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ABSTRACT: Coherent multidimensional spectroscopy provides experimental access 2P IR spectra __weltinglime

to molecular structure and subpicosecond dynamics in solution. Dynamics are typically " 5 | | ‘ ‘& i " & [
inferred from the evolution of lineshapes over a function of waiting time. Numerous | # |, | * | | ® | @ | ®.
spectral analysis methods, such as center/nodal line slope, have been developed to  Dynamics pmp |
extract these dynamics. However, the extracted dynamics can depend heavily on == L : 25
0 — b { é2

subjective choices, such as the region selected for CLS analysis or the chosen models. In | @ | =« 8 |\ ’ N | e

. . . . . L S *’
this study, we introduce a novel approach to extracting dynamics from ultrafast two- | ‘

dimensional infrared (2D IR) spectra by using dynamic mode decomposition (DMD).

As a data-driven method, DMD directly extracts spatiotemporal structures from the complex 2D IR spectra. We evaluated the
performance of DMD in simulated and experimental spectra containing overlapped peaks. We show that DMD can retrieve the
dynamics of overlapped transitions and cross peaks that are typically challenging to extract with traditional methods. In addition, we
demonstrate that combining conditional generative adversarial neural networks with DMD can recover dynamics even at low signal-
to-noise ratios. DMD methods do not require preliminary assumptions and can be readily extended to other multidimensional
spectroscopies.

B INTRODUCTION underlying molecular frequency—frequency correlation func-
- . tions (FECF).

Coherent multidimensional spectroscopy can access the ) )
molecular structure and dynamics with femtosecond time Among these methods, CLS is the most widely adopted due to

. . . 19 .
resolution. Generally, experimental observables are comprised fts ease of {ml')lementatlon. H?’W?‘,’er’ ,CLS analys'ls. has two
of lineshapes, amplitudes, polarizations, and time scales.'™ important limitations: (1) unreliability in characterizing over-
Extracting relevant temporal evolution and linking experimental lapping peaks and (2) the requirement of relatively high signal-
measurements to the underlying dynamics of molecular systems :0—11101se Zlattlos (SNRSt) n ttl}e 2ngRRsp ect:la ’ "ﬁllld}((:al? trans(liatle
remain key challenges for several reasons: (1) data sets are often 0 ‘ong cata acquisiion fimes. - Recently, the Aubo modet

. . . .. . . based global fitting has garnered interest for its robustness in
highly dimensional containing multiple frequency/time axes, as ” : 0 ; . ;
well as other experimental variables such polarization geo- noisy systems and its ability to disentangle partially overlapping

21-24 I . . .
metries, or sample conditions such as temperature, (2) complex peatks. e Eesﬁp;te its hl%ﬁ performance in certtam exper;)rpertlttal
lineshapes or overlapping bands complicate feature extraction, systems, fubo . 1ngs wi ‘nurr?erous parameters are su ‘]ec 0
and (3) experimental noise or artifacts such as scatter are standard multivariate fitting issues, such as overfitting or

particularly difficult to avoid in certain challenging samples increased risk of multicollinearity. In contrast to many metrics
namely, dilute or highly scattering samples ’ used to extract FFCF, which primarily rely on geometric peak
) .

Over the past two decades, numerous metrics have been shapes, the Inhomogeneity Index (II) utilizes the amplitudes of
. . . . both rephasing and nonrephasing signals. Recent studies have
developed to analyze the relationship between time series o : )
spectra and molecular dynamics. For example, in two-dimen- indicated that II offers superior performance with systems
sional infrared (2D IR) spectroscopy,*® proposed methods characterized by narrower line widths or unconventional line
)

include the short-time slope of the echo intensity or amplitude,’

peak shifts,”* dynamic line width,” ellipticity,"’ Inhomogeneity Received: August 25, 2023

Index (II),"" covariance and skewness,'” nodal line slope Revised:  October 20, 2023
13,14 i 15 ; ; Accepted: October 23, 2023

(NLS), ™ center line slope (CLS), ” global fitting to the entire P !

set of time-ordered spectra,'® pseudo-Zernike Polynomials Published: November 9, 2023

decomposition'” and machine learning (ML) iterative recon-
struction.'® Each of these techniques aims to extract the
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shapes.”® As a promising tool for evaluating spectral diffusion in
complex or noisy systems, II necessitates employing noncol-
linear geometry or implementing phase cycling within a pump—
probe setup.

In this study, we present a novel spectral analysis based on
dynamic mode decomposition (DMD), which combines two
key advantages: (1) dimensionality reduction of large data sets
to suppress noise and extract underlying correlations within
variables and (2) extraction of time scales without a priori
knowledge of the system or any predefined models. A schematic
representation of the DMD approach is depicted in Scheme 1.

Scheme 1. Representation of the Dynamic Mode
Decomposition (DMD) Approach Described Here”
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“Data set corresponds to a series of simulated 2D IR spectra as a
function of waiting time. The output of the method shows the three
most important dynamic modes, plotted in the same frequency axes as
the input spectra, along with the corresponding exponential time
scales associated with each mode.

We begin this paper by introducing the DMD and augmented
DMD algorithms. We then test their performance on spectra
with varying levels of noise generated using the Kubo line shape
model but incorporating experimental laser intensity fluctua-
tions. We apply DMD to simulated spectra with partially
overlapped peaks and test the method on experimental
temperature-dependent 2D IR spectra of ethyl acetate
(EtOAc) in water, demonstrating its ability to discern
correlation between individual peaks. This new method
demonstrates equivalent performance to established line shape
analysis methods when dealing with simple spectra and
additionally provides valuable information about overlapped
secondary transitions.

B METHODS

DMD Applications to 2D IR Spectroscopy. DMD is a
dimensionality reduction algorithm designed to decompose
time-evolvirég high-dimensional data into distinct spatiotempo-
ral modes.”® DMD has found applications across a range of
disciplines, including neuroscience,”’ robotics,”® video com-
pression,”” and finance.”® The core concept of DMD is the linear
decomposition of discretely sampled time series data into
spatially coherent structures whose temporal evolution is
described by oscillations or exponential growth/decay.’’
DMD is ideally suited to describe the complex temporal
evolution of multidimensional spectra into interpretable
components. To demonstrate the use of DMD in the context
of 2D IR spectral diffusion, we begin with a series of 2D IR
spectra at evenly sampled waiting times, labeled (t,, £,..., t,)-
Each spectrum is reshaped to a high-dimensional single-column
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vector x;, and all vectors are then assembled into a matrix. This
matrix contains the same data as the original spectra. The
waiting-time evolution of spectra may follow dynamics

= = f(x, t),
which can be written as x;,; = F(x,) in discrete-time formalism.
DMD approximates solutions to the time-evolution operator by
% = Ax, where
A represents a time-evolution matrix. This linear differential

equation has a general solution:

described as a nonlinear operator, such that

constructing a locally linear dynamical system:

x(t) = Z ¢ exp(wyt)b, = @exp(Qt)b

k=1

(1)

where ¢, and @, are eigenvectors and eigenvalues of A, n is the
dimension of the matrix, and the coefficients by represent the
initial state x(0). The general solution for a discretely sampled
system written as x;,,=Ax; is

_ k
x, = D, dih,

j=1

)

where ¢, and 4, are eigenvectors and eigenvalues of discrete-
time evolution matrix A, and b represents the initial state, such
that x,=®b. This solution is based on locally linear
approximation but can approximate nonlinear dynamics if we
globally fit the measured data x; for k = 1,2,...,m so that the two-
norm of the difference between F(x,) and Ax, ||F(x,) — Ax||, is
minimized. One approach is to assemble columns x, to x,,_; in
the data matrix X, and data column x, to x,, in the shifted data
matrix X’ (see Scheme 1). In DMD, the best-fit linear operator A
that satisfies X' &~ AX is computed by A = X'X", where X' is the
Moore—Penrose pseudo-inverse of data matrix X. This solution
minimized the error || X’ — AX||,, where || * ||, is the two-norm

given by || X |, =X, Zanmz. However, this pseudo-

inverse matrix is not always well conditioned, so in practice, a
dimensionality reduction approach is necessary to describe the
A matrix in a reduced space. Typical algorithms to compute
DMD proceed as following:

Algorithm 1 (DMD).

1. Compute the single value decomposition (SVD) of the
data matrix X € C""

X = UzV* ®)

. Perform a low-rank truncation of the data. Obtain U,, X,
V, by only considering the first 7 columns of U and V, and
the first 7 rows and columns of ¥ where U, € C*,
zr c Crxr’ ‘7r c mer.

. Compute A, the rx r projection of the full data operator A
into a reduced dimensionality space:

A=U"AU =UXVE, ™! (4)

. Compute eigenvalues y; and eigenvectors w; of A, where
Aw; = Aw,

. Every DMD mode ¢, with a nonzero eigenvalue y; can be
written as

¢ =2"XVE (s)

https://doi.org/10.1021/acs.jpca.3c05755
J. Phys. Chem. A 2023, 127, 9853—9862
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Figure 1. (A) Initial amplitudes (b;) of the first three DMD modes when extracting different correlation times (picoseconds) in the Kubo model
(picoseconds, color code in the inset). Values are normalized by the amplitude of zero mode. (B) Comparison between CLS and DMD retrieval
methods for the simulated spectra. The simulated spectra data are generated between 0 and 10 ps, while the correlation time in the Kubo model varies
from 0 and 15 ps. Decay times extracted by DMD show better agreement and less variance than CLS if the generated spectra fully capture the entire
dynamic process, particularly when the correlation time is longer than the maximum waiting time.

6. To extract the characteristic time constants 7; describing
the evolution of spectra, we need to convert the discrete-
time eigenvalues 4, to continuous eigenvalues @; using ;
=In (4;)/At, where At is the sampling time interval.”>>
The exponential decay/growth rate 7; and oscillation
frequency @', are given by @, = 7; + i®’;. The DMD modes
associated with each time scale are plotted to visualize the
spectral features described by each time scale.

. Finally, if desired, the reconstruction of 2D spectra at any
given time can be written as

x(t) = z dexp(w;t)b,

i=1

(6)

Algorithm 2 (Augmented DMD). The data matrix can be
written as X = [xx, ¥m—1], X =[x, x5 *m ]. How-
ever, we can augment the data matrix by stacking the state x; with
copies of future measurements X, ;,X;,5,..,%;. Then, we can
implement the above DMD method to include the s time-shifted
state data matrix:

X X Xm—s
X5 X3 xm—s+l
Xaug =
X X4 Xm—1 )
x2 x3 m—s+1
, x3 x4- xm—s+2
X aug —
Xr1 X2 Xm (8)

A set of modes ¢,,, and corresponding exponential decay
rates 7, can be extracted by performing DMD on the
augmented matrix X, and X',,,. The remainder of the analysis
follows the same steps as conventional DMD described above.

Kubo Model Spectra. Simulated 2D IR spectra are
generated to test the DMD model. The advantage of using
simulated spectra is that the correlation time is an input
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parameter that can be used to test the performance of DMD in
extracting this parameter. Within this study, spectra are
generated using the Kubo line shape response function
approach. The use of the Kubo model within our study was
based on two reasons: (1) Kubo model is a well-established
method for generating simulated 2D IR spectra.'*" (2) The
FECF in Kubo line shape functions is built on multiple
exponential functions. This aligns well with DMD, which is
optimized for analyzing such an exponential behavior. However,
for complex systems exhibiting nonexponential dynamics,”*
DMD modes may not align with actual physical processes.

In brief, we use six independent parameters to describe 2D IR
spectra for a single anharmonic oscillator: anharmonicity (A),
amplitude (), center frequency (), frequency fluctuation
amplitude (Aw), excited state lifetime (T;), and correlation
time (7.). The parameters used here to generate spectra are
representative of measured spectra for carbonyl vibrational
modes in a molecule experiencing an environment representa-
tive of a polar solvent; however, the approach is completely
general, and the performance should be comparable for other
vibrational modes. In addition, experimental noise was
introduced into the simulated spectra by recording blank
probe shots from the experimental 2D IR spectrometer.’®
Experimental noise spectra are generated and then added to
varying levels, as described previously. The code can be found on
GitHub.*® The parameters used for the Kubo model 2D IR
spectra are listed in Table S1.

B RESULTS AND DISCUSSION

Case 1: Single Oscillator Model. We first examine the
performance of DMD for extracting the correlation time from
2D IR spectral evolution using simulated spectra for a single
anharmonic oscillator. Spectral samples were generated at
different waiting times, ranging from 100 fs to 10 ps with an
interval of 100 fs. Keeping all other parameters constant (Table
S1), we vary the correlation time (z.) from 0.1 to 15 ps to
generate 25 sets of sample spectra (Figure S1). We tested the
performance of DMD in comparison to the well-established
CLS analysis method. Both retrieval methods were applied to
these 25 data sets to extract the correlation time. An example of

https://doi.org/10.1021/acs.jpca.3c05755
J. Phys. Chem. A 2023, 127, 9853—9862
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Figure 2. (A) Simulated spectra with different peak separations (50, 20, and 10 cm™"). Two peaks are generated within a 150-wavenumber-wide
region. The diagonal width (A®) of both peaks is 10 cm™ for all spectra. The extraction window used in the DMD algorithm is 50 cm™ in width
scanned along the diagonal with an interval of 1 cm™. Four representative windows (colored green) are shown in the first spectrum. (B) Correlation
time (z.) for low-frequency peak and high-frequency peak are set to 1 and 3 ps (gray horizontal line) in the Kubo model. The decay times extracted by
the different diagonal windows are shown in blue lines. Moving the window along the diagonal shows a transition between the fast and slow correlation

times.

extracted DMD mode amplitudes is shown in Scheme 1, and the
performance comparison is depicted in Figure 1.

Similar to SVD, the zero (static) mode of DMD has the largest
initial amplitude (b;), normalized to 1 in Figure 1A for all of the
data sets. The initial amplitude of Mode 1 varies from 5 to 18%
of the zero mode. The higher initial amplitude in samples with
longer correlation time suggests that Modes 1 and 2 are more
pronounced when the correlation time is within the sampling
time range. The DMD decay rate (z;) of Mode 1 accurately
captures the frequency—frequency correlation time (z.) in the
Kubo line shape model (Figure 1B). Mode O captures the
“static” feature that represents the average spectrum, while the
decay rate of Mode 2 is approximately an order of magnitude
faster than Mode 1. Thus, it is easy to assign the correlation time
to mode 1, ¢, in this scheme. Interestingly, in the simulated
single peak spectra, all of the discrete-time eigenvalues 4, are real
and negative, indicating that only exponentially decaying modes
exist in this scenario, as expected in the Kubo model where no
oscillations are present along the waiting time. In spectra
containing multiple peaks and noisy peak spectra, the
eigenvalues 4; may be complex numbers. In complex systems
with multiple decay time scales or various pathways, each decay
typically appears as a separate DMD mode. However, if a decay
rate is very similar to the rate of an FFCF mode, these modes
might merge into a single decay. While this could skew the
interpretation of individual DMD modes, the overall FECF
decay rate remains relatively stable because the two rates are so
alike. It is also important to note that traditional methods are
also unable to distinguish between relaxation pathways with
similar time constants.

The correlation time extracted by CLS can be influenced by
the selected region. In this study, we present CLS results by
considering only the maximum intensity in the range of 1660—
1690 cm™" in excitation frequency (see sample CLS analysis in
Figure S2). The CLS-extracted correlation time is also in good
agreement with the input time in the simulated spectra.
Interestingly, some small deviations occur possibly as a result

of numerical noise or fitting with discretely sampled frequencies.
‘When the correlation time is shorter than the maximum waiting
time (0—10 ps), DMD performs significantly better than CLS, as
the average variance of the extracted decay time relative to the
actual correlation time is less than 0.5% in DMD, compared to
3—5% in CLS. This could be attributed to DMD using all the
points in the spectra, whereas CLS only uses a few spectral
points. This difference is more pronounced when the correlation
time is longer than half of the sampling time (5—10 ps).
However, if the correlation time extends beyond the sampling
time, then DMD performance deteriorates and fails to capture
the dynamics (10—1S ps) due to insufficient waiting time
sampling.

Case 2: Overlapping Transitions. The complexity of 2D
IR spectra increases significantly when overlapping bands are
present. Overlapping transitions with different correlation times,
widths, and anharmonicities complicate the CLS analysis and
require some additional knowledge of the system.”” In this
study, we demonstrate the applicability of the DMD method for
extracting the correlation time of two partially overlapping peaks
by analyzing subregions along the diagonal. Spectra are
generated with different levels of overlap to assess the
performance of DMD and to be able to extract the correlation
times of the individual peaks.

Two vibrational bands are generated within the 1600—1750
cm™! range without cross peaks. Both peaks share the same
Kubo line shape parameters except for the correlation time: the
lower frequency peak has a correlation time of 1 ps, while the
higher frequency peak has a correlation time of 3 ps. Among
these parameters, the diagonal width (A®) is set to 10 cm™".
Representative spectra are shown in Figure A; these spectra
correspond to relatively separated, partially overlapped, and
highly overlapped diagonal peaks.

A 50 cm ™! wide window is used to extract the correlation time
via DMD. This window is scanned along the diagonal as shown
in Figure 2B. In the case of separated peaks, subsection DMD
captures two distinct decay times at 1 and 3 ps. This

9856 https://doi.org/10.1021/acs.jpca.3c05755
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Figure 3. (A) Example simulated spectra generated by the Kubo model at different signal-to-noise ratios (SNRs). The noisy spectra are generated
using experimental shot-to-shot fluctuations as described previously.'* (B) Time constant extracted by CLS/DMD/augmented DMD. The correlation
time of 1.5 ps used in the Kubo model shown as a solid line. CLS results are shown with red dots, and their error bars originate from the 95% confidence
interval of the exponential fits. The exponential decay rates of Mode 1 for standard DMD and augmented DMD are indicated by blue and black cross

marks, respectively.

demonstrates that if peaks are well-separated, then DMD can
extract dynamics precisely as long as part of the peak falls within
the range of the extraction window. DMD analysis applied to
partially overlapped peaks reflects the correct correlation near
the edges of both peaks (1660 and 1700 cm™"). However, in the
overlapped area (1665—1675 cm™"), an intermediate decay time
of 1.5 ps emerges, possibly resulting from the mixed dynamics of
both peaks. In highly overlapped peaks, where peak separation
equals the diagonal width (10 cm™), the extracted decay time at
the edges of the peaks (1665 and 1695 cm™) is no longer
accurate (1.3 and 2.5 ps). The intensity change at the edge of the
second peak is not negligible, even at the center of the first peak.
Nevertheless, subsection DMD qualitatively captures the fast
and slow correlation times despite the high overlap between the
two peaks such that they appear as a single feature in the 2D
spectra.

It is important to note that the window width should be
carefully selected depending on the system as it has some
influence on the DMD-extracted decay time. If the window is
smaller than the full width at half-maximum (fwhm) of the
individual peak, the extracted decay time will fluctuate around
the correlation time when the window is scanned along the
diagonal axis. In contrast, an appropriately sized window of
approximately the fwhm of the peak yields a stable result close to
the correlation time. Additionally, a window only captures the
tail of the peak can sometimes result in divergent correlation
times due to numerical noise as illustrated in the rightmost
example in Figure 2B.

Case 3: Simulated Spectra with Noise. One potential
shortcoming of the DMD algorithm is its susceptibility to noise,
which systematically biases the eigenvalues.’® A variety DMD
extensions have been explored to address this issue, including
the total least-squares DMD (TLS-DMD)* and forward—
backward DMD (fb-DMD)."’ In this study, we apply the DMD
algorithm to augmented data sets and achieve satisfactory
performance on the simulated spectra with relatively high levels
of noise.

Given that 2D IR spectra are collected by recording
differences between individual laser shots, the main source of
noise arises from shot-to-shot fluctuations of the probe.*"*
These fluctuations are attributed to fluctuations in the laser
output intensity as well as the 2D IR optical setup, such as air
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currents and optomechanical drift. Within each SNR, 200
simulated spectra are generated with uniformly distributed
waiting times ranging from 150 to 3000 fs. The noisy spectra are
generated by combing the Kubo line shape generated spectra
with the experimental collected shot-to-shot noise."® Here, the
SNR is defined as the ratio of the maximum amplitude of the
Kubo line shape generated spectra (across all time delays) to the
root-mean-square amplitude of the noise floor.

The CLS analysis demonstrates resilience to systematic noise:
the deviation in the extracted dynamics is less than 15% when
the SNR exceeds 20 (Figure 3). CLS methods appear to be
reliable when the SNR is greater than ~1S. Intriguingly, the
decay time extracted by CLS is about 20% longer than the actual
value (1.5 ps). On the contrary, the standard DMD method
exhibits considerable sensitivity to noise. DMD modes capture
the fluctuation of shot-to-shot noise patterns, which results in a
50% lower time constant even at a high SNR of 50. Within a low
SNR of 10—-20, the DMD’s fundamental mode is likely to be
completely dominated by shot-to-shot noise variations, leading
to an unreliable extracted decay time.

In our implementation of Augmented DMD, the data matrix
is constructed by stacking adjacent spectra together into the
matrix, following eqs 7 and 8:

Xy Xy Xm—s
X % Xm—a
aug = X3 Xy o Xy_3 |, X,aug

Xy X Xm—2
X5 X Xm—1
Xy X3 Xim—4
X3 Xy 'm—3

= X Xy e X, 9
Xy xg P
xXg X5 x,, | )

where x; represents the reshaped spectrum taken at ith time
delay. Since the propagation operator A of the augmented data
matrix transits ith state to (i + 1)th state, i.e.,

https://doi.org/10.1021/acs.jpca.3c05755
J. Phys. Chem. A 2023, 127, 9853—9862
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simultaneously, it considerably reduces the noise fluctuations
captured. As shown in Figure 3B, the exponential decay
constants of augmented DMD Mode 1 are within 10% of 1.5
ps for SNR >20, demonstrating much greater stability against
shot-to-shot noise than the standard DMD. When SNR falls
below 15, augmented DMD modes become noisy. In
conclusion, the performance of the augmented DMD against
noisy spectra is on par with the CLS methods.

Case 4: Experimental Spectra of a Carbonyl. In this
section, we assess the performance of DMD using experimental
data with two partially overlapped peaks. The data set consists of
temperature-dependent 2D IR spectra of the ethyl acetate
(EtOAc) ester carbonyl mode. The samples consist of 10 mg/
mL EtOAc in D,0 at 15, 20, 25, 30, 35, and 40 °C. The waiting
times are uniformly distributed from 100 to 2000 fs with an
interval of 100 fs. Uniform sampling is required for standard
DMD, though new approaches are able to estimate DMD modes
from nonuniformly sampled data.**** The carbonyl stretch
region of EtOAc shows two peaks attributed to the one H-bond
and two H-bond configurations.*> The peaks are separated by 15
cm™}, and the diagonal widths are 15-20 cm™!. H-bond
exchange can also result in the presence of cross peaks.*® The
DMD-extracted time constants are compared to CLS, NLS, and
numerical fitting to a two-oscillator Kubo line shape model as
previously described.”’

The low-frequency 2 H-bond peak (~1695—1710 cm™) is
the strongest feature observed in the 2D IR spectrum (Figure
4B). Similarly, this peak has the highest intensity in the FTIR
spectrum (Figure SS). Thus, this frequency region is used for the
CLS and NLS analysis of the data shown in Figure 4. The NLS-
extracted dynamics display a consistent trend, ranging from 0.5
to 0.3 ps with increasing temperature from 15 to 40 °C. The CLS

9858

results are similar but exhibit 20% slower, from 0.6 to 0.4 ps. The
error bars in CLS and NLS fits show a 95% confidence interval
from the single-exponential fits (Figures S12 and S13). In the
Kubo model fits, the parameters are optimized to minimize the
sum of the mean square errors of the spectra across all time
delays. The temperature-dependent correlation extracted from
the Kubo model fits are shown in Figure 4D. The dynamics
derived from the Kubo fits follow the same trend as CLS or NLS,
but the decay times are approximately twice as slow as those
extracted in NLS, ranging from 1.0 to 0.7 ps.

The augmented DMD algorithm is applied by using a
variable-size window scanned along the diagonal (see Figure
4B,C). The time constants of Mode 1, relative to the center of
the window, are shown in Figure 4A. The dynamics of the low-
frequency peak are ascertained by averaging the exponential
constants of Mode 1 while scanning the center of the window
from 1695 to 1710 cm™', corresponding to the same region
analyzed using the CLS and NLS methods above. We tested
various subsection window sizes ranging from 38 to 77 cm™.
The DMD time constants within the center region of the
spectrum (1680—1750 cm™) display remarkable consistency
with respect to the window size (see Figure 4C and S14). The
performance of DMD remains notably stable, provided that the
chosen analysis window can distinguish different transitions and
avoid low-amplitude regions of the spectrum.

Interestingly, the temperature-dependent 1 H-bond dynamics
extracted DMD and Kubo model fits are very consistent (1.0 to
0.7 ps) but are both slower than those obtained through CLS
and NLS methods (0.7 to 0.4 ps). The partial overlap between
the 1 and 2 H-bond peaks is likely to be an important factor in
this discrepancy as both CLS and NLS only apply to single
peaks, but the two-oscillator Kubo model and DMD are able to
extract dynamics when peaks are partially overlapped.
Furthermore, the correlation time of the high-frequency (1 H-
bond peak) is slower than the low-frequency (2 H-bond) peak,
as expected. The DMD and Kubo fitting methods, which take
into account the two peaks separately, are more likely to produce
results that accurately reflect the dynamics of the peak of
interest.

https://doi.org/10.1021/acs.jpca.3c05755
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Figure S. (A) CLS correlation time extracted from cGANN s recovered spectra whose SNR equals 2, S, 10, and 20. The horizontal axis represents the
correlation lifetime used in the Kubo generating model, and the vertical axis represents the extracted correlation lifetime. The error bars represent a
95% confidence level monoexponential fit. The CLS-extracted correlation time is within the 30% range of the actual parameters used in the Kubo
model. (B) Correlation time was extracted using DMD. In general, DMD produces ~50% faster correlation times compared to the input parameters.
The error bars are calculated based on the standard deviation of three independent sets of simulated spectra denoised independently using the cGANN
method. (C) Correlation times extracted by augmented DMD align very well with the actual correlation time when SNR = §, 10, and 20.

Case 5: Denoised Spectra Using Machine Learning.
The low SNRs inherent to 2D IR spectroscopy present
significant challenges and can make certain measurements
unfeasible.*’ " Numerous numerical postprocessing methods
have been employed for noise suppression.””>* Recently, a ML
denoising technique has been introduced using conditional
generative adversarial neural networks (cGANNS) to suppress
noise in 2D IR spectra by reconstructing the features of the
spectra based on a training set."® Once trained on simulated
spectra, the neural network can retrieve the line shapes from
experimental spectra with a SNR of as low as 2:1. In this case
study, both CLS and DMD methods are implemented to extract
the FFCF from the spectra recovered by the ML technique as an
unsupervised learning method, cGANNSs consist of a generator
neural network that produces sets of spectra and a discriminator
designed to distinguish between spectra derived from the
training set and those from the generated image set. The training
protocol is described in detail in ref 18, and the training data and
scripts are available on GitHub,”” so here we provide a brief
summary. In this demonstration, the training set includes five
sets of 200 simulated spectra containing SNR of 2, 5,10, and 20,
and one set without noise. The noise is generated by measuring
“blank” probe shots (i.e., probe shots without 2D IR signal)
using the 2D IR setup described above, and the laser shots are
used to generate the spectral noise features, which are added to
the generated Kubo model spectra at various amplitudes to
simulate data at various SNRs.

Single peak series of 2D IR spectra are generated at 200
equally spaced waiting times ranging from 150 to 3000 fs. Five
sets of spectra are produced, having identical Kubo parameters
(Figure S15) but varying correlation times (z.), which range
from 0.5 to 2.5 ps. Subsequently, the experimental shot-to-shot
noise spectra are added into the simulated spectra. As depicted
in Figure 3B, analyzing spectra with an SNR of below 20
becomes challenging. However, by reconstructing “clean”
spectra using the trained cGANN, we can recover the lineshapes
as demonstrated in Figures S15 and S16, as well as in our
previous study.'® This denoising capability opens opportunities
for more accurate and detailed analysis of spectra.

In Figure 5, we evaluate the performance of cGANNSs
denoised spectra using CLS/DMD methods by applying them
to spectra reconstructed from noisy data with SNR values of 2, 5,
10, and 20. Naturally, the CLS shows a monoexponential
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relaxation, as displayed in Figure S12. The extracted CLS
relaxation time is within 30% of the correlation time used in the
generating model even at SNR = 2. The error bars are
determined by calculating the 95% confidence intervals of the
exponential decay fitting. As shown in Figure 5B, the dynamics
extracted by DMD are somewhat faster than the Kubo
correlation time. However, there are no shot-to-shot noise
contributions in the reconstructed spectra, yet the DMD-
extracted time scales are significantly faster. We found that
because the neural network is trained with randomized peak
positions and widths, the peak’s center in the cGANN-
reconstructed spectra is influenced by the noise in the input
spectra. When the SNR is below 10, the peak’s center can vary by
as much as S wavenumbers from one spectrum to another. These
fluctuations in peak position are captured by DMD analysis,
leading to an acceleration of the extracted dynamics. The loss of
monotonicity in the extracted time versus the actual correlation
time is also evident at low SNR.

While conventional DMD does not perform well with
reconstructed spectra, the time constant extracted by
augmented DMD aligns well with correlation time used in
spectra generation. When the SNR is 5, fluctuations in peak
position cause a 10% acceleration in the extracted dynamics.
Compared with CLS, the stability of augmented DMD is
enhanced. However, when the SNR drops to 2, the discrepancy
in the extracted dynamics increases to 30%, making augmented
DMD methods less appealing compared with the CLS approach.
In conclusion, when analyzing noisy spectra, if the SNR is
greater than 20, applying augmented DMD directly to the
spectra proves slightly superior to CLS methods in terms of
validity and robustness. If the SNR falls between 20 and §,
requiring preprocessing steps such as SVD cleanup or cGANN
reconstruction, augmented DMD is preferred. However, when
the SNR drops below S, the traditional CLS method applied to
reconstructed spectra demonstrates greater robustness.

B DISCUSSION

The DMD methods mentioned above can be applied to analyze
the dynamics of a wide range of multidimensional spectra, not
limited to 2D IR spectra but also extendable to 2D visible or
mixed vibrational and electronic methods. The method has been
demonstrated to be robust and can be applied to entire spectra

https://doi.org/10.1021/acs.jpca.3c05755
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or to specific peaks. Based on the current results, we offer some
suggestions for the application of DMD methods:

1. Region selection: As shown in Figures 4C and S14, the
extracted dynamics constants and the performance of
DMD-reconstructed spectra remain consistent regardless
of the window size. However, it is crucial to avoid using
excessively small sampling windows, such as 10 cm™
windows, as they may not adequately cover the entire
region of interest and could cause numerical issues in
DMD. The data matrix may lose its tall, skinny shape,
affecting the accuracy and stability of the DMD analysis.
On the other hand, selecting large windows that
encompass multiple transitions may result in dynamic
modes that cover multiple transitions, leading to less
reliable results. Hence, it is essential to strike a balance
and avoid capturing two overlapping transitions, while
providing sufficient data for reliable analysis.

. Truncation rank (R): Similar to SVD, determining the
number of singular values to keep, i.e., the truncation rank
(R), is a critical factor influencing the performance of
DMD. The choice of R depends on various factors, such as
the noise level in the data and the importance of low-
energy modes. In general, higher noise levels or more
significant contributions from low-energy modes may
necessitate a higher R value. Figure S3 illustrates that the
extracted DMD modes are influenced by the truncation
rank. Mode 0, representing the static basis, and Mode 1,
depicting the primary exponential decay, remain con-
sistent regardless of R. Furthermore, the time constants of
Mode 1 align well with the standard time constant within
the range of R = 4 to R = 30. However, the time constants
of Mode 2 or higher exhibit significant variations (Table
S1). This suggests that in our test 2D IR data set modes
beyond Mode 2 might lack a direct physical interpreta-
tion.

Using too few ranks, such as R = 5 in Figure S4, can lead
to distorted shapes in the reconstructed spectra,
particularly at earlier waiting times. Generally, a singular
value threshold is chosen to retain 99% of the total
variance in the data. However, in some cases, due to
higher noise levels, this may require a larger number of
ranks. Nevertheless, excessively large ranks (e.g., R = 100)
can lead to issues such as the data matrix approaching
singularity or displaying poor scaling, resulting in
numerical errors. As a popular choice for complicated
systems, soft thresholding, where no hard cutoff is applied
but instead the low-rank mode amplitudes are smoothly
reduced, helps address some of these challenges in
selecting the appropriate truncation rank.”*

It is crucial to carefully examine the reconstructed DMD
spectra to validate the choice of the reconstructed region and
truncation ranks. This step ensures that the extracted dynamics
accurately represent the underlying physical processes and are
not influenced by multiple dynamic processes or system noise.

B CONCLUSIONS

We demonstrated a new method based on DMD to extract time
scales from ultrafast 2D IR spectra. Our results demonstrate that
DMD is an effective and robust method to extract dynamics
from simulated spectra, experimental spectra with overlapping
peaks and cross peaks, and noisy spectra. Comparing to
traditional methods, DMD does not rely on prior knowledge
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or assumptions, and it offers a global consideration of spectra
across all time delays, making it suitable to be extended to
multidimensional spectroscopy. Moreover, DMD continues to
be developed since its original introduction in 2009, with the
addition of backward-forward noise canceling DMD in 2015 to
eliminate bias from sensor noise’ and nonuniform sampling
DMD in 2016, which allows for analysis of experimental data
measured at nonuniform waiting times.** Furthermore, the
combination of DMD with other data-driven denoising
techniques, such as ML algorithms, offers enhanced denoising
capabilities. Overall, this work highlights the potential of DMD
as a useful tool for the analysis of multidimensional spectra.
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