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Abstract In this study, we present ionospheric observations of field-aligned currents from AMPERE and
the ESA Swarm A satellite, in conjunction with high-resolution thermospheric density measurements from
accelerometers on board Swarm C and GRACE-FO, for the third and 4 February 2022 geomagnetic storms that
led to the loss of 38 Starlink internet satellites. We study the global storm time response of the thermospheric
density enhancements, including their decay and latitudinal distribution. We find that the thermospheric
density enhances globally in response to high-latitude energy input from the magnetosphere-solar wind

system and takes at least a full day to recover to pre-storm density levels. We also find that the greatest density
perturbations occur at polar latitudes consistent with the magnetosphere-ionosphere dayside cusp, and that
there appeared to be a saturation of the thermospheric density during the geomagnetic storm on the fourth. Our
results highlight the critical importance of high-latitude ionospheric observations when diagnosing potentially
hazardous conditions for low-Earth-orbit satellites.

Plain Language Summary Upwards of a 100 km altitude lies the boundary between Earth's
atmosphere and space, where the density of air exponentially decreases and many satellites constellations orbit.
One of these constellations is Starlink, which provides satellite internet to customers on Earth. In February
2022, a pair of geomagnetic storms stuck Earth shortly after the launch of 49 Starlink satellites, heating the
upper atmosphere and causing its density to drastically increase. The higher air density at the initial staging
altitude of Starlink caused fatal drag conditions for 38 of the spacecraft, resulting in their destruction a few days
later. This paper examines how the air density of the upper atmosphere changed globally in response to space
weather energy being deposited at high latitudes during the Starlink geomagnetic storms of February 2022.

1. Introduction

In February 2022, 38 Starlink internet satellites were destroyed shortly after launch as a result of two back-to-back
geomagnetic storms on the 3rd and 4th of that month. These storms carried with them an increase to the amount
of Poynting flux entering the high-latitude ionosphere of both hemispheres (e.g., C. Y. Huang et al., 2017), lead-
ing to Joule heating and a subsequent perturbation of the thermospheric mass density at low-Earth-orbit (LEO)
altitudes (Deng et al., 2009; Wang et al., 2021). Whilst the two storms did ultimately lead to increased thermo-
spheric densities and dangerous orbital drag conditions for Starlink, they would not be considered “extreme,”
or even “‘strong,” space weather events, as we demonstrate below. The thermosphere experienced a moderate
amount of geomagnetic forcing at high-latitudes, which in turn propagated high densities globally, causing the
hazardous conditions at Starlink's staging altitude of ~200 km (Berger et al., 2023; Dang et al., 2022; Fang
et al., 2022; Hapgood et al., 2022; Laskar et al., 2023; Lin et al., 2022). The satellites burned up in Earth's atmos-
phere on 7 February 2022.

Not only does increased drag lead to potential launch failures such as that seen in February 2022, but it also
affects precise orbit determination, satellite lifespans, and collision avoidance (He et al., 2018; Oliveira &
Zesta, 2019). As LEO altitudes become more congested with satellite infrastructure, the density of the thermo-
sphere becomes increasingly important to understand. Higher than expected densities, due to geomagnetic storms
more extreme than that which led to the Starlink destruction event, could cause premature satellite re-entry,
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or satellite-on-satellite collisions, due to orbit prediction inaccuracies (Zesta & Oliveira, 2019). Geomagnetic
storms therefore threaten sustainability across the LEO satellite industry, from launch through to operations.

The thermospheric effects of the Starlink storms, like other moderate geomagnetic storms, start at Earth's
high-latitude ionosphere. Field-aligned-currents (FACs) channel solar wind electromagnetic energy into the iono-
sphere via magnetospheric reconnection events (e.g., the Dungey cycle; Dungey, 1961), which dissipates through
Pedersen currents as Joule heating (Foster et al., 1983). As Joule heating is mostly deposited at E-region altitudes
where the Pedersen conductivity is highest (Y. Huang et al., 2012), density perturbations at LEO altitudes are
mostly generated by the upwelling of neutral particles and expansion of the thermosphere due to heating pressure
from below (Lu et al., 2016). Traveling atmospheric disturbances (TADs) propagate from high to low latitudes as
increased pressure drives an equatorward meridional wind (Prolss & Ocko, 2000), acting as a vehicle for perturb-
ing globally the thermospheric density (Prolss, 2011).

On 31 January 2022, the Space Weather Prediction Center (SWPC) at the National Oceanic and Atmospheric
Administration (NOAA) issued a geomagnetic storm warning for the coming days (https://www.swpc.noaa.gov/
news/geomagnetic-storm-conditions-likely-2-3-february-2022, updated 3 February). The predicted as well as the
actual magnitudes of the storms on 3 and 4 February were minor, as was the thermospheric density perturbations
they drove, yet they were sufficient to cause major damage to Starlink assets shortly after their launch. Fang
et al. (2022) points out that although commercial space operators have access to NOAA space weather predic-
tions, none of those predictions at the time of the Starlink event focused on the orbital drag effects relating to ther-
mospheric density enhancements. Whilst engagement between industry and space weather prediction services
improves, understanding the magnetosphere-ionosphere driving conditions behind thermospheric density pertur-
bations is vital for said predictions to be both accurate and precise. Therefore in this study, we present a global
scale analysis of ionospheric and thermospheric observations during the February 2022 Starlink geomagnetic
storms.

As a measure of the space weather input into the atmosphere, we show FAC measurements from the Active
Magnetosphere and Planetary Response Experiment (AMPERE) and Swarm A satellite. For the thermo-
spheric densities, we employ newly processed high-resolution accelerometer measurements from Swarm C and
GRACE-FO. Of particular interest is understanding the global extent of thermospheric perturbations in response
to a high-latitude ionospheric driver, investigating the growth and decay of density perturbations, as well as their
latitudinal distribution.

2. Data
2.1. Thermospheric Densities From Swarm-C and GRACE-FO

Thermospheric densities in this study were obtained from the Swarm and Gravity Recovery And Climate Exper-
iment Follow On (GRACE-FO) missions (Friis-Christensen et al., 2008; Kornfeld et al., 2019). In particular,
densities used are derived from accelerometers on board Swarm C at an approximate altitude of 450 km and
GRACE C at ~500 km. Both satellites fly in a near-polar orbit with inclinations of 87.4° and 89°, respectively.
Although calibration errors for both Swarm and GRACE-FO accelerometers are not provided in the level 2 ther-
mospheric density product, the accelerometer cross-track winds generally have an error of a few n ms™! (Bezdék
et al., 2018). The uncertainty of the densities, however, are described as “30% of variance of orbit average of
mass density or 5 X 10~'* kg m3, whichever value is largest” (see “Swarm Level 2 Processing System Product
specification for L2 Products and Auxiliary Products”).

The ESA Swarm satellites are the 4th ESA Earth Explorer mission, which was launched in November 2013. They
are a constellation of three identical satellites flying at different altitudes. For all three of the Swarm satellites (A,
B, and C), calibration of the raw accelerometer measurements has proven difficult due to unforeseen and/or under-
estimated non-geophysical perturbations (Siemes et al., 2016). Swarm C proved to contain the least number of
disturbances and strongest signal-to-noise ratio of the three satellites, thus making it the primary focus of neutral
density retrieval efforts over the years. Additionally, densities derived from on-board GPS observations, at a low
temporal resolution, have helped greatly in higher-resolution accelerometer calibration efforts (Visser & van den
1Jssel, 2016; van den IJssel et al., 2020). Swarm C accelerometer measurements now provide good thermospheric
density estimations at a 10 s temporal resolution, allowing for high-latitude density perturbations to be effectively
decoupled from those low latitudes. We therefore utilize Swarm C accelerometer derived thermospheric densities
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in this study, as they provide a vast spatio-temporal resolution improvement over GPS densities and allow for the
effects of high-latitude geomagnetic energy input to be investigated more rigorously (Iorfida et al., 2023).

GRACE-FO, the successor to the GRACE mission (Tapley et al., 2004) on near-identical hardware, is a
twin-satellite mission launched in 2018. Recently, GRACE-FO accelerometer measurements for satellite C of
the pair (the other being GRACE D, which unfortunately produced poorer accelerometer data after launch;
McCullough et al., 2019) have been released (Siemes et al., 2023), building upon nearly two decades of cali-
bration efforts for the original GRACE, CHAllenging Mini satellite Payload (CHAMP), and Gravity Field and
Steady-State Ocean Circulation Explorer (GOCE) satellites (Bruinsma et al., 2004; Doornbos, 2012; March
et al., 2021; Mehta et al., 2017). Like Swarm C, thermospheric densities from GRACE-FO are at a 10 s temporal
resolution.

2.2. Field Aligned Currents From Swarm a and AMPERE

We utilize FAC measurements from the AMPERE campaign (Anderson et al., 2014) and Swarm A satellite.
FAC's carry the Poynting flux that is mostly dissipated as Joule heating in the atmosphere (Billett et al., 2023),
thus their magnitude and spatial extent act as a key parameter in evaluating high-latitude ionospheric driving of
any potential thermospheric density enhancements.

Swarm A flies as a satellite pair with Swarm C at the same altitude, separated by 1.4° in longitude. FAC estima-
tions are derived from the on-board vector fluxgate magnetometer (Leger et al., 2009) utilizing Ampére's law
along with models to remove the background magnetic field component (Liihr et al., 2015). The Swarm FAC data
product has a temporal resolution of 1 s, upon which we apply running mean and Savitsky-Golay filters with 20 s
half-window sizes to remove small-scale perturbations and noise.

AMPERE produces high-latitude FAC estimations based on magnetometer observations from the Iridium
communications constellation. FAC estimates are available on a 1-degree geomagnetic latitude by 1 hr magnetic
local time grid, sampled from a spherical harmonic fit applied to available magnetometer measurements (after
subtraction of Earth's main field) (Waters et al., 2020). AMPERE FAC maps are produced at a nominal 10-min
resolution. For the purposes of comparing Swarm A and AMPERE data later in this paper, the AMPERE time
intervals shown correspond to average polar pass time of Swarm A, rounded to the nearest 10 min.

3. Results and Discussion
3.1. Thermospheric Density Response and Decay

Figure 1 presents an overview of the days surrounding the Starlink satellite launch on 3 February 2022. The top
panel shows the 1-min geomagnetic SYM-H index, obtained from NASAs OMNIWeb service, whilst panels
(a) and (b) show the thermospheric neutral densities measured by GRACE-FO and Swarm C, respectively. The
neutral densities are shown in terms of Altitude Adjusted Corrected Geomagnetic (AACGM; Shepherd, 2014)
latitude versus time, with periodic gaps near +90° illustrating the offset of the geomagnetic pole from that of
the geographic in both hemispheres. As both GRACE-FO and Swarm C have near-polar orbits in geographic
coordinates, coverage above +80° AACGM latitude is poorer in the southern hemisphere compared to north. As
AACGM coordinates are not defined for equatorial latitudes, latitudes between —15° and +15° are not consid-
ered. Note that each “half orbit” is shown sequentially, giving the appearance of periodic increases and decreases
of the neutral density as the satellite crosses the dayside (higher density), and then the nightside (lower density).
GRACE-FO data was unavailable on 2 February 2022. The Starlink launch on 3 February 2022 was at 18:32, as
indicated by the vertical dashed line.

The SYM-H index shown in Figure 1 displays a distinct negative excursion to ~—80 nT on 3rd February 2022, the
day of the Starlink launch. Storm magnitude classifications vary greatly within the literature, however, a storm of
SYM-H magnitude as seen during this event would be generally considered “weak” or “moderate” (Hutchinson
et al., 2011; Iong et al., 2022; Richardson & Cane, 2012). Concurrent with the 3rd February storm are global
scale enhancements of the thermospheric neutral density, captured by both GRACE-FO and Swarm C at altitudes
of ~500 and ~460 km, respectively. Note that the color scales on Figures 1a and 1b are different, owing to the
normal exponential drop of neutral density with increasing altitude in the thermosphere. The peak neutral density,
seen by both GRACE-FO and Swarm C, is at around 80° AACGM latitude in the northern hemisphere. We
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Figure 1. Thermospheric conditions between 1st and 7th February 2022. [Top] 1-min SYM-H index, (a) Thermospheric neutral density as a function of AACGM
latitude and time from GRACE-FO, (b) Densities from Swarm C. The vertical dashed line indicates the time of the Starlink launch on 3 February, and the horizontal
dashed lines constrain the approximate AACGM latitude range of the satellites launched (based on two-line element data from https://www.space-track.org/).

attribute this high latitude density peak to geomagnetic energy input from the magnetosphere in the form of Joule
heating into the ionospheric cusp region (Billett et al., 2021; Knipp et al., 2011; Liihr et al., 2004).

A second geomagnetic storm, longer lasting than the one on 3rd February but of a similar SYM-H magnitude,
occurred on 4th February 2022, 1 day after the Starlink launch. There is another global response of the thermo-
spheric neutral density on the 4th, including an equatorward motion of density enhancements from high northern
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Figure 2. Mean thermospheric neutral densities between 60° and 70° AACGM latitude from 1st and 7th February 2022,
measured by GRACE-FO and Swarm C. (a) Northern hemisphere, (b) Southern hemisphere. Exponential decay curves are
fitted from the second peak of each time series onwards, with e-folding times for each shown. Error bars lines are also shown,
representing the standard deviation of each mean point.

and southern latitudes over the course of the day, most apparent in the GRACE-FO measurements. This motion is
consistent with TAD propagation, and modeling of the same event (Laskar et al., 2023; Lin et al., 2022). Overall,
thermospheric densities were significantly higher within the latitude bounds of the initial Starlink orbit (horizon-
tal dashed lines in Figure 1) on the 4th, compared to the 3rd. The two geomagnetic storms on the 3rd and 4th are
consistent with the passing of two CME-associated magnetic clouds which passed Earth, following solar flares
on 30 January 2022 and 1 February 2022 (Dang et al., 2022).

To evaluate the growth and decay of the thermospheric neutral density in response to the geomagnetic storms
of the 3rd and 4th February 2022, Figure 2 shows the hourly averaged densities from GRACE-FO and Swarm
C between 60° and 70° AACGM latitude, in the northern [a] and southern [b] hemispheres, respectively. The
latitude range was chosen to ensure similar satellite coverage in both hemispheres (owing to the poorer polar
coverage in the south), whilst being at a latitude high enough to capture magnetospheric energy inputs due to
the geomagnetic storms (i.e., the auroral zone) reasonably soon after they occur. The curves from 4th February
onwards are exponential decay least-square fits in the form p(f) = ae~"*+b, where p(?) is the neutral density as
a function of time, a and b are fit constants, and 7 is the e-folding time. 7 is strictly the time taken for the ther-
mospheric density to decrease by a factor of 1/e, which we use as representative of the time required for the
thermosphere to “recover” after the geomagnetic storm on 4th February. The root-mean-square errors (RMSE) of
the exponential fits, as a percentage of the mean of the data that was fitted, are 7.6%/6.7% for Swarm (north and
south, respectively), and 15.9%/11.8% for GRACE-FO.

Both GRACE-FO and Swarm C measured two distinct neutral density peaks in the auroral zones of both hemi-
spheres (Figures 2a and 2b), in response to the geomagnetic storms on the 3rd and 4th February 2022. These
time series, averaged over the latitude range 60—70°, are broadly similar to the global orbit averaged time series
shown by Lin et al. (2022) for Swarm A, as well as the MAGE, TIEGCM, and DTM model outputs. The storm-
time density in this latitude range was 1.9% and 2.8% higher in the southern hemisphere compared to the north
at GACE-FO and Swarm C altitudes, respectively. This hemispheric difference is rather small considering that
the southern hemisphere is in local summer, which should result in a significantly larger overall density than the
winter (northern) hemisphere (Ercha et al., 2012). It has previously been seen that there is a northern hemisphere
preference for increased magnetospheric energy input when compared to the south (Pakhotin et al., 2021), which
would result in a density asymmetry due to Joule heating.

Other hemispheric asymmetries in Figure 2 are present. For example, the density trough around midnight on the
4th of February between the two storm peaks is deeper in the northern hemisphere compared to the south for the
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same spacecraft. This would imply a quicker decay time for the enhanced neutral density to return to background
levels in the northern hemisphere after the storm on 3rd February. 7 values calculated from the peak of the 2nd
storm onwards, however, do not indicate a faster northern hemisphere recovery for the second storm. z varies
between spacecrafts and hemispheres, ranging from 11h37 to 13h16 m, but the decay time from Swarm C in
the northern hemisphere is significantly longer than the rest, which vary by around 30 min 7z for Swarm C in the
north is 1 hr 12 min longer than the next closest 7, which could mean that the density perturbation in the northern
hemisphere around 460 km is larger than that in other regions, that the thermosphere there is more “sluggish”
in returning to pre-storm levels, or a combination of both conditions. As SYM-H takes several days to return to
values near zero after the storm on 4th February (Figure 1), it is also possible there is persistent Joule heating
that lingers and causes the neutral density to not fully return to quiet-time levels (Zhou et al., 2007). We note that
because the RMSE of the exponential fit for Swarm in the northern hemisphere was 7.6% (approximately 1 hr
error in 7), its longer e-folding time may be within error tolerances of the others. The apparent quick thermo-
spheric decay time after the first storm, on 3rd February, may be due to enhanced nitric oxide cooling associated
with coronal mass ejection (CME) driven storms (Knipp et al., 2017; Licata et al., 2022), although an exact =
cannot be determined due to the onset of the second storm. Overall decay times presented here are consistent with
those presented in the statistical study by Zesta and Oliveira (2019), and likely vary somewhat with local time
(e.g., Weimer et al., 2023).

3.2. Disturbance Thermospheric Densities and Ionospheric Drivers

We now discuss the high-latitude ionospheric conditions responsible for driving the globally enhanced thermo-
spheric densities on the 3rd and 4th February 2022. Figures 3a and 3c shows neutral density measurements from
GRACE-FO and Swarm C on 3rd February 2022, accompanied by estimations of the “quiet time” density from
the Naval Research Laboratory Mass Spectrometer Incoherent Scatter radar model (NRLMSIS 2.0, shortened to
“MSIS” in this study; Emmert et al., 2021). Ap = 3 as MSIS input was chosen to represent “quiet” geomagnetic
conditions for the purpose of this study (Joselyn, 1989), which was found to closely resemble the GRACE-FO and
Swarm C measurements on the 2 days prior to the 3rd of February storm. As MSIS is an empirical model based
on averaged thermospheric data sets from various sources, it is an excellent tool in this scenario to determine
how much the Swarm-C and GRACE-FO measurements deviate from average quiet time conditions along the
satellite track. Figures 3b and 3d show perturbation neutral densities derived by subtracting the quiet time MSIS
estimations from the satellite measurements. Orbit averaged perturbation densities are additionally shown here,
calculated using a running mean window of size equal to the respective satellites orbital period. Figures 3e and 3f
show FAC measurements from AMPERE along dusk-dawn latitude slices in both the northern and southern
hemispheres, respectively. Finally, Figure 3g shows a snapshot of the global AMPERE and local Swarm A FAC
measurements during the shaded interval. Overlain black arrows are Swarm A's trajectory over the northern and
southern hemisphere high-latitude regions, extending to 50° colatitude (40° AACGM latitude). Swarm A data is
shown both as colored circles over the AMPERE data, as well as a time series. Blue (negative) FAC values are
downward (into) in the northern hemisphere and upward (out of) in the south, and vice versa for red.

The negative excursion of SYM-H signifying the start of the storm on 3rd February (Figure 1) begins at ~05:00UT.
It is from approximately then that the neutral density measurements from GRACE-FO and Swarm C begin to
deviate from MSIS estimations (Figures 3a and 3c). Other than the deviation from quiet time baselines, MSIS
appears to capture latitudinal and local time variability of the satellite densities well. The deviation is clearer in
the perturbation densities (Figures 3b and 3d), showing that those at both ~460 and ~500 km altitude reach an
orbit average maximum at 11:40 UT and 12:40 UT, respectively. The perturbation densities also reveal that both
GRACE-FO and Swarm C measure peaks at around the same time, within the highlighted region at 12:00 UT,
giving a time lag of ~7 hr between storm onset and peak density perturbation. The maximum single-point pertur-
bation density measurement and orbit averaged perturbation density was 380%/96% for GRACE-FO (a factor
increase 4.8 and 1.96), respectively, and 260%/84% (3.6/1.84) for Swarm C. We note that although the maximum
orbit averaged density perturbation presented here is similar to that determined by other studies for the Starlink
storms (between 50% and 100% based on modeling and orbit averaged data; Lin et al., 2022; Dang et al., 2022),
the moment-to-moment densities at both GRACE-FO and Swarm C altitudes often greatly exceed the average,
especially at high latitudes.

A more direct way of measuring the ionospheric activity in response to geomagnetic storms, versus the SYM-H
index, is by observing the magnitude and latitudinal extent of the global scale FAC system. The progression of
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Figure 3. Thermosphere/ionosphere conditions on 3 February 2022. (a) and (c): Time series of measured thermospheric densities from GRACE-FO (a) and Swarm
C (c), with MSIS quiet time estimations (blue) and the magnetic local time of the spacecraft (red). (b) and (d): Perturbation thermospheric densities from GRACE-FO
(b) and Swarm C (d), with orbit averaged values underlain. (e) and (f): Latitude slice keograms of the dusk-dawn (bottom to top) FACs observed by AMPERE for the
northern (e) and southern (f) hemispheres, where negative (blue) and positive (red) values signify currents into and out of the atmosphere, respectively. (g): AMPERE
and Swarm A FAC measurements from within the shaded region. The vertical red shaded region indicates the time of the Starlink launch.
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the dusk and dawn FACs, in both hemispheres, is thus shown in Figures 3e and 3f. From the beginning of the
day till around 12:00 UT, there was a consistent and gradual equatorward expansion of the R1 and R2 FACs, on
both the dawn and dusk sides and in both hemispheres. This expansion is typical of geomagnetic storm growth
phases, where the high-latitude Dungey cycle system reaches lower latitudes as increasing amounts of flux enter
the polar cap due to magnetopause reconnection, that is, the expanding-contracting-polar-cap paradigm (Cowley
& Lockwood, 1992). 12:00 UT also approximately coincides with the maximum extent of SYM-H (Figure 1), and
is thus a good time to designate as the storm main phase “end.” The ~7 hr lag of the peak neutral density (and
has seen here, the peak FAC magnitude) to the start of the main phase is consistent with statistics of geomagnetic
storm main phase duration (Yokoyama & Kamide, 1997).

After around 12:00 UT, the thermospheric densities measured by GRACE-FO and SWARM-C decrease along
with magnitude of the FACs measured by AMPERE. The FACs, however, decrease in magnitude much faster
than the densities and retreat poleward, particularly in the southern hemisphere (panel f). The FACs on the
northern hemisphere (panel e) dawnside remain intense till ~16:00 UT, before finally diminishing similar to the
southern hemisphere. The slow decay timescales of the neutral densities (panels a—d) after the peak of the storm
around 12:00 UT is put into stark contrast with the decay of the FACs, which diminish drastically faster.

As the magnitude of the FACs are related to the horizontal perturbation of the ionospheric magnetic field, and
thus the Poynting flux, Joule heating into the ionosphere-thermosphere system on 3 February 2022 increased
up to a maximum globally around 12:00 UT. The asymmetry between northern and southern hemisphere FACs
(Figures 3e and 3f) implies a northern hemisphere preference for Poynting flux energy input (in agreement with
Pakhotin et al., 2021), which is surprising given that the northern (southern) hemisphere was in local winter
(summer) at the time. There is thus further evidence for a magnetospheric driver to the aforementioned perturba-
tion density asymmetry, which may ultimately be due to geomagnetic field and conductance differences between
the two hemispheres (Cosgrove et al., 2022).

AMPERE and Swarm A FACs are shown in Figure 3g for the shaded interval in panels a—f, roughly coinciding
with the time of peak perturbation density and FAC magnitude. AMPERE and Swarm A are in good agree-
ment with each other. The northern hemisphere FAC pattern extended further equatorward than in the south
and contained higher current magnitudes. The northern hemisphere FAC is more akin to a “classical” FAC
picture than the south, with clearly structured R1 and R2 currents on both the dawn and dusk sides (lijima &
Potemra, 1978).

Figures 4a—4g shows thermosphere—ionosphere conditions for 4th February 2022, 1 day after the Starlink launch
and the day of the second geomagnetic storm. The SYM-H onset of this storm was at approximately 01:00 UT,
with a peak negative excursion reached at ~21:00 UT (Figure 1). The start and end of the SYM-H variance on
the 4th corresponds well with the magnitude of AMPERE measured FACs (Figures 4e and 4f), which also begins
to enhance at 01:00 UT and peak around 21:00 UT. The peak perturbation neutral density observed by both
GRACE-FO and Swarm C, however, occurred around 19:00 UT, an 18 hr lag from storm onset and 2 hr before
the end of the main phase (according to both SYM-H and AMPERE). It is interesting that the peak perturbation
density on the 4th occurred 1-2 hr before the peak SHM-H negative excursion, as it implies there is perhaps a
thermospheric density “saturation” point that is based on the duration of the storm main phase, and/or the magni-
tude of the storm itself.

The peak single-point perturbation density measurement and orbit averaged perturbation density was higher on
the 4th compared to the 3rd, 476%/125% (factor increases of 5.76 and 2.25) respectively for GRACE-FO. Swarm
C measured several very large density perturbations over a 5-min period at 18:50 UT which were not flagged as
anomalous in the data quality flags, resulting in a maximum single-point perturbation density measurement of
510% (factor 6.1 increase). We treat this as anomalous as the maxima during the preceding and proceeding peaks
were under 200% (3.0), and because the thermospheric density is highly unlikely to vary by so much so quickly.
The peak orbit-averaged perturbation density measured by Swarm C was 107% (2.07) (excluding anomalous
points), higher than that seen on the 3rd of February.

The orbit averaged densities from GRACE-FO and Swarm C were considerably higher on the 4th of February
compared to the 3rd, by 29% and 23%, respectively. We attribute this difference to the global extent of density
enhancements that each storm produced. Figure 1a shows that the storm on the 4th resulted in density pertur-
bations propagating from high to low latitudes, increasing the density significantly there. On the 3rd, however,
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Figure 4. Same format as Figure 3, but for 4th February 2022.
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the low-to-mid latitude neutral density was significantly lower, compared to the 4th. The difference in global
densities between the 2 days may be related to the aforementioned FAC asymmetry (Figures 3e-3g). On the
4th, the northern and southern hemisphere FACs observed by AMPERE and Swarm A are more symmetric
(Figures 4e—4g), which would result in more symmetric Joule heating, and thus a more symmetric distribution of
density enhancements and TAD propagation. The latter causes an “intersection” of TADs at low latitudes, driv-
ing significant density enhancements there (e.g., those seen on the 4th February in Figure 1; Pham et al., 2022).
Thus, the asymmetric FACs on the 3rd would produce asymmetric TAD propagation, in agreement with recent
modeling work (Hong et al., 2023; Zhu et al., 2023).

Figure 5 is in the same format as Figures 3 and 4, but showing the 5th of February 2022 (the day after the second
storm, 2 days after the Starlink launch). There were no additional storms on this day according to the SYM-H
index (Figure 1), and the FACs measured by AMPERE were significantly diminished in both hemispheres
compared to the previous 2 days. AMPERE and Swarm A FAC's are shown for the highlighted times around
04:30UT (Figure 5g), showing that the FAC equatorward extent and magnitude where indeed drastically reduced
compared to the previous two storm days, although we do note that the currents were generally stronger in the
southern hemisphere. FAC reconfiguration timescales after changes in solar wind driving, and in turn Joule heat-
ing reconfiguration times, are typically on the order of 10-150 min (Anderson et al., 2018; Billett, McWilliams,
Perry, et al., 2022; Coxon et al., 2019), which is consistent with our observations here.

The densities observed by GRACE-FO and Swarm C gradually decreased throughout the 5th February 2022
(Figures 5a-5d), eventually returning close to the MSIS quiet-time baseline by days end. As shown in Figure 2, the
neutral density after the second geomagnetic storm was characterized by an e-folding time of around 12 hr, which
is in stark contrast to the much faster decay of the enhanced FACs from the previous day (Figures 4e—4g). We noted
earlier that there was a similar fast FAC decay and slow thermospheric density decay seen on the 3rd (Figure 3), but
the densities on the 3rd did not return to quiet time values due to the onset of the 4 February geomagnetic storm.

Finally, we investigated the latitudinal dependence of the perturbation thermospheric density by creating daily
mean profiles versus latitude, shown in Figure 6 from 1st to 7th February 2022. The 7th of February is the date
on which the failed Starlink satellites burned up on re-entry.

The largest perturbation densities were seen on storm days (Figures 6¢, 6d, 6j, and 6k), with larger perturba-
tions seen by GRACE-FO compared to Swarm C (500 km/460 km average altitude, respectively). GRACE-FO
measured maximum mean perturbations of 110% and 131% (factor increases of 2.1 and 2.31) on the 3rd and
4th respectively, compared to Swarm C measurements of 80% and 86% (1.8 and 1.86). Maximums from both
satellites were in the northern hemisphere, at polar cap latitudes between 75° and 85°. These latitudes are consid-
erably higher than typical auroral latitudes of ~65°-70°, implying that the peak magnetospheric energy input
into atmosphere for these storms is occurring on open magnetic field lines, or close to the open-closed field
line boundary. This is a similar result to those presented by R. Liu et al. (2010), C. Y. Huang et al. (2014), Shi
et al. (2017), and Wang et al. (2021), who all saw large geomagnetic storm-associated thermospheric density
enhancements occurring well within the polar cap. These enhancements have been attributed to Joule heating
in the region of enhanced cusp Alfvénic electric fields and are likely related to the development of the “cusp
density anomaly” (Lotko & Zhang, 2018; Liihr et al., 2004). The latitudinal width of density enhancements were
also smaller in the southern hemisphere compared to north, which is consistent with the statistical distribution of
the cusp density anomaly in both hemispheres (H. Liu et al., 2005). Finally, we note that the latitudinal profiles
of the mean perturbation densities are not substantially different between GRACE-FO at ~500 km altitude and
Swarm-C at ~450 km altitude. The lack of difference is unsurprising, as the thermospheric scale height is not
likely to vary much in 50 km (Doornbos, 2012; Newton & Pelz, 1973).

Although Joule heating would require knowledge of the ionospheric conductivity and electric field, and the
thermospheric neutral wind, AMPERE has previously been used to estimate the Poynting flux with complimen-
tary electric field data from the Super Dual Auroral Radar Network (SuperDARN; Billett, McWilliams, Perry,
et al., 2022). It was found, however, that the large scale electric field fit from SuperDARN was too smoothed
out spatiotemporally to capture the small- and mesoscale variability of the system. The electric field instrument
on board the Swarm satellites can be used in conjunction with AMPERE (or the on board magnetometer) to
calculate the Poynting flux, at suitably small scales to capture the Alfvénic variability which drives the cusp
density enhancement (Billett, McWilliams, Pakhotin, et al., 2022), but this can only be carried out during certain
events where errors in the along-track ion drift measurements can be minimized (Billett et al., 2023; Lomidze
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geomagnetic activity levels were low (Figure 1, SYM-H index). As MSIS is an empirical model that cannot
capture event-driven neutral densities, and that the high-latitude ionosphere/thermosphere is never truly devoid
of geomagnetic influence, it likely that MSIS underestimated the high-latitude neutral density to some degree on
the “quiet” days prior to the 3 February storm. Following this underestimation, there is some small uncertainty
(up to ~20%) in our definition of quiet-time high-latitude neutral densities throughout this paper.

4. Summary

We have presented an analysis of the ionosphere-thermosphere conditions which lead to the loss of Starlink inter-
net satellites in February 2022. Discrete geomagnetic storms on the 3rd and 4th February drove increases of the
thermospheric mass density, increasing drag on the satellites and leading them to de-orbit on the 7th.

Utilizing newly processed high-resolution thermospheric density measurements from Swarm C and GRACE-FO,
we have gained new insights into the global extent of density enhancements due to high-latitude ionospheric
driving (captured by AMPERE and Swarm A FAC measurements). In particular:

e Thermospheric densities become enhanced globally, but are largest in the high-latitude polar regions above
80° AACGM latitude. The latitudinal distribution of the density perturbations is consistent with magneto-
spheric energy input into the cusp.

e Density perturbations between the northern and southern hemispheres were more symmetric on the 4th
compared to the 3rd. This is consistent with the FAC data from AMPERE, which likewise exhibits stronger
hemispherical symmetry on the 4th compared to the 3rd of February.

e Thermospheric density e-folding decay timescales in the auroral zones of both hemispheres were approxi-
mately 12 hr, except for Swarm C in the northern hemisphere, which was around 13 hr. The magnitude and
extent of FACs reduced much quicker.

e The perturbation thermospheric density on the 4th appears to saturate, with its peak occurring 1-2 hr before
the maximum excursion of SYM-H. This may be due to the very long main phase of the 4th of February storm,
which lasted around 20 hr.

This study emphasizes the importance of capturing high-latitude ionospheric conditions when considering the
impact of geomagnetic storms on the thermosphere, which can have dire consequences for LEO assets. These
thermospheric storm effects are global in their extent and complex in their growth and decay, whilst their drivers
are confined to high latitudes. There is additionally a complex thermospheric interplay between hemispheres, as
ionospheric conditions in each can be highly asymmetric. For future analysis and potential real-time monitoring
to support LEO satellite launches, capturing the high-latitude ionosphere is imperative. This monitoring could
come in the form of real-time FAC streaming from LEO satellites with magnetometers, or perhaps more real-
istically, nowcasting of the high-latitude ionospheric convection, aurora, total electron content (TEC), magnetic
perturbations from various ground-based instrumentation. The Super Dual Auroral Radar Network (SuperD-
ARN), for example, includes several high-frequency radars that measure ionospheric plasma velocities in real-
time (https://superdarn.ca/real-time), and several sources provide GNSS derived near-real-time TEC maps (e.g.,
https://impc.dlr.de/products/total-electron-content/). Rapid enhancements to both ionospheric velocities and TEC
indicate geomagnetic storms and can be used in addition to geomagnetic indices, such as SYM-H, to more accu-
rately anticipate the magnitude of thermospheric density enhancements (e.g., Billett et al., 2021; Jee et al., 2005).

Data Availability Statement

Data from the ESA Swarm A and C satellites, as well as GRACE-FO, was obtained from https://swarm-diss.
eo.esa.int. AMPERE data can be plotted and downloaded at http://ampere.jhuapl.edu/. The NRLMSIS 2.0 model
Fortran code was obtained from https://map.nrl.navy.mil/map/pub/nrl/NRLMSIS/NRLMSIS2.0/.
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