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Abstract

In recent years, the field of crowd simulation has experienced significant advancements, attributed in part to the improvement
of hardware performance, coupled with a notable emphasis on agent-based characteristics. Agent-based simulations stand
out as the preferred methodology when researchers seek to model agents with unique behavioral traits and purpose-driven
actions, a crucial aspect for simulating diverse and realistic crowd movements. This survey adopts a systematic approach,
meticulously delving into the array of factors vital for simulating a heterogeneous microscopic crowd. The emphasis is placed
on scrutinizing low-level behavioral details and individual features of virtual agents to capture a nuanced understanding of
their interactions. The survey is based on studies published in reputable peer-reviewed journals and conferences. The primary
aim of this survey is to present the diverse advancements in the realm of agent-based crowd simulations, with a specific
emphasis on the various aspects of agent behavior that researchers take into account when developing crowd simulation
models. Additionally, the survey suggests future research directions with the objective of developing new applications that
focus on achieving more realistic and efficient crowd simulations.

Keywords Crowd simulation - Autonomous agents - Psychological models - Microscopic models - Multi-agent simulation

1 Introduction

Crowd simulation or modeling has attracted significant atten-
tion in recent years due to its potential broad applications.
Crowd simulations are integral in diverse contexts such as
entertainment, training simulations, and evacuation scenar-
ios, playing a pivotal role in each. As computer technology
advances, the exploration and control of human behavior
have become prominent areas of study. Investigating how
to simulate lifelike individuals holds immense significance
for improving the authenticity of visual effects, elevating the
immersion in virtual reality, and refining the rationale behind
urban planning and the efficiency of emergency evacuation.
Despite considerable progress and rapid development in this
field, numerous challenges persist, impeding the attainment
of realism in crowd simulation.

Modeling a heterogeneous crowd is intricate, involving
the interplay of various factors that encapsulate a range of
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psychological, physiological, emotional, and environmental
aspects, making individual behavior intricate in diverse situ-
ations. Researchers have initiated efforts to incorporate these
factors into crowd simulation, thereby elevating the authen-
ticity of agent behavior in simulated crowds.

This survey thoroughly delves into various factors exam-
ined by researchers, intending to model microscopic crowd
models that scrutinize low-level behavioral details and
individual features of virtual agents. Consequently, macro-
scopic crowd simulations that focus on agent path planning
and collision avoidance with a particle like treatment, as
well as mesoscopic/hybrid crowd simulations that combine
both microscopic and macroscopic aspects, are intentionally
excluded from the scope of this survey. Therefore, the tar-
get audience for this survey paper consists of researchers
and practitioners interested in microscopic crowd simula-
tion. Itaims to highlight diverse advancements in agent-based
crowd simulations, particularly emphasizing various aspects
of agent behavior that researchers consider when developing
crowd simulation models.

We formulated following research questions to systemat-
ically delineate the factors influencing virtual crowd sim-
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ulation and identify existing gaps in agent-based crowd
simulation research.

— Whatkey factors do researchers prioritize when engaging
in the simulation of virtual crowds?

— In the realm of agent-based crowd simulation, what are
the present voids or inadequacies in the existing body of
research?

2 Related works/surveys

In the field of crowd simulation, various surveys have
emerged, with some concentrating on both macroscopic and
microscopic models [73, 112, 117, 119], while others pre-
dominantly delve into microscopic simulations where agents
are attributed with specific properties [106, 117]. Certain
studies seek to amalgamate both approaches, giving rise
to surveys focused on mesoscopic or hybrid models [46].
However, a notable observation is that most of these mod-
els fall short in implementing complex social, physical, and
psychological behaviors at the individual level. The survey
conducted by Lemonari et al. [57] categorizes crowd sim-
ulation components based on factors such as emotion and
environment. Yet, it primarily focuses on simulation author-
ing and control rather than exploring broader aspects of
crowd behavior modeling. Other surveys [53] predominantly
concentrate on reinforcement learning approaches for sim-
ulating virtual crowds, with minimal discussion on various
aspects of agent behavior. Primarily, they center on navi-
gation issues, overlooking a broader range of elements that
shape crowd dynamics. Nevertheless, only a limited number
of surveys specifically address crowd simulations, where the
emphasis is placed on modeling agent behavior grounded in
the traits of virtual agents and their interactions with the envi-
ronment. This section aims to discuss some of the previous
works on agent behavior modeling.

In the survey conducted by Yang et al. [117], the authors
delved into both macroscopic and microscopic crowd simula-
tion models. Notably, they dedicate a subsection to discussing
some personality models and emotion contagion theories
related to agent behavior. While this survey highlights rele-
vant research papers, its scope is confined to those involving
personality and emotional contagion models. However, it is
crucial to recognize that agent behavior can be influenced by a
myriad of factors beyond personality and emotion, including
jobrole transitions, social dynamics, environmental changes,
geometric constraints, and agent physiology. Likewise, there
are few surveys that focus on specific factors of agent-based
crowd simulations such as environmental factors (evacua-
tion, etc.) [21, 96] and emotion contagion [104]. In [75], there
is discussion of a limited number of features characterizing
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crowd simulation systems, albeit with a notable absence of
in-depth exploration on the subject.

Our survey aims to thoroughly explore the influential
factors that shape the behavior of virtual agents, thereby influ-
encing the modeling of crowd simulation. While the list of
influencing factors is extensive, we focus our discussion on
factors that are more popular and commonly incorporated in
numerous existing research studies.

3 Materials and methods
3.1 Identification of relevant studies

We systematically collected research work from reputable
sources, including Scopus, Google Scholar, IEEE, and ACM,
utilizing the following queries: (1) crowd simulation, (2)
virtual crowd, (3) agent-based crowd. The concluding lit-
erature search was conducted on January 25, 2024. We have
meticulously filtered studies, specifically incorporating those
that elucidate methods for simulating crowds, encompassing
aspects such as navigation, personality, emotion, and other
simulation factors.

3.2 Inclusion criteria

We established specific inclusion criteria for the studies con-
sidered in this review. These criteria include: (1) publication
in a journal, conference proceedings, or dissertation, (2) full
presentation in the English language, and (3) explicit men-
tion of at least one of the factors outlined in the survey (e.g.,
navigation policy, personality and emotion, environmen-
tal factors (evacuation and constraints), perceived emotion,
group dynamics, physiology, goals, and roles and needs).

3.3 Literature compilation

The selection process followed a structured method. Initially,
a pre-selection was conducted by carefully examining the
title and abstract of each paper. Studies were excluded if it
was evident that they did not present an agent-based model
or did not specify any factors listed in the survey (criterion
3).

3.4 Results

Following the search process, we identified 383 different
articles. Subsequently, after applying the criteria detailed in
Sect.3.2, 107 articles are finally considered for the survey.
As a result, the review covers 27.9 percent of studies that
adhere to the specified criteria. Most of the rejections were
made according to the criteria outlined in criteria 3 of 3.2.
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Fig. 2 The diagram illustrates a structured workflow for crowd sim-
ulations, where situational parameters such as evacuation and goals
inform a locomotion model (SFM, rule-based, etc.). This model is then
enhanced by incorporating personality and emotion contagion models
such as OCEAN, PEN, BDI, and SIS. The final model then produces
crowd simulations that integrate all these dimensions

4 Factors affecting agent behavior

Populations and crowds inherently demonstrate non-uniform
behavior, given the diverse characteristics of individuals
within them. This variability in behavior stems from a mul-
titude of factors. While the array of influencing factors can
be extensive, our focus is specifically on those that wield a
substantial impact on agent behavior and enjoy popularity
within the research community.

This section aims to elucidate these influential factors.
Figure 1 provides a visual representation to illustrate the
diverse factors that exert influence on agent behavior. More-
over, the approach outlined in Fig.2 exemplifies a typical
methodology employed by crowd simulation systems.

4.1 Locomotion policies

Locomotion policies play an important role in shaping the
behavior of agents in crowd simulations. Most of the research
works incorporate at least one type of locomotion policy,
often coupled with a few behavioral factors detailed in sub-
sequent sections. Reynolds introduced the pioneering crowd
simulation system, “Boids,” in 1987 as an artificial life
project aimed at replicating the flocking behavior observed in
birds [87]. In this system, agents (boids) possess the ability to
perceive and individually react to the environment and other
entities within the simulation. Subsequent years have wit-
nessed substantial endeavors focused on improving various
facets of crowd simulation, including enhancements in path
planning, collision avoidance, and navigation within expan-
sive virtual environments.

Despite the multitude of locomotion models developed in
current research, the well-known crowd simulation path plan-
ning typically falls into three traditional categories: social
force models, rule-based models, and cellular automata (CA)
models. These techniques are often classified as microscopic
models, where individuals are considered discrete objects
whose motions are influenced by their neighbors and obsta-
cles. In this survey, our focus is on understanding agent
behavior and the factors that influence these behaviors. Con-
sequently, we exclusively delve into microscopic models.
Table 1 presents an expanded categorization of locomotion
models.

Numerous crowd simulation methods can find their roots
in the empirical social forces model by Helbing and Molnar
[43]. This model employs repulsion and tangential forces
to represent interactions between individuals and obstacles,
resulting in realistic “pushing” behaviors and variable flow
rates. Helbing et al. [42] later used this model to investi-
gate panic and jamming caused by uncoordinated motion in
crowds, specifically considering the influence of psycholog-
ical and physical forces on crowd behavior. The social forces
model remains the most popular navigation model to date;
many researchers use or extend it for their research studies.

On the other hand, rule-based models, exemplified by
Reynolds’ pioneering boids system [87, 88], were initially
developed to simulate animal behavior, such as flocks, herds,
and schools of fish. Each “boid” in this model adheres
to behavioral rules that encompass separation, alignment,
and cohesion. While widely acknowledged for its simplic-
ity, researchers have made efforts to enhance the original
Reynolds model. In the original framework, cohesion and
separation serve as complementary steers. However, Hart-
man and Benes [40] improved the model by introducing
a complementary force for alignment, allowing for leader-
ship dynamics to change. This additional steer determines
the likelihood of a boid becoming a leader and attempt-
ing to escape. Furthermore, Silva et al. [94] introduced a
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Table 1 Overview of factors, their types, and corresponding studies. Note that some studies consider more than one factors

Factor Factor categories References
Locomotion method Social Force [15, 16, 18, 29, 39, 42, 43, 51, 54, 59, 76, 80, 81, 109, 121]
Rule-based [31, 44,61, 62, 82, 87, 88]

Cellular Automata
Velocity-based
Vision-based
Others
OCEAN

PEN

occC
ASCRIBE
ESCAPES
PAD

BDI

SIS-based

Natural disaster

Personality and emotion

Environmental factors
Human induced/Artificial disasters
Way-finding
Evacuation constraints
Perceived emotion Fear/panic
Anger/grievance
Positive/negative
Appraisal theory
Social Dynamics Leader-follower
Grouping behavior
Pandemic
Other group dynamics
Roles and needs Job roles
Social roles

Physiology Strength, gender, age, etc.

[18,22, 34, 49, 64, 67, 100, 111, 120]
[37,38, 62,99, 101, 114, 118]

[28, 45, 63,70, 77]

[71,72,76, 116]

[18,25-27, 50, 62, 66-68, 111, 113]
[30, 38, 99]

[25-27, 67, 84]

[13, 14, 68]

[14, 102]

[25, 69]

[24, 93, 99]

[11, 34, 62,66, 67,111, 121]

[44, 61, 62, 108]

[44, 67, 86, 93, 115]

[83, 84]

[15, 16, 37, 39, 42, 80-82, 107]

[27, 42,47, 67, 80-82, 86, 89, 102, 114, 115, 120]
[31, 35, 44]

[31, 115]

[5, 36, 85]

[4, 40, 44, 52, 64, 68, 83-85, 102]
[15,17,47,51, 64, 87, 88, 120]
[3,19, 59]

[65, 102]

[60, 92, 95]

[41, 60, 74, 83, 92, 98]

[70, 84, 113, 118]

methodology aimed at incorporating parallelism to enhance
the performance of Reynold’s Boids model, facilitating the
simulation of very large groups.

Cellular automata models, exemplified by these works
[22, 49, 100], are well known for their efficiency and
straightforward implementation. These models operate by
discretizing the floor space, allowing individuals to move
only when the adjacent cell is unoccupied. To incorpo-
rate higher-level behaviors such as collision avoidance, the
paths toward high-level goals can be precomputed and stored
within the 2D grid, as demonstrated in [64].

Certainresearch works [37, 38,62, 101, 114, 118] leverage
geometric formulations grounded in velocity-based mod-
els such as velocity obstacle (VO) [33], reciprocal velocity
obstacle (RVO) [9], optimal reciprocal collision avoidance
(ORCA) [103], and hybrid reciprocal velocity Obstacle
(HRVO) [97], to simulate local collision avoidance behavior,
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considering neighbor information to make optimal decisions
and generate emergent crowd phenomena.

Recent research works [56, 79] highlighted the significant
potential of reinforcement learning-based models for crowd
simulations. Additionally, data-driven approaches combined
with ML algorithms [20] have been utilized to create vir-
tual crowds that closely mimic realistic human behavior.
However, while these models adeptly address navigational
challenges, they fall short in integrating the nuanced aspects
of behavior such as personality, psychology, and environ-
mental factors. Hence, our survey does not delve deeply into
machine learning contributions within this context.

Other locomotion approaches involve strategies such as
the lattice gas model [71, 72], fuzzy-logic-based models
[76], vision-based models [28, 45, 63, 70, 77], and game
theory models [116]. Fuzzy logic, in particular, provides a
suitable framework for integrating imprecision and subjec-
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tive elements inherent in environmental perception into the
perceptual action model. Vision-based models, on the other
hand, enable collision avoidance strategies using visual stim-
uli, as demonstrated in this work [77].

This section underscores the critical importance of loco-
motion policies in crowd simulation, detailing traditional
methods like social forces and rule-based models, as well
as modern approaches including vision-based algorithms.

4.2 Personality and emotion

The autonomous and multi-agent system community has
been dedicated to placing considerable attention on the
modeling of personality, defined as an exclusive combina-
tion of behavioral, emotional, temperamental, and mental
characteristics that distinguish individuals from each other.
The incorporation of these aspects of individual differences
is intended to enhance the authenticity of characters by
introducing natural variations in behavior. This, in turn,
contributes to the overall diversity of behaviors within the
simulated crowd as modeled by some studies [51, 83, 84].

The OCEAN personality model [110] and the PEN model
[30] have gained good acceptance from the research com-
munity to represent personality traits of individuals. The
OCEAN model, also known as the Big Five personality traits,
includes Openness, Conscientiousness, Extraversion, Agree-
ableness, and Neuroticism, to represent certain dimensions
of personality. On the other hand, the PEN model [30] con-
tains three major factors which categorize personality into
Psychoticism, Extraversion, and Neuroticism. People with
different personality traits may perceive and react to crowds
in various ways.

While personality is undeniably important, it alone may
not be sufficient to determine emergent behavior in specific
scenarios. Therefore, some researchers [26, 27], introduced
emotion components by leveraging social theories like OCC
(Ortony, Clore, and Collins) [78]. The model delineates
approximately 22 emotion categories and comprises five
essential processes that define the complete system govern-
ing the behavior of characters from the initial categorization
of an event to the resulting behavior. As an example, the
study conducted by Durupinar et al. [27] integrates a per-
sonality model grounded in the Ocean model [110] and an
emotion model based on OCC [78] to augment the HIDAC
(High-Density Autonomous Crowds) system [82]. Moreover,
researchers developed personality-to-behavior modeling to
establish parameters for behaviors such as leadership, com-
munication proficiency, panic level, pushing, walking speed,
and the ability to explore the environment. They used
various psychology-based models such as Pleasure-Arousal-
Dominance (PAD) [69] to establish consistent mappings to
OCC emotions [78] and OCEAN [110] personality traits
and to model decision-making aspects such as emotion

expression and behavior selection. This approach offers a
convenient bridge between these two distinct models.

An additional example is found in the research presented
by Allbeck and Badler [1, 6], which explored a parameterized
system with the goal of creating more expressive gestures.
Their system drew inspiration from various sources, includ-
ing the OCEAN personality model, the EMOTE system [23],
and Laban Movement Analysis (LMA) [8]. The EMOTE sys-
tem, a 3D character animation approach, integrates Effort
and Shape qualities into independently defined underlying
movements, resulting in more natural synthetic gestures. In
contrast, LMA is a method for observing, describing, notat-
ing, and interpreting human movements. Similarly, several
other works [38, 51] modeled heterogeneous crowd behav-
ior based on different personality traits. Figure 3 illustrates
the categorization of various personality and emotion theo-
ries.

This section addresses incorporating personality traits and
emotions into crowd simulations to increase authenticity
and diversity. It outlines how researchers apply models like
OCEAN and PEN, along with emotion theories like OCC,
linking personality to decisions and gestures for more real-
istic simulations.

4.3 Perceived emotion and tension

In addition to their inherent personalities, the way agents
perceive their environment and the information they can
gather through sensing mechanisms play an important role.
It is essential to clarify that personality and emotion, as
discussed previously, represent enduring traits and transient
states, respectively. In contrast, perceived emotion pertains to
individuals’ interpretation and response to emotions within
their environment.

In 1999, Scherer proposed the appraisal theory [91], which
posits that emotions arise from a deeply subjective cogni-
tive process. In this process, individuals evaluate objects,
behaviors, and events in their environment relative to their
own values, goals, and overall well-being. Several studies
[5, 48] have endeavored to incorporate this concept into their
research. For example, Kim et al. [48] employed a stress
model to simulate dynamic patterns of crowd behavior. They
also endeavored to endow an agent with the ability to per-
ceive the situation based on its own characteristics and adapt
its behavior accordingly. Another study [89] explored the
impact of manipulating agent stress levels on crowd behav-
ior. The objective is to incorporate the notions of stress and
comfort into the agents, to study relationship between stress
levels and the reaction of crowds Another research study
[47] explored the understanding of how people perceive and
evaluate emotions when faced with emergencies or external
events. It models the evolution of emotions and scrutinizes
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Fig.3 The diagram represents key personality (OCEAN, PEN) and emotion contagion (OCC, PAD, BDI, ESCAPES, ASCRIBE, SIS, etc.) theories
considered by researchers to embed psychological attributes in virtual agents for crowd simulations

how these emotions influence the specific actions taken by
individuals.

Some research efforts [34, 121] explored the epidemio-
logical susceptible—infected—susceptible (SIS) model, with a
specific focus on its application to represent emotion conta-
gion, particularly in emergency situations. This adaptation
of the SIS model provides a framework to examine and
simulate the spread of emotions within a crowd during emer-
gency scenarios. Some researchers [34, 66] used an improved
emotional contagion model by upgrading the SIS model.
Epidemiological models operate similarly to the spread of
a contagious disease, exerting a more pronounced effect on
agents when the number of infected agents, such as those
exhibiting heightened panic behavior, is higher. On the other
hand, Bosse’s thermodynamics-based model [12] illustrates
that models rooted in thermodynamics tend to yield superior
results compared to epidemiological models. This superior-
ity can be attributed to the inadequacies of the contagion
mechanism inherent in epidemiological models.

Tsai et al. [102] developed a multi-agent evacuation sim-
ulation tool called ESCAPES, in which an agent can adopt
the emotion of other agents who possess the strongest mood
or have a special identity.

Minh et al. [105] developed a model of emotions that
considers their dynamics and propagation, integrating it into
an evacuation simulation. Their model considers both the
dynamics of emotions, including when emotions appear and
how their intensity level evolves over time, as well as the
propagation of emotions. This includes how emotions are
“sent” and “received”” and how a received emotion influences
the receiver.

Another emotion contagion model called the ASCRIBE
model [14], on the other hand, is a multi-agent-based con-
tinuous group emotion contagion model that treats emotions
as a collective entity. In another study by Cho et al. [24], the
authors proposed the integration of the well-established BDI
model (Belief—Desire—Intention) to simulate crowds. In this
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approach, agents are driven by desires (goals), guided by cer-
tain beliefs (knowledge of the world), and motivated to take
actions (intentions) to fulfill these desires. This framework
enables individuals to exhibit realistic behavior by dynami-
cally adapting their actions based on sensed information in a
dynamic and evolving environment.

This section discusses using psychological perception the-
ories to deepen insights into agent environment interaction,
enhancing behavior modeling. It covers research on appraisal
theory, stress modeling, and emotion contagion.

4.4 Environmental factors

Environmental factors typically include evacuation scenar-
ios and geometric constraints. Crowd evacuation stands out
as one of the most extensively studied topics in the field
of crowd modeling, with numerous works focusing on sim-
ulating evacuations during events such as fires [86] and
examining how panic levels influence agent behavior [61,
120]. Many of these studies incorporate path planning mod-
els and consider other evacuation factors such as interaction
between agents [16, 55, 83], addressing complexities in envi-
ronments [81], investigating the evolution of group emotions
[58], the effect of crowd density [90], and enabling virtual
agents with the perception of emergency events to simulate
crowd evacuation [15].

Ren et al. [86] introduced an agent-based modeling and
simulation (ABMS) approach to model crowd evacuations
during fire emergencies. The model incorporates an agent
with diverse attributes, such as age, velocity, and panic scale,
and studies their influence on crowd behavior. Many other
studies have explored agent behavior during emergencies by
investigating emotion contagion in groups [13, 26, 44, 47,
67, 68, 114]. Notably, the research in [68] emphasizes the
impact of personality and emotion contagion, considering
both individual and group emotions. It specifically highlights
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the substantial influence of group emotion on the behavioral
patterns of agents in the context of emergency evacuations.

Some research works [82—84] incorporated the notion of
way-finding through inter-agent communication and diverse
agent roles, such as leaders and followers. These elements
enrich an agent’s cognitive map of the environment, leading
to demonstrably enhanced building evacuation performance
and more realistic crowd behavior in unfamiliar environ-
ments.

Braun et al. [15] proposed an approach for simulating
virtual human crowds in emergency scenarios, integrating
elements from previous work and incorporating a physical
model based on the “social forces” [43]. They focused on
guiding individuals toward a target while avoiding obstacles.

Moreover, geometric constraints in certain situations can
trigger panic within a crowd, leading to the abrupt onset of an
evacuation scenario. Such constraints encompass factors like
an insufficient number of exterior exits, inadequate width of
exit doors [80], obstructed passageways, stairs, and doors.
For example, a research study [39] investigated and mod-
eled the impact of room door size, main exit size, desired
speed, and friction coefficient on evacuation efficiency. This
study sheds light on the importance of geometric factors in
influencing the effectiveness of evacuation procedures.

This section examines how environment influences crowd
behavior, focusing on panic effect, evacuation simulations,
and group dynamics. It discusses agent interaction, emotions,
and geometric constraints on evacuation, underscoring the
importance of simulating realistic emergencies.

4.5 Group dynamics/social distancing

Diverse focuses within crowd behavior modeling emerge as
some researchers concentrated on capturing and modeling
gap-seeking behavior in crowds [65], while another subset of
studies [4, 52, 85, 95] delved into modeling leader-follower
group dynamics. For example, Qiu and Hu [85] incorporated
Festinger’s social comparison theory [32] to model agents’
dynamic grouping behavior. The theory highlights that when
humans encounter uncertainty, they tend to compare them-
selves to others who are similar to them and strive to minimize
any perceived differences. In emergency situations, where
uncertainty is increased, the influence of social comparison
on human decision-making becomes more pronounced.
Additionally, numerous research studies have extensively
explored the impact of social distancing on crowd behavior
and have used agent-based simulations to predict the spread
of COVID-19 infection during the pandemic [3], to inves-
tigate the effects of disruption of social distancing [29] or
to simulate crowd behavior during a pandemic context and
study the effect of social distancing on crowd evacuation effi-
ciency [59]. In a previous study by Capobianco et al. [19],
intricate interactions among individuals were modeled to pre-

dict the prevalence of infected individuals based on partial
observations, including test results, the presence of symp-
toms, and past physical contacts.

Some research studies investigated group dynamics and
their impact on evacuation scenarios. For example, Pelechano
et al. [83] proposed an evacuation simulation model that
integrates various social traits of agents such as followers,
untrained and trained leaders. This breadth of research in the
domain underscores the multifaceted nature of crowd behav-
ior modeling.

This section covers how crowd behavior modeling incor-
porates environmental factors and group dynamics, focusing
on realistic simulations of emergency evacuations and the
effects of social distancing.

4.6 Physiology

Some research studies have incorporated the physiological
factor of agents to model its impact on crowd simulations.
For example, in the study of [113], the concept of physical
strength consumption is integrated to capture its influence
on agent movement. Another study [70] models pedestrian
behavior by considering various physiological factors such as
walking direction, speed, and occurrences of body collisions
during overcrowding.

Furthermore, Zheng et al. [118] investigated four essential
physiological characteristics -gender, age, health, and body
shape. This integration of agent physiology enhances the
realism of crowd simulations by taking into account the var-
ious factors that influence individual movement patterns in a
crowd. Studies incorporate physiological factors into crowd
simulations, improving realism by considering diverse influ-
ences on individual movement patterns.

4.7 Roles and needs

In acrowd, individual agents often pursue specific goals, such
as reaching a destination, navigating obstacles, or following
a leader. These goals significantly shape their actions. Addi-
tionally, researchers have made increasing efforts to explore
crowd modeling with a focus on individuality. In such simula-
tions, virtual agents have behaviors customized to their social
roles and personal requirements. For example, Musse and
Thalmann [74] outlined a crowd simulation framework that
includes sociological factors such as relationships, groups,
and emotions. Another research study by Stocker et al. [98]
has introduced the notion of priming for virtual agents. In this
context, agents are prepared for specific actions based on the
presence of other agents and events in their surroundings.
In a study conducted by Shao and Terzopoulos [92], urban
environments were illustrated with autonomous pedestri-
ans categorized into various groups, including commuters,
tourists, performers, and officers. Each character type is
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associated with hand-coded action selection mechanisms,
contributing to a diverse range of behaviors. On the other
hand, some researchers employ parameterized systems to
represent agents’ goals and behaviors [7, 10]. For exam-
ple, the CAROSA framework [2] enables the specification
and control of actions for realistic human-like characters by
incorporating four distinct types of actions: scheduled actions
based on predefined roles, reactive actions triggered by con-
textual events, opportunistic actions driven by explicit goals,
and aleatoric or stochastic actions. This approach adds depth
and complexity to agent behaviors.

Several research groups have focused on integrating roles
into virtual agents. Hayes-Roth and colleagues were pioneers
in this area, developing some early virtual roles [41]. Their
interactive intelligent agents collaborate to improvise behav-
ioral sequences that adhere to instructions, express unique
styles, observe social conventions, and achieve objectives.
Later, Li and colleagues proposed an agent-based simula-
tion framework [60], in order to create virtual populations
enriched with various social-psychological factors, including
the integration of social roles. They simulate virtual popu-
lations with predefined social roles, delineating the purpose
of each virtual human’s existence. These agents can execute
actions such as scheduled, reactive, and need-based behav-
iors. Furthermore, the introduction of role switching based
on schedules, reactions, and needs allows realistic behavioral
variations throughout the day. This comprehensive approach
facilitates a nuanced representation of crowd behavior, cap-
turing the myriad motivations and interactions of individuals
within the simulated environment.

This section explored studies that emphasize individual-
ity in virtual agents, showcasing behaviors tailored to their
unique goals and roles, with varied action selection for
enhanced realism in simulations.

5 Discussion and open questions

Although researchers have studied crowd simulation exten-
sively, there are still some major challenges to tackle. These
challenges arise from the complicated and ever-changing
behaviors we see in real crowds that stem from the intri-
cate interplay of complexity, diversity, and dynamic nature
inherent in real-world crowd behaviors.

Drawing insights from this literature review, the following
open questions emerge as imperative focal points for future
research for agent-based crowd simulations:

— A comprehensive crowd simulation, striving for realism,
should incorporate various psychological and environ-
mental factors such as interpersonal relationships and
social dynamics. Collaboration with experts in human
behavior and psychology or empirical studies observing

@ Springer

human behavior in various contexts can help in refining
these models to better reflect real-world scenarios.

— Further research that integrates a variety of behavioral
factors, including personality traits, perceived emo-
tions, and group dynamics into machine learning mod-
els for crowd simulation holds substantial promise
to advance the field. Collecting high-quality, diverse
datasets from real-world observations and incorporation
of these behavioral aspects are instrumental in enhancing
the performance of machine learning models.

— Despite significant advancements in crowd simulation,
the field lacks standardized, widely accepted evaluation
methods to validate the realism of simulated crowds. A
working group of researchers and industry experts could
work on developing a set of standardized test scenarios,
metrics, and validation protocols to assess the realism
and accuracy of crowd simulations.
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