). Recall that u;,
projects to a map ], : 2 — X, whose derivative is the projection of d], v},. Hence ||V, || 1o (z)
is u.d.. Since u;, = exp,, & with & being in the horizontal distribution, we know that both
V@& || Lo (z) and ||V, || oo (2 is u.d.. Hence it implies that the gauge fields of v], are u.d..
Hence all L*°-norms appeared in the last long inequality are u.d.. It remains to bound all the
LP-norms that depend on n in the same inequality.

(a) By Lemma A.10 [Vy0, [lo(z) S (€a)/7".

(b) The bound on ||n;, || »(z) has been given in (A.17). The bound on |[V*>{]|| 1»(z) follows
from the bound on its L*°-norm.

(c) Since L;_ ¢, =0, by Lemma A.1, we have

Ly Vi=Ve=E = Vi~ (L, V&) — p(Voot, Vi= &) = —Vi~ p(Voo,s, &) — p(Voo,t, Vi< &)

A bound of this term follows easily from the bounds achieved previously.

In summary, lim;_,o €,||V§=n,||Lr(z) = 0. This finishes the proof of this lemma. O

Now we consider the distance between v, and v.. By (A.13) and Lemma A.14, we know
that |la, — aoo||Lr(2) converges to zero. Hence the W'P-norms defined by Ve and V%< are
equivalent. Hence (A.13) and Lemma A.14 imply that

lim [[|a, — Goo |l Lr(z) + €n ||V (an — o)l 1r(2)] = 0. (A.18)

n—oo

On the other hand, we write
Up = €xp,  &n = —exp, JXp, = — €XPexp, €/ JX,, .

Because of the nonlinearity of the exponential map, &, # & — JX},,. However, we can define
a smooth family of function ®, : Hx , () ® € — Ty ()X by

fn(z) - EZ(Z) + J A, (uoo(z)) = @Z(fil'(z), hn(z))
Moreover, we know that

|2 (60 (2), hn(2))] S 1€7(2) [ (2)]
[V @2 (60(2), hn(2))| S ldan o |[€0] 1 (2)] + [V € (2) || (2)] + [€0 ][V hn (2)].
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Roughly speaking, the discrepancy ®, is “small”. This allows the estimate that

lim || P g = lim [e 1| Paénll 7, oo Pt || =0.
Hm ([ Préallganzy =0, lim e, |Podall 2oz + IV Potall oz)) = 0

This finishes the proof of Theorem A.11.
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